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1 Introduction

It has been proposed [1] that, based on the AdS/CFT correspondence [2], the quantum

information metric may serve as a new tool to probe the bulk gravity. This proposed

correspondence requires an interesting new dictionary, which may shed a new light on the

issue of bulk decoding from the view point of field theories.

The quantum information metric [3, 4], also known as fidelity susceptibility, measures

the distance between two infinitesimally different quantum states. To define this quantity

we start by considering a one-parameter family of states |Ψ(λ)〉. The quantum information

metric Gλλ is defined as minus the coefficient of the second order term in the expansion of

| 〈Ψ(λ+ δλ)|Ψ(λ)〉 | for small δλ:

| 〈Ψ(λ+ δλ)|Ψ(λ)〉 | = 1−Gλλδλ2 +O(δλ3). (1.1)

The definition can be naturally generalized to the case of a multi dimensional parameter

space, even though we will not consider that case in this paper. λ could be any sort of
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parameter that labels a family of quantum states so its nature is very general, in this paper

we will specialize to a specific set up in which λ is the coupling constant of a local operator

O in the Euclidean signature Lagrangian.

The quantum information metric has applications in understanding quantum phase

transitions or response of a quantum system under some spatially homogeneous perturba-

tions. Prime examples of the correspondence [1, 5–7] involve a d dimensional CFT per-

turbed by a scalar primary operator of dimension ∆ and its gravity dual described by the

d+1 dimensional Euclidean Janus geometry [8, 9]. The overlap | 〈Ψ(λ+ δλ)|Ψ(λ)〉 | and the

corresponding quantum information metric can be realized by a path integral of the CFT

on R×Md−1 (Md−1 being the spatial manifold where the CFT lives) with an operator O
turned on whose coupling jumps from λ to λ+δλ though the interface at τ = 0 where τ is the

Euclidean time coordinate ranged from [−∞,∞]. The quantum information metric defined

in this manner diverges in general and needs to be regularized and renormalized, the details

of these procedures will be discussed in this paper. We note that the quantum information

metric will scale extensively as the spatial volume of the system denoted by VolMd−1. Be-

low we shall be interested in the quantum information metric only at critical point where

λ = 0. In case of an exactly marginal deformation criticality is preserved at any values of λ

and one finds that the quantum information metric is λ independent. We shall further limit

our consideration to the cases of scalar primary operators with the restriction ∆ > d+1
2 .

With the choice of Md−1 = Rd−1 one finds that the (renormalized) quantum infor-

mation metric of a scalar primary operator vanishes rather trivially [6]. In this note we

shall instead consider the quantum information metric on R× Sd−1 with a scalar primary

operator turned on, this set up was first considered in [6]. When 2∆− d+ 1 is not an even

integer, the result turns out to be finite and independent of RG scale. For 2∆− d+ 1 even

the quantum information metric involves a logarithmic term which depends on the radius

of the d − 1 sphere times the RG scale. Thus the quantum information metric becomes

anomalous in this case. We shall present an explicit formula of the quantum information

metric for any d and integral ∆ (with ∆ > d+1
2 ). We shall verify this formula for various

cases using both gravity and field theory computations. We find that the degrees of free-

dom relevant to the information metric can be thought of living in a d − 1 dimensional

theory localized on the interface Md−1.

In section 2 we present the path integral formulation of the quantum information metric

including its regularization. In section 3 we carry out the field theory computation and

give the formula for the renormalized quantum information metric. We check this formula

for various cases field theoretically. In section 4 we recover the field theory computation

from the dual gravity side. This way the holographic regularization scheme adopted in

this note will be justified. In section 5 we relate the quantum information metric to the

interface free energy of the conformal Janus on Euclidean Sd. Last section is devoted to

the concluding remarks and, in appendix A, we explain our normalization of the two point

function of operators that is consistent with our gravity description.
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2 Path integral formulation of the quantum information metric

We firstly review the definition of the quantum information metric on the field theory side.

We will use the same formalism and arguments used in [1]. In particular we focus on the

quantum information metric for a CFT ground state deformed by a scalar primary operator.

We assume that the CFT lives on a d dimensional cylinder R × Sd−1 and that it has an

Euclidean signature Lagrangian L0 of a real scalar field Φ. If one wants to be more general

one can think of Φ as schematically representing all the fundamental fields of the theory.

A generic state |ϕ 〉 is described by a function ϕ(Ω) on Sd−1, with Ω being the unit

vector in Rd parameterizing Sd−1. The overlap between the ground state |Ψ0〉 and the

generic state |ϕ 〉 is obtained by the following Euclidean path integral:

〈ϕ |Ψ0〉 =
1√
Z0

∫
Φ(τ=0,Ω)=ϕ(Ω)

DΦ exp

(
−
∫ 0

−∞
dτ

∫
dd−1Ω

√
gSd−1L0

)
, (2.1)

where Z0 is the partition function for the theory on the cylinder and gSd−1 is the determi-

nant of the metric of the sphere. For simplicity we set the radius of the sphere r to one,

i.e. we measure lengths in units of r. We eventually restore factors of r using dimensional

analysis.

At this point we can consider deforming the theory by a primary operator O of con-

formal dimension ∆. The new Euclidean Lagrangian will be given by

L1 = L0 + δλO. (2.2)

By the same arguments used above the overlap between a generic state |ϕ 〉 and the ground

state of the new Lagrangian L1, indicated by |Ψ1〉, can be written as:

〈ϕ |Ψ1〉 =
1√
Z1

∫
Φ(τ=0,Ω)=ϕ(Ω)

DΦ exp

(
−
∫ 0

−∞
dτ

∫
dd−1Ω

√
gSd−1L1

)
. (2.3)

We can then compute the overlap between the ground state of the original theory and the

ground state of the deformed theory. We find

〈Ψ1|Ψ0〉 =

∫
Dϕ 〈Ψ1|ϕ〉 〈ϕ|Ψ0〉 (2.4)

=

∫
DΦ exp

(
−
∫ 0
−∞ dτ

∫
dd−1Ω

√
gSd−1L0 −

∫∞
0 dτ

∫
dd−1Ω

√
gSd−1L1

)
(Z0Z1)1/2

.

One should regard this result as a formal equation. In fact, because of the sudden change

in the action at τ = 0, this path integral suffers UV divergences which require regulariza-

tion and renormalization. We introduce a regulator ε by deforming the state |Ψ1〉 in the

following way:

|Ψε
1〉 =

e−εH0 |Ψ1〉
(〈Ψ1|e−2εH0 |Ψ1〉)1/2

. (2.5)

– 3 –
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|~x| = 1

τ = 0

τ

Sd−1

Figure 1. A map from Rd to R× Sd−1.

This choice makes the path integral formulation of 〈Ψε
1|Ψ0〉 well defined.1 One can now

perform an expansion of | 〈Ψε
1|Ψ0〉 | for small δλ. The regularized quantum information

metric is defined as minus the coefficient of the δλ2 term

| 〈Ψε
1|Ψ0〉 | = 1−Gελλ δλ2 +O(δλ3). (2.6)

Using the path integral formulation and applying a perturbative expansion in δλ one finds

Gελλ =
1

2

∫
dd−1Ω1

√
gSd−1

∫
dd−1Ω2

√
gSd−1

∫ −ε
−∞

dτ1

∫ ∞
ε

dτ2 〈O(τ1,Ω1)O(τ2,Ω2)〉 . (2.7)

The regularization procedure effectively removes a strip shaped region centered on τ = 0.

3 Field theory computation

To compute Gελλ we need to use the two point function for a primary operator on the

cylinder. We start with the two point function for Rd in Euclidean signature:

〈O(τP , x)O(τ ′P , x
′)〉 =

N∆[
(τP − τ ′P )2 + (x− x′)2

]∆ (3.1)

where τP indicated the Euclidean time. We choose the following normalization constant

N∆ =
2η `d−1 dΓ(∆)

π
d
2 Γ(∆− d

2)
(3.2)

where η = 1
16πG , with the d+ 1 dimensional Newton’s constant G, and ` is the AdS radius

scale appearing in the dual gravity description. This normalization is used to guarantee

agreement between bulk and field theory side. We give a more detailed discussion and a

derivation of this relation in appendix A.

Since the metric of Euclidean signature Rd

ds2 = dτ2
P +

d−1∑
i

(dxi)2 = dξ2 + ξ2ds2
Sd−1 (3.3)

1There are other ways to regularize this path integral, for example one could also consider to deform the

state |Ψ0〉. The regularization adopted here is convenient because it induces a nice geometrical regularization

for the quantum information metric.
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and the metric of the cylinder

ds2 = dτ2 + ds2
Sd−1 (3.4)

are related by the conformal transformation ξ = exp(τ), we can easily find the following

expression for the two point function on the cylinder

〈O(τ1,Ω1)O(τ1,Ω2〉 =
N∆

(2 cosh(τ1 − τ2)− 2Ω1 · Ω2)∆
. (3.5)

We depict the corresponding conformal map in figure 1. The form of the two point function

implies that in the ε → 0 limit one gets the following leading behavior for the quantum

information metric

Gελλ ≈ εd−2∆+1. (3.6)

This is not a surprise. In fact we recover the same leading behavior as the case of a CFT

living in flat space [1, 5, 6].

What makes the configuration of the cylinder more interesting is the existence of

a physical universal contribution. In addition, even if flat space and the cylinder are

conformally equivalent, the quantum information metric on the cylinder cannot be inferred

in general by the knowledge of the quantum information metric in flat space. This is due

to the fact that we are turning on dimension-full coupling constants in the path integral

formulation which results in the breaking of conformal symmetry.

In the following we focus on integer values of the conformal dimension ∆ and we take

∆ > (d + 1)/2 to avoid the issue of infrared divergences. We now start to work on the

integral appearing in equation (2.7). We fix Ω2 and we integrate over Ω1. Since Ω2 is fixed

we can take it as the north pole for the coordinates system used in the Ω1 integration. We

then have∫
dd−1Ω1

√
gSd−1 〈O(Ω1, τ1)O(Ω2, τ2)〉 = N∆

∫ π

0
dθ

sin θd−2 VolSd−2

(2 cosh(τ1 − τ2)− 2 cos θ)∆
. (3.7)

The integral

I =

∫ π

0
dθ

sin θd−2

(2 cosh(τ1 − τ2)− 2 cos θ)∆
(3.8)

can be performed and it produces the following result:

I =


π3/22−∆(−1)n+1(cosh(τ1−τ2)+1)−∆

2F1

(
n− 1

2
,∆;2n−1; 2

cosh(τ1−τ2)+1

)
Γ( 3

2
−n)Γ(n)

d = 2n
√
π2−∆(n−1)!(cosh(τ1−τ2)+1)−∆

2F1

(
n,∆;2n; 2

cosh(τ1−τ2)+1

)
Γ(n+ 1

2)
d = 2n+ 1

(3.9)

We can use the fact that I depends only on the difference τ1−τ2 to simplify the form of Gελλ:

Gελλ =
1

2
N∆VolSd−2VolSd−1

∫ ∞
ε

dτ1

∫ −ε
−∞

dτ2I(τ1 − τ2). (3.10)

At this point we change variables. We introduce u = τ1− τ2 and v = τ1 + τ2. The Jacobian

give a factor of 1/2. We are then left with

Gελλ =
1

4
N∆VolSd−2VolSd−1

∫ ∞
2ε

du

∫ u−2ε

−u+2ε
dv I(u)

=
1

2
N∆VolSd−2VolSd−1

∫ ∞
2ε

du(u− 2ε) I(u). (3.11)
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As ε→ 0 Gελλ admits the following expansion:

Gελλ = a−2∆+d+1

( ε
r

)−2∆+d+1
+a−2∆+d−1

( ε
r

)−2∆+d−1
+ · · ·+a0 + b0 log

ε

r
+O(ε) (3.12)

where we have restored the radius r of the spatial sphere where the CFT lives. The loga-

rithmic term is present only when 2∆ − d− 1 is even.

To extract the universal piece one has in general to construct counterterms that need

to be added to action. This is a standard procedure in QFT. We choose to work in the

minimal subtraction scheme. Once the power divergences are removed we can identify the

universal piece in

Gλλ =

{
−b0 log µr if 2∆− d− 1 is even

a0 otherwise.
(3.13)

where µ is the renormalization scale. This is can be explained heuristically when ∆ = d.

In fact the path integral formulation can be interpreted as the partition function of a field

theory with a conformal defect. The conformal defect lives in d− 1 dimension, it is not a

surprise that the anomalous term (logarithmic divergence) appears for d odd.

The computation of Gλλ is in principle a well posed problem and it is easy to work on

specific cases, however it seems that a generic derivation of Gλλ is difficult to obtain. Based

on numerous checks we propose that the universal contribution of the quantum information

metric for a CFT living on the cylinder deformed by a scalar primary operator is given by

• d even:

Gλλ = η`d−1d

4
(−1)[∆− d−1

2
]

[
Γ(∆

2 )Γ(∆
2 − d−2

2 )
]2

Γ(∆− d
2)Γ(∆− d−2

2 )
VolSd−1 (3.14)

where VolSd−1 is the volume of unit Sd−1 given by

VolSd−1 =
2π

d
2

Γ(d2)
(3.15)

• d odd:

Gλλ = Glog
λλ log µr

Glog
λλ = η`d−1d

4
(−1)[∆− d−1

2
]

[
Γ(∆

2 )Γ(∆
2 − d−2

2 )
]2

Γ(∆− d
2)Γ(∆− d−2

2 )
VolSd−1

(
− 2

π

)
. (3.16)

3.1 Checks

We now perform some explicit checks to validate the suggested formulas. We start by dis-

cussing in details a couple of specific examples to show how the computations can be carried

out. We then present a list of cases used to check the claims of equations (3.14) (3.16).

• d = 2: let us start by considering the explicit example ∆ = 3. If we plug these values

in equations (3.9) and (3.11) we get the following expression

Gελλ = N3π

∫ ∞
2ε

du
1

16
π(u− 2ε)(cosh 2u+ 2) csch5u. (3.17)

– 6 –



J
H
E
P
0
9
(
2
0
1
7
)
0
8
6

This integral can be performed analytically. We can then expand Gελλ in a Laurent

series in ε, we find

Gελλ = 2N3π

(
π

512ε3
− π

128ε
+

π3

512
+O(ε)

)
. (3.18)

The universal contribution is then given by

Gλλ =
η`π3

32
, (3.19)

where we used N3 = 8η`/π. This matches equation (3.14).

The same strategy can be applied to other values of ∆. Here is a list of results

obtained:

Gλλ(∆ = 4) = −πη`
12

Gλλ(∆ = 5) =
π3η`

256

Gλλ(∆ = 6) = −πη`
180

Gλλ(∆ = 7) =
75π3η`

524288
. (3.20)

Equation (3.14) correctly reproduces all these results.

• d = 3 and generic ∆: let us focus on d = 3 on ∆ integer

Gλλ =
1

2
N∆VolSd−2VolSd−1J (3.21)

J =

∫ ∞
2ε

du(u− 2ε)I(u) (3.22)

I(u) =
2−∆(coshu− 1)−∆

(
−(coshu+ 1) tanh2∆ u

2 + coshu− 1
)

∆− 1
. (3.23)

We change variable introducing z = tanh2 u
2 . This produces

J = εJ1 + J2

J1 =

∫ 1

tanh2 ε

22−2∆
(

1
z − 1

)∆ (
z∆ − z

)
(∆− 1)(z − 1)2

√
z

dz

J2 =

∫ 1

tanh2 ε

21−2∆
(

1
z − 1

)∆ (
z − z∆

)
cosh−1 z+1

1−z
(∆− 1)(z − 1)2

√
z

dz. (3.24)

We can proceed as before. If ∆ is integer we have that J2 has a logarithmic divergence

while εJ1 does not. So we focus on J2. The logarithmic divergence of J2 corresponds

to the coefficient of the ε−1 divergence in ∂εJ2. We have

∂εJ2 =
23−2∆ε

(
tanh2∆−2 ε− 1

)
csch2∆−2ε

∆− 1
. (3.25)

– 7 –
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The only term that has a ε−1 divergence is

− 23−2∆εcsch2∆−2ε

∆− 1
. (3.26)

So we have the coefficient of the log divergence as

Glog
λλ = 4π3N∆Res

(
−23−2∆εcsch2∆−2ε

∆− 1

) ∣∣∣∣
ε=0

. (3.27)

Here is a list of cases:

Glog
λλ (∆ = 3) = 4πη`2

Glog
λλ (∆ = 4) = −16πη`2

15

Glog
λλ (∆ = 5) =

16πη`2

175

Glog
λλ (∆ = 6) = −256πη`2

3675

Glog
λλ (∆ = 7) =

256πη`2

14553
. (3.28)

Notice that equation (3.16) correctly reproduces all these results.

3.2 Marginal deformation

If the primary operator used to deform the theory is an exactly marginal operator (∆ = d)

equations (3.14) and (3.16) reduce to

Gλλ =

{
1
2η`

d−1(−1)
d
2 VolSd−1 d even

1
πη`

d−1(−1)
d−1

2 VolSd−1log µr d odd.
(3.29)

We have checked these results explicitly for d = 2, . . . , 8 using the same approach adopted

in section 3.1.

4 Holographic checks

In this section we firstly review the holographic set up for the computations of the quantum

information metric. We then proceed to examine some explicit examples.

4.1 Holographic formulation

We can write equation (2.4) as

〈Ψ1|Ψ0〉 =
Z2√
Z1Z0

(4.1)

where Z0 is the partition function of the undeformed CFT, Z1 is the partition function of

the theory obtained by deforming the original CFT with a primary scalar operator, Z2 is

the partition function of a theory obtained deforming the original CFT only for τ > 0.

– 8 –
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These quantities can be computed holographically by computing the on shell action

of an Einstein-scalar theory with negative cosmological constant. We work in the large

N approximation, where the bulk theory is classical. In principle we would have to solve

the equations of motion asking that the metric is asymptotically AdS, i.e. for large u the

metric approaches

ds2 =

(
1 +

u2

`2

)
dτ2 +

du2

1 + u2

`2

+ u2dΩ2
d−1 + . . . (4.2)

(where the subleading terms start at order O(u−1)) and that the scalar field dual to an

operator O in the field theory side obeys the following boundary condition

lim
u→∞

ud−∆φ(u, τ,Ω) = δλsk(τ) (4.3)

where

s0(τ) = 0

s1(τ) = 1

s2(τ) =

{
1 if τ ≥ 0

0 if τ ≤ 0.
(4.4)

The subscript indicates what boundary condition sk(τ) needs to be chosen for the con-

struction of Zk, with k = 0, 1, 2.

Since in our computation we are only interested in infinitesimal δλ we can perform a

perturbative analysis whose detailed explanation can be found in [6]. One finds

− logZk = IAdS + δIk +O(δλ4), (4.5)

where IAdS is the on shell action of pure Einstein theory with negative cosmological constant

and δIk is the on shell action for scalar fields probing a fixed AdS background. In particular

δIk = η

∫
∂Mε

√
γ0nµ g

µνφk∂νφk, (4.6)

where Mε is the regularized version of AdS, γ0 is the determinant of the induced metric

at the cut-off surface ∂Mε and nµ is the unit normal vector at ∂Mε. The details of

the regularization procedure will be spelled out later. As was carefully shown in [6], the

matter contributions δIk are solely responsible for the quantum information metric while

the contributions from the metric perturbation are of order δλ4 and can be safely ignored.

The first step in our computation is to find the profile of the scalar field that obeys

the equation of motion derived by the following action:

S = η

∫
Mε

√
gd+1 (gµν∇µφ∇νφ+m2φ2). (4.7)

To do this we start with Poincaré AdS with metric

ds2 =
`2

z2
(dz2 + dxidxi) (4.8)

– 9 –
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with i = 1, · · · , d. On this space we can construct a scalar field obeying the equation of

motion using the bulk to boundary propagator

φ(z, ~x) = c∆

∫
ddx′

[
z

z2 + (~x− ~x′)2

]∆

s̃(~x′), (4.9)

where

c∆ =

(
πd/2

Γ
(
∆− d

2

)
Γ(∆)

)−1

(4.10)

and s̃(~x) dictates the boundary behavior of the field. We can reformulate the problem

in another system of coordinates where we write AdSd+1 in AdSd slicing. The change of

coordinates is given by:

z =
sinh p

cosh(y − p)
xi =

cosh y

cosh(y − p)Ωi (4.11)

and leads to

ds2 = `2
(
dy2 +

cosh2 y

sinh2 p

(
dp2 + ds2

Sd−1

))
(4.12)

where y ∈ (−∞,∞) and p ∈ (0,∞). This space is global AdSd+1 and we identify its

boundary as the Euclidean cylinder R×Sd−1. In general the function s̃(x) is not invariant

under this change of coordinates. From the CFT point of view this is clear: we identify the

function s̃(x) as the coupling constant for the operator O dual to φ. Since O is in general

not marginal the change of coordinates produces a different coupling constant s(x) =

s̃(x)|x|d−∆. This means that if we want to impose a certain boundary condition s(x) on

the cylinder we need to choose the boundary condition in flat space to be s̃(x) = s(x)|x|∆−d.
Thus the field φ used to construct the various partition functions is obtained by per-

forming the following integral

φ(z, ~x) = c∆

∫
ddx′

[
z

z2 + (~x− ~x′)2

]∆

s(~x′)|~x′|∆−d, (4.13)

with s(x) chosen to be

s0(~x) = 0

s1(~x) = 1

s2(~x) =

{
1 if |~x| ≥ 1

0 otherwise.
(4.14)

The map between flat space and the cylinder sends the ball |~x| < 1 to the half cylinder

τ < 0. This explains the form of s̃2(~x). Notice that φ0 = 0. Once the field φk has been

constructed one needs to proceed to the computation of the on shell action. This quantity

is not finite and needs to be regulated. We have seen that the CFT regulator effectively

removes the region close to the interface from the path integral. Since we identify the AdSd
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y∞−y∞

Figure 2. We depict here the regularization in (y, p) plane of Mε. The regularization is defined by

the coordinate ranges y ∈ (−y∞, y∞) and p ∈ (ε,∞).

slices as naturally dual to the interface an obvious bulk regularization is given by taking

p ∈ (ε,∞). This does not tame all divergences as the integration along the non compact

coordinate y will still produce infinities. We then bound y to take value into (−y∞, y∞).

The presence of a second cut-off might seem bizarre, however we will notice that the final

result will be finite in the y∞ → ∞ limit. For a more detailed discussion of the two cut-

off procedure in holographic computations we refer to [10]. A sketch of the regularized

manifold is shown in figure 2.

Once the filed φk is constructed we proceed to the computation of the on shell action.

In particular one finds

2

ηVolSd−1`d−1
δIk =

∫ ∞
ε

(
cosh y

sinh p

)2

∂yφ
2
k

∣∣
y=y∞

dp−
∫ ∞
ε

(
cosh y

sinh p

)2

∂yφ
2
k

∣∣
y=−y∞dp

−
∫ y∞

−y∞
∂pφ

2
k

∣∣
p=ε

dy. (4.15)

Putting all the contributions together gives

Gελλ =
VolSd−1

2
η`d−1

[ ∫ ∞
ε

dp
cosh2 y

sinh2 p

(
∂yφ

2
2 − ∂yφ2

1

)
|y=y∞

−
∫ y∞

−y∞
dy

(
∂pφ

2
2 −

1

2
∂pφ

2
1

) ∣∣∣∣
p=ε

]
(4.16)

At this point we can safely take the y∞ →∞ limit. The result will be divergent as ε→ 0,

however it is going to contain a universal term. The universal term will be the finite term for

d even and the coefficient of the logarithmic divergence for d odd. In all cases we will in gen-

eral be able to subtract the power divergences by the use of counterterms. Since the cut off

surface is more complicated than the one usually used for holographic normalization a rigor-

ous derivation of the construction of the counterterms is not available. However notice that

our set up is similar to an interface field theory. Since the counterterms are used to regulate

the divergences associated with the interface one would expect that the counterterms are

localized on the p = ε surface. This surface preserves some of the bulk symmetries, it is then

natural to look for counterterms that respect this symmetry. If one tries to construct such

counterterms one would discover that they involve only odd powers of ε. For this reason it

is safe to assume that a minimal regularization scheme can be performed also in the bulk.
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4.2 Explicit examples

In this section we explicitly construct a couple of examples to show how the quantum

information metric can be obtained holographically.

4.2.1 d = 2 ∆ = 6

We can evaluate the integral appearing in equation (4.13). The result is more conveniently

expressed in the coordinates of equation (4.12). We find

φ1 = cosh4 y csch4p+ cosh2 y csch2p+
1

6

φ2 =
ey sech5y csch4p

1536

(
3
(
e2y + e4y + 6

) (
6e2y + e4y + 11

)
+

+2
(
53e2y + 19e4y + 3e6y + 85

)
cosh 2p+

(
5e2y + e4y + 10

)
cosh 4p

)
(4.17)

We can now proceed and plug the expression for the filed in equation (4.16). In the ε→ 0

limit we find that there is a constant cut off independent term:

Gλλ = −πη`
180

(4.18)

which agrees with the result derived in equation (3.20). In the same way it is quite easy

to find the quantum information metric holographically when both d and ∆ are even.2

We performed this computation for various cases finding always perfect agreement with

equation (3.14).

4.3 Marginal deformation

In case of a marginal deformation (∆ = d) we can find the expression of the quantum

information metric for any dimension d. The reason for it is that since the coupling

is marginal the source does not transform when changing coordinates. This makes the

integral easier. One finds the following expression for the quantum information metric3

Gελλ =
η Γ
(

1+d
2

)
`d−1

Γ(d/2)

2πd/2

Γ(d/2)

∫ 1/ε

0

rd−1

√
1 + r2

dr. (4.19)

We want to extract the universal contribution of this quantity.

4.3.1 d odd

For d odd this term has a logarithmic divergence. So we can look at minus the coefficient

of the 1/ε divergence of Gλλ.

Glog
λλ =

η Γ
(

1+d
2

)
`d−1

Γ(d/2)

2πd/2

Γ(d/2)
Res

(
ε−d√
ε2 + 1

) ∣∣∣∣
ε=0

= 2η`d−1 (−1)(d−1)/2πd/2−2

Γ(d/2)
(4.20)

2The main obstruction when either d or ∆ is odd is to solve the integral of equation (4.13).
3For a detailed derivation we refer to [6].
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where we used

Res

(
ε−d√
ε2 + 1

) ∣∣∣∣
ε=0

=
(−1)(d−1)/2Γ

(
d
2

)
√
πΓ
(
d+1

2

) . (4.21)

Equation (4.20) matches equation (3.29).

4.3.2 d even

For d even we have ∫ 1/ε

0

rd−1

√
1 + r2

dr =
1

2
(−1)−d/2B− 1

ε2

(
d

2
,

1

2

)
, (4.22)

where B− 1
ε2

(
d
2 ,

1
2

)
indicate the incomplete beta function. We now need to isolate its con-

stant term. To do that we express the incomplete beta function in terms of the hypergeo-

metric function

Bz(A,B) =
zA 2F1(A, 1−B;A+ 1; z)

A
(4.23)

and we use the following property of the hypergeometric function:

2F1(a, b; c; z) =
(−z)−aΓ(c)Γ(b− a) 2F1

(
a, a− c+ 1; a− b+ 1; 1

z

)
Γ(b)Γ(c− a)

+
(−z)−bΓ(c)Γ(a− b) 2F1

(
b, b− c+ 1;−a+ b+ 1; 1

z

)
Γ(a)Γ(c− b) . (4.24)

Using these equations with z = −ε−2, A = n,B = 1/2, a = A, b = 1 − B, c = A + 1 gives

the following result∫ 1/ε

0

rd−1

√
1 + r2

dr =
Γ
(

1
2 − d

2

)
Γ
(
d
2

)
2
√
π

+
ε1−d 2F1

(
1
2 ,

1
2 − d

2 ; 3
2 − d

2 ;−ε2
)

d− 1
. (4.25)

We can now expand the hypergeometric function for small ε. Since d is even the second

term will correspond to a Laurent expansion with only odd powers of ε. Thus the only

finite part is the first contribution. We are then left with:

Gλλ = η`d−1 (−1)
d
2π

d
2

Γ
(
d
2

) (4.26)

which agrees with equation (3.29).

5 Information metric and interface free energy of conformal Janus on Sd

In this section we relate the quantum information metric on the cylinder to the free energy

of a conformal Janus configuration on the Euclidean sphere.

As usual we start with the expression of the overlap between the deformed ground

state and the undeformed one:

〈Ψ1|Ψ0〉 =
Z2√
Z1Z0

(5.1)
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We can compute the Zk holographically by Zk = exp(−Ik) where Ik is the on shell action

of a Einstein-dilaton theory. If the deformation is marginal we have

Z0 = Z1 = exp(−IAdS), (5.2)

and thus

〈Ψ1|Ψ0〉 = exp(−(I2 − IAdS)). (5.3)

If we expand the left hand side for small δλ we have

〈Ψ1|Ψ0〉 = 1−Gλλδλ2 +O(δλ3) (5.4)

Thus

log(〈Ψ1|Ψ0〉) = −Gλλδλ2 +O(δλ3) = −(I2 − IAdS), (5.5)

which results in

∆F = Gλλδλ
2 +O(δλ3). (5.6)

Therefore the free energy of a Janus interface at second order in the Janus deformation

parameter reproduces the quantum information metric for a CFT ground state living on

R× Sd−1.

At this point we want to relate the computation of the quantum information metric

on R× Sd−1 to the computation of the free energy on Sd. We can map the cylinder to the

sphere. A way to do this is to take the cylinder with metric

ds2
cyl = dτ2 + ds2

Sd−1 (5.7)

and conformally map it to a sphere with metric

ds2
Sd = dθ2 + sin2 θds2

Sd−1 (5.8)

by using the following change of coordinates

τ = log(tan(θ/2)). (5.9)

We are allowed to perform the change of coordinates because the fields well behave at

τ = ±∞. We will return on this detail later. Under the map (5.9) the interface at τ = 0

is mapped to the equator of the sphere, the τ > 0 (< 0) region is mapped to the northern

(southern) hemisphere and the cut off surfaces τ = ±ε are mapped to cut off surfaces

located at constant θ = 2 arctan(e±ε).

To find the quantum information metric on the cylinder one has to compute∫
τ1>ε

∫
τ2<−ε

〈O(τ1,Ω1)O(τ2,Ω2)〉 . (5.10)

Under the conformal transformation (5.9) this maps to∫
Ñ

∫
S̃
〈O(θ1,Ω1)O(θ2,Ω2)〉 , (5.11)
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where Ñ (S̃) indicates the (regularized) northern (southern) hemisphere Using a path

integral construction we could have derived this formula by looking at the second order

contribution in δλ of ∆Fsphere. This indeed shows that we can compute the quantum

information metric for a marginal deformation by looking at the leading order contribution

of the interface free energy.

This result can be checked analytically in the bulk. The interface free energy for the

conformal Janus on the Euclidean sphere Sd has been computed in [11] for d = 2, 3 and

indeed the small δλ behavior matches the computation of the quantum information metric

presented in this paper.

One could wonder if the same procedure can be applied for the quantum information

metric of a CFT living on R × Rd−1. In this case the interface is a codimension one

plane. A conformal transformation between this configuration and a sphere with interface

extended along the equator is available. Before performing the conformal map one has to

compactify the space. This is not possible in this set up. The reason is that the interface

extends to infinity, thus the fields generally speaking would have a non trivial behavior at

large distances. We cannot therefore make the manifold compact.

The argument explained in this section fails if the deformation is not marginal. For

a non marginal deformation the conformal transformation will change the effective source.

Therefore the usual configuration on the cylinder would be mapped to a configuration on

the sphere with a coupling constant that depends on the polar angle.

We conclude the section with a comment about regularization. On the cylinder the reg-

ularization is performed by excluding from the path integral the region close to the interface:

we put cut offs at τ = ±ε. These cut off surfaces are mapped to θ = 2 arctan(e±ε) ≈ π/2±ε,
which looks appealing since it is the natural cut off one would use. However it is important

to stress that generically one should make use of the entire expression θ = 2 arctan(e±ε)

since the relation between the cut offs in the two geometries is non linear and thus trun-

cating the relation for small ε could suppress some potential finite contributions.

6 Concluding remarks

In this note we compute the quantum information metric for the ground state of a CFT

living on R×Sd−1 perturbed by a scalar primary operator. We find that when 2∆ − d+ 1

is even the renormalized quantum information metric becomes anomalous depending on

the radius of the sphere, explicitly breaking the scale symmetry of the underlying CFT,

otherwise it is finite and scale independent. For integral values of ∆ ( > d+1
2 ) we present

an explicit formula for the quantum information metric, which is verified for various cases

both by gravity and field theoretic computations. The renormalized quantum information

metric is well defined physically and can be measured experimentally in principle. Since we

now have definite predictions for the quantum information metric, our results can be used

to clarify a possible relation between the quantum information metric and other quantities

like quantum complexity [12–15].

We find that the degrees of freedom responsible for the quantum information metric

are organized in a d−1 dimensional theory that may be viewed as localized in the interface
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Sd−1. A similar observation holds for the conformal Janus on Euclidean Sd whose interface

is given by the equatorial sphere Sd−1 [11]. In that case the interface contribution of the free

energy shows the characteristics of d−1 field theory living on the interface Sd−1. We showed

a precise match between these two different observations, in particular we established that

the quantum information metric for an exactly marginal deformation reproduces the leading

term of the interface free energy of the conformal Janus. It will be interesting to see if this

match can be generalized to the cases of non marginal operators near the critical point.

Further investigation is required in this direction.
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A Two point function normalization

In this appendix we explain our normalization of the two point function of operators that

is consistent with our gravity description.

A.1 Normalization of boundary-bulk propagator

The bulk to boundary propagator in Poincaré coordinates is given by

K(x;x′, z) = c∆
z∆

(z2 + |x− x′|2)∆
. (A.1)

The constant c∆ is fixed by requiring that as z → 0 one has

K(x;x′, x) = zd−∆δd(x− x′). (A.2)

We then have

1 =

∫
ddxz∆−dK(x;x′, z) = c∆

∫
ddx

z2∆−d

(z2 + |x− x′|2)∆
. (A.3)

At this point we change variable of integration by defining x− x′ = zy, obtaining

1 = c∆

∫
ddy(1 + y2)−∆ (A.4)

from which we find

c∆ =

(
VolSd−1 Γ

(
d
2

)
Γ
(
∆− d

2

)
2Γ(∆)

)−1

. (A.5)

This leads to (4.10).
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A.2 Normalization constant of the two point function

The two point function on the CFT side is given by

〈O(x1)O(x2)〉 =
N∆

|x1 − x2|2∆
. (A.6)

The constant N∆ has to be chosen such that 〈exp(
∫
JO)〉CFT = exp (−Ibulk), where Ibulk

is the on shell action of the bulk theory. We consider for the gravity side a free massive

scalar. We have that, given the boundary condition J , the field is reconstructed in the

bulk using the boundary to bulk propagator:

φ(x, z) = c∆

∫
ddx′

z∆J(x′)

(z2 + |x− x′|2)∆
. (A.7)

As we approach the boundary we have that the leading contribution is given by

K(x;x′, z) =

zd−∆δd(x− x′) if x = x′

c∆
z∆

|x−x′|2∆ . if x 6= x′.
(A.8)

This means that we have the following expansion for the field close to the boundary

φ = J(x)zd−∆ + · · ·+ c∆z
∆

∫
ddx′

J(x′)

|x− x′|2∆
+ · · · (A.9)

The first part of this equation involves only local terms, as we know that for x 6= x′ K ≈ z∆.

In the following we will need also ∂zφ, we have

∂zφ = (d−∆)J(x)zd−∆−1 + · · ·+ c∆∆z∆−1

∫
ddx′

J(x′)

|x− x′|2∆
+ · · · (A.10)

The Euclidean action is given by

Ibulk = η

∫
ddxdz

√
g(∂µφ∂νφg

µν +m2φ2) (A.11)

We regularize it by putting a cut off at z = ε. Integrating by parts and using the equations

of motion gives

Ibulk = −η
∫
z=ε

ddx(
√
ggzzφ∂zφ). (A.12)

The finite part of the on shell action is

Ibulk = −η
∫
z=ε

ddx

(
J(x)c∆∆

∫
ddx′

J(x′)

|x− x′|2∆
+ J(x)c∆(d−∆)

∫
ddx′

J(x′)

|x− x′|2∆

)
= ηc∆d

∫
z=ε

ddxddx′
J(x′)J(x)

|x− x′|2∆
. (A.13)

Assuming that the counter terms do not change the finite part of the action (which we

know to be true for our set up, even if one has a non trivial cut off surface) we have

N∆ = 2η`d−1c∆d =
2η`d−1dΓ(∆)

πd/2Γ
(
∆− d

2

) (A.14)

The normalization of two-point function was computed in [16], whose result disagrees

with ours by an extra factor of ∆/d. Note that the authors of [16] suggested that the

normalization they used needed a modification for ∆ 6= d.
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