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Abstract

A complete set of the Virasoro and W-constraints for the Kontsevich–Penner model, which conjecturally 
describes intersections on moduli spaces of open curves, was derived in our previous work. Here we show 
that these constraints can be described in terms of free bosonic fields with twisted boundary conditions, 
which gives a modification of the well-known construction of the W(3) algebra in conformal field theory. 
This description is natural from the point of view of the spectral curve description, and should serve as a 
new important ingredient of the topological recursion/Givental decomposition.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

0. Introduction

Theory of open intersection numbers, which development was recently initiated in the break-
through work of R. Pandharipande, J. Solomon and R. Tessler [1], gives us a long-awaited open 
version of the Kontsevich–Witten theory [2,3]. While we still don’t have a comprehensive de-
scription of open intersection theory, it is clear that it fits well into the modern enumerative 
geometry and mathematical physics setup. Namely, the generating function of open intersection 
numbers can be naturally described in terms of matrix models, integrable systems, Virasoro and 
W-constraints, classical and quantum spectral curves, and cut-and-join operators.
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In our previous paper [4] we claimed that open intersection numbers can be described by the 
so-called Kontsevich–Penner matrix model

τN = det(�)NC−1
∫

[d�] exp

(
−Tr

(
�3

3! − �2�

2
+ N log�

))
, (1)

which belongs to the family of the generalized Kontsevich models and is a simple deformation 
of Kontsevich’s cubic integral. The matrix of integration � is an M × M Hermitian matrix, it 
is assumed that its size M tends to infinity, and the parameter of deformation N is completely 
independent of M . By construction, (1) is a tau-function of the modified Kadomtsev–Petviashvili 
(MKP) hierarchy. Using a modification of the Kac–Schwarz description for this tau-function, we 
derived [5] a complete family of linear constraints

L̂kτN = 0, k ≥ −1,

M̂kτN = 0, k ≥ −2.
(2)

These constraints have a unique solution, which can be described in terms of the cut-and-join 
operators [5].

However, the constraints (2) are not quite satisfactory. Namely, they were constructed as a 
modification of the operators from W1+∞ algebra of symmetries of the KP hierarchy, and it 
is not clear why this particular modification appears. Moreover, it was not known how to rep-
resent these constraints in terms of free fields on the spectral curve. Such a representation is 
known for most of the Virasoro and W-constraints appearing in enumerative geometry and ma-
trix models, and is crucially important for understanding the relations between different models. 
As it was shown in [6–8] this type of the representation allows us to construct the Chekhov–
Eynard–Orantin (CEO) topological recursion/Givental decomposition [9–15]. We claim that the 
Kontsevich–Penner model is a fundamental ingredient of the more general version of the CEO 
topological recursion/Givental decomposition (to be constructed). In particular, it shall be suit-
able for the description of the open Gromov–Witten invariants and open topological string theory 
models (and, probably, for other cases, for which the quantum spectral curve degenerates into a 
reducible one in the classical limit). That’s why it is important to have a convenient description 
of the linear constraints for this model.

In the current work we fill this gap and describe the Virasoro and W-constraints for open in-
tersection numbers in terms of free bosonic fields. Obtained construction is a minor modification 
of the description of Zamolodchikov’s [16] W(3) algebra given in [17,18]. Namely, this construc-
tion allows us to represent all generators of the W(3) algebra in terms of two free bosonic fields. 
However, unlike in the version considered in [17,18], we need to twist one of these two fields, so 
that it satisfies odd boundary conditions.

The present paper is organized as follows. In Section 1 we give a brief reminder of the closed 
intersection theory, described by the Kontsevich–Witten tau-function. In particular, we describe 
the Virasoro constraints in terms of the twisted bosonic current. In Section 2 we describe some 
known and conjectural properties of the generating function of open intersection numbers. Sec-
tion 3 is devoted to the W1+∞ algebra of symmetries of the KP and MKP hierarchies. In Section 4
we construct a description of the Virasoro and W-constraints for the generating function of open 
intersection numbers in terms of two bosonic currents. In Section 5 we show that this description 
is directly related to the description of the W(3) algebra, well known in CFT. Section 6 is devoted 
to the construction of the cut-and-join operators for open intersection numbers in terms of free 
fields.
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1. Closed intersection numbers and Kontsevich–Witten tau-function

The closed intersection theory is governed by the Kontsevich–Witten tau-function. Let Mh,l

be the Deligne–Mumford compactification of the moduli space of genus h complex curves X
with l marked points x1, . . . , xl . We associate with a marked point a line bundle Li whose fiber 
at a moduli point (X; x1, . . . , xl) is the cotangent line to X at xi . Intersection numbers of the first 
Chern classes of these holomorphic line bundles

q

∫
Mh,l

ψ
α1
1 ψ

α2
2 . . .ψ

αl

l = 〈τα1τα2 . . . ταl
〉h (3)

are rational numbers. They are not equal to zero only if the stability condition

2h − 2 + l > 0 (4)

holds and the dimension of the moduli space

dimCMh,l = 3h − 3 + l (5)

coincides with the degree of the form,

dimCMh,l =
l∑

i−1

αi. (6)

Their generating function

F (T, h̄) =
∞∑

h=0

h̄2h−2

〈
exp

(
h̄

∞∑
m=0

Tmτm

)〉
h

(7)

is given by the Kontsevich–Witten tau-function

τKW (T, h̄) = eF(T,h̄). (8)

Let us stress that the parameter h̄ is introduced in such a way that it describes not the genus 
expansion but the topological expansion

FKW(T, h̄) =
∑
χ<0

h̄−χF (χ)
KW (T), (9)

where

χ = 2 − 2#handles − #points. (10)

From the comparison of (5) and (6) it follows that h̄ can be removed by the rescaling of Tk’s

τKW (T, h̄) = τKW (T,1)

∣∣∣
Tk �→h̄

2k+1
3 Tk

. (11)

The Kontsevich–Witten tau-function can be represented by the Kontsevich matrix integral 
over M × M Hermitian matrices
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τKW (T, h̄) =

∫
[d�] exp

(
− 1

h̄
Tr

(
�3

3! + ��2

2

))
∫

[d�] exp

(
− 1

h̄
Tr

��2

2

)

= C−1
∫

[d�] exp

(
− 1

h̄
Tr

(
�3

3! − �2�

2

))
,

(12)

where

C = h̄M2/2e
1
h̄

Tr �3
3

det
(
�

1
2 ⊗ 1 + 1 ⊗ �

1
2

) . (13)

Asymptotic expansion of this matrix integral for the positive definite external matrix � with large 
eigenvalues is a formal series in the variables

Tk = (2k − 1)!!Tr�−2k−1. (14)

These variables can be considered as independent as the size of the matrices M tends to infinity.
In the rescaled time variables

t2k+1 = Tk

(2k + 1)!! (15)

the generating function (8) is a tau-function of the KdV integrable hierarchy. This tau-function 
satisfies the Virasoro constraints, which can be described in terms of free bosonic field with 
twisted boundary conditions [19–21]. Namely, let us consider a bosonic current

Ĵo(x) = 1√
2

∞∑
k=0

(
(2k + 1)t̃2k+1x

k− 1
2 + 1

xk+ 3
2

∂

∂t2k+1

)
, (16)

where the time variables are subject to the dilaton shift

t̃k = tk − δk,3

3h̄
. (17)

This current is odd when we change sheets y �→ −y on the curve y2 = x. Using this current we 
can construct an operator

L̂(x) = 1

2
∗
∗ Ĵ 2

o (x) ∗
∗ + 1

16x2
, (18)

where we use usual bosonic normal order which puts all ∂
∂tk

to the right of all tk , and the term 1
16x2

appears because of the regularization of the infinite sum. Then, the components of this operator

L̂(x) =
∞∑

k=−∞

L̂k

xk+2
(19)

are

L̂m = 1

4

∑
a+b=−1−m

(2a + 1)(2b + 1)t̃2a+1 t̃2b+1 + 1

2

∞∑
k=0

(2k + 1)t̃2k+1
∂

∂t2k+2m+1

+1

4

∑ ∂2

∂t2a+1∂t2b+1
+ 1

16
δm,0.

(20)
a+b=m−1
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Fig. 1. Curves with h = 1, b = 0, k = 0, l = 2 and h = 1, b = 3, k = 2, l = 1.

Here it is assumed that tk = ∂
∂tk

= 0 for k < 0. These operators satisfy the Virasoro commutation 
relations[

L̂k, L̂m

]
= (k − m)L̂k+m + 1

12
k(k2 − 1)δk,−m (21)

with central charge c = 1. A subalgebra of this Virasoro algebra annihilates the tau-function

L̂k τKW = 0, k ≥ −1. (22)

One of the main goals of this paper is to construct a similar representation for the constraints of 
the generating function of open intersection numbers.

2. Open intersection numbers and Kontsevich–Penner tau-function

Of course, it is more than natural to generalize the intersection theory sketched above and 
to include Riemann surfaces with boundaries. However, the moduli spaces of the Riemann sur-
faces with boundaries are much more complicated. In particular, they are real orbifolds and so, 
naively they may be not-orientable. Moreover, to describe the integrals one should impose some 
nontrivial boundary conditions.

That’s why the moduli spaces for the open Riemann surfaces (Riemann surfaces with bound-
aries) were described only recently for the disc case in [1] and for the higher genera case in 
[22]. We refer the reader to these papers for more details about this non-trivial geometric con-
struction. However, if one includes all descendants on the boundary [23], it appears that the 
properties of the conjectural generating function of open intersection numbers (that is, matrix 
model description, integrable properties and Virasoro/W-constraints) generalize the properties of 
the Kontsevich–Witten tau-function in a very natural way [4,5]. Here we only remind the reader 
some basic properties of the generating function of open intersection numbers.

Let us consider a Riemann surface with b boundaries, h handles, k marked points on the 
boundary and l interior marked points. Fig. 1 shows two examples: one without boundary (b = 0) 
and another with three boundaries (b = 3). In general, the corresponding moduli space has real 
dimension

dimRMh,b,k,l = 6h − 6 + 3b + k + 2l, (23)

with the stability condition

4h − 4 + 2b + k + 2l > 0. (24)
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In what follows we consider only the case when this dimension is even. Let us stress that we do 
not exclude the case with b = 0 (without boundaries), for which the moduli spaces coincide with 
the closed ones considered in the previous section:

Mh,0,0,l =Mh,l . (25)

Thus, we consider closed moduli spaces as a particular case of open ones.
We want to find all open analogs of the intersection numbers (3), that is

“
∫

Mh,b,k,l

ψ
α1
1 . . .ψ

αl

l φ
β1
l+1 . . . φ

βk

l+k” = 〈
τα1 . . . ταl

σβ1 . . . σβk

〉
h,b

, (26)

where ψj are the first Chern classes of the bundles Li corresponding to the interior marked points 
and φj are their analogs for the boundary marked points. This intersection number is not equal 
to zero only if the dimension condition is satisfied:

dimRMh,b,k,l = 2
l∑

i=1

αi + 2
k∑

i=1

βi. (27)

One can define the generating function of all these intersection numbers

FQ(T;S, h̄) =
∞∑

h=0

∞∑
b=0

h̄2h−2+bQb

〈
exp

⎛
⎝h̄

∑
k≥0

(Tkτk + Skσk)

⎞
⎠〉

h,b

(28)

and

τQ(T;S, h̄) = eFQ(T;S,h̄). (29)

h̄-expansion gives a topological expansion

FQ(T;S, h̄) =
∑
χ<0

h̄−χF (χ)
Q (T;S), (30)

where

χ = 2 − 2#handles − #boundaries − #points. (31)

From the dimension constraints (23) and (27) it follows that the power of h̄ in the sum (28) in 
front of the correlation function (26) is

2h − 2 + b + k + l = 1

3

(
l∑

i=1

(2αi + 1) +
k∑

i=1

(2βi + 2)

)
, (32)

so that

τQ(T;S, h̄) = τQ(T;S,1)

∣∣∣
Tk �→h̄

2k+1
3 Tk, Sk �→h̄

2k+2
3 Sk

. (33)

In what follows we omit the h̄ dependence and restore it only in Section 6, when we consider a 
topological recursion.

From the definition (28) it follows that for Q = 0 only the components without boundaries 
contribute to the sum, so that the generating function does not depend on Sk’s and coincides with 
the Kontsevich–Witten tau-function
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τ0(T;S) = τKW (T). (34)

We use quotation marks in (26) because a complete definition of the classes φj is still not 
available and, moreover, even for the available cases to specify the boundary conditions one 
should introduce more involved ingredients, in particular the canonical multisections. However, 
in [1] all the intersection numbers of the form

“
∫

M0,1,k,l

ψ
α1
1 . . .ψ

αl

l φ0
l+1 . . . φ0

l+k” (35)

were computed. The authors also gave a conjectural description of the generating function

τ1(T;S0). (36)

This function corresponds to the specification of (29) with Q = 1 (the case, when the components 
of the moduli spaces with different number of boundaries contribute with the same weight) and 
S0 = {S0, 0, 0, . . . } (without descendants on the boundary).

Namely, the authors of [1] conjectured that this generating function satisfies some analog of 
the KdV equations (called there open KdV equations) and some Virasoro constraints (which, in 
particular, are not quadratic in derivatives and contain all higher derivatives with respect to S0). 
These conjectures were proved there for h = 0, b = 1.

In the works of Buryak [23,24] it was shown that the open KdV equations and the Virasoro 
constraints of [1] are consistent and equivalent. Moreover, a very explicit and simple conjectural 
formula for the generating function

τ1(T;S) (37)

was suggested. It was shown that this generating function satisfies the Virasoro constraints (which 
include derivatives of degree not higher when two) and can be considered as a wave function of 
the KdV hierarchy.

On the basis of the works [1,23,24] the author suggested in [4,5] a matrix model description 
of the generating function of open intersection numbers. Namely, it was conjectured in [4] and 
later proved in [5] that the so-called Kontsevich–Penner matrix integral

τN =

∫
[d�] det

(
1 + �

�

)−N

exp

(
−Tr

(
�3

3! + ��2

2

))
∫

[d�] exp

(
−Tr

��2

2

)

= det(�)NC−1
∫

[d�] exp

(
−Tr

(
�3

3! − �2�

2
+ N log�

))
,

(38)

which obviously coincides with the Kontsevich matrix integral (12) for N = 0, for N = 1 gives 
the expansion of (37). A parameter N is assumed to be independent of the size of the matrices 
M and

Tk = (2k − 1)!!Tr�−2k−1,

Sk = 2kk!Tr�−2k−2.
(39)

Matrix model (38) belongs to the family of the so called generalized Kontsevich models and was 
considered earlier in [25]. From this matrix integral expression it immediately follows that (37)
is a tau-function of the KP integrable hierarchy in the KP times tk,
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t2k+1 = Tk

(2k + 1)!! ,

t2k+2 = Sk

2k+1(k + 1)! .

(40)

The Virasoro constraints satisfied by (38) for N = 1 (actually, a one-parametric family of the 
Virasoro constraints which includes, in particular, constraints from [24]) were also constructed 
in [4]. The main difference with the Virasoro constraints of [1,23,24] is that a representative of 
this family of the Virasoro constraints belong to the W1+∞ symmetry algebra of the KP inte-
grable hierarchy and are naturally related to the stabilizer of the corresponding point of the Sato 
Grassmannian.

While the identification between the generating function (29) and the tau-function (38) for 
N = Q = 0 has been known for more than 25 years, and for N = Q = 1 was established in [4,5], 
only Safnuk in [26] conjectured that the Kontsevich–Penner matrix model actually describes a 
refined version of intersection theory, and the parameter N in (38) should be identified with Q
in (29). It can be shown that this conjecture is true [28]. That’s why it is important to consider 
the model (38) for arbitrary values of N and, in particular, to understand the structure of the 
equations satisfied by this model.

Generalized Kontsevich models are the tau-functions of the KP/Toda type hierarchies [27]. 
In particular, matrix model (38) defines a tau-function of the MKP hierarchy dependent on the 
parameter N so that (37) and (8) are related to each other by the MKP Hirota bilinear identity. 
So far it is not clear if the open KdV hierarchy of [1] is of any fundamental importance. In 
particular, we don’t know if there are any other interesting solutions (for example, solitons) or if 
this hierarchy can be represented in the bilinear Hirota form. That’s why we claim that namely 
MKP is an integrable structure which governs open intersection numbers, and open KdV is only 
a consequence of MKP and other relations valid for N = 1 but not for other values of N . Full 
power of MKP is seen only if we consider the dependence (38) of all time variables tk and N .

Virasoro and W-constraints for an arbitrary N were constructed in [5] with the help of the 
modification of the matrix models and integrable hierarchies methods. For N = 0 and N = 1 the 
constraints belong to the W1+∞ algebra of symmetries of the KP integrable hierarchy, for other 
values of N this is not true anymore. In spite of the existence of explicit formulas the structure 
of the constraints was not clear so far.

Below we explain the structure of the Virasoro and W-constraints satisfied by (38). Namely, 
we show that these constraints can be naturally described in terms of a subalgebra of the 
W(3)-algebra given by a simple modification of the construction well known in CFT.

3. W1+∞ algebra and (M)KP

From the free fermion description of the KP hierarchy it immediately follows that the opera-
tors1

Ŵ (m+1)(z) = ∗
∗
(
Ĵ (z) + ∂z

)m

Ĵ (z) ∗
∗ (41)

correspond to the bilinear combinations of fermions and span the W1+∞ algebra of symmetries 
of the KP hierarchy. Here Ĵ (z) is the bosonic current

1 For more details see, i.e., [29–32] and references therein.
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Ĵ (z) =
∑
m∈Z

Ĵm

zm+1
, (42)

where

Ĵk =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂

∂tk
for k > 0,

0 for k = 0,

−kt−k for k < 0.

(43)

The normal ordering for bosonic operators ∗
∗ . . . ∗

∗ puts all operators Ĵk with positive k to the right 
of all Ĵk with negative k. In what follows we need only operators with m = 0, 1, 2.

The Virasoro subalgebra of W1+∞ is generated by the operators, bilinear in Ĵk ,

1

2
∗
∗ Ĵ (z)2 ∗

∗ =
∑
m∈Z

L̂m

zm+2
, (44)

namely it is spanned by the operators

L̂m = 1

2

∑
a+b=−m

abtatb +
∞∑

k=1

ktk
∂

∂tk+m

+ 1

2

∑
a+b=m

∂2

∂ta∂tb
. (45)

The operators from W1+∞, cubic in Ĵk ,

M̂k = 1

3

∑
a+b+c=k

∗
∗ ĴaĴbĴc

∗
∗ = 1

3

∑
a+b+c=−k

a b c ta tb tc +
∑

c−a−b=k

a b ta tb
∂

∂tc

+
∑

b+c−a=k

a ta
∂2

∂tb∂tc
+ 1

3

∑
a+b+c=k

∂3

∂ta∂tb∂tc
, (46)

are generated by

1

3
∗
∗ Ĵ (z)3 ∗

∗ =
∑
m∈Z

M̂m

zm+3
. (47)

The operators Ĵk , L̂k , and M̂k satisfy the following commutation relations[
Ĵk, Ĵm

]
= k δk,−m,[

Ĵk, L̂m

]
= kĴk+m,[

L̂k, L̂m

]
= (k − m)L̂k+m + 1

12
k(k2 − 1)δk,−m,[

L̂k, M̂m

]
= (2k − m)M̂k+m + 1

6
k(k2 − 1)Ĵk+m,[

Ĵk, M̂m

]
= 2k L̂k+m.

(48)

A commutator of M̂k’s contains the terms of fourth power of the current components Ĵm, so it 
can not be represented as a linear combination of Ĵk, L̂k , and M̂k .
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Constraints (22) for the Kontsevich–Witten tau-function can be represented in terms of the 
W1+∞ algebra of symmetries of the KP hierarchy. Namely, the reduction to the KdV hierarchy 
is described by

Ĵ2k τKW = 0, k ≥ 1, (49)

and the Virasoro constraints are given by(
1

2
L̂2k − 1

2
Ĵ2k+3 + 1

16
δk,0

)
τKW = 0, k ≥ −1. (50)

To describe the symmetries of the MKP hierarchy one have to introduce an additional variable 
N and consider a generalization of the above description. Namely, instead of (43) we have

ĴMKP
k =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂

∂tk
for k > 0,

N for k = 0,

−kt−k for k < 0.

(51)

Then the symmetry operators of the MKP hierarchy, given by the coefficients of

ĴMKP (z) =
∑
m∈Z

ĴMKP
m

zm+1
, (52)

1
2

∗
∗ Ĵ

MKP (z)2 ∗
∗ and 1

3
∗
∗ Ĵ

MKP (z)3 ∗
∗ are

ĴMKP
k = Ĵk + δk,0N,

L̂MKP
k = L̂k + NĴk + N2

2
δk,0,

M̂MKP
k = M̂k + 2NL̂k + N2Ĵk + N3

3
δk,0.

(53)

They satisfy the same commutation relations (48). Symmetry operators for the KP hierarchy can 
be expressed as a linear combination of the operators for the MKP hierarchy:

Ĵk = ĴMKP
k − δk,0N,

L̂k = L̂MKP
k − NĴMKP

k + N2

2
δk,0,

M̂k = M̂MKP
k − 2NL̂MKP

k + N2ĴMKP
k − N3

3
δk,0.

(54)

4. Constrains for open intersection numbers

In [5] it is proven that the Kontsevich–Penner tau-function (38) satisfies the linear equations

L̂kτN = 0, k ≥ −1,

M̂kτN = 0, k ≥ −2.
(55)

Here
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L̂k = L̂2k − ∂

∂t2k+3
+ 3N

∂

∂t2k

+
k−1∑
j=1

∂2

∂t2j ∂t2k−2j

+
(

1

8
+ 3N2

2

)
δk,0 + 2Nt2δk,−1, (56)

and

M̂k = M̂2k − 2L̂2k+3 + Ĵ2k+6 +
(

3(k + 1)N2 + 1

4

)
Ĵ2k + (k + 4)N

(
L̂2k − Ĵ2k+3

)

+ 2

(
N2 + 1

4

)
Nδk,0 + 4N2t2δk,−1 + 16N2t4δk,−2

+ (k − 2)N

k−1∑
j=1

∂2

∂t2j ∂t2k−2j

− 4

3

∑
i+j+l=k

∂3

∂t2i∂t2j ∂t2l

.

(57)

Rather involved commutation relations[
L̂k, L̂m

]
= 2(k − m)L̂k+m,

[
L̂k, M̂l

]
= 2 (2k − l)M̂k+l − 4

(
k(k − 1) − 2δk,−1

)
N L̂k+l + 8

k−1∑
j=1

j
∂

∂t2k−j

L̂l+j ,
(58)

indicate that the basis of constraints (56), (57) is not the most convenient one. Below we obtain 
a more natural basis of constraints, with simple commutation relations and a natural free field 
representation.

From (56) and (57) it is clear that these constraints can not be represented in terms of the 
bosonic current (42) since the symmetry between even and odd times is broken. Thus, let us 
consider even and odd times separately, and introduce two components of the bosonic current

Ĵo(z) = vo(z) + ∇̂o(z),

Ĵe(z) = ve(z) + ∇̂e(z),
(59)

where

vo(z) =
∞∑

k=0

(2k + 1)z2k t̃2k+1,

∇̂o(z) =
∞∑

k=0

1

z2k+2

∂

∂t2k+1
,

(60)

and

ve(z) =
∞∑

k=1

2kz2k−1t2k,

∇̂e(z) = N

z
+

∞∑
k=1

1

z2k+1

∂

∂t2k

.

(61)

Here the times t̃k are subject to the dilaton shift

t̃k = tk − δk,3
. (62)
3
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From (52) it is easy to see that

Ĵo(z) + Ĵe(z) = ĴMKP (z) − z2. (63)

We introduce new operators

M̂′
k := M̂k − (k + 2)N L̂k, (64)

such that M̂′
k and L̂k constitute a basis of constraints equivalent to the basis (56) and (57). These 

new operators can be represented as a linear combination of the operators (53) and the powers of 
∇̂e(z):

L̂k = L̂MKP
2k − ĴMKP

2k−3 + δk,0

8
+ 1

2πi

∮
∇̂e(z)

2z2k+1dz,

M̂′
k = M̂MKP

2k − 2L̂MKP
2k−3 + ĴMKP

2k−6 + 1

4
ĴMKP

2k − 2

3πi

∮
∇̂e(z)

3z2k+2dz.

(65)

In this new basis the commutation relations are

[
L̂k, M̂′

l

]
= 2(2k + l)M̂′

k+l + 8
k∑

j=1

j ĴMKP
2k−2j L̂l+j . (66)

Then the generating functions of the operators (65) are

∞∑
k=−1

L̂k

z2k+2
= 1

2
z2

(
z−2 ∗

∗ Ĵo(z)
2 + Ĵe(z)

2 + 2∇̂e(z)
2 + 1

4z2
∗
∗

)
−

,

∞∑
k=−2

M̂′
k

z2k+3
= 1

3
z2

(
z−2 ∗

∗ 3Ĵo(z)
2Ĵe(z) + Ĵe(z)

3 − 4∇̂e(z)
3 + 3

4z2
Ĵe(z)

∗
∗

)
−

(67)

where we use the standard notation for the negative part of the Laurent series( ∞∑
k=−∞

akx
k

)
−

:=
−1∑

k=−∞
akx

k. (68)

However, this representation still contains not only the currents, but also the operator ∇̂e(z), 
so it is not quite satisfactory. Let us introduce new operators M̂∗

k using the generating function:

∞∑
k=−2

M̂∗
k

z2k+3
:=

∞∑
k=−2

M̂′
k

z2k+3
− 4

3
z2

⎛
⎝z−2v0(z)

∞∑
k=−1

L̂k

z2k+2

⎞
⎠

−

= 1

3
z2

(
z−2 ∗

∗ 3Ĵo(z)
2Ĵe(z) + Ĵe(z)

3 − 4∇̂e(z)
3 + 3

4z2
Ĵe(z)

∗
∗

)
−

− 2

3
z2

(
z−2 ∗

∗ve(z)Ĵo(z)
2 + ve(z)Ĵe(z)

2 + 2ve(z)∇e(z)
2 ∗

∗ + ve(z)

4z2

)
−

= z2

(
z−2 ∗

∗

(
1

3
ve(z) + ∇̂e(z)

)(
Ĵo(z)

2 + 1

4z2

)
−

(
1

3
ve(z) + ∇̂e(z)

)3
∗
∗

)
−

(69)

which, by construction, also annihilate the Kontsevich–Penner tau-function. It is easy to show 
that now the canonical commutation relations are satisfied
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[
L̂k, M̂∗

k

]
= 2(2k − l)M̂∗

k+l . (70)

To describe the operators M̂∗
k and L̂k in terms of free fields let us introduce

Ĵo(x) = 1√
2

∞∑
k=0

(
(2k + 1)t̃2k+1x

k− 1
2 + 1

xk+ 3
2

∂

∂t2k+1

)
,

Ĵe(x) =
∞∑

k=0

(√
2

3
k t̃2kx

k−1 +
√

3

2

1

xk+1

∂

∂t2k

)
+

√
3

2

N

x
,

(71)

where the time variables are subject to the dilaton shift (62). We see that the odd current Ĵo(z) co-
incides with the current from the description of the Kontsevich–Witten tau-function in Section 1. 
Then, if we consider

L̂N(x) =
∞∑

k=−∞

L̂N
k

xk+2
:= 1

2

(
∗
∗ Ĵo(x)2 + 1

8x2
+ Ĵe(x)2 ∗

∗

)
,

M̂N(x) =
∞∑

k=−∞

M̂N
k

xk+3
:= 1√

6

(
∗
∗ Ĵe(x)

(
Ĵo(x)2 + 1

8x2

)
− 1

3
Ĵe(x)3 ∗

∗

)
,

(72)

the operators L̂N
k and M̂N

k coincide, up to normalization, with the operators L̂k and M̂∗
k , and 

satisfy the commutation relations[
L̂N

k , L̂N
m

]
= (k − m)L̂N

k+m + 1

6
k(k2 − 1)δk,−m,[

L̂N
k ,M̂N

m

]
= (2k − m)M̂N

k+m,[
M̂N

k ,M̂N
m

]
= 1

2
(k − m)�̂N

k+m + 1

180
k(k2 − 1)(k2 − 4)δk,−m

+ (k − m)

(
1

15
(k + m + 3)(k + m + 2) − 1

6
(k + 2)(m + 2)

)
L̂N

k+m,

(73)

where

�̂N
m =

∑
n≤−2

L̂N
n L̂N

m−n +
∑
n>2

L̂N
m−nL̂N

n − 3

10
(m + 3)(m + 2)L̂N

m. (74)

These operators generate a representation of the W(3) algebra with central charge c = 2. Then 
the constraints for the Kontsevich–Penner model are given by(

L̂N(x)
)

− τN =
(
M̂N(x)

)
− τN = 0. (75)

Equations (75) can be considered as the Virasoro and W-master equations [34]. They can 
serve as a basis for the derivation of the CEO topological relations/Givental decomposition for 
the ramified generating function of open intersection numbers [35].

5. W(3)-algebra and free bosonic fields

Representation (72) of the W(3) algebra can naturally be described by the construction, well 
known in the conformal field theory [17,18] and in matrix models [29,36,37]. This construction 
is related to the Miura transformation.
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Let us describe this construction in a bit more general setup. For the case of sl(n) the W(n)

algebra can be represented in terms of the vector of n − 1 independent bosonic currents �J =
(J(1)(x), J(2)(x), . . . , J(n−1)(x))

J(k)(x) = ∂xφ(k)(x) =
∞∑

m=−∞

J
(k)
m

xm+1
, (76)

where operators J (k)
m satisfy the commutation relations[

J (k)
m , J (l)

n

]
= mδk,l δm,−n. (77)

Let us consider a generating function of the operators W(j) (dependent of x)

Rn(u) = −∗
∗

n∏
m=1

(u − �hm · �J ) ∗
∗ , (78)

which is polynomial in the new variable u:

Rn(u) = −un +
n∑

j=2

un−jW(j). (79)

Here the �hm’s are the weight vectors of the fundamental representation of sl(n) and they satisfy

�hi · �hj = δij − 1

n
,

n∑
j=1

�hj = 0. (80)

Then the operators W(j) generate a representation of the W(n) algebra with central charge c =
n − 1.

In particular, for n = 3 we have

�h1 =
(

1√
2
,

1√
6

)
, �h2 =

(
− 1√

2
,

1√
6

)
, �h3 =

(
0,− 2√

6

)
, (81)

and the W(3) algebra with c = 2 is generated by

R3(u) = −∗
∗

3∏
m=1

(u − �hm
�J ) ∗

∗

= −u3 − u ∗
∗
∏
i<j

(�hi · �J )(�hj · �J ) ∗
∗ + ∗

∗
∏
i

�hi · �J ∗
∗

= −u3 + uL(x) +M(x).

(82)

Here

L(x) =
∞∑

k=∞

Lk

xk+2
= 1

2

(
∗
∗J(1)(x)2 + J(2)(x)2 ∗

∗
)

,

M(x) =
∞∑ Mk

xk+3
:= 1√

6

(
∗
∗J(1)(x)2J(2)(x) − 1

3
J(2)(x)3 ∗

∗

)
.

(83)
k=−∞



A. Alexandrov / Nuclear Physics B 922 (2017) 247–263 261
We see that these expressions almost coincide with the expressions for L̂N(x) and M̂N(x)

(72). Namely, to get (72) we have to substitute

J(1)(x)2 �→ Ĵo(x)2 + 1

8x2
,

J(2)(x) �→ Ĵe(x).

(84)

Clearly, this substitution does not affect the commutation relations. Thus, operators generated by 
(72) and (83) satisfy the same commutation relations (73).

Therefore, we see that the constraint for the generating function of open intersection num-
bers can be obtained by a slight modification of the construction well known in the CFT. The 
modification corresponds to the twist of one (namely φ(1)) of the bosonic fields.2 Corresponding 
current J(1) should satisfy odd boundary conditions to describe the constraints for open intersec-
tion numbers. Unfortunately, we were unable to find this representation of the W(3) algebra in 
the literature.

This description of the constraints can be easily generalized for the case of r-spin open inter-
section numbers [33].

6. Cut-and-join description and topological recursion

Let us describe a topological recursion which gives a solution of the constraints (75). From 
(32) it follows that

h̄
∂

∂h̄
τN(t, h̄) = D̂ τN(t, h̄) (85)

with the degree operator

D̂ := 1

3

∞∑
k=1

ktk
∂

∂tk
. (86)

We can rewrite this operator as

D̂ = 1

6πi

∮ (√
2

3
ve(

√
x)Ĵe(x) + √

2vo(
√

x)Ĵ ′
o(x)

)√
xdx, (87)

where

Ĵ ′
o(x) = 1√

2

∞∑
k=0

(
(2k + 1)t2k+1x

k− 1
2 + 1

xk+ 3
2

∂

∂t2k+1

)
= Ĵo(x) +

√
x

2
(88)

is the odd current without dilaton shift. Then, if we rewrite the operators (72) as

L̂N(x) = 1

2

(
∗
∗

(
Ĵ ′

o(x) −
√

x

2

)2

+ 1

8x2
+ Ĵe(x)2 ∗

∗

)
,

M̂N(x) = 1√
6

(
∗
∗ Ĵe(x)

((
Ĵ ′

o(x) −
√

x

2

)2

+ 1

8x2

)
− 1

3
Ĵe(x)3 ∗

∗

)
,

(89)

2 If we twist both fields with Z3-twist, we will obtain the constraints for the tau-function of the Boussinesq hierarchy, 
corresponding to the generalized Kontsevich model with quartic potential [29].
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from the constraints (75) it follows that τN(t, h̄) satisfies the cut-and-join type equation

D̂τN(t, h̄) =
(
h̄Ŵ1 + h̄2Ŵ2

)
τN(t, h̄), (90)

where

Ŵ1 = 1

6πi

∮ (
∗
∗vo(

√
x)

(
Ĵ ′

o(x)2 + 1

8x2
+ Ĵe(x)2

)
+ 4ve(z)√

3
Ĵe(x)Ĵ ′

o(x) ∗
∗

)
dx,

Ŵ2 = −
√

2

3
√

3πi

∮
ve(

√
x)

(
∗
∗ Ĵe(x)

(
Ĵ ′

o(x)2 + 1

8x2

)
− 1

3
Ĵe(x)3 ∗

∗

)
dx√

x
.

(91)

If we introduce the topological expansion of the tau-function

τN(t, h̄) = 1 +
∞∑

k=1

h̄kτ
(k)
N (t), (92)

then the coefficients τ (k)
N (t), which are polynomials in tk’s, are given by a recursion

τ
(k)
N = 1

k

(
Ŵ1 τ

(k−1)
N + Ŵ2 τ

(k−2)
N

)
(93)

with the initial conditions τ (0)
n = 1, τ (−1)

n = 0. This recursion is quite convenient from the 
computational point of view and gives a generalization of the cut-and-join description of the 
Kontsevich–Witten tau-function, obtained in [38].
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