
INTRODUCTION

Spinal cord injury is one of the major CNS injuries in need of an 
optimal cure. Neuroinflammation is the main aggravator of CNS 
injuries, including spinal cord injury [1]. A variety of immune cell 
types were related to inflammation at the site of spinal cord injury 
[1]. Macrophage, activated microglia and infiltrated monocyte, are 
major players in neuroinflammation [2-4]. It was reported that 
macrophages have two major subtypes, M1 macrophage related 
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Agmatine is a decarboxylated arginine by arginine decarboxylase. Agmatine is known to be a neuroprotective agent. It has been re-
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increased M2 macrophages caudal side to epicenter 1 week after spinal cord injury in immunohistochemistry. M2 macrophage re-
lated markers, Arginase-1 and CD206 mRNA, were increased in the agmatine treatment group and M2 macrophage expressing and 
stimulated cytokine, IL-10 mRNA, also was significantly overexpressed by agmatine injection. Among BMPs, BMP2/4/7, agmatine 
significantly increased only the expression of BMP2 known to reduce M1 macrophage under inflammatory status. These results sug-
gest that agmatine reduces impairment after spinal cord injury through modulating the macrophage phenotype.
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to pro-inflammation and M2 macrophage related to anti-inflam-
mation [3]. The portion of macrophage subtypes after spinal cord 
injury is one of important factors in formulating a repair strategy 
to overcome spinal cord injury. M1 macrophages are neurotoxic, 
while M2 macrophages promote axonal regeneration after CNS 
injuries [3, 5, 6]. In addition, the expression of M1 macrophages is 
induced quickly after injury and continued for a long time, but the 
expression is transient in M2 macrophages [3]. According to these 
reports, to increase the portion of M2 macrophages is one strategy 
to reduce impairment after spinal cord injury. 

Agmatine is an endogenous amine formed by decarboxylation of 
arginine through the activation of arginine decarboxylase [7]. It is 
reported as a NMDA receptor blocker, competitive inhibitor of ni-
tric oxide synthase (NOS), and neurotransmitter to α2-adrenergic 
and imidazoline receptors [7, 8]. Exogenous administration of 
agmatine was reported to be neuroprotective in vitro and in vivo 
[9-12]. Also, it was published that agmatine reduced nitrite pro-
duction from hypoxic injured BV2 microglia [13] and decreased 
iNOS and Iba1 double positive cells in the brain after LPS injec-
tion in vivo [14]. Based on these reports, it is hypothesized that the 
neuroprotective effect of agmatine be related to the modulation 
of M2 macrophage portion after CNS injuries. To establish this 
hypothesis, spinal cord injury animal model in vivo was used with 
or without agmatine administration in this study.

MATERIALS AND METHODS

Animals

Studies were conducted on Sprague-Dawley rats (11 weeks old, 
260±15 g, Samtako, Korea). All animal experiments were per-
formed in accordance with the Korean Food and Drug Adminis-
tration (KFDA) guidelines. Protocols were reviewed and approved 
by the Institutional Animal Care and Use Committee (IACUC) of 
the Yonsei Laboratory Animal Research Center (YLARC, Permit #: 
2014-0375). All rats were maintained in the specific pathogen-free 
facility of the YLARC.

Spinal cord injury and agmatine treatment

The rats were anesthetized with an intraperitoneal injection of 
Zoletil (tiletamine 15 mg/kg and zolazepam 15 mg/kg) and Rom-
pun (xylazine 9.6 mg/kg). A laminectomy of thoracic vertebra (a 
half of Th 9 and full Th10) was performed without damaging the 
dura mater. The exposed spinal cord was contused via dropping 
a 10-g rod at 25.0-mm height using MASCIS (Rutgers, The State 
University of New Jersey). Saline (6 ml, SQ) and Baytril (Enroflox-
acin 4.16 mg/kg, IM) were injected for 3 days after injury. Bladder 
was manually pressed daily. Food and water were freely accessible 

in their cages. Agmatine was administered for 6 days starting the 
day after spinal cord injury (100 mg/kg, IP). The experimental 
control group received normal saline in the same manner. All rats 
were sacrificed for immunohistochemistry, FACS and mRNA 
analysis 7 days after spinal cord injury. 

FACS analysis

To analyze the proportion of macrophage subtypes using FACS, 
rats were perfused with saline for a short time and a 10-mm length 
of spinal cord at epicenter was examined, following the previous 
report [15]. In brief, the spinal cord was dissociated enzymatically 
with trypsin and collagenase followed by trituration. It was filtered 
and centrifuged to get the cell pellet, which was resuspended in 6 
ml of HBSS (Welgene, Korea). The dissociated spinal cord cell so-
lution was layered on top of OptiPrep gradient solutions (Thermo 
Fisher Scientific) and centrifuged with 1900 rpm for 15 minutes at 
room temperature (RT). The cell pellet containing inflammatory 
cells, glia, and red blood cells, was resuspended in 0.85% ammo-
nium chloride solution for 5 minutes to lyse red blood cells. After 
washing with HBSS, cells were blocked in 10% normal rabbit or 
mouse serum for 30 minutes at RT. Cells were washed twice and 
incubated with primary antibodies, Mouse anti-ED1-FITC (1:100, 
AbD Serotec); Rabbit anti-CD206 labelled with PE/Cy5.5 (1:100, 
Abcam); Rabbit anti-iNOS labelled with PE/Cy5.5 (1:100, Chemi-
con) or isotype IgG solution (1:100 dilution) for 1hour at 4oC. 
Cells were washed twice and resuspended in 300 ul of HBSS for 
FACS analysis. Immunolabeled cells were sorted using FACS Verse 
(BD Pharmigen), and analyzed on FlowJo software (Tree Star, Inc., 
USA). 

Immunohistochemistry, analysis and cell counting

Animals were perfused with saline and fixed with 4% parafor-
maldehyde solution 7 days after spinal cord injury. Spinal cords 
were removed and post-fixed in 4% paraformaldehyde solution 
at 4oC overnight. For coronal tissue sections, spinal cords were 
submerged in 30% sucrose solution at 4oC for 3 days, embedded 
in OCT compound, and cut to 20-um thickness. For immuno-
fluorescence, tissue sections were blocked with 10% normal goat 
serum solution at RT for 2 hours and reacted with the primary 
antibodies against ED1 (AbD Serotec, 1:400) or CD206 (Abcam, 
1:200) at 4oC overnight. Appropriate secondary antibodies were 
applied to tissue sections at RT for 2 hours following washing with 
PBS 3 times. Hoechst33258 (SigmaAldrich, 1:2000) was used to 
visualize nuclei. Image analysis was performed using a LSM 700 
confocal microscope with Zen imaging software (Carl Zeiss). ED1 
positive and CD206 & ED1 double positive cell counting were 
done in 4 areas (total 0.49 mm2) containing the margin of infarct 
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zone. The size of each area was 350 um * 350 um.

mRNA expression (RT-PCR)

To analyze the relative expression of mRNA related to inflam-
mation, macrophage, and astrocyte, rats were perfused with saline 
for a short time and a 10-mm length of spinal cord at the epicenter 
was used to isolate total RNA with TRIzol Reagent (Thermo-
Fisher Scientific) according to manufacturer’s protocol. A total 2 
ug of RNA was transcripted into cDNA with reverse transcriptase 
(High-Capacity RNA-to-cDNA Kit, ThermoFisher Scientific). 200 
ng of cDNA was amplified with specific primer sets (Table 1) and 
SYBR green Master Mix (ThermoFisher Scientific) by qRT-PCR 
system (QuantStudio 3, Applied Biosystems). qRT-PCR duplica-
tion was performed in biological replicates (n=5 per each group).

Statistical analysis

All statistical analyses were performed using SPSS 18.0 (IBM). 
The data was presented as means±standard error (SE). Indepen-
dent student t-test was used to compare the experimental groups. 
Differences were considered statistically significant at p<0.05.

RESULTS

There was no difference of macrophage subtypes with or 

without agmatine treatment in FACS analysis

To established hypothesis, the macrophage subtypes were 
confirmed using FACS analysis. ED1 was used as a macrophage 
marker and iNOS for M1 and CD206 for M2 subtype macrophage 
markers were used. These markers were specific to each mac-
rophage [16]. The portion of M1 macrophages, iNOS and ED1 
double positive cells, was not reduced by agmatine treatment 1 
week after spinal cord injury (Fig. 1A and C). The percent of M2 
macrophages, CD206 and ED1 positive cells, was also not signifi-
cantly increased in the agmatine treatment group (Fig. 1B and D). 
However, the median fluorescence intensity (MFI) of iNOS was 
decreased in the agmatine administration group and the MFI of 
CD206 was increased in the agmatine treatment group without 
significance compared to the experimental control group (Fig. 1E 
and F). 

M2 macrophages were increased with agmatine treatment 

in immunohistochemistry

M2 macrophage expression was increased in agmatine treatment 
group with regional specificity (Fig. 2). Only in caudal to epicenter, 
M2 macrophage was significantly induced by agmatine treatment 

Table 1. The specific primer sequences for RT-PCR

Gene Sequence
Reference

(PMID)

CD11b
 
Arg-1
 
CD206
 
IL-1b
 
IL-6
 
IL-10
 
BMP2
 
BMP4
 
BMP7
 
GFAP
 
b-actin
 

F
R
F
R
F
R
F
R
F
R
F
R
F
R
F
R
F
R
F
R
F
R

5'-TGA CGG CTC CGG TAG CAT-3'
5'-CCA TCA CAG TTG AGA CAA ATT CCT-3'
5'-CCG CAG CAT TAA GGA AAG C-3'
5'-CCC GTG GTC TCT CAC ATT G-3'
5'-AGG GGT TCA CCT GGA GTG AT-3'
5'-GCT CTC CAT AAG CCC AAT TTT-3'
5'-AAA TGC CTC GTG CTG TCT GAC C-3'
5'-TCC CGA CCA TTG CTG TTT CCT-3'
5'-TCA TTC TGT CTC GAG CCC AC-3'
5'-GAA GTA GGG AAG GCA GTG GC-3'
5'-AGG GCT GCC TTC AGT CAA GT-3'
5'-AGA AAT CGA TGA CAG CGT CG-3'
5'-CCA GGT TAG TGA CTC AGA ACA C-3'
5'-TCA TCT TGG TGC AAA GAC CTG C-3'
5'-TGG ACA CTT CAT CAC ACG ACT A-3'
5'-GCG ACG GCA GTT CTT ATT CTT C-3'
5'-AGA CGC CAA AGA ACC AAG AG-3'
5'-GCT GTC GTC GAA GTA GAG GA-3'
5'-GGG CGA AGA AAA CCG CAT-3'
5'-TCT GGA GGT TGG AGA AAG TCT GT-3'
5'-AGA AGA GCT ATG AGC TGC CTG ACG-3'
5'-TAC TTG CGC TCA GGA GGA GCA ATG-3'

24505289
 

25944087
 

25944087
 

26173397
 

26173397
 

26173397
 

19861972
 

19861972
 

19861972
 

24505289
 

19861972
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Fig. 1. FACS analysis of macrophages 1 week after spinal cord injury. M1 macrophages were iNOS+&ED1+ cells (A) and M2 macrophages were 
CD206+&ED1+ cells (B). There were no significant difference in the number of M1 and M2 macrophages between agmatine treatment group (Agm, 
n=3) and experimental control group (EC, n=3, C&D). Median fluorescence intensity (MFI) of iNOS was decreased with agmatine treatment (E) and 
MFI of CD206 was increased in agmatine treatment group (F) without significance.
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(Fig. 2A and B). The number of macrophages (ED1+ cells) was sig-
nificantly reduced in agmatine treatment group but the numbers 
of M2 macrophages (CD206+ & ED1+ cells) were not difference 
between agmatine treatment group and experimental control 
group (Fig. 2C). 

The marker molecules and cytokines for M2 macrophages 

were increased in the agmatine treatment group

The mRNA expressions of M2 macrophage-related molecules 
and cytokines were confirmed 1 week after spinal cord injury 
using RT-PCR. In 10-mm length of spinal cord, CD11b as mac-
rophage marker was not changed with or without agmatine ad-
ministration (Fig. 3A). Arg-1 and CD206 expressed mainly in M2 
macrophages [16] were significantly increased in the agmatine 
treatment group (Fig. 3B and C). IL-1b and IL-6 were known to be 

secreted in M1 macrophages [16]. Agmatine treatment made no 
change in IL-1b and IL-6 mRNA level (Fig. 3D and E), but IL-10 
was highly overexpressed (about 11 folds) in the agmatine treat-
ment group (Fig. 3F). IL-10 was known as a secreting factor of M2 
macrophages and one of the stimuli to M2 macrophage polariza-
tion [16].

Agmatine increased BMP2 expression in mRNA level

BMP family and GFAP mRNA expressions were validated 1 
week after spinal cord injury. Among BMP2/4/7, only BMP2 
mRNA expression was significantly increased in the agmatine 
treatment group (Fig. 4A). There was no change in BMP4 and 
BMP7 mRNA expressions between the agmatine treatment group 
and the experimental control group (Fig. 4B and C). The expres-
sion of GFAP mRNA, astrocyte marker, was not changed by agma-

Fig. 2. Immunohistochemistry of macrophages 1 week after spinal cord injury. The representative coronal spinal cord sections 2 mm caudal to epicenter 
were shown in A. The portion of M2 macrophages (CD206+&ED1+/ED1+) was significantly increased in Agm only 2 mm caudal to epicenter compared 
to EC (B). Agmatine treatment significantly reduced the number of macrophages (ED1+ cells) 2 mm caudal to epicenter compared to EC (C). Agmatine 
treatment group (Agm, n=3); Experimental control group (EC, n=3). Scale bar is 200 um. *p<0.05.
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Fig. 3. The mRNA expression of immune-related molecules and cytokines 1 week after spinal cord injury. CD11b, macrophage marker, expressed simi-
lar between EC and Agm (A). Arg-1 and CD206, M2 macrophage marker, were significantly increased in Agm (B&C). Inflammatory cytokines, IL-1b 
and IL-6 were not changed with agmatine treatment (Agm) or without (EC, D&E) but IL-10, anti-inflammatory cytokine, was significantly increased in 
Agm (F). Agmatine treatment group (Agm, n=5); Experimental control group (EC, n=5). *p<0.05.

Fig. 4. The mRNA expression of BMPs and GFAP 1 week after spinal cord injury. BMP2 was expressed higher in Agm than EC (A) but BMP4, BMP7 
and GFAP was not changed between Agm and EC (B-D). Agmatine treatment group (Agm, n=5); Experimental control group (EC, n=5). *p<0.05.
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tine treatment (Fig. 4D). 

DISCUSSION

In this study, it was clarified whether agmatine modulated the 
M2 macrophage acute phase in spinal cord injury. Beck et al. re-
ported that the peak expression of macrophages/microglia is 1 
week after spinal cord injury in rats [17], so this study was done 1 
week after spinal cord injury. In FACS results, agmatine treatment 
made no change in neither the number of M2 macrophages nor 
the number of M1 macrophages (Fig. 1A~D). Although there was 
no statistical significance, median fluorescence intensity (MFI) 
of CD206, M2 macrophage, was higher in the agmatine treat-
ment group and MFI of iNOS, M1 macrophage, was lower in the 
agmatine treatment group compared to the experimental control 
group (Fig. 1E and F). These results suggest that agmatine could 
enhance the M2 macrophage property without increasing cell 
number. Regional expressions of M1 and M2 macrophages were 
confirmed by immunohistochemistry using coronal sectioned 
spinal cord (Fig. 2). The portion of M2 macrophage (CD206+ & 
ED1+/ED1+) was significantly increased only caudal to epicenter 
(Fig. 2B), but the number of CD206 & ED1 double positive cells 
was similar between the agmatine treatment and experimental 
control groups (Fig. 2C). In contrast, the number of ED1 positive 
cells (macrophages) was significantly decreased by agmatine treat-
ment (Fig. 2C), so the portion of M2 macrophages was increased 
in the agmatine treatment group. This was consistent with a previ-
ous report that agmatine injection (100 mg/kg, IP) reduced the 
number of macrophages in cerebral ischemic injured brain and 
LPS-injured brain [13, 14]. It was published that encapsulated 
human mesenchymal stromal cells (MSCs) increased M2 mac-
rophages 8 days after spinal cord injury and increased portion 
of M2 macrophages was shown 2.5 mm caudal to epicenter only 
[18]. The reason for this was that encapsulated human MSCs were 
located caudal to epicenter, so the M2 macrophage population 
was affected only in caudal side, not in rostral side. In this study, 
agmatine was injected intraperitoneally which means exogenous 
agmatine affected the whole spinal cord, rostral and caudal to epi-
center, through the blood stream. Therefore, the regional specific 
change of M2 macrophage expression shown in this study might 
be correlated with spinal cord blood flow and blood-spinal cord 
barrier. Spinal cord blood flow spontaneously recovered within 7 
days after spinal cord injury through spontaneous angiogenesis 
[19, 20]. Blood-spinal cord barrier permeability increased during 
the acute phase after spinal cord injury, but reduced and closed 
to sham 1 week after spinal cord injury [21]. Recently, Figley et al. 
reported spatial-temporal disruption of the vasculature in clip-

compression spinal cord injury [21]. In this report, the number 
of vascular counts was significantly reduced 1mm rostral side to 
epicenter until 10 days after spinal cord injury. It was also reduced 
1mm caudal but there was no significance. Based on this report, 
systemic administrated agmatine might be delivered more ef-
fectively caudal side to epicenter than rostral side, so significant 
increasing of M2 macrophages were shown only caudal side in the 
agmatine treatment group. In mRNA level, M2 macrophage mark-
er arginase-1 and CD206 were significantly increased by agmatine 
treatment and M1 macrophage-expressing IL-1b and IL-6 were 
not changed (Fig. 3A~E). M2 macrophage-expressing IL-10 was 
significantly overexpressed in the agmatine treatment group (Fig. 
3F) and it was reported that M1-to-M2 switch is promoted by IL-
10 [5, 22, 23]. Therefore, overexpression of IL-10 might be one of 
the pathways to modulate M2 macrophages under agmatine treat-
ment. Matsuura et al. reported that BMP2/4 inhibition enhanced 
axonal growth and functional recovery after spinal cord injury [24]. 
On the other hand, BMP2 induced dopaminergic neuronal dif-
ferentiation [25, 26]. BMP7 was reported to be neuroprotective in 
stroke and spinal cord injury [27, 28] and to polarize THP-1 cells 
into M2 macrophages [29, 30]. Agmatine was found to increase 
BMP2 /7 expression and reduce BMP4 after spinal cord injury 
in mice [10, 31]. GFAP expression was also reduced by agmatine 
after spinal cord injury in mice [10]. So far all reports for modula-
tion of BMPs by agmatine have been done in mice, so in this study, 
modulation was confirmed in rat spinal cord injury. BMP7 was 
not changed 1 week after spinal cord injury in rats (Fig. 4C). This 
is different with the result found in mice [10, 31]. Setoguchi et al. 
reported that the peak expression of BMP7 mRNA is 4 days after 
spinal cord injury in rats and the expression 7 days after spinal 
cord injury decreased about half from the peak time point [32], so 
the modulation of BMP7 by agmatine administration should be 
confirmed at an early time point, within 7 days after spinal cord in-
jury in rats. Only one research group reported that BMP7 modu-
lated M2 macrophage polarization [29, 30], but modulation of M2 
macrophages by agmatine treatment seemed to be not related to 
BMP7 expression, at least in this study. BMP4 and GFAP mRNA 
were also not changed with or without agmatine administration 
1 week after spinal cord injury (Fig. 4B and D). This is also differ-
ent to previous study using mice [10]. BMP2 expression was only 
significantly increased by agmatine 1 week after spinal cord injury 
in rats (Fig. 4A) and this phenomenon was also confirmed in mice 
spinal cord injury [10]. One paper recently reported that the sup-
plementation of BMP-2 dramatically diminished the expression 
of M1 phenotypic markers including IL-1β, IL-6, and iNOS in M1 
polarized macrophages and increased CD206 mRNA expression 
in IL-4 induced M2 macrophages [33].
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Based on the results in this study and previous reports, it is sug-
gested that agmatine treatment is one possible mechanism to 
modulate the expression of M2 macrophages after spinal cord 
injury through induced expression of IL-10 and BMP2.
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