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We propose a new class of inflationary models in which inflation takes place while the inflaton is
climbing up a potential hill due to a coupling to gravity. We study their attractor behavior, and investigate its
relation with known attractors. We also discuss a possible realization of this type of models with natural
inflation, and show that the inflationary predictions come well within the region consistent with the
observation of the cosmic microwave background.
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I. INTRODUCTION

Cosmological inflation plays an essential role in address-
ing various cosmological issues [1] as well as generating
the primordial perturbations [2]. Although the idea of
inflation leads to a successful picture in modern cosmology,
the underlying particle physics is still unclear. Among
various possibilities, one of the most attractive scenarios is
extending the gravity sector. Starobinsky inflation [3] is one
of the most successful models along this line, and Higgs
inflation [4–8], in which a nonminimal coupling between
the Higgs field and the Ricci scalar is introduced, has also
persisted to date.
Over the past fewyears, our understanding of the behavior

of these inflation models has significantly improved due to
the discovery of attractors. It has been found that a large class
of models with a general form of nonminimal coupling to
gravity, including Higgs inflation, has similar inflationary
predictions. A generalization of such models has been made
(“universal attractor” [9] or “induced inflation” [10,11]), and
their attractor behavior is now called the “ξ attractor” [12].
On the other hand, the recently proposed the“α attractor”
[13] has revealed a generic feature of attractors appearing in
models with a kinetic pole, which coincide with the ξ
attractor with a certain choice of model parameters [12].
In this paper, we revisit inflation models with non-

minimal coupling. We first propose a new class of models
which is featured by the climbing of the inflaton up the
potential hill by considering a specific behavior of the
nonminimal coupling. We point out that this class of
models has attractor behavior, and discuss its relation with
known attractors in a general way. Then we give a concrete
example of such models using the natural inflation-type
potential [14] with a nonminimal coupling, and show that
the inflationary predictions come well within the region
consistent with Planck observations of the cosmic micro-
wave background (CMB) [15]. We also point out that our
setup can be applied to a broad class of inflaton potentials
which have multiple degenerate vacua.
The organization of the paper is as follows. In Sec. II

we give a general discussion on the attractor behavior in

inflation models with nonminimal coupling. In Sec. III we
give a concrete model to illustrate the point discussed in
Sec. II and show the inflationary predictions. We finally
conclude in Sec. IV.

II. ATTRACTORS AND HILL-CLIMBING
INFLATION

A. ξ attractor

Let us start with a general discussion on attractor
solutions in inflation models with nonminimal coupling.
Throughout the paper, we focus on the following single-
field inflation setup:

S ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gJ

p �
M2

P

2
ΩRJ −

KJ

2
ð∂JϕJÞ2 − VJ

�
; ð1Þ

where MP is the reduced Planck mass, and ϕJ, RJ and
VJðϕJÞ are the (Jordan-frame) inflaton, Ricci scalar and
potential, respectively. Hereafter the subscript J indicates
the “Jordan frame.” Also, the factor KJðϕJÞ in front of the
kinetic term ð∂JϕJÞ2 ≡ gμνJ ∂μϕJ∂νϕJ is an arbitrary func-
tion of ϕJ, which we retain for the generality of the
following argument. In addition, ΩðϕJÞ is an arbitrary
function which takes positive values in the case of our
interest. Under the Weyl rescaling gμν ≡ΩgJμν, the Ricci
scalar transforms as

RJ ¼ Ω
�
Rþ 3□ lnΩ −

3

2
ð∂ lnΩÞ2

�
ð2Þ

with which the action (1) becomes

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
R −

K
2
ð∂ϕJÞ2 − V

�
; ð3Þ

where the potential is given by V ¼ VJ=Ω2, and

K ¼ KJ

Ω
þ 3M2

P

2Ω2

�
dΩ
dϕJ

�
2

: ð4Þ
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Here let us suppose that the second term dominates the
first term in Eq. (4). Such a setup occurs e.g. when
M2

PðdΩ=dϕJÞ2=Ω2 ≫ 1=Ω for KJ ¼ 1 or when KJ ¼ 0.
Then the kinetic term in the action (3) reduces to [9]

−
K
2
ð∂ϕJÞ2 ≃ −

3M2
P

4
ð∂ lnΩÞ2: ð5Þ

Now let us assume that Ω evolves from Ω ≫ 1 to Ω ¼ 1

during inflation.1 For example, if we take V¼V0ð1−Ω−1Þ2
with V0 being a constant which determines the potential
height at Ω ≫ 1, this potential realizes a plateau for Ω ≫ 1
and a vanishing cosmological constant in the present
Universe.2 In terms of the Einstein-frame inflaton, one
may identify ϕ=MP ≃ ffiffiffiffiffiffiffiffi

3=2
p

lnΩ to make the kinetic term
canonical, and then the potential becomes

V ¼ V0

�
1 − e−

ffiffi
2
3

p
ϕ

MP

�
2

: ð6Þ

This potential realizes the spectral index ns and the tensor-
to-scalar ratio r,

ns ≃ 1 −
2

N
; r≃ 12

N2
; ð7Þ

in the large-N limit with N being the e-folding number. It is
known that a large class of inflation models predicts Eq. (7),
which includes Higgs inflation Ω ¼ 1þ ξϕ2

J=M
2
P [5,7,8]

and its generalizations such as the “universal attractor”
Ω ¼ 1þ ξfðϕJÞ [9] or “induced inflation” Ω ¼ ξfðϕJÞ
[10,11]. In Ref. [12], the class of models which have this
attractor behavior in the inflationary predictions (7) have
been dubbed the “ξ attractor.”

B. η attractor

Here we take a closer look at the arguments in the
previous subsection. In discussing the ξ attractor, we have
assumed that the inflationary regime occurs at Ω ≫ 1. In
this paper, in contrast, we consider inflation at Ω ≪ 1. This
distinction is important from a model-building point of
view, as we will see in the rest of this subsection and also in
the next section with a concrete example.
To investigate the properties of such inflation models, let

us first consider the requirements to realize a vanishing
cosmological constant in the present Universe. Assuming
that Ω is monotonic for the inflaton values of our interest,
we write down the potential in terms of Ω:

V ¼ V0

�
1 −

X∞
k¼n

ηkΩk

�
; ð8Þ

with ηk being some constants and n ≥ 1 being the leading
exponent of Ω which dominantly affects the inflationary
predictions. Note that we have not included negative
powers of Ω, in order to keep the flatness of the potential.
The vanishing cosmological constant is realized by

X∞
k¼n

ηk ¼ 1: ð9Þ

When the approximation (5) holds,3 the slow-roll param-
eters ϵ and η are given by

ϵ≡M2
P

2

�
V 0

V

�
2 ≃ 1

3
ðnηnΩnÞ2; ð10Þ

η≡M2
P
V 00

V
≃ −

2

3
n2ηnΩn; ð11Þ

where we respectively define V0 and V 00 as dV=dϕ and
d2V=dϕ2, and thus the inflaton rolls slowlywhenΩ becomes
sufficiently small. The attractor behavior of the inflationary
predictions with the potential (8) can be calculated as

ns ≃ 1 −
2

N
; r≃ 12

n2N2
; ð12Þ

in the large-N limit. It should be noted that the resultant r is
moregeneral thanEq. (7). Of course, in the ξ attractor aswell,
the inflationary predictions reduce to Eq. (12) by adopting a
similar expansion to the potential.4,5 However, as we see in
Sec. III, relatively simple setups lead to n ≠ 1 in this type of
inflationmodels, and thereforewe call them η attractor in the
following to distinguish between the two.6

1One can take Ω ¼ 1 in the present Universe without loss of
generality.

2As we see in the next subsection and show in footnote 4, this
potential form can be generalized to a broader class.

3See Appendix B for the cases in which this approximation
does not hold.

4The same line of argument is possible for Ω ≫ 1 as well. One
may write down the potential as

VE ¼ V0

�
1 −

X∞
k¼n

ξkΩ−k
�
; ð13Þ

with ξk being some constants and n being the leading exponent.
Here we have not included positive powers of Ω because such
terms spoil the flatness of the potential for Ω ≫ 1. The vanishing
cosmological constant in the present Universe is realized by

X∞
k¼n

ξk ¼ 1: ð14Þ

Note that VE ∼ ð1 − Ω−1Þ2 gives one realization of this condition.
The setup (13) gives the same prediction as Eq. (12), which is
more general than Eq. (7).

5In Ref. [16], a generalization of the ξ attractor has been made
by setting VE ∼ ð1 −Ω−pÞ2 where p can have some value other
than unity.

6In both of the two classes, inflationary predictions generically
deviate from the attractor limit (12) once one considers concrete
model constructions. Therefore it would be possible to distin-
guish such models by future CMB observations.
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There is another important reason to distinguish between
the ξ and η attractors, namely, their application to existing
inflaton potentials. To see this, let us consider the inflaton
behavior in the Jordan frame. The Jordan-frame potential is
given by VJ ¼ Ω2VE ≃Ω2V0 during inflation. This means
that, in the class of inflation models which is featured by
Ω ≪ 1, the inflaton climbs up the potential hill due to a
coupling to gravity. If one considers applying such a gravity
effect to existing inflaton potentials, one sees that the
existence of the η attractor can help the predictions of
inflation models with multiple potential minima by modi-
fying the inflaton behavior. We call such inflation models
with the η attractor behavior hill-climbing inflation in the rest
of the paper. We will illustrate this point in Sec. III with a
concrete example.
Before moving on to the next topic, let us mention

previous studies. It is known that in some specific setup
inflation can take place with a small Ω, for instance,
conformal inflation with χ ¼ ffiffiffi

6
p

gauge [17,18] and its
extension [19]. While they are based on a specific type of
inflation models, we stress that this class of inflation can be
seen in a rather broader range of models having multiple
vacua in the inflaton potential, as we see in the next section.

C. Relation with α attractor

Here we comment on the relation with the α attractor,
which was discovered in the studies of superconformal
inflation [20,21] and later developed into its current form
[13,17,18,22]. Its action is given by [13,22]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
L; ð15Þ

L ¼ M2
P

2
R −

1

2

α

ð1 − ϕ2=6M2
PÞ2

ð∂ϕÞ2 − Vðϕ=
ffiffiffi
6

p
MPÞ;

ð16Þ
with a non-negative potential V.7 This class of models
coincides with the Starobinsky model with α ¼ 1 and a
specific choice of the potential [20]. Canonical normali-
zation of the inflation field ϕ=

ffiffiffi
6

p
MP ¼ tanhφ=

ffiffiffiffiffiffi
6α

p
MP

leads to

L ¼ M2
P

2
R −

1

2
ð∂φÞ2 − V

�
tanh

φffiffiffiffiffiffi
6α

p
MP

�
: ð17Þ

The potential can generically be expanded as

V ¼ V0

�
1 −

X
k¼n

αke
−k

ffiffiffi
2
3α

p
φ

MP

�
; ð18Þ

with αk being some constants and n being the leading
exponent as in the previous subsections. Though usually

n ¼ 1 is assumed in calculating inflationary predictions
in this class of models [12,13,17,18,22], which holds true

for e.g. V ∼ ð1 − e−
ffiffiffi
2
3α

p
φ

MPÞ2, we do not restrict ourselves to
such a special case. The inflationary predictions for the
potential (18) approach

ns ≃ 1 −
2

N
; r≃ 12α

n2N2
; ð19Þ

in the large-N limit. The correspondence between the ξ or η
attractors and the α attractor is easily seen if one notices that
the pole structure and the leading exponent dominantly
determine the inflationary predictions [12]: the α attractor,
whose action is given by Eqs. (15)–(16), shares its infla-
tionary predictions for α ¼ 1 with those of the ξ or η
attractors, whose action is given by Eq. (1) and inflation
occurs at Ω ≫ 1 and Ω ≪ 1, respectively. We summarize
the relation in Fig. 1.

III. HILL-CLIMBING NATURAL INFLATION

Now let us illustrate our point discussed in the previous
section with a specific example, which we call hill-climbing
natural inflation. The model setup is the Jordan-frame
action (1) with KJ ¼ 1 and

Ω ¼ ω sin

�
ϕJ

2ηf

�
; ð20Þ

VJ ¼ Λ4

�
1 − cos

�
ϕJ

f

��
: ð21Þ

FIG. 1. Relation between the ξ or η attractor and the α attractor.
For both the ξ and η attractors, the corresponding value ofα is unity
because it is determined by the residue of the kinetic pole. Well-
known examples of the ξ attractor such as Higgs inflation and its
generalizations correspond to n¼1 coming from V∼ð1−Ω−1Þ2¼
1�2Ω−1þ…. For the η attractor, n > 1 can easily be realized as
we see in Sec. III. It is also possible to generalize the ξ attractor to
more general values of n as mentioned in footnote 4.

7The pole structure in the inflaton kinetic term has been
generalized in e.g. Ref. [23].
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Here ω, η, f and Λ are free parameters of the model (see
also Appendix A). We set the coefficient ω to satisfy

ω ¼ 1= sin

�
π

η

�
; ð22Þ

to realize Ω ¼ 1 in the present Universe. Note that other
choices of KJ such as KJ ¼ 0 also work, because they only
give the negligible part in Eq. (4). Figure 2 shows typical
shapes of the potential and Ω in this model.
In this setup the inflation takes place in the vicinity of the

origin, and the inflaton is slowly displaced towards ϕJ > 0
by climbing up the potential hill of VJ due to the small
conformal factor. This property can also be understood
in the Einstein frame. The relation between ϕJ and ϕ is
given by

ϕJ ∝ e
ffiffi
2
3

p
ϕ

MP ð23Þ

around the origin. Inflation occurs at ϕJ → þ0, or
ϕ → −∞, where the potential V ¼ VJ=Ω2 approaches a
certain constant value, and ends at the neighboring mini-
mum. As long as we take f ≪ MP, the relevant inflationary
dynamics occurs around the origin and therefore the
predictions are given by Eq. (12). It is also seen that this
model corresponds to the n ¼ 2 case in Sec. II: noting that
the Einstein-frame potential V ¼ VJ=Ω2 is even in ϕJ,
one sees that only even powers of Ω, which is an odd
function of ϕJ, appear in the expansion of V. As a result
n ¼ 2 [more specifically η2 ¼ ð2=3Þðη=ωÞ2] appears as the
leading exponent in Eq. (8).8 On the other hand, in the
opposite case f ≫ MP, the relevant inflation dynamics
occurs around the minimum ϕJ ¼ 2πf. In this case, the
conformal factor is close to unity all the way from the CMB

scale to the end of inflation, and thus the model approaches
quadratic chaotic inflation (see Appendix B for more
details).
In Fig. 3 we show the inflationary predictions of hill-

climbing natural inflation. We have calculated the scalar
spectral index ns and the tensor-to-scalar ratio r, varying f
from large f (≫MP) to small f (≪MP). In this figure, we
have fixed the scalar normalization by Pζ ¼ 2 × 10−9 and
taken the e-folding to be N ¼ 50 and 60. It is seen that for
f ≫ MP the predictions coincide with those of quadratic
chaotic inflation, while they approach asymptotic values
for f ≪ MP, which corresponds to the n ¼ 2 case of the η
attractor discussed in Sec. II.

IV. CONCLUSION

In this paper, we have presented a new class of
inflationary models in which inflation takes place while
the inflaton is climbing up a potential hill due to a
coupling to gravity. We have studied the attractor
behavior in the resulting inflationary predictions and
investigated its relation with known attractors, and as a
result, we have proposed the “η attractor.” The inflaton
behavior in the η attractor is well understood in the
Einstein frame, where the original potential is lifted up
by the Weyl transformation. We have also discussed a
possible realization of this type of models with the natural
inflation potential, and shown that the inflationary predic-
tions are affected by the existence of the attractor. Though in
this paper we have restricted ourselves to an example with
natural inflation, our discussion is also applicable to various
types of models which have multiple vacua with vanishing
vacuum energy. For example, it would be interesting to

FIG. 2. Rough sketch of our setup. The blue, red and yellow
lines correspond to the Einstein-frame potential V, the Jordan-
frame potential VJ and the conformal factor Ω, respectively. In
this setup, inflation occurs around the origin while the inflaton is
climbing up the Jordan-frame potential, and ends at the neigh-
boring minimum.

FIG. 3. Predictions for inflationary parameters in hill-climbing
natural inflation. For both N ¼ 50 and 60, we take η ¼ 1.5 to 4
corresponding to the right and left boundaries, respectively. Other
choices of η, such as η≳ 4, give almost the same curve as the one
with η ¼ 4.

8Note that n ¼ 1 can also be realized easily by choosing Ω not
to be odd in ϕJ .
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investigate the possibility of realizing hill-climbing infla-
tion when the standard model Higgs has another degenerate
vacuum around ∼1017 GeV, as suggested by the multiple-
point principle [24]. As another interesting possibility, hill-
climbing inflation would take place even if the inflaton
potential in the Jordan frame is not bounded from below
as long as the conformal factor becomes sufficiently small at
a certain relevant scale. We leave such studies to future
work [25].
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APPENDIX A: MODELS

In this appendix we discuss some realizations of the
setup (20)–(21) using a complex scalar field. We consider
the action S ¼ R

d4x
ffiffiffiffiffiffiffiffi−gJ

p
LJ with

LJ ¼ −iMðΦJ −Φ†
JÞRJ − j∂ΦJj2 − VJ; ðA1Þ

or

LJ ¼ −iðΦ2
J −Φ†2

J ÞRJ − j∂ΦJj2 − VJ; ðA2Þ

with ΦJ being a complex scalar and M being a dimen-
sionful parameter, and the potential is given by

VJðΦJÞ ¼ λ

�
jΦJjp −

1

2
ðΦp

J þΦ†p
J Þ

�
þ VSBðΦJÞ: ðA3Þ

Here p is some integer, and VSB is introduced in order to fix
the radial value ofΦJ. AfterΦJ develops a nonzero vacuum
expectation value hΦJi ≠ 0, the inflaton field ϕ residing
in the phase of ΦJ, ΦJ ¼ hΦJi expðiϕ=

ffiffiffi
2

p hΦJiÞ, acquires
a potential of the form given in Eq. (21) by taking
Λ ¼ λhΦJip and f ¼ ffiffiffi

2
p hΦJi=p.9

In the hill-climbing natural inflation models, the
reheating process is also a nontrivial issue, since the
potential shape relevant for the reheating epoch highly
depends on the choice of the conformal factor. Also, it is
known that in inflation with nonminimal coupling
the direction perpendicular to the inflaton can be
violently produced at the onset of preheating [26],

and it would be interesting to study whether this occurs
in the present setup.

APPENDIX B: HILL-CLIMBING CONDITION

In this appendix we discuss conditions for a successful
hill-climbing inflation, focusing on special cases in which
VJ ∝ ϕ2

J and Ω ∝ ϕJ hold around the potential minimum
(which we take to be near the origin). In particular, we take
a closer look at conditions in which the approximation
given by Eq. (5) is justified as a consequence of the fact that
the second term is dominant on the rhs of Eq. (4). In the
following we take KJ ¼ 1 for concreteness.
Let us parametrize the conformal factor around the

potential minimum as

Ω ∼
ϕJ

M
; ðB1Þ

where M is some dimensionful quantity. Note that
Ω ¼ 1 in the present Universe means that the inflaton
value at the end of inflation is parametrized as ϕJ ∼M. In
hill-climbing natural inflation it corresponds to M ∼ ηf.
The first and second terms in Eq. (4) are estimated as

1

Ω
∼
M
ϕJ

;
3M2

P

2Ω2

�
dΩ
dϕJ

�
2

∼
M2

P

ϕ2
J
; ðB2Þ

and therefore the second term dominates for ϕJ ≲M2
P=M.

Now let us consider the following two cases:

ðiÞ M ≫ MP; ðiiÞ M ≪ MP: ðB3Þ

For (i), the first term dominates the second term in Eq. (4)
for the inflaton value from the CMB scale to the end of
inflation, and thus the discussions below Eqs. (10) and
(11) do not hold. In such a case, the inflationary
predictions deviate from those of the η attractor.
Instead, recalling that hill-climbing inflation needs
another minimum in the potential in order to terminate
the inflationary regime (see the setup in Sec. III), one sees
that the setup approaches chaotic inflation. This is
because the whole inflaton excursion from the CMB
scale to the end of inflation falls within the vicinity of
this reheating minimum, which makes the evolution of the
conformal factor Ω within this inflaton range negligible.
This is why the inflationary predictions in hill-climbing
natural inflation approach the ones in quadratic chaotic
inflation for f ≫ MP.
On the other hand, for (ii), the second term dominates

in Eq. (4) for the inflaton values of our interest. As a
consistency check, let us first assume that the second term
is dominant in Eq. (4). Then, from the discussions in
Sec. II, inflation occurs forΩ ≪ 1 or equivalently ϕJ ≪ M.
Now by plugging this back into Eq. (B2) one sees that the
second term indeed dominates for this inflaton range.

9In terms of shift symmetry along the ϕ direction, the coupling
λ is regarded as an explicit breaking parameter. In the gravity
sector, the nonminimal coupling also breaks the shift symmetry,
and in some cases the quantum corrections to the inflaton
potential might affect the inflaton dynamics. In such a case,
we may need a UV description of the nonminimal coupling to
control the corrections.
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