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We study gauge dependence of gravitational waves produced from a first-order phase transition in clas-
sical scale-invariant U (1)′ models. Accidental gauge independence of the one-loop effective potential in 
this class of models is spoiled by including thermal resummation. The gauge artifact in the resummed 
effective potential propagates to the gravitational wave spectrum and results in one order of magnitude 
uncertainties in the prediction under a specific gauge choice.
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Existence of gravitational waves (GWs) has been confirmed by 
the LIGO experiment [1], opening the door to a new era of ob-
servational astrophysics and cosmology. In particular, probing GWs 
from the early Universe may unveil the thermal history of the Uni-
verse as the GWs may be produced when it undergoes a first-order 
phase transition [2–9]. Therefore, a reliable prediction of the GW 
spectrum becomes very important.

It is a common practice to use a finite-temperature effective 
potential to investigate thermal phase transitions. As is widely 
known, one of the thorny issues in such analyses is that the ef-
fective potential has a dependence on the gauge-fixing parame-
ter, ξ [10]. According to the Nielsen–Fukuda–Kugo (NFK) identi-
ties [11], only energies at stationary points are free from the ξ
dependence. Nevertheless, the statement is not so obvious when 
one uses the effective potential in perturbative calculations. For 
example, the minimum of the one-loop effective potential still has 
a dependence on ξ , except at the point that minimizes the tree-
level potential (for an illuminating discussion, see Ref. [12] and the 
references therein). Therefore, the gauge artifact in the standard 
perturbative treatment of the effective potential could propagate to 
the predicted GW spectrum even though physical quantities should 
not depend on the choice of ξ .

The ξ dependence of GWs in a massive Abelian Higgs model 
was studied in Ref. [13], which pointed out that the peak fre-
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quency in the GW spectrum could change by several orders of 
magnitude when varying ξ from 0 to 5, with details depending 
on the input parameters. It was also found that the results in the 
Landau gauge (ξ = 0) were close to those obtained using a gauge-
invariant Hamiltonian formalism [14]. Nevertheless, as the thermal 
resummation has not been implemented in the gauge-invariant 
formalism, the gauge-dependence issue is not yet settled, as em-
phasized in Ref. [13].1

Much attention has been paid to the Standard Model (SM) with 
an extra local U (1) symmetry in the context of grand unification 
constructions (for a comprehensive review, see Ref. [16] and ref-
erences therein) and/or phenomenological motivations such as a 
solution to experimental anomalies [17]. Some models may have 
the GWs associated with the first-order U (1)′ transition. As in the 
simple Abelian Higgs model, the GW spectrum in those models 
would also suffer from the significant gauge artifact, and thus the 
numerical assessment of the predictions must be taken with cau-
tion.

It is worth performing a similar analysis in classical scale-
invariant U (1)′ versions [18–21] that can offer an alternative so-
lution to the gauge hierarchy problem other than supersymmetric 
theories, as inspired by a Bardeen’s naturalness argument by use 
of the classical scale symmetry [22]. The point is that once the 
quadratic divergence is removed by subtraction at an ultraviolet 
(UV) energy scale, it is no longer operative in the infrared (IR) 
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regime. This can be viewed from the renormalization group equa-
tion of the Higgs bare mass (μ2). One can show that if μ2 = 0
at the UV energy scale, it remains zero in the IR regime as well 
due to the multiplicative renormalization property. In this view, 
the quadratic divergence problem should be coped with the UV 
physics rather than IR (see also Refs. [23]). In Ref. [18], μ2 = 0
is imposed at the Planck scale as a boundary condition by invok-
ing the classical scale invariance. Moreover, an intermediate energy 
scale (e.g., grand unification scale) is assumed to be absent in order 
not to generate a large mass correction from that scale.

As discussed in Ref. [10], a feature of the classical scale-
invariant theories is that the ξ -dependent terms start to show up 
at the two-loop order, while the one-loop effective potential re-
mains gauge-independent by accident. At finite temperatures, how-
ever, thermal resummation spoils the latter property and renders 
perturbative analyses of GW signals gauge-dependent as well. In 
this regard, the numerical impact of the gauge dependence in this 
class of models could be potentially different from those studied 
in Ref. [13].

Even though a gauge-invariant formalism with the thermal re-
summation is still unknown, it is useful to estimate to what extent 
the GW spectrum is sensitive to the gauge choice when using a re-
alistic parameter set in the common formalism. In this Letter, we 
examine the impacts of the ξ parameter on the strength of the 
cosmological phase transition and the spectrum of GWs generated 
from bubble dynamics in classical scale-invariant Abelian exten-
sions of the SM. As an explicit example, we present a numerical 
study for the U (1)B−L version [18,20].

We start by considering a model that is invariant under not 
only the SM gauge group but also extra gauged U (1)′ and scale 
symmetries. We introduce a complex scalar field S charged under 
the U (1)′ symmetry but singlet under the SM gauge group. When 
S spontaneously develops a vacuum expectation value (VEV), 〈S〉 =
v S/

√
2, the Z ′ boson associated with U (1)′ acquires its mass 

mZ ′ = g′ Q ′
S v S , with g′ and Q ′

S being the gauge coupling constant 
and the charge of S associated with the U (1)′ . Therefore, the La-
grangian

L = LSM′ − 1

4
Z ′
μν Z ′ μν + |DμS|2 − V (H, S) , (1)

where LSM′ denotes the SM Lagrangian without the Higgs po-
tential, the field strength Z ′

μν = ∂μ Z ′
ν − ∂ν Z ′

μ , DμS = (∂μ +
ig′ Q ′

S Z ′
μ)S , and H denotes the SU (2)L -doublet Higgs field. The 

scale symmetry demands that the scalar potential be composed of 
only quartic interactions and read

V (H, S) = λH (H† H)2 + λH S H† H|S|2 + λS |S|4 . (2)

We parametrize S as

S(x) = 1√
2

(
v S + hS(x) + iG(x)

)
, (3)

where G(x) the Nambu–Goldstone (NG) boson associated with the 
spontaneous breaking of U (1)′ . If λH S is negative, the correspond-
ing term in V (H, S) will trigger the electroweak symmetry break-
ing, and result in the SM-like Higgs mass given by m2

h = −λH S v2
S =

2λH v2 with v � 246 GeV. Here we consider a scenario in which v S
is of multi-TeV, so that −λH S = m2

h/v2
S � O(10−3) [18,20,21], and 

g′ = O(0.1) � |λH S |. Hence, we can analyze the U (1)′ phase tran-
sition independent of the SM sector.

The gauge-fixing and FP ghost terms are given by the BRS 
transformation of a gauge-fixing function, F (x) = ∂μ Z ′

μ(x) −
ξ g′ Q ′

S v S G(x) + ξ B(x)/2, where ξ is the gauge-fixing parameter 
and B(x) denotes the Nakanishi–Lautrup field [24] that plays the 
role of a Lagrangian multiplier for the gauge fixing [25]. It follows 
that
LGF+FP = − 1

2ξ

[
∂μ Z ′

μ − ξ g′ Q ′
S v S G

]2

− ic̄(x)
[
∂μ∂μ + ξ(g′ Q ′

S)
2 v S

(
v S + hS

)]
c(x) , (4)

where c(x) and c̄(x) are the ghost and antighost fields, respectively.
As pointed out by Coleman and Weinberg [26], the U (1)′ sym-

metry in such theories is broken by one-loop radiative corrections 
given by [10]

V CW(ϕS) =
∑

i

nim̄4
i

64π2

(
ln

m̄2
i

μ̄2
− ci

)
, (5)

where ϕS is the classical field of S , m̄ is the ϕS -dependent mass of 
a particle of species i, ni is the corresponding number of degrees 
of freedom, μ̄ is the renormalization scale, and ci = 3/2 for scalars 
and FP ghosts and 5/6 for gauge bosons. As recognized in Ref. [10], 
V CW inherently depends on the ξ parameter. The one-loop effec-
tive potential takes the form [13,27]

V eff(ϕS) = λS

4
ϕ4

S + m̄4
S

64π2

(
ln

m̄2
S

μ̄2
− 3

2

)

+ 3
m̄4

Z ′
64π2

(
ln

m̄2
Z ′

μ̄2
− 5

6

)
+ m̄4

G,ξ

64π2

(
ln

m̄2
G,ξ

μ̄2
− 3

2

)

− (ξm̄2
Z ′)2

64π2

(
ln

ξm̄2
Z ′

μ̄2
− 3

2

)
, (6)

where the field-dependent masses of S , Z ′ , and G in the Rξ gauge 
are respectively given by

m̄2
S = 3λSϕ

2
S , m̄2

Z ′ = (g′ Q ′
SϕS)

2 , m̄2
G,ξ = m̄2

G + ξm̄2
Z ′ , (7)

with m̄2
G = λSϕ

2
S . Even though the ξ -dependent terms are partly 

canceled among the gauge boson, the NG boson and the ghosts, 
the ξ dependence still remains at this stage.

Minimizing the one-loop effective potential in Eq. (6) with re-
spect to ϕS and evaluating it at ϕS = v S , one can solve for λS

iteratively and obtains to the leading order that

λS � − 3m4
Z ′

16π2 v4
S

(
ln

m2
Z ′

μ̄2
− 1

3

)
, (8)

where we have dropped terms of higher order in λS . This result 
is in stark difference from the corresponding one in U (1)′ models 
without the scale symmetry. Putting λS back to Eq. (6), we obtain

V eff(ϕS) � 3m̄4
Z ′

64π2

(
ln

ϕ2
S

v2
S

− 1

2

)
, (9)

which shows no ξ dependence. It should be emphasized that in 
ordinary U (1) models without scale invariance, m̄2

G cannot be con-
sidered as a result of one-loop effects as in the above case. In that 
case, V eff(ϕS ) depends on ξ except at the point where m̄2

G = 0, 
corresponding to the parameter set when the tree-level potential, 
rather than the one-loop potential, assumes its minimum. Albeit 
no gauge dependence shows up in Eq. (9), we will point out with 
an explicit example below that the ξ dependence cannot be rel-
egated to the second order in perturbation at finite temperatures 
due to a thermal resummation.

It is well known that at high temperatures perturbative expan-
sions break down and require thermal resummation, i.e., reorganiz-
ing the expansions in such a way that dominant thermal pieces 
are summed up to all orders. Following the resummation method 
for Abelian gauge theories presented in Refs. [28,29], the thermal 
masses of the longitudinal and transverse parts (�mL,T ) of the Z ′
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boson as well as the thermal mass of S are added and subtracted 
in the unresummed Lagrangian as

L →
[
L+ �m2

S |S|2 + 1

2
�m2

L Z ′ μLμν(i∂)Z ′ ν

+ 1

2
�m2

T Z ′ μTμν(i∂)Z ′ ν
]

− �m2
S |S|2 − 1

2
�m2

L Z ′ μLμν(i∂)Z ′ ν

− 1

2
�m2

T Z ′ μTμν(i∂)Z ′ ν , (10)

where Tμν and Lμν are projection tensors defined by

T00 = T0i = Ti0 = 0 , Tij = gij − kik j

−k2
,

Lμν = Pμν − Tμν , Pμν = gμν − kμkν

k2
,

(11)

in the rest frame of the thermal bath, where gμν = diag(1, −1,

−1, −1) and kμ is the 4-momentum of the Z ′ boson. Note that the 
original Lagrangian with the added terms in the square brackets in 
Eq. (10) are considered as an un-perturbed tree-level part, while 
the subtracted terms on the second line are treated as the ther-
mal counterterms that appear at the loop order. We also note that 
gauge invariance of the Lagrangian is not spoiled by the above-
mentioned procedure.

With the Lagrangian given in Eq. (10), the resummed effective 
potential takes the form

V eff(ϕS ; T ) = M̄4
L

64π2

(
ln

M̄2
L

μ̄2
− 3

2

)
+ 2M̄4

T

64π2

(
ln

M̄2
T

μ̄2
− 1

2

)

− 3m̄4
Z ′

64π2

(
ln

m2
Z ′

μ̄2
− 1

3

)

+ (ξm̄2
Z ′ + �m2

S)
2

64π2

(
ln

ξm̄2
Z ′ + �m2

S

μ̄2
− 3

2

)

− (ξm̄2
Z ′)2

64π2

(
ln

ξm̄2
Z ′

μ̄2
− 3

2

)

+ T 4

2π2

[
I B

(
M̄2

L

T 2

)
+ 2I B

(
M̄2

T

T 2

)

+ I B

(
ξm̄2

Z ′ + �m2
S

T 2

)
− I B

(
ξm̄2

Z ′
T 2

)]
, (12)

where

I B(a2) =
∞∫

0

dx x2 ln
[

1 − e−
√

x2+a2
]

, (13)

with M̄2
L = m̄2

Z ′ + �m2
L and M̄2

T = m̄2
Z ′ + �m2

T . To the leading order 
in high-temperature expansions, one has

�m2
L = (g′ Q ′

S)
2

3
T 2 , �m2

T = 0 , �m2
S = (g′ Q ′

S)
2

4
T 2 , (14)

that are ξ -independent. Note that the resummed effective potential 
in Eq. (12) is no longer ξ -independent because �m2

S �= 0. Again, we 
will quantify how sensitive the first-order phase transition strength 
and the GW spectrum are to the gauge-fixing parameter ξ using an 
explicit model.
After the thermal resummation, one cannot completely gauge 
away the kinetic energy of the gauge field. However, since such an 
energy is gauge-independent, we will neglect it in the following 
discussions for simplicity. Furthermore, the critical bubble for the 
first-order phase transition in the early Universe is assumed to be 
spherically symmetric, with the energy functional given by

S3 = 4π

∞∫
0

dr r2
[

1

2

(
dφS

dr

)2

+ V eff(φS; T )

]
, (15)

where φS(r) =
√

2〈S(r)〉. The equation of motion for φS is then

d2φS

dr2
+ 2

r

dφS

dr
− ∂V eff

∂φS
= 0 , (16)

with the boundary conditions: limr→∞ φS(r) = 0 and dφS (r)/
dr|r=0 = 0. We can solve Eq. (16) by use of a relaxation method 
(see, e.g., Ref. [30] for details).

Let T∗ be the temperature at which the GWs are produced from 
the cosmological phase transition. Without significant reheating, 
this temperature can be approximated by the bubble nucleation 
temperature, T N , to be defined below. For the phase transition to 
develop, at least one bubble must nucleate within the Hubble vol-
ume. We thus define T N through the condition


N(T N) = H4(T N) , (17)

where H(T ) = 1.66
√

g∗(T )T 2/mPl with g∗(T ) being the relativistic 
degrees of freedom at T and mPl = 1.22 × 1019 GeV, while 
N (T )

is the bubble nucleation rate per unit time per unit volume ap-
proximately given by [31]


N(T ) � T 4
(

S3(T )

2π T

)3/2

e−S3(T )/T . (18)

From Eqs. (17) and (18), one obtains S3(T N )/T N � 140–150.
A model-independent analysis of the GWs has been done in 

Ref. [6] using two parameters:

α ≡ ε(T∗)
ρrad(T∗)

and β ≡ H∗T∗
d

dT

(
S3(T )

T

)∣∣∣∣
T =T∗

, (19)

where

ε(T ) = �V eff − T
∂�V eff

∂T
and ρrad(T ) = π2

30
g∗(T )T 4, (20)

with �V eff being the energy difference between the symmetric 
and broken phases, and H∗ = H(T∗). For notational simplicity, we 
also introduce β̃ ≡ β/H∗ .

During the first-order phase transition, the GWs are sourced 
from bubble collisions, sound waves and turbulence induced by 
percolation, leading to �GWh2 = �colh2 + �swh2 + �turbh2. Ref. [8]
shows that the sound waves can be dominant around the peak fre-
quency and its spectrum [9]

�swh2( f ) = 2.65 × 10−6β̃−1
(

κvα

1 + α

)2 (
100

g∗

)1/3

v w

×
(

f

fsw

)3 (
7

4 + 3( f / fsw)2

)7/2

, (21)

where v w denotes the bubble wall velocity, fsw is the peak fre-
quency given by

fsw = 1.9 × 10−2 mHz
β̃

v w

(
T∗

100 GeV

)( g∗
100

)1/6
, (22)

and κv � α/(0.73 + 0.083
√

α + α) for v w � 1. In our numeri-
cal analysis below, we will take v w = 0.95 as a benchmark value. 
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Table 1
Various quantities obtained without the thermal resummation in contrast with those obtained using the resummed 
effective potential in Eq. (12) with ξ = 0, 1 and 5. Dimensionful parameters are expressed in units of TeV. We take 
Q ′

S = 2, α′ = g′ 2/4π = 0.015, mZ ′ = 4.5 TeV and mνR1,2,3 = 1.0 TeV.

No resum. ξ = 0 ξ = 1 ξ = 5

v S (TC )/TC 4.851/1.321 = 3.67 4.833/1.346 = 3.59 4.816/1.368 = 3.52 4.695/1.348 = 3.48
v S (T∗)/T∗ 5.181/0.328 = 15.8 5.181/0.368 = 14.1 5.180/0.405 = 12.8 5.163/0.490 = 10.5

α 2.27 1.44 0.99 0.48
β̃ 89.4 97.5 105.4 135.0
Since �sw ∝ f −4 while �col ∝ f −1 and �turb ∝ f −5/3 [9] at higher 
frequencies, our numerical calculations also include the other two 
GW sources using the formulas listed in Refs. [7,9] in order to have 
the correct behavior in that regime.

As an explicit example of the classical scale-invariant U (1)′
models, we now consider the U (1)B−L symmetry. In order to 
be gauge anomaly-free, three right-handed neutrinos (νR1,2,3 ) 
are naturally introduced with the Yukawa interactions
1
2

∑
i=1,2,3 YνRi Sν̄c

RiνRi + H.c. This implies that Q ′
S = +2 and the 

right-handed neutrinos acquires Majorana mass from v S (see, e.g., 
Ref. [21] for a detailed discussion). Note that the singlet scalar 
mass at the one-loop order is given according to Eq. (9) by 
m2

S = 8B v2
S , where B = 3m4

Z ′/(64π2 v4
S). In the U (1)B−L case, we 

have B = (3m4
Z ′ − 2 

∑
i=1,2,3 m4

νRi
)/(64π2 v4

S ) and from which the 
condition that 

∑
i=1,2,3 m4

νRi
< 3m4

Z ′/2 [18]. Therefore, the right-
handed neutrinos cannot be arbitrarily heavy with respect to the 
Z ′ mass.

To further simplify the numerical analysis without losing main 
features, we further suppose that the right-handed neutrinos share 
the same Yukawa coupling. In this case, the model has only three 
new free parameters, which we choose to be α′ ≡ g′ 2/4π = 0.015, 
mZ ′ = 4.5 TeV and mνR1 = mνR2 = mνR3 = 1.0 TeV, leading to 
mS � 0.76 TeV. This parameter choice is consistent with the recent 
LHC Run-II data and perturbativity up to the Planck scale [32]. The 
original parameters in the Lagrangian are correspondingly fixed as 
g′ = 0.43, v S � 5.182 TeV and YνR ≡ YνR1 = YνR2 = YνR3 = 0.27. 
With this setup, one obtains �m2

S = (g′ 2 + Y 2
νR

/8)T 2. Moreover, 
μ̄ in the resummed effective potential, Eq. (12), in the current 
study is set to v S .

In Table 1, some physical quantities are listed for the unre-
summed case and the resummed case with ξ = 0, 1 and 5. As 
a reference, we give a critical temperature at which the effec-
tive potential has two degenerate minima and the correspond-
ing VEV at the temperature, denoted by TC and v S(TC ), respec-
tively. One can see that, as expected, the unresummed case yields 
a slightly stronger first-order phase transition than the ordinary 
ξ -dependent cases with the resummation. It should be remarked 
that v/T is less sensitive to ξ at TC but not at T∗ . This fact even-
tually affects α and β̃ significantly.

In Fig. 1, �GWh2 is plotted as a function of the GW frequency f . 
The spectrum obtained without the thermal resummation is given 
by the black solid curve, while those with the thermal resumma-
tion with ξ = 0, 1 and 5 are plotted in red-dashed, blue-dotted 
and magenta-dot-dashed curves, respectively. As shown, the de-
pendence of the GW spectrum on ξ is significant, with around 
one order of magnitude decrease as ξ changes from 0 to 5 and 
the peak frequency shifting toward higher frequencies. This is pri-
marily due to the fact that �swh2 ∝ β̃−1α2/(1 + α)2 and fsw ∝ β̃ , 
as seen in Eqs. (21) and (22). The change in the slopes of the 
curves around f � 0.1 Hz is because, as alluded to before, the 
GWs produced from bubble collisions and turbulence become more 
dominant than those from the sound waves at higher frequencies.

Depending on the input parameters α′ , mZ ′ and mνR1,2,3 , the 
strength of the first-order phase transition in the U (1)B−L model 
Fig. 1. �GWh2 as a function of frequency. The input parameters are the same as 
in Table 1. The black-solid curve represents the unresummed (ξ -independent) case. 
The resummed case with ξ = 0, 1 and 5 are marked as red-dashed, blue-dotted and 
magenta-dot-dashed lines, respectively. (For interpretation of the references to color 
in this figure, the reader is referred to the web version of this article.)

and the GW spectrum can change. Nevertheless, we find the gen-
eral tendency that �GWh2 is reduced by about one order of mag-
nitude as ξ varies from 0 to 5. We also note that there is no 
sensible reason why ξ should restricted to the range of [0, 5] a pri-
ori. We find that �GWh2 decreases more and the peak frequency 
shifts higher for ξ > 5. For ξ larger than a certain value, how-
ever, it is found that the U (1)′ symmetry cannot be restored even 
at sufficient high temperatures in some cases (for other unphysical 
artifact issues along the same line, see Ref. [13]). Therefore, our es-
timation of the sensitivity of �GWh2 on the gauge-fixing parameter 
presented in this work is conservative.

In summary, we have discussed the gauge artifact in the 
strength of the first-order phase transition and the gravitational 
wave spectrum in the classical scale-invariant U (1)′ models. We 
have explicitly shown that the gauge dependence re-enters the 
one-loop effective potential through the thermal resummation re-
quired at high temperatures. This gauge dependence propagates 
to the prediction of the gravitational wave spectrum. Through a 
general consideration, the significant gauge sensitivity in �GWh2

observed in Ref. [13] for a massive Abelian Higgs model is shown 
to also appear in the classical scale-invariant U (1)′ models. As an 
explicit example of this class of models, we consider the anomaly-
free U (1)B−L model. As we vary the gauge-fixing parameter ξ from 
0 to 5 using a set of model parameters consistent with the current 
LHC Run-II data and perturbativity, the peak of �GWh2 reduces by 
about one order of magnitude and shifts toward higher frequen-
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cies. Such a result gives us useful information about uncertainties 
in the calculation of the gravitational wave spectrum done with a 
specific choice of gauge. A gauge-invariant formalism for the ther-
mal resummation is thus required for obtaining a more reliable 
prediction.
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