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I do not wish, at this stage, to examine the logical justification

of this form of argumentation; for the present, I am considering

it as a practice, which we can observe in the habits of men

and animals.

Bertrand Russell, ‘Philosophy’.

1 Introduction

Recently, a significant progress has been achieved for novel formulations of supergravity

in which duality symmetries in string and M-theory compactification are manifest. They

include the double field theory (DFT) [1–7], the exceptional field theory (EFT) [8–26]

(see also [27–34] for closely related attempts) as well as the generalized geometry [35–

40]. One important advantage of these formulations is that they can treat wide variety of

spacetimes, such as non-geometric backgrounds [41–44], that are not globally describable

in the conventional formulation of supergravity. As pointed out in [45, 46], non-geometric

backgrounds arise quite naturally in superstring theories. Backgrounds sourced by exotic

branes [47–53] are concrete examples. As an application of DFT and related formulations

such as the β-supergravity [54–61], a background of a particular exotic brane, so-called

a 522-brane, was studied in [45, 46, 62–72] and the exotic 522-brane was identified with a

magnetic source of the non-geometric Q-flux [64, 70, 72].

– 1 –
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One reason why the exotic 522-brane received special attention is that the non-geometric

Q-flux, which is intrinsic to the 522-brane background, is related to a T -duality monodromy,

and the much developed DFTs efficiently describe such background. It is known that

backgrounds of other exotic branes possess other non-geometric fluxes that are related to

the Q-flux via U -duality transformations [51, 73]. In order to describe such non-geometric

backgrounds, variants of the β-supergravity, which can describe the background of an exotic

p-brane (called a p7−p
3 -brane) or a 164-brane, was proposed in [74]. There, each of these

exotic branes was identified as the magnetic sources of a non-geometric P -flux [75–77] or a

non-geometric Q-flux associated with a 6-vector, βm1···m6 [74]. However, the reformulation

of [74] is applicable only to a limited situation; coexistence of different non-geometric fluxes

are not allowed and existence of isometries are assumed. In fact, EFT, a manifestly Ed(d)

U -duality covariant formulation of the supergravity, is a more suitable formulation, and

indeed, backgrounds of the exotic 53-brane, 522-brane, and the 523-brane were studied in

SL(5) EFT [78, 79]. One of the main purposes of this paper is to systematically identify

the non-geometric fluxes in Ed(d) EFT for the cases of 4 ≤ d ≤ 7.

The goal of this paper is to develop effective actions for a certain class of non-geometric

flux backgrounds in Type II string and M-theories. Our starting point is the duality

covariant action in an extended field theory, such as the manifestly U -duality covariant

EFT. Since the U -duality orbit is of infinite order, there are in practice infinitely many

possible parameterization of the U -duality group. The key idea is to identify the most

effective parameterization for a given set of non-geometric flux background. Note that

our non-geometric parameterization is efficient for backgrounds with only non-geometric

fluxes. For backgrounds with both geometric and non-geometric fluxes, such as the truly

non-geometric backgrounds of [80], a more general treatment will be required.1

Our construction can be extended to non-geometric flux backgrounds in heterotic string

theories. Heterotic string exhibits O(D,D+16) or O(D,D+dim G) duality group, where

G is the heterotic Yang-Mills group, E8 × E8 or SO(32), and the corresponding heterotic

DFT [1, 2, 81] provides a duality manifest description of the effective field theory. Again,

the key idea is to identify the most effective parameterization. Through the non-geometric

parameterization of heterotic generalized vielbein, we construct heterotic Q-flux which

includes Chern-Simons like term and an additional non-geometric bi-vector flux associated

with the heterotic Yang-Mills field strength. The corresponding non-geometric effective

action can be constructed from O(D,D + dim G) gauged DFT [82–84]. If we take the

maximal Abelian reduction of heterotic Yang-Mills gauge symmetry, G = U(1)16, the non-

geometric gauged DFT reduces to the non-geometric parameterization by Blumenhagen

and Sun [85].

This paper is organized as follows. In section 2, after reviewing some elements of

Lie algebra, we explain the general construction of the generalized metric or vielbein. In

1Note that the section condition or the strong constraint in DFT/EFT can be relaxed through the

generalized Scherk-Schwarz reduction [82], which provides all the fluxes in the maximal and half-maximal

gauged supergravity [80]. In this paper we will restrict ourselves to the usual section condition, and the

non-geometric fluxes considered in this paper are included in the same duality orbit with geometric fluxes.

However, extension of the non-geometric fluxes to the gauged DFT/EFT would be straightforward via

generalized Scherk-Schwarz reduction.
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section 3, we consider the EFT in terms of the M-theory. We show two different parameter-

izations of the generalized vielbein; the conventional geometric parameterization and the

dual non-geometric parameterization. Using the two different parameterizations, we write

down two different eleven-dimensional effective actions. We also consider the dimensional

reduction to the type IIA theory, and obtain the non-geometric fluxes in the type IIA

theory. EFT in terms of the type IIB theory is discussed in section 4 and ten-dimensional

action for the non-geometric fluxes in the type IIB theory is obtained. In section 5, we

find a parameterization of heterotic DFT relevant for non-geometric fluxes. In section 6,

the relation between the non-geometric fluxes and exotic branes are discussed. Discussions

and future directions are given in section 7. We relegated much of technical details to the

appendices. In appendix A, we fix our notations. In appendix B, we show the explicit

calculations of the EFT action. In appendix C, we review double-vielbein formalism for

O(D,D + dim G) gauged DFT. In appendix D, exotic branes in type II/M-theory are

reviewed briefly.

2 General framework

In extended field theories, such as DFT or EFT, it is known that, in a Borel gauge,

fundamental fields are packaged into the generalized metric or the generalized vielbein. In

this section, we review the formal definition of generalized metric used in [11, 86] (but in a

slightly different manner), as a coset representative of G/K where G is the duality group

and K is the maximal compact subgroup of G. We then show how to parameterize the

generalized metric for the well-known examples of DFT and the Einstein gravity.

2.1 Parameterization of Lie algebra

We first recall three decomposition methods for a real semi-simple Lie algebra g.2

The first is known as triangular decomposition. Associated with g is the Cartan matrix

Aij (i, j = 1, . . . , rank g) that has the structure

Aii = 2 , Aij ∈ Z≤0 (i 6= j) , Aij = 0 ⇔ Aji = 0 , detAij > 0 , (2.1)

where Z≤0 denotes non-positive integers. In g, consider the Chevalley basis generators

{Hi, Ei, Fi}, which obey the properties

[Hi, Hi] = 0 , [Hi, Ej ] = AjiEj , [Hi, Fj ] = −Aji Fj , [Ei, Fj ] = δij Hi ,

[Ei, [· · · , [Ei︸ ︷︷ ︸
1−Aji

, Ej ] · · · ]] = 0 , [Fi, [· · · , [Fi︸ ︷︷ ︸
1−Aji

, Fj ] · · · ]] = 0 . (2.2)

It is known that the generators {Hi, Ei, Fi}, together with the commutators of Ei or Fi ,

[Ei1 , [· · · , [Eik−1
, Eik ] · · · ]] and [Fi1 , [· · · , [Fik−1

, Fik ] · · · ]] , (2.3)

2Here, we suppose g is a split real Lie algebra, considering the applications to DFT, g = o(d, d), and

EFT, g = ed(d). Application to a non-split case is considered in section 5.
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form a complete set of basis of g . In the Chevalley basis, the generators Hi for i =

1, . . . , rank g form the Cartan subalgebra h, the generator Ei is associated with the positive

simple root αi ∈ h∗ with αi(Hj) = Aij , and the generator Fi is associated with the negative

simple root −αi . We denote the space of positive root by ∆+ and the space of negative

root by ∆−, respectively. For an arbitrary positive root α ∈ ∆+,

α =
k∑

n=1

αin , (2.4)

we can construct the associated generator as k-tuple left-commutator

Eα ≡ [Ei1 , [· · · , [Eik−1
, Eik ] · · · ]] . (2.5)

For the corresponding negative root −α ∈ ∆−, we also construct the associated generator

as k-tuple right-commutator

Fα ≡ [[· · · [Fik , Fik−1
], · · · ], Fi1 ] . (2.6)

Denote the space spanned by Eα and Fα (α ∈ ∆+) as n+ and n−, respectively. Then, we

obtain the triangular decomposition by decomposing the Lie algebra g as

g = n− ⊕ h⊕ n+ . (2.7)

The second method is known as the Cartan decomposition. Define the Cartan involu-

tion θ by

θ(Hi) = −Hi , θ(Ei) = −Fi , θ(Fi) = −Ei . (2.8)

From the distributive property that θ([s, t]) = [θ(s), θ(t)] for s, t ∈ g, it follows that

θ(Eα) = −Fα , θ(Fα) = −Eα for every α ∈ ∆+ . (2.9)

Redefining the generators as

Sα ≡ Eα + Fα and Jα ≡ Eα − Fα for every α ∈ ∆+ , (2.10)

we can diagonalize the Cartan involution as

θ(Hi) = −Hi , θ(Sα) = −Sα , θ(Jα) = +Jα , (2.11)

and classify the generators according to the parity under the involution θ:

k = {s ∈ g | θ(s) = +s} = span(Jα) and p = {s ∈ g | θ(s) = −s} = span(Hi, Sα) .

We are thus decomposing the Lie algebra g as

g = k⊕ p , (2.12)

obtaining the Cartan decomposition. Since the number of the positive roots is (dim g −
rank g)/2, we have

dim k =
dim g− rank g

2
, dim p =

dim g+ rank g

2
. (2.13)
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d 4 5 6 7

G = Ed(d) SL(5) SO(5, 5) E6(6) E7(7)

D = dim l1 10 16 27 56

Table 1. Duality group G for various toroidal compactification of M-theory to R
11−d.

Although the commutator in p is not closed (since it has the odd parity under θ), the Lie

commutators in k yields a subalgebra, sometimes called the Cartan-involution-invariant

subalgebra, which coincides with the maximal compact subalgebra of g .

The third method is known as the Iwasawa decomposition, the decomposition we shall

be using in the present paper. There are two possible types of Iwasawa decomposition.

The positive decomposition is defined by

g = k⊕ h⊕ n+ , (2.14)

where b+ ≡ h⊕ n+ is referred to as the positive Borel subalgebra. The negative decompo-

sition is defined by

g = n− ⊕ h⊕ k , (2.15)

where b− ≡ n− ⊕ h is referred to as the negative Borel subalgebra.

Associated to the Lie algebra g, we construct the corresponding Lie group G as the

exponential map. We can realize group element g ∈ G in any of the above decomposition

of g. In particular, we can straightforwardly extend the definition of the Cartan involution

θ to an arbitrary group element g ∈ G, and then define an anti-involution ♯ by

g♯ ≡ θ(g−1) , (ab)♯ = b♯a♯ where g, a, b ∈ G . (2.16)

In section 3 and 4, we take the Lie algebra g = ed(d) and its Lie group G = Ed(d) as

the duality symmetry (summarized in table 1). Suppose that the (generalized) momenta

ZM (M = 1, . . . , D ≡ dim l1), which generate abelian translations ([ZM , ZN ] = 0) in the

extended space X of the U -duality action, are in the fundamental representation l1 of the

Lie group G [28],

[h, ZM ] = −
∑

N

(ρh)M
N ZN (h ∈ g) . (2.17)

Here, ρh is the matrix realization for the element h ∈ g in the l1-representation. Defining

Z
M ≡ −θ

(
ZM

)
, we obtain from (2.17) the following commutator:

[
θ(h), Z

M]
= −

∑

N

(ρh)M
N Z

N
(h ∈ g) . (2.18)

To render the position of indices consistent, we introduce the fundamental forms, δMN and

δMN , whose components are equal to δNM (and are not generalized tensors), and define the

dual matrix realization (ρ̄h)
M

N ≡ δMK (ρh)K
L δLN . We then obtain

[
h, Z

M]
= −(ρ̄θ(h))

M
N Z

N
(h ∈ g) . (2.19)

– 5 –
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We also introduce a natural G-invariant scalar product (v, w̄) ≡ vM w̄M for an element v

of the representation l1 spanned by AM and w̄ of the dual representation l̄1 spanned by

Z
M

(see appendix A in [11]). This scalar product is defined so as to satisfy invariance

under adjoint action

([h, v], w̄) + (v, [h, w̄]) = 0 (h ∈ g) , (2.20)

equivalently,

(Adg · v, Adg · w̄) = (v, w̄) , (2.21)

where Adg · v ≡ g v g−1 (g ∈ G) . We will normalize the abelian generators ZM such that

the scalar product becomes the identity matrix,

(
ZM , Z

N)
= δNM , (2.22)

and then from

(Adg · v, Adg · w̄) = (e−[h, · ] v, e−[h, · ] w̄) = vM w̄N (eρh)M
K (eρ̄θ(h))NL (ZK , Z

L
) , (2.23)

for g = e−h ∈ G, v = vM ZM , and w̄ = w̄M Z
M
, we have

(eρh)M
K (eρ̄θ(h))NK = δNM . (2.24)

Hence, we obtain

(eρh)M
N = (e−ρ̄θ(h))NM =

(
eρ̄h♯

)N
M = δNL

(
eρh♯

)
L
K δKM , (2.25)

where we defined h♯ ≡ −θ(h) for h ∈ g , and used the dual representation (ρ̄h)
N

M =

δNL (ρh)L
K δKM in the last equality. This relation shows that the anti-involution ♯ defined

in (2.16), sometimes called the generalized transpose, acts as the matrix transpose in the

matrix realization of Lie algebra g.

2.2 The generalized metric

We next study the geometry of extended space X associated with the duality transfor-

mation group G. We shall define the generalized metric MMN of X and explain how to

parameterize MMN in terms of appropriate physical fields (see [11, 86]). We first define a

bilinear form

〈v, w〉 ≡ −
(
v, θ(w)

)
= −vM wN

(
ZM , θ(ZN )

)
, (2.26)

for generalized vectors, v = vM ZM and w = wM ZM , in the l1-representation. From the

identities,
(
ZM , θ(ZN )

)
= −

(
ZM , Z

N)
= −δNM = −δMN , we see that the metric (2.26) is

symmetric and positive-definite,

〈v, w〉 = 〈w, v〉 = vM wN δMN . (2.27)

– 6 –
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However, as δMN is not a generalized tensor, this metric is not G-invariant. Indeed, for

general element h ∈ g, we find that the adjoint action

〈
[h, v], w

〉
+
〈
v, [h, w]

〉
= −

(
[h, v], θ(w)

)
−
(
v, [θ(h), θ(w)]

)
= −

(
[h− θ(h), v], θ(w)

)

is nonzero. However, it is invariant under the maximal compact subgroup, K, of G, since

h = θ(h) for h ∈ k.

Starting from this (constant) positive-definite metric and a group element g ∈ G, we

now define the generalized metric from the generalized bilinear form

M(v, w) ≡ MMN vM wN ≡ 〈Adg−1 · v, Adg−1 ·w〉 . (2.28)

The generalized bilinear form is positive-definite by construction, and it is defined to be

G-invariant. We assume that the generalized metric MMN varies over the spacetime, so

the group element g ∈ G should be spacetime-dependent as well. Denoting g = e−h (h ∈ g)

and w̄M ≡ δMN wN , we have

θ
(
Adg−1 ·w

)
= e[θ(h), · ] Z

M
w̄M = (eρ̄h)MN Z

N
w̄M , (2.29)

and the inner product in (2.28) becomes

M(v, w) = vM (eρh)M
K (eρ̄θ(h))NL w̄N (ZK , Z

L
)

= vM (eρh)M
K (eρ̄h)NK w̄N = vM (eρh)M

K (eρh♯ )K
L δLN wN . (2.30)

Introducing the generalized vielbein as EMA ≡ (eρh)M
A, we can express the generalized

metric in the conventional form,

MMN = EMA ENB δAB . (2.31)

Here, the indices A,B run over 1, . . . , D = dim l1, which play the same role as the original

indices M,N but are interpreted as “flat indices.” As 〈 · , · 〉 is K-invariant, two generalized

metrics constructed from g ∈ G and g · k (k ∈ K), respectively, have the same structure.

Thus, the generalized metric can be parameterized by a coset representative of G/K, and

so the number of the independent parameters is given by dim(G/K) = dimG− dimK.

For an explicit construction of the generalized metric, we find it convenient to use the

Iwasawa decomposition (2.14) and parameterize the representative g ∈ G/H, where H is

the Cartan subgroup, in terms of functions, hi(x) and Aα(x), associated with generators

of the positive Borel subalgebra b+, and the K equivalence class:

g(x) = e
∑

i h
i(x)Hi e

∑
α∈∆+

Aα(x)Eα k(x) ∼ e
∑

i h
i(x)Hi e

∑
α∈∆+

Aα(x)Eα , (2.32)

Here, k(x) denotes an element in the compact subgroup K and x refers to the coordinate

system adopted. We can then obtain the generalized metric from the following general-

ized vielbein:

EMA(x) =
(
eh

i(x) ρHi e
∑

α∈∆+
Aα(x) ρEα

)
M

A . (2.33)

– 7 –
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Note that the generalized metric MMN is invariant under the anti-involution g → g♯

(i.e. symmetric), while the generalized vielbein is not. Using the above decomposition,

we have

g♯(x) = k♯(x) e
∑

α∈∆+
Aα(x)Fα eh

i(x)Hi

= eh̃
i(x)Hi e

∑
α∈∆+

Ãα(x)Fα k̃(x) ∼ eh̃
i(x)Hi e

∑
α∈∆+

Ãα(x)Fα (2.34)

with certain functions h̃i(x), Ãα(x) and k̃(x) ∈ K, whose relation to hi(x), Aα(x), and k(x)

is in general complicated. This expression for g♯ corresponds to the alternative Iwasawa

decomposition (2.15), so we can obtain the generalized vielbein in terms of the functions

associated with the generators of negative Borel subalgebra b− :

EMA(x) =
(
e
∑

i h̃
i(x) ρHi e

∑
α∈∆+

Ãα(x) ρFα
)
M

A . (2.35)

The key idea of this paper is that the above replacement g → g♯, which does not change

the generalized metric, generally corresponds to the replacement from the conventional ge-

ometric parameterization of the generalized metric MMN to the dual “non-geometric”

parameterization of it. A transformation between the conventional and the dual param-

eterization is sometimes referred to as the exotic duality transformation [62, 74, 87]. In

this paper, we will show that the exotic duality transformation is identifiable with the

generalized transpose.

It remains to confirm the tensorial property of the generalized metric. As we mentioned

above, the flat bilinear form 〈v, w〉 = vM wN δMN was not G-invariant. However, the

generalized bilinear form M(v, w) = 〈Adg−1 · v, Adg−1 ·w〉 is invariant under G. This

constrains the transformation rule for the group element g (i.e. the generalized vielbein).

It then follows that, as the K-invariance of δMN , the transformation rule of the generalized

vielbein generally has the following form:

EMA → gM
N ENB kB

A for g ∈ G, k ∈ K . (2.36)

2.3 Example: Double Field Theory

Before presenting our new results, we first illustrate the above general consideration for the

DFT. In this case, the T-duality group is G = O(d, d). We can decompose the generators

of g = o(d, d) into representations of the GL(d), the gl(d)-generators Ka
b, R

ab = R[ab],

Rab = R[ab] (a, b = 1, . . . , d), which obey the following commutation relations:

[Ka
b, K

c
d] = δcb K

a
d − δad K

c
b , [Rab, Rcd] = 4 δ

[a
[c K

b]
d] ,

[Ka
b, R

cd] = δcb R
ad + δdb R

ca , [Ka
b, Rcd] = −δac Rbd − δad Rcb .

(2.37)

The Cartan subalgebra h is generated by the diagonal components of Ka
b: Ha ≡ Ka

a (no

summation). The Cartan involution is given by

θ(Ka
b) = −Kb

a and θ(Rab) = −Rab , (2.38)

– 8 –
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and the Cartan-involution-invariant subgroup is generated by

Jab ≡ Ka
b −Kb

a and Tab ≡ Rab −Rab . (2.39)

In particular, the (anti)chiral combinations, M±
ab ≡ (Jab ± Tab)/2 , satisfy the algebra for

o(d)× o(d):

[M±
ab, M

±
cd] = 2 δd[aM

±
a]c − 2 δc[aM

±
b]d , [M+

ab, M
−
cd] = 0 . (2.40)

The positive and negative Borel subalgebras, b+ and b−, are spanned by {Ha, K
a
b (a <

b), Rab} and {Ha, K
a
b (a > b), Rab}, respectively.

In DFT, we take the fundamental (i.e. vector) representation, whose matrix realization

is given by the matrices,

(ρKc
d
)A

B =

(
δca δ

b
d 0

0 −δad δ
c
b

)
, (ρRcd)A

B =

(
0 2 δcdab
0 0

)
, (ρRcd

)A
B =

(
0 0

−2 δabcd 0

)
,

(2.41)

where δcdab ≡ δ
[c
[a δ

d]
b] (see appendix A for our conventions). The commutators with the

generalized momenta ZM = (Pm, P̃m) are given by

[Ka
b, Pc] = −δac Pb , [Ka

b, P̃
c] = δcb P̃

a ,

[Rab, Pc] = −2 δ[ac P̃ b] , [Rab, P̃ c] = 0 ,

[Rab, Pc] = 0 , [Rab, P̃
c] = 2 δc[a Pb] .

(2.42)

Note that the variable ZM defined by

ZM ≡ ηMN ZN and
(
ηMN

)
≡

(
0 δmn
δnm 0

)
, (2.43)

is in the same representation as Z
M
. We thus see that the O(d, d)-invariance of (ZM , Z

N
) =

δNM is equivalent to the O(d, d)-invariance of another metric, ((ZM , ZN )) ≡ ηMN , which is

commonly used in DFT. We also have the K = O(d)×O(d)-invariant metric δAB.

We define the generalized vielbein in the gauge of positive Borel subalgebra by

EMA(x) =
(
e
∑

a ha(x) ρKaa e
∑

a<b ha
b(x) ρKa

b e
1
2

∑
a,b Bab(x) ρRab

)
M

A . (2.44)

Here, Bab(x) is an anti-symmetric tensor field, which is identified with the Kalb-

Ramond field. If we define (EM
A)(x) ≡ e

∑
a ha(x) ρKaa e

∑
a<b ha

b(x) ρKa
b and B(2) ≡

1
2

∑
a,b Bab(x) ρRab , we have

EMA(x) =
(
E(x) eB

(2)(x)
)
M

A (2.45)

where

(EM
A)(x) =

(
em

a(x) 0

0 (e−T)ma(x)

)
and B(2)(x) =

(
0 Bab(x)

0 0

)
. (2.46)
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Here, em
a(x) is an upper-triangular matrix, to be identified with the (gauge-fixed) vielbein

in d-dimensions, and (e−T) is the inverse of the transpose of the vielbein. This generalized

vielbein yields the conventional generalized metric in DFT:

(
MMN

)
=

(
Gmn −Bmk G

kl Bln Bmk G
kn

−Gmk Bkn Gmn

)

=

(
δkm Bmk

0 δmk

) (
Gkl 0

0 Gkl

) (
δln 0

−Bln δln

)
, (2.47)

where Gmn ≡ em
a en

b δab .

Upon the anti-involution, g → g♯, the generalized vielbein takes the lower-triangular

form, parameterized by

EMA(x) =
(
E(x) eβ

(2)(x)
)
M

A , (2.48)

where

(EM
A)(x) =

(
ẽm

a(x) 0

0 (ẽ−T)ma(x)

)
and β(2)(x) =

(
0 0

−βab(x) 0

)
, (2.49)

where ẽm
a(x) is a lower-triangular matrix. In this case, the generalized metric becomes

(
MMN

)
=

(
G̃mn G̃mk β

kn

−βmk G̃kn G̃mn − βmk G̃kl β
ln

)

=

(
δkm 0

−βmk δmk

) (
G̃kl 0

0 G̃kl

) (
δln βln

0 δnl

)
, (2.50)

where G̃mn ≡ ẽm
a ẽn

b δab . These dual variables were first introduced and extensively

studied in [88–92].

2.4 Example: Einstein gravity

It is illuminating to compare the above results for DFT with the case of pure Einstein

gravity. In Einstein gravity, the generators Rab and Rab are absent, the Cartan-involution-

invariant subgroup is simply generated by the local Lorentz O(d) rotations, and there is

no important difference between the gauges of positive and negative Borel subalgebras.

Indeed, as it is well-known, when we consider decomposing the spacetime into space and

time, there are two natural parameterizations into upper or lower triangular decomposition:

Arnowitt-Deser-Misner [93]: (gmn) =

(
1 Nk

0 δki

)(
−N2 0

0 hkl

)(
1 0

N l δlj

)
,

Landau-Lifschitz [94]: (gmn) =

(
1 0

−gi δ
k
i

)(
g00 0

0 γkl

)(
1 −gj
0 δlj

)
.

(2.51)

These two parameterizations are related simply by a usual local Lorentz transformation.

In comparison, the situation is different in the DFT case. In order to relate two param-

eterizations (2.47) and (2.50), we need to use a non-trivial O(d) × O(d) subgroup of the

– 10 –



J
H
E
P
0
7
(
2
0
1
7
)
0
7
5

T -duality group. In general, the parameterization (2.47) is suited for the conventional

geometric backgrounds, while (2.50) is suited for non-geometric backgrounds, such as T -

folds. As such, we will refer to the latter, negative Borel subalgebra parameterization as

the non-geometric parameterization.

2.5 Effective action for non-geometric fluxes

By definition, the actions of the extended field theories are independent of the explicit

parameterization of the generalized metric. However, once we parameterize the general-

ized metric in terms of appropriate physical fields, we can straightforwardly construct the

effective actions appropriate for describing dynamics of these field excitations.

As is well known in DFT [7] or EFT [11], parameterizing the generalized metric in

terms of the conventional supergravity fields, we can derive the conventional supergravity

action from DFT or EFT action. For example, if we choose the conventional, geometric

parameterization and impose the section constraint ∂̃m = 0, we find that the DFT action

is reduced to

L = e−2φ

(
R(G) + 4 |dφ|2 − 1

2
|H(3)|2

)
, (2.52)

where φ is the conventional string dilaton field defined by the T-duality invariant dilaton

of DFT, e−2d ≡ |G|1/2 e−2φ, and the three-form H(3) ≡ dB(2), called the H-flux, is the field

strength for the Kalb-Ramond two-form potential B(2).

On the other hand, if we choose the dual, non-geometric parameterization (2.50), we

reduce the DFT action to the so-called β-supergravity [54–56, 60, 61]. Although the full

expression is complicated, with the simplifying assumption that indices of βmn contracted

with ∂m always vanishes and the constraint ∂̃m = 0, the DFT action is reduced to the form

L̃ = e−2φ̃

(
R(G̃) + 4 |dφ̃|2 − 1

2
|Q(1,2)|2

)
. (2.53)

Here, the tilde signifies the non-geometric parameterization, and φ̃ is the dual dilaton field

defined by e−2d ≡ |G̃|1/2 e−2φ̃ . Further, we defined

|Q(1,2)|2 ≡ 1

2
G̃m1n1 G̃m2n2 G̃m3n3 Qm1

m2m3 Qn1
n2n3 , Qk

mn ≡ ∂kβ
mn . (2.54)

The mixed-symmetry tensor,3 Qk
mn, is called the non-geometric Q-flux. In this paper, we

further generalize the β-supergravity starting from the (heterotic) DFT or EFT.

3 Non-geometric fluxes in EFT: M-theory

In this section, we consider the eleven-dimensional supergravity of M-theory compactified

on a d-torus, Td, equivalently, the ten-dimensional type IIA supergravity compactified on

a (d− 1)-torus, Td−1. This theory possesses the U -duality transformation symmetry, and

3This behaves as a tensor only under the simplifying assumption [55].
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n 7 6 5 4

Ed(d) SL(5) SO(5, 5) E6(6) E7(7)

Kd SO(5) SO(5)× SO(5) Sp(4) SU(8)

D 10 16 27 56

αn 3 4 6 12

Table 2. The U -duality groups, their maximal compact subgroups and the integers, D and αn, for

various noncompact dimensions, 4 ≤ n ≤ 7.

the EFT provides the manifestly U -duality covariant formulation. To construct the EFT,

we consider an exceptional spacetime with the following generalized coordinates:

(XI) = (xµ, Y M ) (µ, ν = 0, . . . , n− 1, M = 1, . . . , D) , (3.1)

where n ≡ (11−d) is the dimension of the uncompactified, external spacetime and D is the

dimension of a fundamental representation of the exceptional group Ed(d) whose value for

each n is shown in table 2. In this paper, we consider the cases of noncompact dimensions

n = 4, 5, 6, 7, equivalently, cases of compact dimensions d = 7, 6, 5, 4.

The EFT actions for n = 4, 5, 6, 7 are presented in [14, 15, 22, 23] (see also [24] for

n = 9, [21] for n = 8, and [18] for n = 3). For simplicity, we focus on the following parts

of the action, which are the relevant parts for our purposes:

SEFT =

∫
dnx dDY LEFT where LEFT = LEH + Lscalar + Lpot ,

LEH = eR ,

Lscalar =
e

4αn
gµν ∂µMMN ∂νMMN ,

Lpot =
e

4αn
MMN ∂MMKL ∂NMKL − e

2
MMN ∂NMKL ∂LMMK

+ e ∂M ln e ∂NMMN + eMMN ∂M ln e ∂N ln e

+
e

4
MMN ∂Mgµν ∂Ngµν .

(3.2)

Here, e abbreviates |det gµν |1/2, R is the Ricci scalar of the external metric gµν , and αn is

the integer shown in table 2. Note that the potential part in the EFT action is fully taken

into account by Lpot.

In the EFT, to render the gauge algebra closed, we will impose the section condition of

the form, Y MN
PQ ∂M (· · · ) ∂N (· · · ) = 0, where Y MN

PQ for each EFT is given in [12, 13].4

As is well-known, there are two natural routes to solve for the section conditions: the

M-theory section or the type IIB section [14, 98], where all background fields and gauge

parameters depend only on d coordinates xi or d− 1 coordinates xm, respectively. In this

section, we study the M-theory section and parameterize the generalized metric in terms

4The section condition of DFT can be relaxed in the flux formulation [82, 95, 96] or in the approach

of [97], and the section condition of EFT may be also relaxed in these approaches.
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of the conventional/dual fields in eleven dimensions. We relegate the parameterization in

the type IIB section to section 4.

In the M-theory section, we decompose the internal D-dimensional coordinates Y M

into some representations of SL(d). Explicitly, for each n, we introduce the following

coordinates [11, 28]:

n = 7 : (Y M ) = (xi, yij) (i, j = 7, 8, 9,M) ,

n = 6 : (Y M ) = (xi, yij , yi1···i5) (i, j = 6, . . . , 9,M) ,

n = 5 : (Y M ) = (xi, yij , yi1···i5) (i, j = 5, . . . , 9,M) ,

n = 4 : (Y M ) = (xi, yij , yi1···i5 , zi) (i, j = 4, . . . , 9,M) , (3.3)

where the conventional M-theory circle direction, denoted by xM, is one of the internal

coordinates xi. The section condition is satisfied when all fields are functions only of xi,

the physical coordinates on the d-torus. So, ∂/∂yij = ∂/∂yi1···i5 = ∂/∂zi = 0.

3.1 Parameterization of the generalized vielbein

We now examine parameterization of the generalized metric (or vielbein) in the M-theory

section of the EFT. The generalized metric in the SL(5) EFT was first obtained in [8]

(which in turn is based on the earlier work [99]) as

(MMN ) =




Gij +
1
2 Aikl A

kl
j − 1√

2
Ai

j1j2

− 1√
2
Ai1i2

j Gi1i2, j1j2


 . (3.4)

Subsequently, the same generalized metric (up to an overall factor) was presented in [11]

in the context of E11 program [27, 28], and its extensions to Ed(d) EFT with 5 ≤ d ≤ 7

were also presented (see also [100, 101] for d = 4, 5). The parameterization given in [11]

was obtained by choosing the positive (or upper-triangular) Borel gauge. If we instead

choose the negative (or lower triangular) Borel gauge, we can parameterize the generalized

metric using the so-called dual Ω-fields (the explicit form of Ω-fields for SL(5) EFT is given

in [78, 79], which we repeat below). As the Ω-fields are related to the non-geometric fluxes,

we refer to the latter as non-geometric parameterization.

In the rest of this subsection, we present two parameterizations of the generalized

vielbein, i.e., the conventional parameterization and the non-geometric parameterization,

for 4 ≤ d ≤ 7 (or 4 ≤ n ≤ 7). Using these parameterizations, we define the non-geometric

fluxes in M-theory and construct the eleven-dimensional effective actions that are useful

for describing these non-geometric fluxes.

3.1.1 n = 7: G = SL(5)

For the g = sl(5) Lie algebra, we decompose the 24 generators to5 [11]

Ka
b , Ra1a2a3 , Ra1a2a3 (a, b = 7, 8, 9,M) , (3.5)

5We relegate their commutators in appendix A.1.
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where Ka
b are the gl(4) generators and Ra1a2a3 and Ra1a2a3 are the generators that trans-

form as totally antisymmetric under gl(4). So, we are decomposing 24 generators into

16 + 4 + 4 generators. Using this decomposition, a group element g of G = SL(5) can be

parameterized as

g = eha
bKa

b e
1
3!
aa1a2a3R

a1a2a3
e

1
3!
ωb1b2b3Rb1b2b3 ∈ G = SL(5) . (3.6)

This element can always be rewritten in the form of positive Borel gauge:

g = e
∑

a≤b ha
bKa

b e
1
3!
Aa1a2a3R

a1a2a3
k where k ∈ H = SO(5) . (3.7)

It turns out that the SO(5) element k does not contribute to the generalized metric. Dis-

regarding it, the number of independent parameters are 10 + 4, which is equal to the

dimension of the coset space G/H = SL(5)/SO(5). We can identify the parameters,

ei
b ≡ (eh)i

b ∈ GL(4)/SO(4) and Aa1a2a3 , as the vielbein and the 3-form potential on

the 4-torus, respectively. Note that the left index of the matrix (eh) is changed from a to

i in order to interpret it as the curved index.

From the formulas (2.31) and (2.33) and the matrix representations (A.12)–(A.16), the

generalized vielbein and the metric become [8]

MMN ≡ |G|
1
5 MMN , EMA ≡ |G|

1
10 EM

A ,
(
|G| ≡ detGij , Gij ≡ ei

a ej
b δab

)
,

(EM
A) ≡ Ê eA

(3)
=



ei

a − 1√
2
Aia1a2

0 ei1i2a1a2


 ,

(MMN ) =
(
EM

AEN
B δAB

)
=




Gij +
1
2 Aikl A

kl
j − 1√

2
Ai

j1j2

− 1√
2
Ai1i2

j Gi1i2, j1j2


 ,

(3.8)

where

(ÊM
A) ≡

(
ei

a 0

0 ei1i2a1a2

)
, ei1i2a1a2 ≡ (e−T)i1 [a1 (e

−T)i2a2] ,

A(3) ≡ 1

3!
Aabc ρRabc =

(
0 − 1√

2
Aab1b2

0 0

)
, δAB ≡

(
δab 0

0 δa1a2, b1b2

)
,

Gi1···in, j1···jn ≡ δi1···ink1···kn G
k1j1 · · ·Gknjn , δa1a2, b1b2 ≡ δa1a2c1c2 δc1b1 δc2b2 ,

(3.9)

and the indices are changed using the vielbein (e.g. Aia1a2 ≡ ei
cAca1a2) and raised or

lowered using the metric Gij and its inverse. See appendix A for further details of

our conventions.
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If we do not choose the Borel gauge, we can generally parameterize the SL(5) general-

ized metric as [78, 79]

(EM
A) ≡ Ê eA

(3)
eΩ

(3)
=




ei
a + 1

2 Aic1c2 Ω
c1c2a − 1√

2
Aia1a2

− 1√
2
Ωi1i2a ei1i2a1a2


 , (3.10)

(MMN ) =




Gij +
1
2AiklA

kl
j +A(i|klΩ

kl
|j) +

1
4AiklΩ

klmΩm
pqApqj − 1√

2

(
Ai

j1j2 +Ωi
j1j2 + 1

2AiklΩ
klmΩm

j1j2
)

− 1√
2

(
Ai1i2

j +Ωi1i2
j +

1
2Ω

i1i2kΩklmAlm
j

)
Gi1i2, j1j2 + 1

2Ω
i1i2

kΩ
kj1j2


 ,

(3.11)

where we defined the Ω-matrix:

Ω(3) ≡ 1

3!
Ωc1c2c3 ρRc1c2c3

=

(
0 0

− 1√
2
Ωa1a2b 0

)
. (3.12)

Choosing Ωijk = 0 or Aijk = 0, we obtain two alternative parameterizations for the

generalized metric,

(MMN ) = |G|
1
5



Gij +

1
2 Aikl A

kl
j − 1√

2
Ai

j1j2

− 1√
2
Ai1i2

j Gi1i2, j1j2


 (3.13)

= |G̃|
1
5




G̃ij − 1√
2
Ωi

j1j2

− 1√
2
Ωi1i2

j G̃i1i2, j1j2 + 1
2 Ω

i1i2
k Ω

kj1j2


 . (3.14)

The first expression is the conventional, geometric parameterization, while the second ex-

pression is the non-geometric parameterization. From these two parameterizations, we

obtain the following relation between the standard fields and the dual fields:

G̃ij =
|G|1/9

|E|1/9
Eij , Ωij1j2 = (E−1)ik Gj1k1 Gj2k2 Akk1k2 , (3.15)

where

Eij ≡ Gij +
1

2
Aikl A

kl
j . (3.16)

Further, associated to the two parameterizations, the external metric is also expressed in

two alternative ways:

gµν = |G|
1

n−2 gµν = |G̃|
1

n−2 g̃µν . (3.17)

We confirm that gµν and Gij are components of the conventional metric in the eleven-

dimensional supergravity, denoted by Gµ̂ν̂ (µ̂, ν̂ = 0, . . . , 9,M).
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3.1.2 n = 6: G = SO(5, 5)

The generalized metric or vielbein generally has the overall factor,

MMN ≡ |G|
1

n−2 MMN , equivalently, EMA ≡ |G|
1

2(n−2) EM
A , (3.18)

that comes from the second term in the right-hand-side of (A.12). In the following, we

focus on the parameterizations of MMN and EM
A.

In the present case of G = SO(5, 5), we can similarly parameterize the generalized

vielbein as [8]

(EM
A) ≡ Ê eA

(3)
=




ei
a − 1√

2
Aia1a2

5√
5!
Ai[a1a2 Aa3a4a5]

0 ei1i2a1a2 − 20√
5!
√
2
δi1i2[a1a2

Aa3a4a5]

0 0 ei1···i5a1···a5




, (3.19)

or as

(EM
A) ≡ Ê eΩ

(3)
=




ẽi
a 0 0

− 1√
2
Ωi1i2a ẽi1i2a1a2 0

5√
5!
Ω[i1i2i3 Ωi4i5]a − 20√

5!
√
2
δ
[i1i2
a1a2Ω

i3i4i5] ẽi1···i5a1···a5




, (3.20)

where we defined

Ê ≡




ei
a 0 0

0 ei1i2a1a2 0

0 0 ei1···i5a1···a5


 , (3.21)

A(3) ≡ 1

3!
Ac1c2c3 ρRc1c2c3 =




0 − 1√
2
Aab1b2 0

0 0 − 20√
5!
√
2
δa1a2[b1b2

Ab3b4b5]

0 0 0


 , (3.22)

Ω(3) ≡ 1

3!
Ωc1c2c3 ρRc1c2c3

=




0 0 0

− 1√
2
Ωa1a2b 0 0

0 − 20√
5!
√
2
δ
[a1a2
b1b2

Ωa3a4a5] 0


 . (3.23)

We can again redundantly parameterize the generalized vielbein as

EM
A ≡ Ê eA

(3)
eΩ

(3)
. (3.24)

3.1.3 n = 5: G = E6(6)

In the case G = E6(6), we can parameterize the generalized vielbein as [8]

EM
A ≡ Ê eA

(6)
eA

(3)
=




ei
a − 1√

2
Aia1a2

1√
5!

(
Aia1···a5 + 5Ai[a1a2 Aa3a4a5]

)

0 ei1i2a1a2 − 20√
5!
√
2
δi1i2[a1a2

Aa3a4a5]

0 0 ei1···i5a1···a5




, (3.25)
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or as

EM
A ≡ Ê eΩ

(6)
eΩ

(3)
=




ei
a 0 0

− 1√
2
Ωi1i2a ei1i2a1a2 0

1√
5!

(
−Ωi1···i5a+5Ω[i1i2i3 Ωi4i5]a

)
− 20√

5!
√
2
δ
[i1i2
a1a2 Ω

i3i4i5] ei1···i5a1···a5




,

(3.26)

where we defined

Ê ≡




ei
a 0 0

0 ei1i2a1a2 0

0 0 ei1···i5a1···a5


 , (3.27)

A(3) ≡ 1

3!
Ac1c2c3 ρRc1c2c3 =




0 − 1√
2
Aab1b2 0

0 0 − 20√
5!
√
2
δa1a2[b1b2

Ab3b4b5]

0 0 0


 , (3.28)

A(6) ≡ 1

6!
Ac1···c6 ρRc1···c6 =




0 0 1√
5!
Aab1···b5

0 0 0

0 0 0


 , (3.29)

Ω(3) ≡ 1

3!
Ωc1c2c3 ρRc1c2c3

=




0 0 0

− 1√
2
Ωa1a2b 0 0

0 − 20√
5!
√
2
δ
[a1a2
b1b2

Ωa3a4a5] 0


 , (3.30)

Ω(6) ≡ − 1

6!
Ωc1···c6 ρRc1···c6

=




0 0 0

0 0 0

− 1√
5!
Ωa1···a5b 0 0


 . (3.31)

We remark that the normalization of the 6-form is different from that used in [8] by a factor

2. Note also that, in the middle expression of the last line, the minus sign is introduced in

order to make the exotic duality, Ac1···c6 ↔ Ωc1···c6 , coincides with the matrix transpose.

Stated differently, the negative sign comes from the fact that the Cartan involution (A.17)

for Rc1···c6 appears with the positive sign, θ(Rc1···c6) = +Rc1···c6 .

3.1.4 n = 4: G = E7(7)

In the E7(7) case, we can parameterize the generalized vielbein as [11]

(EM
A) ≡ Ê eA

(6)
eA

(3)
or (EM

A) ≡ Ê eΩ
(6)

eΩ
(3)

, (3.32)

where we defined

Ê ≡




ei
a 0 0 0

0 ei1i2a1a2 0 0

0 0 e a1···a5
i1···i5 0

0 0 0 |e|−1 eia



, (3.33)
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A(3) ≡ 1

3!
Ac1c2c3 ρRc1c2c3 =




0 − 1√
2
Aab1b2 0 0

0 0 − 20√
5!
√
2
δa1a2[b1b2

Ab3b4b5] 0

0 0 0 − 1
2
√
5!
ǫa1···a5c1c2 Ac1c2b

0 0 0 0



,

(3.34)

A(6) ≡ 1

6!
Ac1···c6 ρRc1···c6 =




0 0 1√
5!
Aab1···b5 0

0 0 0 2
6!
√
2
δ
[a1
b ǫa2]c1···c6 Ac1···c6

0 0 0 0

0 0 0 0



, (3.35)

Ω(3) ≡ 1

3!
Ωc1c2c3 ρRc1c2c3

=




0 0 0 0

− 1√
2
Ωa1a2b 0 0 0

0 − 20√
5!
√
2
δ
[a1a2
b1b2

Ωa3a4a5] 0 0

0 0 − 1
2
√
5!
Ωac1c2 ǫc1c2b1···b5 0



,

(3.36)

Ω(6) ≡ − 1

6!
Ωc1···c6 ρRc1···c6

=




0 0 0 0

0 0 0 0

− 1√
5!
Ωa1···a5b 0 0 0

0 2
6!
√
2
δa[b1 ǫb2]c1···c6 Ω

c1···c6 0 0



. (3.37)

We remark that the parameterizations for Ed(d) with 4 ≤ d ≤ 6 are obtainable by a

truncation of those for E7(7).

3.2 Eleven-dimensional effective action

The eleven-dimensional effective action is obtained by solving the section condition such

that the eleven-dimensional coordinates are given by (xµ̂) ≡ (xµ, xi); see appendix B for

the detailed derivation. For instance, consider the E7(7) EFT in the geometric parameter-

ization. The action becomes

L = |G|
1
2

(
R(G)

− gµν
[
Gi1i2i3, j1j2j3

2 · 3! ∂µAi1i2i3 ∂νAj1j2j3 +
Gi1···i6, j1···j6

2 · 6! Fµ, i1···i6 Fν, j1···j6

]

− 1

2 · 4! G
i1···i4, j1···j4 Fi1···i4 Fj1···j4 −

1

2 · 7! G
i1···i7, j1···j7 Fi1···i7 Fj1···j7

)
, (3.38)

where

R(G) ≡ R(g) + gµν
[
1

4
∂µG

ij ∂νGij +
1

4
∂µ ln |G| ∂ν ln |G|

]

+R(G) +Gij

[
1

4
∂ig

µν ∂jgµν +
1

4
∂i ln |g| ∂j ln |g|

]
,

Fi1···i4 ≡ 4 ∂[i1Ai2i3i4] ,

Fi1···i7 ≡ 7 ∂[i1Ai2···i7] +
35

2
A[i1i2i3 Fi4i5i6i7] ,

Fµ, k1···k6 ≡ ∂µAk1···k6 − 10A[k1k2k3| ∂µA|k4k5k6] .
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Note that R(G) is equal to the Ricci scalar associated with the eleven-dimensional metric,

(
Gµ̂ν̂

)
≡

(
gµν 0

0 Gij

)
, (3.39)

and the off-diagonal components are absent since we neglected some external parts of the

EFT action. Note also that the above result generalizes the result of [11], where only the

potential part was calculated. Further, the 7-form, Fi1···i7 , is the Hodge dual of the 4-form,

Fµ1···µ4 = 4 ∂[µ1
Aµ2µ3µ4], and is independent of the internal components, Ai1i2i3 .

On the other hand, in the non-geometric parameterization, the effective action becomes

L = |G̃|
1
2

(
R(G̃)− 1

2
|S(1, 3)|2 − 1

2
|S(1, 6)|2

)
, (3.40)

where

|S(1, p)|2 ≡ G̃µ̂ν̂

[
1

p!
G̃i1···ip, j1···jp Sµ̂

i1···ip Sν̂
j1···jp

]

Sµ̂
i1···i3 ≡ ∂µ̂Ω

i1···i3 ,

Sµ̂
i1···i6 ≡ ∂µ̂Ω

i1···i6 + 10Ω[i1i2i3 ∂µ̂Ω
i4i5i6] .

Here, we defined the non-geometric fluxes, to be referred to as the S-fluxes. This is one of

the main results of this paper. In deriving (3.40), we used the simplifying assumption,

Ωijk ∂i(· · · ) = 0 , ∂iΩ
ijk = 0 , Ωij1···j5 ∂i(· · · ) = 0 , ∂iΩ

ij1···j5 = 0 . (3.41)

3.3 Reduction to the type IIA theory

It is well-known that the type IIA supergravity can be derived from the eleven-dimensional

supergravity by the following Kaluza-Klein decomposition of fields:

ds2 = e−
2
3
φ
Gµ̂ν̂ dx

µ̂ dxν̂ + e
4
3
φ
(
dxM + Cµ̂ dxµ̂

) (
dxM + Cν̂ dx

ν̂
)
,

Aµ̂1µ̂2µ̂3 = Cµ̂1µ̂2µ̂3 , Aµ̂1µ̂2M = −Bµ̂1µ̂2 , Aµ̂1···µ̂6 = −Bµ̂1···µ̂6 ,

Aµ̂1···µ̂5M = Cµ̂1···µ̂5 + 5C[µ̂1µ̂2µ̂3
Bµ̂4µ̂5] ,

(3.42)

where µ̂, ν̂ = 0, . . . , 9.

In the non-geometric parameterization, we consider an analogous Kaluza-Klein decom-

position of fields:

ds̃2 = e−
2
3
φ̃
Gµ̂ν̂

(
dxµ̂ + γµ̂ dxM

) (
dxν̂ + γν̂ dxM

)
+ e

4
3
φ̃
(
dxM

)2
,

Ωµ̂1µ̂2µ̂3 = γµ̂1µ̂2µ̂3 , Ωµ̂1µ̂2M = −βµ̂1µ̂2 , Ωµ̂1···µ̂6 = −βµ̂1···µ̂6 ,

Ωµ̂1···µ̂5M = γµ̂1···µ̂5 − 5 γ[µ̂1µ̂2µ̂3 βµ̂4µ̂5] .

(3.43)

In the matrix notation, the two decompositions of the metric can be compared as

(Gµ̂ν̂) =

(
δρ̂µ̂ Cµ̂

0 1

)(
e−

2
3
φ
Gρ̂σ̂ 0

0 e
4
3
φ

)(
δσ̂ν̂ 0

Cν̂ 1

)
,

(G̃µ̂ν̂) =

(
δρ̂µ̂ 0

γρ̂ 1

)(
e−

2
3
φ̃
G̃ρ̂σ̂ 0

0 e
4
3
φ̃

)(
δρ̂ν̂ γρ̂

0 1

)
.

(3.44)
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The non-geometric effective action (3.40), up to a total derivative term, becomes

L = |G̃|
1
2

[
e−2φ̃

(
R(G̃) + 4 |dφ̃|2 − 1

2
|Q(1, 2)|2

)

− 1

2
e−4φ̃

(
|P (1, 1)|2 + |P (1, 3)|2 + |P (1, 5)|2

)

− 1

2
e−6φ̃ |Q(1, 6)|2

]
. (3.45)

Here, we defined the non-geometric Q- and P -fluxes as

Qµ̂
mn ≡ ∂µ̂β

mn ,

Pµ̂
m ≡ ∂µ̂γ

m ,

Pµ̂
m1m2m3 ≡ ∂µ̂γ

m1m2m3 − 3 γ[m1 Qµ̂
m2m3] ,

Pµ̂
m1···m5 ≡ ∂µ̂γ

m1···m5 − 10 γ[m1m2m3 Qµ̂
m4m5] ,

Qµ̂
m1···m6 ≡ ∂µ̂β

m1···m6 − 10 γ[m1m2m3 ∂µ̂γ
m4m5m6] + 6 γ[m1 Pµ̂

m2···m6] ,

and

|dφ̃|2 ≡ G̃
µ̂ν̂

∂µ̂φ̃ ∂ν̂ φ̃ ,

|Q(1, p)|2 ≡ 1

p!
G̃

µ̂ν̂
G̃m1···mp, n1···np Qµ̂

m1···mp Qν̂
n1···np ,

|P (1, p)|2 ≡ 1

p!
G̃

µ̂ν̂
G̃m1···mp, n1···np Pµ̂

m1···mp Pν̂
n1···np .

We also used the identity,

|G̃|
1
2 R(G̃) = |G̃|

1
2

(
e−2φ̃

[
R(G̃) + 4 G̃

µ̂ν̂
∂µ̂φ̃ ∂ν̂ φ̃

]
− e−4φ̃

2
|P (1, 1)|2

)

+ ∂µ̂

(
14

3
|G̃|

1
2 e−2φ̃

G̃
µ̂ν̂

∂ν̂φ

)
. (3.46)

Note that the terms proportional to e−2φ̃ in the action (3.45) match with the action

of the β-supergravity [54–56, 60, 61] once the simplifying assumptions (3.41) are made.

Moreover, (3.45) generalizes the actions for the P -fluxes and the Q(1, 6)-flux obtained in [74]

with non-trivial dilaton dependence taking into account.

4 Non-geometric fluxes in EFT: type IIB section

We now turn to type IIB EFTs. As previously emphasized in [13, 102, 103] the type IIB su-

pergravity is also derivable from the U -duality covariant formulation. In particular, within

the SL(5) EFT, a solution of the section condition that corresponds to the type IIB theory

was found in [98]. In the following, we present both the conventional parameterization

and the non-geometric parameterization of the generalized vielbein in terms of fields in the

ten-dimensional type IIB supergravity.
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In the type IIB case, we introduce the following generalized coordinates in which

SL(d− 1) and SL(2) covariance are manifest [86, 102, 103]:

n = 7 : (Y M ) = (xm, yαm, ym1m2m3) (α = 1, 2, m = 7, 8, 9) ,

n = 6 : (Y M ) = (xm, yαm, ym1m2m3) (α = 1, 2, m = 6, . . . , 9) ,

n = 5 : (Y M ) = (xm, yαm, ym1m2m3 , y
α
m1···m5

) (α = 1, 2, m = 5, . . . , 9) ,

n = 4 : (Y M ) = (xm, yαm, ym1m2m3 , y
α
m1···m5

, zm) (α = 1, 2, m = 4, . . . , 9) . (4.1)

Here, ym1m2m3 and yαm1···m5
are totally antisymmetric coordinates and zm is related to

xm1···m6,m adopted in [86] by zm ≡ 1√
6!
ǫm1···m6 xm1···m6,m .

The conventional parameterization of the generalized metric in the type IIB section is

shown in [86] (in the context of the E11 program). By taking a suitable truncation of it,

we can obtain the generalized vielbein in Ed(d) EFT for various d.

In the type IIB section, corresponding to the curved indices m, we introduce the flat

indices as a and the curved and flat indices are changed with the vielbein, em
a.

4.1 Parameterizations of the generalized vielbein

Here, in a way analogous to those given for M theory in 3.1, we construct the type IIB pa-

rameterizations of the generalized vielbein. We consider the cases 4 ≤ n ≤ 7 (or 4 ≤ d ≤ 7),

and in all cases, we use the following matrices:

(ǫαβ) =

(
0 1

−1 0

)
= (ǫαβ) , (4.2)

(
Vα

β
)
≡





eφ/2

(
e−φ C(0)

0 1

)
(geometric)

eφ̃/2

(
e−φ̃ 0

γ(0) 1

)
(non-geometric)

, (4.3)

where φ is the dilaton and C(0) is the Ramond-Ramond 0-form potential and φ̃ and γ(0)

are their non-geometric duals. We also define the metric,

(mαβ) ≡ V VT =





eφ

(
e−2φ+(C(0))2 C(0)

C(0) 1

)
(geometric)

eφ̃

(
e−2φ̃ γ(0)

γ(0) 1 + (γ(0))2

)
(non-geometric)

, (4.4)

and may denote it by m̃αβ for the non-geometric parameterization. We also introduce the

pair of the Kalb-Ramond B-field and the Ramond-Ramond 2-form as well as their dual

bi-vectors,

(
Bα

ab

)
≡

(
Bab

Cab

)
and

(
βab
α

)
≡

(
βab

γab

)
. (4.5)
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The Ramond-Ramond four-form always appears in the S-duality-invariant combination,

D(4) = C(4) +
1

2
B(2) ∧ C(2) , (4.6)

and its dual four-vector field in the combination,

ηa1···a4 ≡ γa1···a4 − 3β[a1a2 γa3a4]. (4.7)

Finally, the 6-forms and the 6-vectors appear with the combination,

(
B(6)α

)
≡

(
C(6)

B(6)

)
and

(
βa1···a6
α

)
≡

(
γa1···a6

βa1···a6

)
. (4.8)

As in the case of the M-theory section, the generalized metric and vielbein appear with

the factor,

MMN ≡ |G|
1

n−2 MMN and MMN ≡ EM
AEN

B δAB . (4.9)

In the following, we present the explicit parameterization for EM
A only.

4.1.1 n = 7: G = SL(5)

In the case G = SL(5), the generalized vielbein parameterizations are given by

(EM
A) ≡ Ê eB

(2)
ev or (EM

A) ≡ Ê eβ
(2)

ev , (4.10)

where

Ê =




em
b 0 0

0 δαβ emb 0

0 0 em1m2m3
b1b2b3


, ev =




δba 0 0

0 Vα
β δab 0

0 0 δa1a2a3b1b2b3


,

B(2) =
1

2
Bγ

c1c2
ρRc1c2

γ
=




0 Bβ
ab 0

0 0 3√
3!
ǫαγ δ

a
[b1

Bγ
b2b3]

0 0 0


,

β(2) =
1

2
βc1c2
γ ρRγ

c1c2
=




0 0 0

−βab
α 0 0

0 3√
3!
ǫβγ δ

[a1
b β

a2a3]
γ 0


.

(4.11)

4.1.2 n = 6: G = SO(5, 5)

In this case, the generalized vielbein parameterizations are given by

(EM
A) ≡ Ê eD

(4)
eB

(2)
ev or (EM

A) ≡ Ê eη
(4)

eβ
(2)

ev , (4.12)
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with

Ê =




em
b 0 0

0 δβα emb 0

0 0 em1m2m3
b1b2b3


, ev =




δba 0 0

0 Vα
β δab 0

0 0 δa1a2a3b1b2b3


,

B(2) = 1
2 B

γ
c1c2 ρRc1c2

γ
=




0 Bβ
ab 0

0 0 3√
3!
ǫαγ δ

a
[b1

Bγ
b2b3]

0 0 0


,

D(4) = 1
4! Dc1···c4 ρRc1···c4 =




0 0 1√
3!
Dab1b2b3

0 0 0

0 0 0


,

β(2) =
1

2
βc1c2
γ ρRγ

c1c2
=




0 0 0

−βab
α 0 0

0 3√
3!
ǫβγ δ

[a1
b β

a2a3]
γ 0


,

η(4) = − 1

4!
ηc1···c4 ρRc1···c4

=




0 0 0

0 0 0

− 1√
3!
ηa1a2a3b 0 0


.

(4.13)

4.1.3 n = 5: G = E6(6)

In this case, the generalized vielbein is given by

(EM
A) ≡ Ê eD

(4)
eB

(2)
ev or (EM

A) ≡ Ê eη
(4)

eβ
(2)

ev (4.14)

with

Ê =




em
b 0 0 0

0 δβα emb 0 0

0 0 em1m2m3
b1b2b3

0

0 0 0 δβα em1···m5
b1···b5



, ev =




δba 0 0 0

0 Vα
β δab 0 0

0 0 δa1a2a3b1b2b3
0

0 0 0 Vα
β δa1···a5b1···b5


, (4.15)

B(2) =
1

2
Bγ

c1c2
ρRc1c2

γ
=




0 Bβ
ab 0 0

0 0 3√
3!
ǫαγ δ

a
[b1

Bγ
b2b3]

0

0 0 0
√
5 δa1a2a3[b1b2b3

Bβ
b4b5]

0 0 0 0



, (4.16)

D(4) =
1

4!
Dc1···c4 ρRc1···c4 =




0 0 1√
3!
Dab1b2b3 0

0 0 0 − 5√
5!
δβα δa[b1 Db2···b5]

0 0 0 0

0 0 0 0



, (4.17)

β(2) =
1

2
βc1c2
γ ρRγ

c1c2
=




0 0 0 0

−βab
α 0 0 0

0 3√
3!
ǫβγ δ

[a1
b β

a2a3]
γ 0 0

0 0
√
5 δ

[a1a2a3
b1b2b3

β
a4a5]
α 0



, (4.18)

η(4) = − 1

4!
ηc1···c4 ρRc1···c4

=




0 0 0 0

0 0 0 0

− 1√
3!
ηa1a2a3b 0 0 0

0 − 5√
5!
δβα δ

[a1
b ηa2···a5] 0 0



. (4.19)
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4.1.4 n = 4: G = E7(7)

In this case, the generalized vielbein is given by

(EM
A) ≡ Ê eB

(6)
eD

(4)
eB

(2)
ev or (EM

A) ≡ Ê eβ
(6)

eη
(4)

eβ
(2)

ev (4.20)

where

Ê =




em
b 0 0 0 0

0 δβα emb 0 0 0

0 0 em1m2m3
b1b2b3

0 0

0 0 0 δβα em1···m5
b1···b5 0

0 0 0 0 e−1 emb



, ev =




δba 0 0 0 0

0 Vα
β δab 0 0 0

0 0 δa1a2a3b1b2b3
0 0

0 0 0 Vα
β δa1···a5b1···b5 0

0 0 0 0 δab



,

(4.21)

B(2) =
1

2
Bγ

c1c2
ρRc1c2

γ
=




0 Bβ
ab 0 0 0

0 0 3√
3!
ǫαγ δ

a
[b1

Bγ
b2b3]

0 0

0 0 0
√
5 δa1a2a3[b1b2b3

Bβ
b4b5]

0

0 0 0 0 − 1√
5!
ǫαγ ǫ

a1···a5cBγ
cb

0 0 0 0 0




,

(4.22)

D(4) =
1

4!
Dc1···c4 ρRc1···c4 =




0 0 1√
3!
Dab1b2b3 0 0

0 0 0 − 5√
5!
δβα δa[b1 Db2···b5] 0

0 0 0 0 − 1
3!
√
3!
ǫa1a2a3c1c2c3 Dc1c2c3b

0 0 0 0 0

0 0 0 0 0




,

(4.23)

B(6) =
1

6!
Bγ

c1···c6 ρRc1···c6
γ

=




0 0 0 − 1√
5!
Bβ

ab1···b5 0

0 0 0 0 1
6! ǫαγ ǫ

c1···c6 Bγ
c1···c6 δ

a
b

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




,

(4.24)

β(2) =
1

2
βc1c2
γ ρRγ

c1c2
=




0 0 0 0 0

−βab
α 0 0 0 0

0 3√
3!
ǫβγ δ

[a1
b β

a2a3]
γ 0 0 0

0 0
√
5 δ

[a1a2a3
b1b2b3

β
a4a5]
α 0 0

0 0 0 − 1√
5!
ǫβγ ǫb1···b5c β

ca
γ 0




, (4.25)

η(4) = − 1

4!
ηc1···c4 ρRc1···c4

=




0 0 0 0 0

0 0 0 0 0

− 1√
3!
ηa1a2a3b 0 0 0 0

0 − 5√
5!
δβα δ

[a1
b ηa2···a5] 0 0 0

0 0 − 1
3!
√
3!
ǫb1b2b3c1c2c3 η

c1c2c3a 0 0




,

(4.26)
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β(6) =
1

6!
βc1···c6
γ ρRγ

c1···c6
=




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
1√
5!
βa1···a5b
α 0 0 0 0

0 1
6! ǫ

βγ ǫc1···c6 β
c1···c6
γ δab 0 0 0




. (4.27)

4.2 Ten-dimensional effective action

The type IIB supergravity action is also obtainable from solving the section condition,

such that the ten-dimensional coordinates are given by (xµ̂) ≡ (xµ, xm) (µ̂ = 0, . . . , 9). See

appendix B for details. For instance, for the E7(7) EFT in the geometric parameterization,

the action becomes

L = |G|
1
2

[
R(G) +

1

4
Gµ̂ν̂ ∂µ̂mαβ ∂ν̂m

αβ

− gµν
(

1

2 · 2! mαβ G
m1m2, n1n2 ∂µB

α
m1m2

∂νB
β
n1n2

+
1

2 · 4! G
m1···m4, n1···n4 Gµ,m1···m4 Gν, n1···n4

+
1

6!
mαβ G

m1···m6, n1···n6 Gα
µ,m1···m6

Gβ
ν, n1···n6

)

− 1

2 · 3!mαβ G
m1m2m3, n1n2n3 Hα

m1m2m3
Hβ

n1n2n3

− 1

2 · 5! G
m1···m5, n1···n5 Gm1···m5 Gn1···n5

]
, (4.28)

where the field strengths are

Gµ,m1···m4 ≡ ∂µDm1···m4 − 3 ǫγδ B
γ
[m1m2| ∂µB

δ
|m3m4]

, (4.29)

Gβ
µ,m1···m6

≡ ∂µB
β
m1···m6

− 15Bβ
[m1m2| ∂µD|m3···m6] + 15 ǫγδ B

β
[m1m2

Bγ
m3m4| ∂µB

δ
|m5m6]

, (4.30)

Hα
m1m2m3

≡ 3 ∂[m1
Bα

m2m3]
,

Gm1···m5 ≡ 5 ∂[m1
Cm2···m5] + 30H1

[m1m2m3
Cm4m5] , (4.31)

and, for the ten-dimensional metric,

(
Gµ̂ν̂

)
≡

(
gµν 0

0 Gmn

)
, (4.32)

the associated Ricci scalar is given by

R(G) ≡ R(g) + gµν
[
1

4
∂µG

mn ∂νGmn +
1

4
∂µ ln |G| ∂ν ln |G|

]

+R(G) +Gmn

[
1

4
∂mg

µν ∂ngµν +
1

4
Gmn ∂m ln |g| ∂n ln |g|

]
. (4.33)

In the standard definitions of six-form potentials, the field strengths are given by

G(7) = dC
(6)
(std.) +H(3) ∧ C(4) , (4.34)

H(7) = dB
(6)
(std.) + C(4) ∧ dC(2) − 1

2
C(2) ∧ C(2) ∧H(3) + C(0)G(7) , (4.35)
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and the corresponding expression for Gα
µ,m1···m6

should be

G1
µ,m1···m6

= ∂µC
(std.)
m1···m6 + 15C[m1···m4| ∂µB|m5m6] , (4.36)

G2
µ,m1···m6

= ∂µB
(std.)
m1···m6 + 15C[m1···m4| ∂µC|m5m6] − 45C[m1m2

Cm3m4| ∂µB|m5m6] . (4.37)

Comparing these with the expression (4.30), we see that the conventional six-form poten-

tials are related to the six-form potentials, Cm1···m6 and Bm1···m6 , by

C
(std.)
m1···m6 ≡ Cm1···m6 − 15D[m1···m4

Bm5m6] + 15B[m1m2
Bm3m4 Cm5m6] , (4.38)

B
(std.)
m1···m6 ≡ Bm1···m6 − 15D[m1···m4

Cm5m6] + 30C[m1m2
Cm3m4 Bm5m6] . (4.39)

This completes the conventional, geometric parameterization.

In the non-geometric parameterization, we obtain

L = |G̃|
1
2

[
R(G̃) +

1

4
G̃µ̂ν̂ ∂µ̂m̃αβ ∂ν̂m̃

αβ

− m̃αβ

2

〈
Q(1, 2)

α , Q
(1, 2)
β

〉
− 1

2
|P (1, 4)|2 − m̃αβ

2

〈
Q(1, 6)

α , Q
(1, 6)
β

〉]
, (4.40)

where we defined

Qα, µ̂
mn ≡ ∂µ̂β

mn
α , Pµ̂

m1···m4 ≡ ∂µ̂η
m1···m4 + 3 ǫγδ β[m1m2

γ ∂µ̂β
m3m4]
δ , (4.41)

Qα, µ̂
m1···m6 ≡ ∂µ̂β

m1···m6
α + 15β[m1m2

α ∂µ̂η
m2···m6] + 15 ǫγδ β[m1m2

α βm3m4
γ ∂µ̂β

m5m6]
δ ,

(4.42)

〈
Q(1, 2)

α , Q
(1, 2)
β

〉
≡ G̃µ̂ν̂ G̃m1m2, n1n2

2!
Qα, µ̂

m1m2 Qβ, ν̂
n1n2 , (4.43)

|P (1, 4)|2 ≡ G̃µ̂ν̂ G̃m1···m4, n1···n4
4!

Pµ̂
m1···m4 Pν̂

n1···n4 , (4.44)

〈
Q(1, 6)

α , Q
(1, 6)
β

〉
≡ G̃µ̂ν̂ G̃m1···m6, n1···n6

6!
Qα, µ̂

m1···m6 Qβ, ν̂
n1···n6 . (4.45)

The above action is manifestly SL(2)-invariant. This action can also be expressed in the

following form:

L = |G̃|
1
2

[
R(G̃)− 1

2

(
|dφ|2 + eφ̃ |Q(1, 2)|2 + e−φ̃ |Q(1, 6)|2

+ e−2φ̃ |P(1, 0)|2 + e−φ̃ |P(1, 2)|2 + |P(1, 4)|2 + eφ̃ |P(1, 6)|2
)]

, (4.46)

where

|dφ|2 ≡ G̃µ̂ν̂ ∂µ̂φ∂ν̂φ , (4.47)

|Q(1, p)|2 ≡ 1

p!
G̃µ̂ν̂ G̃m1···mp, n1···np Qµ̂

m1···mp Qν̂
n1···np , (4.48)

|P(1, p)|2 ≡ 1

p!
G̃µ̂ν̂ G̃m1···mp, n1···np Pµ̂

m1···mp Pν̂
n1···np , (4.49)
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Qµ̂
m1m2 ≡ Qµ̂

m1m2 ≡ ∂µ̂β
m1m2 , (4.50)

Qµ̂
m1···m6 ≡ Qµ̂

m1···m6 − γ(0) Pµ̂
m1···m6 , (Qα, µ̂

m1···m6) ≡
(
Pµ̂

m1···m6

Qµ̂
m1···m6

)
, (4.51)

Pµ̂ ≡ Pµ̂ ≡ ∂µ̂γ
(0) , (4.52)

Pµ̂
m1m2 ≡ Pµ̂

m1m2 − γ(0)Qµ̂
m1m2 = ∂µ̂γ

m1m2 − γ(0) ∂µ̂β
m1m2 , (4.53)

Pµ̂
m1···m4 ≡ Pµ̂

m1···m4 = ∂µ̂η
m1···m4 + 3 ǫγδ β[m1m2

γ ∂µ̂β
m3m4]
δ

= ∂µ̂γ
m1···m4 − 6 γ[m1m2 ∂µ̂β

m3m4] , (4.54)

Pµ̂
m1···m6 ≡ Pµ̂

m1···m6

= ∂µ̂γ
m1···m6 + 15β[m1m2 ∂µ̂η

m3···m6] + 15 ǫγδ β[m1m2 βm3m4
γ ∂µ̂β

m5m6]
δ

= ∂µ̂γ̃
m1···m6 − 15 γ[m1···m4 ∂µ̂β

m5m6] , (4.55)

and we defined γ̃m1···m6 ≡ γm1···m6 + 15 η[m1···m4 βm5m6] + 15β[m1m2 βm3m4 γm5m6] . Finally,

in the string frame, (Gstr)µ̂ν̂ ≡ e
φ̃
2 Gµ̂ν̂ , the above action becomes

L = |G̃str|
1
2

[
e−2φ̃

(
R(G̃str) + 4 |dφ|2str −

1

2
|Q(1, 2)|2str

)

− 1

2
e−4φ̃

(
|P(1, 0)|2str + |P(1, 2)|2str + |P(1, 4)|2str + |P(1, 6)|2str

)

− 1

2
e−6φ̃ |Q(1, 6)|2str

]
. (4.56)

This action generalize the actions of β-supergravity and its extension obtained in [74].

5 Non-geometric fluxes in heterotic DFT

In this section, we generalize the above constructions to the heterotic DFT, which incor-

porates the Yang-Mills theory with heterotic gauge group GYM = SO(32) or E8 × E8 to

the O(D,D) DFT in a T-duality covariant manner. The O(D,D + dim G) gauged DFT

provides an elegant framework for describing the heterotic DFT by combining the string

NS-NS sector and gauge fields into a single O(D,D + dim G) multiplet [81, 82]. A sim-

ilar approach has been developed for studying the leading α′-corrections in the heterotic

DFT [104]. The main idea is to extend the heterotic gauge group GYM by including the

GLL = Spin(1, 9) local Lorentz group:

G = GYM ×GLL . (5.1)

The DFT spin-connection can be understood as the gauge field for GLL acting on adjoint

representations, so the heterotic Yang-Mills gauge fields and DFT spin-connection are

treatable on an equal footing [105–110]. As our formalism works equally well for arbitrary
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gauge groups, we do not specify the gauge group G explicitly. We will thus treat G as an

arbitrary Lie group until we need to work for the heterotic gauge group.

Unlike the O(D,D) or Ed(d) cases, the O(D,D+dim G) is not a split real form, so its

algebra contains non-compact Cartan generators. In section 2, we tacitly assumed that the

duality group G to be a maximally non-compact group, thus we need to slightly modify

the previous construction [111]. In this case, the Iwasawa decomposition reads

g = k an ∈ O(D,D + dim G) , (5.2)

where k is an element of the maximal compact subgroup O(D−1, 1)⊗O(1, D−1 + dimG),

a is an element of the maximal non-compact Abelian subgroup, and n is an element of

the nilpotent subgroup generated by the positive (negative) root generators. Also, Cartan

involution flips the sign of non-compact generators only. Note that the non-compact Cartan

generators and positive (negative) root generators form a solvable Lie algebra, which is

a subset of Borel subgroup. If we assume G is a maximally non-compact group, the

solvable Lie group is restored to Borel subgroup. Using (5.2) we will define non-geometric

parameterization of generalized vielbein and non-geometric fluxes for the heterotic DFT.

5.1 Parameterization of generalized vielbein

The fundamental field variables of the heterotic DFT are furnished by O(D,D + dim G)

generalized metric field H and dilaton d in a parameterization independent way. As the

usual DFTs, the generalized metric is defined by a symmetric O(D,D + dim G) matrix

satisfying

HJ −1H = J , (5.3)

where J is the O(D,D + dim G) metric. In order to interpret the heterotic DFT as the

heterotic supergravity, we need to impose a suitable parameterization of the generalized

metric in terms of the supergravity fields. The simplest way is to solve (5.3), assuming that

the upper-left conner is non-degenerate. However, such a parameterization is not unique

due to the freedom of O(D,D) transformation.6

The geometric parameterization, which yields the usual heterotic supergravity, is one

possible choice among infinitely many viable parameterizations. The others are so-called

non-geometric parameterizations in the sense that they cannot be represented in terms of

the conventional supergravity fields. In this section, we shall focus on a particular non-

geometric parameterization, which is associated to the Z2 part within the T-duality group,

and refer to this as the non-geometric parameterization.

One can introduce a local frame field E
M̂Â

for heterotic DFT in terms of the gauged

DFT [65, 83]. The local structure group is given by the maximal compact subgroup of

O(D,D + dim G),

K = O(D−1, 1)×O(1, D−1 + dimG) ⊂ O(D,D + dim G) . (5.4)

6The duality group for heterotic DFT with unbroken Yang-Mills gauge symmetry is given by just O(D,D)

rather than full O(D,D + dim G). This is because there should be no mixing between NS-NS sector and

Yang-Mills sector [81, 82]. The extended duality group O(D,D + dim G) is a formal device to describe

Yang-Mills sector within duality covariant framework.
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Geometrically, the physical degrees of freedom of heterotic DFT is represented by a local

orthonormal frame field, so-called the generalized vielbein (or double-vielbein):

E
M̂Â

= {V
M̂m

, V̄
M̂ ˆ̄m

}. (5.5)

Here, M̂ is an O(D,D + dim G) vector index, m is an O(D−1, 1) vector index, and ˆ̄m

is an O(1, D−1 + dimG) vector index. Under the local structure group, V
M̂

m and V̄
M̂

ˆ̄m

transforms

V
M̂

m → Λm
nVM̂

n , V̄
M̂

ˆ̄m → Λ̄
ˆ̄m
ˆ̄nV̄M̂

ˆ̄n (5.6)

As we discussed in the last section, the double-vielbein is parameterized by the coset

O(D,D + dim G)

O(D−1, 1)×O(1, D−1 + dimG)
. (5.7)

A necessary step in identifying the gauged DFT with heterotic supergravity is to fix the

parameterization of generalized vielbein in terms of field variables of heterotic supergravity.

To this end, it is necessary to decompose O(D,D+dim G) vector indices M̂ = {M ,α} and

O(1, D−1 + dimG) frame indices ˆ̄m = {m̄ , ā}. We first decompose the O(D,D + dim G)

metric and O(1, D−1 + dimG) metric as

J
M̂N̂

=

(
JMN 0

0 1
α′καβ

)
and η̄ ˆ̄mˆ̄n =

(
η̄m̄n̄ 0

0 κāb̄

)
. (5.8)

Here, JMN is the O(D,D) metric, while η̄m̄n̄ is the O(D − 1, 1) metric:

JMN =

(
0 δµν
δµ

ν 0

)
and ηmn = −η̄m̄n̄ = diag(−1, 1, · · · , 1) , (5.9)

and κāb̄ is the Cartan-Killing form for the heterotic gauge group G

κāb̄ = tr
(
tā tb̄

)
, (5.10)

where tā denotes ā-th generator in the adjoint representation

(tā)b̄c̄ = fb̄c̄
ā . (5.11)

Here, indices ā, b̄, · · · = 1, · · · , dimG, are adjoint gauge indices, and α, β, · · · = 1, · · · , dimG

are pull-back of ā, b̄, · · · indices by introducing a matrix (φā)α that preserves the κāb̄.

Accordingly, we denote the pull-back of κāb̄ as καβ :

καβ = (φā)α (φ
b̄)β κāb̄ , (φā)α ∈ O(dimG) , (5.12)

and they are numerically equivalent. Furthermore, one can always fix φā
α as the identity

matrix by using part of the local Lorentz transformation (5.6), which is generated by

Λ̄ā
b̄ [104].

It is important to note that κāb̄ is embedded into O(dimG) ⊂ O(1, D−1 + dimG),

which has negative-definite metric. Thus, in order to get the standard heterotic supergrav-

ity from the heterotic DFT through an explicit parameterization of the double-vielbein (or
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the generalized metric), we must impose a diagonal gauge-fixing of the two local Lorentz

groups, which maps the barred quantities to unbarred quantities

η̄ → −η , κāb̄ → −κab . (5.13)

Hereafter, we will assume the diagonal gauge fixing condition and identify α, β, γ · · · indices
with a, b, c, · · · indices.

5.1.1 Parameterization from coset representative

We next construct the geometric and non-geometric parameterizations of double-vielbein

through the Iwasawa decomposition for a non-split real form, as explained in the beginning

of this section.

The parameterization of generalized vielbein is constructed from the exponentiation of

solvable Lie algebra as a generalization of (2.33)

E = exp[gs] . (5.14)

Here, gs denotes the solvable Lie algebra which consists of the non-compact Cartan gener-

ators and the positive (negative)-root generators. The non-compact Cartan generator Hm

is given by the diagonal components of gl(D) generator Km
n

Hm := Km
m . (5.15)

The matrix realization of gl(D) generator Km
n is given by

(ρKm
n)P̂

Q̂ =




δmp δqn 0 0

0 0 0

0 0 −δpn δmq


 , (5.16)

and the matrix realization of Hm is also given by

(ρHm)P̂
Q̂ := (ρKm

m)
P̂
Q̂ =




δmp δqm 0 0

0 0 0

0 0 −δpm δmq


 . (5.17)

The corresponding positive-root generators are realized as

(ρRmn)
P̂
Q̂ =




0 0 2 δmn
pq

0 0 0

0 0 0


 , (ρRm

a)P̂
Q̂ =




0 δmp δda 0

0 0 κca δ
m
q

0 0 0


 , (5.18)

which satisfy the following Lie algebra

[H,Km
n] = amnK

m
n , [H, Rmn] = bmnR

mn , [H, Rm
a] = cmRm

a . (5.19)

Here, amn, bmn and cm are positive roots for D-type (assume that dimG is even)

amn = em − en , bmn = em + en , cm = em , (1 ≤ m < n ≤ D) , (5.20)
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where em = (0, 0, · · · , 0︸ ︷︷ ︸
m−1

, 1, 0, 0, · · · , 0). These positive root generators obey the commuta-

tion relations:

[Km
n, K

p
q] = δpnK

m
q − δmq Kp

n , [Km
n, R

pq] = δpnR
mq + δqnR

pm ,

[Km
n, R

p
a] = δpnR

m
a , [Rm

a, R
n
b] = κabR

mn ,

[Rmn, Rp
a] = 0 , (5.21)

Using the above results, we construct the explicit geometric parameterization of the

generalized vielbein. The coset representative E
M̂

Â of O(D,D + dim G)/O(1, D − 1) ⊗
O(1, D−1 + dimG) is given by (5.14) with the noncompact positive root generators

E
M̂

Â = eh
m(x) ρHm e

∑
m<n hm

n(x) ρKmn e
1
2
Bmn(x) ρRmn eAm

aρRma . (5.22)

If we substitute the explicit matrix realizations of generators (5.16) and (5.18), we recover

the usual geometric parameterization of generalized vielbein

E
M̂

B̂ =
(
E eB

(2)
eA

)
M̂

B̂ =



eµ

n Aµ
a eµ

pB′
pn

0 δba (AT)an
0 0 (e−T)µn


 , (5.23)

where

E =




eµ
n 0 0

0 δba 0

0 0 (e−T)µn


 , B(2) =




0 0 Bmn

0 0 0

0 0 0


 ,

A = Am
α ρRm

α =




0 Am
b 0

0 0 κac (A
T)cn

0 0 0


 ,

eB
(2)

eA =




δnm Am
b B′

mn

0 δa
b κac (A

T)cn

0 0 δmn


 .

(5.24)

Here,

B′
mn := Bmn +

1

2
Am

a κab (A
T)bn . (5.25)

Then, from the generalized vielbein, we get the geometric parameterization of generalized

metric using the defining relation H = (ET)
M̂

Â η
ÂB̂

E B̂
N̂
,

(
H

M̂N̂

)
=




g +B′g−1(B′)t +AκAt Aκ+B′g−1Aκ B′g−1

κAt + κAtg−1(B′)t κAtg−1Aκ+ 1
α′κ κAtg−1

g−1(B′)t g−1Aκ g−1


 . (5.26)
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Consider next the non-geometric parameterization. As discussed in the previous sec-

tion, the associated non-geometric parameterization is constructed from the Cartan invo-

lution, which flips the sign of all the non-compact generators,

Km
n → −Kn

m , Rmn → −Rmn , Rm
a → −Rm

a . (5.27)

The matrix realization of negative root generators are

(ρRmn)P̂
Q̂ =




0 0 0

0 0 0

−2 δpqmn 0 0


 , (ρRm

a)
P̂
Q̂ =




0 0 0

−δac δ
q
m 0 0

0 −δpm κad 0


 , (5.28)

where καβ is the inverse matrix of καβ . It is straightforward to check that they satisfy

[H, Rmn] = −bmnRmn , [H, Rm
a] = −cmRm

a ,

[Km
n, Rpq] = −δmp Rnq − δmq Rpn , [Km

n, Rp
a] = −δmp Rn

a ,

[Rmn, Rp
a] = 0 ,

[
Rm

a, Rn
b
]
= −κabRmn ,

(5.29)

The non-geometric parameterization of the generalized vielbein is defined by the non-

geometric coset representative E
M̂

Â, which is expressed in terms of negative root generators

Ẽ
M̂

Â(x) = eh
m(x) ρHm e

∑
m<n hm

n(x) ρKmn e
1
2
βmn(x) ρRmn e−Ãm

aρRma . (5.30)

Using (5.28), we find that

Ẽ = E eβ
(2)

e−Ã =




ẽµ
n 0 0

(ÃT)a
n δba 0

−(ẽ−T)µk β
′km (ẽ−T)µk Ã

k
c κ

cb (ẽ−T)µm


 , (5.31)

where

E =




ẽµ
n 0 0

0 δba 0

0 0 (ẽ−T)µn


 , β(2) =




0 0 0

0 0 0

−βmn 0 0


 ,

Ã = Ãm
a ρRm

a =




0 0 0

−(ÃT)a
n 0 0

0 −Ãm
c κ

cb 0


 ,

eβ
(2)

eA =




δnm 0 0

(ÃT)a
n δba 0

−β′mn Ãm
c κ

cb δmn


 .

(5.32)

Here,

β′mn := βmn − 1

2
Ãm

a κ
ab (ÃT)b

n (5.33)
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Likewise, the non-geometric parameterization of generalized metric is given by the defining

condition H
M̂N̂

= (ET)
M̂

Â η
ÂB̂

E B̂
N̂
:

(H
M̂N̂

) =




g̃ g̃Ã −g̃ β′T

ÃT g̃ ÃT g̃ Ã+ κ ÃT − ÃT g̃ β′T

−β′ g̃ Ã− β′ g̃ Ã g̃−1 + β′ g̃ β′T + Ã κ−1 ÃT




=




1 0 0

ÃT 1 0

−β′ Ã κ−1 1







g̃ 0 0

0 κ 0

0 0 g̃−1







1 Ã −β′T

0 1 κ−1 ÃT

0 0 1


 ,

(5.34)

where g̃ = (g̃µν), β
′ = (β′µν), Ã = (Ãµ

a), κ
−1 = (κab), and

η
ÂB̂

=



ηmn 0 0

0 κab 0

0 0 ηmn


 . (5.35)

For the abelian reduction of the heterotic Yang-Mills group to the maximal Cartan sub-

group, U(1)16, we have κ = I16×16 and fabc = 0. Under this reduction, the non-geometric

parameterization (5.31) coincides with the previous result in [85].

Moreover, by comparing (5.26) with (5.34), one can confirm that the geometric param-

eterization and the non-geometric parameterization are related each other by field redefi-

nitions. Denote the set of variables in geometric parameterization and the set of variables

in non-geometric parameterization as

geometric: {g,B,A} and non-geometric: {g̃, β, Ã} , (5.36)

respectively. From the generalized metric, one then finds a relation between the geometric

variables and the non-geometric variables as

g =
(
g̃−1 − β′T)−1

g̃−1
(
g̃−1 − β′)−1

,

B′ = −
(
g̃−1 − β′T )−1

β′T(g̃−1 − β′)−1
,

A = −
(
g̃−1 − β′T)−1

Ã

(5.37)

Likewise,

g̃ =
(
g +B′)g−1

(
g +B′T) ,

β′ = −
(
g +B′T)−1

B′T(g +B
)−1

,

Ã = −
(
g +B′T)−1

A .

(5.38)

5.2 Non-geometric fluxes and action

We now study the non-geometric fluxes for heterotic supergravity. In the gauged DFT view-

point, various fluxes in gauged supergravity theories, viz. geometric fluxes, are regarded
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as components of the generalized spin connection of the gauged DFT in geometric param-

eterization. Similarly, non-geometric fluxes can be constructed by replacing the geometric

parameterization of gauged DFT to non-geometric parameterization.7

The heterotic DFT action [81] is given in terms of the generalized metric H by

Shet =

∫
e−2d

[
4HM̂N̂∂

M̂
∂
N̂
d− ∂

M̂
∂
N̂
HM̂N̂ − 4HM̂N̂∂

M̂
d∂

N̂
d+ 4∂

M̂
HM̂N̂∂

N̂
d

+
1

8
HM̂N̂∂

M̂
HK̂L̂∂

N̂
H

K̂L̂
− 1

2
HM̂N̂∂

M̂
HK̂L̂∂

K̂
H

N̂L̂

]
.

(5.39)

Using the non-geometric parameterization of the generalized metric (5.34), we obtain the

non-geometric action for heterotic supergravity in the string frame as

Shet =

∫
dDx

√−ge−2φ

(
R(ω̃)+4∂µφ∂µφ−

1

4
Qµ

νρQµ
νρ−

1

4
α′ tr

(
F̃µνF̃

µν
))

+ · · · , (5.40)

where R(ω̃) is the Ricci scalar with respect to the non-geometric frame field ẽ and its

spin connection field ω̃, and the ellipses denote terms of higher-order derivatives. In the

non-geometric action (5.40), three kinds of fluxes are present: geometric flux f̃mnp, non-

geometric Q-flux and non-geometric gauge field strength F̃µν .

The geometric flux, f̃m
np = −2ẽ[n

µẽp]
ν∂µẽν

m, is given by the same form as geometric

parameterization case. The dual spin connection ω̃m
np is written in terms of the flux f̃mnp

ω̃mnp =
1

2
(f̃mnp + f̃nmp − f̃pmn) . (5.41)

The non-geometric Q-flux of the bi-vector field βµν is defined by

Qµ
νρ = ∂µβ

νρ +
1

3
α′g̃µσΩ

σνρ , (5.42)

where Ωµνρ is the dual Chern-Simons three-form, defined by

Ωµνρ = 3Ã[µ
a∂

νÃρ]a − ÃµaÃνbÃρcfabc (5.43)

and ∂µ = g̃µν∂ν . Finally, the field strength of non-geometric gauge field Ãµ are defined by

F̃µν
a = −2∂[µÃν]

a + fabcÃ
µbÃνc . (5.44)

Note that here we have assumed the simplifying ansatz first introduced in [55]

βµν∂ν = Ãµa∂µ = 0 . (5.45)

The Bianchi identity for the Q-flux is given by

∂[µQν]
[ρσ] =

α′

12
F̃ a
µνF̃

ρσ a +
α′

6
F̃

[ρ a
[µ F̃

σ] a
ν] +

α′

3
Ãa

[µ∂ν]F̃
ρσ a +

α′

3
Ã[ρ a∂[µF̃

σ] a
ν]. (5.46)

If we set Ãa
µ = 0, then this right-hand side vanishes and the result of the conventional

O(d, d) DFT is reproduced.

7We present a systematic construction of heterotic non-geometric fluxes and action via semi-covariant

approach in appendix C.
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6 Exotic branes and non-geometric fluxes

Having constructed the effective actions for type IIA / M, type IIB, and heterotic su-

pergravity theories, we now apply them to study exotic branes and backgrounds with

non-geometric fluxes.

Exotic branes in the M-theory and type II string theory are first found and studied

in [47–52] and their corresponding supergravity solutions are comprehensively constructed

in [53]. Properties of these solutions are revisited in [45, 46], and it was noticed that the

background fields are not single-valued and in particular that exotic brane backgrounds

exhibit nontrivial monodromies under the U -duality transformations. As such, these back-

grounds are referred to as U -folds.

Exotic branes are defect branes of codimension-two. With (x1, x2) denoting the coordi-

nates in the two dimensional transversal space, the supergravity backgrounds, viz. U-folds,

depend on the transverse space z ≡ x1 + ix2 ≡ r ei θ in terms of the logarithmic function,

ρ(z) ≡ ρ1 + i ρ2 = i
σ

2π
log(rc/z) =

σ

2π

[
θ + i log(rc/r)

]
. (6.1)

Here, σ is a positive constant that depends on the brane and rc is an arbitrary positive

constant.8 Note that, as one moves around the center counter-clockwise, the imaginary

part, ρ2, is single-valued while the real part, ρ1, gets a shift, ρ1 → ρ1+σ. This shift causes

the monodromy transformations in the defect-brane backgrounds.

In [45, 46], it was shown that the charges of defect branes are characterized by the

monodromies. Therefore, the monodromy matrices are important physical observables.

However, in [45, 46], the explicit form of monodromy matrices was shown only for the

exotic 522-brane in type II theories.

In this paper, using the parameterization of the generalized metric in EFT, we obtain

the explicit form of monodromy matrices for various exotic branes in the M-theory as well

as type II theories compactified on a d-torus (d ≤ 7). We confirm that the monodromy

matrix of each brane is in one-to-one correspondence with the negative root generator

of the exceptional group. This means that the monodromy is not in the geometric sub-

group (i.e. the gauge symmetry of the conventional supergravity) and so the background

is non-geometric.

Another definition for the charges of defect brane is given by the flux integral. As

discussed in [64, 70, 72, 74], the charges of exotic branes are given by the flux integral of the

non-geometric fluxes. As such, it is convenient to use the non-geometric parameterization

of the generalized metric. Below, we show that the metric in an arbitrary exotic-brane

background is single-valued in terms of the non-geometric fields, while it is multi-valued in

terms of fields in the conventional parameterization. We also calculate the flux integrals

of the non-geometric fluxes and identify the exotic branes as the magnetic sources of non-

geometric fluxes.

8The arbitrary constant rc is the infrared regulator scale, setting a maximum radius of the background,

at which the curvature diverges. This infrared singularity can be removed by introducing additional branes

and interpreting the logarithmic function as a r/rc → 0 limit of a globally defined holomorphic function,

as is well known for the backgrounds of seven-branes [112]. In that setup, the cutoff rc can be interpreted

as the distance from the neighbouring brane [63].
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More recently, exotic-brane solutions in the heterotic supergravity have also been con-

structed in [113], where the monodromies of the backgrounds have been calculated but

using the generalized metric of [114]. In this section, we study the same backgrounds in

terms of the generalized metric obtained in section 5. We also show that, in the non-

geometric parameterization, the metric becomes single valued and discuss non-geometric

fluxes in these backgrounds.

6.1 Exotic branes in the heterotic DFT

Consider first exotic branes in heterotic DFT. Heterotic supergravity admits three types

of exotic-brane solutions [113], which inherit from symmetric, neutral and gauge NS5-

brane solutions [115–118]. Among these solutions, the symmetric solution makes use of the

leading order α′-corrections. Therefore, to analyze the symmetric exotic brane solution, we

first need to retain the leading order α′-corrections in the heterotic supergravity. The first

order α′-correction was constructed by combining the Spin(9, 1) local Lorentz group with

the SO(32) or E8×E8 heterotic Yang-Mills gauge group [119, 120]. The spin-connection is

the gauge potential for the Spin(9, 1) local Lorentz transformation, thus Yang-Mills gauge

field Aµ and the spin-connection ωµ are treated on an equal footing. Therefore, at the level

of α′-corrections, the effective action is organized in terms of the modified spin-connection

ω+µ
ab by adding the contribution of three-form field strength Hµab, which is a pull-back of

Hµνρ by the vielbein eµa:

ω±µ
ab(e,B,A) = ωµ

ab(e)± 1
2Hµ

ab(e,B,A) . (6.2)

Here, the α′-corrected Hµνρ is defined by

Hµνρ(e,B,A) = 3∂[µBνρ] +
1

2
α′ΩA

µνρ −
1

2
α′Ωω+

µνρ , (6.3)

and ΩA and Ωω+ are Chern-Simons three-forms of Aµ and ω+µ, respectively. As the field

strength of the deformed spin-connection is given by the deformed Riemann tensor,

R±µν
ab = ∂µω+ν

ab − ∂νω±µ
ab + ω±µ

acω±νc
b − ω±ν

acω±µc
b , (6.4)

the Riemann squared term in the leading α′-correction is straightforwardly obtained from

the kinetic term of Yang-Mills gauge field in (5.40).

Similarly, the leading-order α′-corrections in heterotic DFT is obtainable from extend-

ing the Yang-Mills gauge group. As shown in section 3, the heterotic DFT gauge group G

is composed of G = GYM ×GLL, where GYM is the heterotic Yang-Mills gauge group and

GLL is the O(1, 9) local Lorentz gauge group. The associated O(D,D + dim G) metric is

also decomposed as

JM̂N̂ =



JMN 0 0

0 1
α′κab 0

0 0 − 1
α′κãb̃


 , (6.5)

where ã, b̃ · · · are O(dimGLL) vector indices. It is important to note the relative sign dif-

ference between the coefficients of κab and of κãb̃. Because of this difference, the traces
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of GYM and the trace of GLL always have the opposite sign. Furthermore, after the di-

agonal gauge fixing, the deformed spin connections, ω+ and ω−, are represented by the

geometric parameterization of generalized spin connection Φp̄mn and Φ̄pm̄n̄, respectively.

Once the leading-order α′-correction is introduced into the geometric parameterization of

the generalized metric, the symmetric part of B′ is replaced by

B′′
µν := sym(B′)µν = Bµν +

1

2
α′ tr(AµAν)−

1

2
α′ tr(ω+µ ω+ν) (6.6)

and the gauge field associated with the local Lorentz group is given by the generalized

spin-connection

AM [m̄n̄] =

(
0

eµ
m Φ̄mm̄n̄

)
. (6.7)

Likewise, the corresponding double-vielbein and generalized metric are also extended. Here-

after, we will construct several nontrivial solutions of the heterotic DFT that feature all

these structures.

6.1.1 Symmetric dual five-brane

First, we construct the symmetric 522-brane. Denote the coordinates of direction transverse

to the brane as (ρ, θ, z, ψ). The metric and Kalb-Ramond field are given by [113]

ds2 = f(dr2 + r2dθ2) + fK−1(dz2 + dψ2) and B = σθK−1dz ∧ dψ , (6.8)

where σ is a constant parameter, and f and K are defined as

f = σ log
µ

r
and K = f2 + σ2θ2 . (6.9)

The ansatz for Yang-Mills gauge field components are given by

Ar = 0 ,

Aθ =
σ

2
f−1t3 ,

Az = +
1

2
f−1K−1

[(
ff ′ sin θ − f ′σθ cos θ

)
t1 −

(
ff ′ cos θ + f ′σθ sin θ

)
t2
]
,

Aψ = −1

2
f−1K−1

[(
ff ′ cos θ + f ′σθ sin θ

)
t1 +

(
ff ′ sin θ − f ′σθ cos θ

)
t2
]
,

(6.10)

where f ′ = ∂rf , and ta(a = 1, 2, 3) are SU(2) generators defined as

t1 =




0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0


 , t2 =




0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0


 , t3 =




0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0


 . (6.11)

For consistency, this solution have to satisfy the so-called symmetric embedding ansatz,

which originates from the symmetric NS5-brane solution

Aµ = ω+µ . (6.12)
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According to the definition of the deformed spin-connection (6.2), the direct computation

of ω+µ gives

ω+r = K−1σθf ′ n34 ,

ω+θ = (−n12 +K−1σfn34) +
1

2
f−1σt3 ,

ω+z = +K−3/2

[
σθf ′t1 +

1

2
(f2 − σ2θ2)(log f)′t2

]
,

ω+ψ = −K−3/2

[
1

2
(f2 − σ2θ2)(log f)′t1 − σθf ′t2

]
,

(6.13)

where
(
nab

)
AB denotes the SO(4) generators.

As expressed, the above expressions appear to violate the embedding ansatz. However,

one can show that the Aµ and ω+µ are related by gauge transformations. We now wish

to find the explicit Yang-Mills gauge transformations and local Lorentz transformations

which connects Aµ and ω+µ. First, we take a gauge transformation for Aµ,

A′
µ = −∂µLL

−1 + LAµL
−1 , (6.14)

where the gauge parameter is chosen as

L =




sin θ − cos θ 0 0

cos θ sin θ 0 0

0 0 1 0

0 0 0 1


 ∈ SO(2) , (6.15)

then the A′
µ reads

A′
r = 0 ,

A′
θ = −n12 +

1

2
f−1σt3 ,

A′
z = +

1

2
K−1f ′(t1 − f−1σθt2

)
,

A′
ψ = −1

2
K−1f ′(f−1σθt1 + t2

)
.

(6.16)

Next, we take a local Lorentz transformation for the ω+µ,

ω′
µ = −∂µΛΛ

−1 + Λω+µΛ
−1 , (6.17)

where

Λ =




1 0 0 0

0 1 0 0

0 0 −K−1/2σθ K−1/2f

0 0 −K−1/2f −K−1/2σθ


 ∈ SO(2) . (6.18)

After the gauge transformations, ω′
µ exactly matches with A′

µ, and so the embedding ansatz

is satisfied. The connections A′
µ and ω′

µ are always combined according to the structure of

leading-order α′-corrections, they are canceled by the embedding ansatz (6.12). Thus, the
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leading-order α′-corrections do not contribute to the equations of motion, and the metric

and Bµν in (6.8) are reduced to the usual 522-brane solution. However, it is important

to note that the symmetric five-brane solution is not single-valued as the θ coordinate is

encircled around the origin, r = 0. We will see later that this provides an example of T -fold.

Next, we consider the non-geometric solution given in terms of the fields (g̃, β, Ã).

Using the inverse map defined in (5.38), we have a non-geometric solution whose metric g̃

and β fields are

g̃ =




f 0 0 0

0 fρ2 0 0

0 0 f−1 0

0 0 0 f−1


 and β = σθ ∂z ∧ ∂ψ , (6.19)

and Ãµ components, which correspond to the gauge transformed gauge field (6.16), are

Ãr = 0 ,

Ãθ =
1

r2
f−1n12 − 1

2

1

r2
σf−2t3 ,

Ãz = +
1

2r
σf−1t1 ,

Ãψ = − 1

2r
σf−1t2 .

(6.20)

The metric and β field are precisely the same as the non-geometric solution for the con-

ventional 522-brane.

6.1.2 Neutral and gauge branes

If we turn off the α′-corrections in heterotic supergravity, the bosonic part is identical to

the NS-NS-sector of the type II supergravity. Thus, the conventional 522-brane is also the

solution of heterotic supergravity. More generally, for the ansatz of vanishing heterotic

gauge field, heterotic supergravity solutions without α′-corrections is straightforwardly

obtained from type II supergravity solutions.

The gauge brane is also constructed without α′-corrections, and the deformed spin-

connection does not contribute. Using one-form gauge transformation for simplicity, the

Kalb-Ramond field can be set to be zero. The explicit solution is constructed in [113], and

is given by

ds2 = h
(
dr2 + r2dθ2

)
+ e−4φ0h

(
dz2 + dψ2

)
and B = 0 , (6.21)

where

h(r) = e2φ0 − α′σ̃2

2r2
f̃−1 , f̃ = h̃0 −

σ̃

2
log(r/µ) (6.22)
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and the gauge field components are

Ar = 0 ,

Aθ = − σ̃

4
f̃−1t3 ,

Az =
1

4r
σ̃f̃−1e−2φ0

(
cos θ t2 − sin θ t1

)
,

Aψ =
1

4r
σ̃f̃−1e−2φ0

(
cos θ t1 + sin θ t2

)
.

(6.23)

Note that all θ-dependences disappear once the same gauge transformation (6.14) is applied,

A′
r = 0 ,

A′
θ = −n12 − 1

4
σ̃f̃−1 t3 ,

A′
z = − 1

4r
σ̃f̃−1e−2φ0 t1 ,

A′
ψ = +

1

4r
σ̃f̃−1e−2φ0 t2 .

(6.24)

As such, the gauge brane solution given by (6.22) and (6.24) does not depend on θ. There-

fore, this solution is single-valued when θ encircles the origin, and so it just describes a

geometric background.

6.1.3 Generalized metric and monodromy

Consider next the generalized metric for the heterotic 522-branes. While the geometric

and non-geometric solutions are totally different, their associated generalized metrics are

identical. We decompose the O(D,D + dim G) vector indices M̂ into {M,a, ã}, where

M,N, · · · : O(D,D) vector indices ,

a, b, · · · : O(dimGYM) vector indices ,

ã, b̃, · · · : O(dimGLL) vector indices .

(6.25)

The generalized metric is block-decomposed as9

H
M̂N̂

=



HMN HMb HMb̃

HaN Hab Hab̃

HãN Hãb Hãb̃


 . (6.26)

We shall now construct explicit form of the generalized metric for each type of five-brane

solutions and, from them, deduce the corresponding monodromy matrix.

9In this section, for simplicity, we use the different index ordering from (5.26) and (5.34).

– 40 –



J
H
E
P
0
7
(
2
0
1
7
)
0
7
5

For symmetric solution, the corresponding generalized metric may be constructed

from (6.8) and (6.16). Focusing only on z and ψ directions, we find the explicit form as

Hsymm
MN =




f−1 0 0 σθf−1

0 f−1 −σθf−1 0

0 −σθf−1 Kf−1 0

σθf−1 0 0 Kf−1




,

Hsymm
Ma =




+1
2f

′f−2 t1

−1
2f

′f−2 t2

1
2f

′f−1
(
t1 − σθf−1t2

)

−1
2f

′f−1
(
t2 + σθf−1t1

)




,

Hsymm
ab = Hsymm

ab̃
= Hsymm

ãb̃
= − 1

4ρ2
σ2f−3

(
t1 ⊗ t1 + t2 ⊗ t2

)
,

(6.27)

Again the Hsymm

M̂N̂
flux is not single-valued as the angular coordinate θ encircles the origin.

Rather, it is transformed by an O(2, 2) monodromy

Hsymm(θ + 2π) = (Ωsymm)THsymm(θ)Ωsymm , (6.28)

where the monodromy matrix Ωsymm is given by

Ωsymm =



12 2πσiτ2 0

0 12 0

0 0 κ


 ∈ O(2, 2) where τ2 =

(
0 −i

i 0

)
. (6.29)

In fact, Ωsymm is identical to the usual 522-brane solution due to the embedding ansatz.

This shows that symmetric 522-brane background in heterotic supergravity is a T-fold.

Consider next the generalized metric for neutral brane. As we discussed above, the

gauge fields for neutral brane solution are trivial and the metric and Kalb-Ramond fields

are identical to the usual 522-brane solution. Thus, the corresponding generalized metric

should be identical as well:

Hneutral
MN = Hsymm

MN , Hneutral
Ma = Hneutral

ab = Hneutral
ab̃

= Hneutral
ãb̃

= 0 , (6.30)

and the monodromy matrix Ωneutral is given by

Ωneutral = Ωsymm . (6.31)

Consider finally the gauge brane solution. This solution is θ-independent, as shown

in (6.22) and (6.24), so the associated monodromy matrix is just the identity matrix:

Ωgauge = 1 . (6.32)

Therefore, the gauge brane solution is a geometric background.
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6.2 Exotic branes in the M-theory

We now consider defect brane solutions in the eleven-dimensional M-theory [46, 53, 62]. In

this case, the solution depends not only on the holomorphic function ρ(z) that behaves as

i σ
2π log(rc/z) near the center but also on another holomorphic function f(z) that behaves

as f(z) ≈ 1 near the center. As observed in [52, 53, 74], for a given background of a

conventional five-brane, we can easily find a background of its dual exotic branes through

the following redefinitions:

ρ(z) → −ρ−1(z) , ρ2 |f |2 → ρ2 |f |2 , σ → σ−1 . (6.33)

In the following, we shall study properties of exotic M5-brane backgrounds using our non-

geometric parameterization in the M-theory section.

6.2.1 53-brane

Consider the M-theory compactified on a d-torus (d ≥ 3) of radii Ri along the xi-directions.

In this case, we have the defect M5-brane, which is the M5-brane (extended in x3, . . . , x7-

directions) smeared along x8, x9, xM-directions, and also the Kaluza-Klein vortex, which is

the Kaluza-Klein monopole smeared along x8, x9, xM-directions. In addition, there exists

an exotic 53-brane (see appendix D). Below, we study each of them in detail.

The background of the defect M5(34567)-brane is given by

ds2 = ρ
−1/3
2

(
ρ2 |f |2 dz dz̄ + dx203···7

)
+ ρ

2/3
2 dx289M , A89M = ρ1 , (6.34)

where σ = σM5(34567) ≡ l311/R8R9RM. Using the exotic duality transformation (6.33), we

obtain the background of 53(34567, 89M)-brane as

ds2 =

(
ρ2

|ρ|2
)− 1

3 (
ρ2 |f |2 dz dz̄ + dx2034567

)
+

(
ρ2

|ρ|2
) 2

3

dx289M , A89M = − ρ1

|ρ|2
, (6.35)

where σ = σ53(34567,89M) ≡ R8R9RM/l311 . Since ρ1 is not single-valued, one can see that the

metric is not single-valued. In fact, nontrivial monodromy arises only from this function.

By comparing the two parameterization of a single generalized metric MMN and also

using (3.17), the 53 brane background (6.35) can be rewritten in the non-geometric param-

eterization as

ds̃2 = ρ
1/3
2

(
ρ2 |f |2 dz dz̄ + dx2034567

)
+ ρ

−2/3
2 dx289M , Ω89M = −ρ1 , (6.36)

which coincides with the result obtained in [79].

As the multi-valuedness appears only from the function ρ1, the metric in the non-

geometric parameterization is single-valued. On the other hand, the tri-vector Ω89M has a

monodromy, Ω89M → Ω89M−σ53(34567,89M), as one goes around the center. The monodromy

matrix for the generalized metric,

MMN → M′
MN = (ΩMΩT)MN (θ → θ + 2π) , (6.37)
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is given by

Ω53(34567,89M) = e
−σ53(34567,89M) ρR89M . (6.38)

For example, the monodromy matrix in E7(7) EFT becomes

Ω53(34567,89M)

=




δba 0 0 0

3
√
2σ53(34567,89M) δ

a1a2b
89M δa1a2b1b2

0 0

0
√

5!
2 σ53(34567,89M) δ

a1a2a3a4a5
89Mb1b2

δa1···a5b1···b5 0

0 0 3√
5!
σ53(34567,89M) δ

a
[8 ǫ9M]b1···b5 δab



.

(6.39)

From the expression (6.38), one can see that the exotic 53-brane is in one-to-one cor-

respondence with the Ed(d) generator Rabc, while the defect M5-brane is in one-to-one

correspondence with the generator Rabc.

We can extract the charge of 53(34567, 89A)-branes from the flux integral:

Q53(34567,89A) = −σ−1
53(34567,89A)

∮

C
dΩ89A = −σ−1

53(34567,89A)

∮

C
dxµ̂ Sµ̂

89A , (6.40)

where C is a contour in the transverse two-dimensional space that enclose the exotic brane

once counter-clockwise. In this sense, the exotic 53-brane can be regarded as the magnetic

source of the non-geometric S(1, 3)-flux.

6.2.2 26-brane

For d ≥ 6, there also arises another exotic 26-brane. The background of the defect M2(34)-

brane is given by

M2 : ds2 = ρ
−2/3
2

(
ρ2 |f |2 dz dz̄ + dx2034

)
+ ρ

1/3
2 dx256789A , A5···9A = ρ1 , (6.41)

where σ = σM2(34) ≡ l611/R5 · · ·R9RA , From this, we can obtain the configuration of

26(34, 56789A)-brane using (6.33) as

26 : ds2 =

(
ρ2

|ρ|2
)− 2

3 (
ρ2 |f |2 dz dz̄ + dx2034

)
+

(
ρ2

|ρ|2
) 1

3

dx256789A , A5···9A = − ρ1

|ρ|2
,

(6.42)

where σ = σ26(34,56789M) ≡ R5 · · ·R9RM/l611 .

In the non-geometric parameterization, the configuration of 26(34, 5 · · · 9M)-

brane (6.42) can be rewritten as

26 : ds̃2 = ρ
2/3
2

(
ρ2 |f |2 dz dz̄ + dx2034

)
+ ρ

−1/3
2 dx25···9M , Ω5···9M = −ρ1 . (6.43)

The multi-valuedness again appears only through Ω5···9M and the generalized metric un-

dergoes the monodromy transformation

MMN → M′
MN = (ΩMΩT)MN , (6.44)
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where the monodromy matrix is given by

Ω26(34,56789M) = e
σ26(34,56789M) ρR5···9M . (6.45)

Here again, we can count the charge of 26(34, 56789M)-branes by the flux integral,

Q26(34,56789M) = −σ−1
26(34,56789M)

∮

C
dΩ5···9M = −σ−1

26(34,56789M)

∮

C
dxµ̂ Sµ̂

5···9M , (6.46)

so the exotic 26-brane may be regarded as the magnetic source of non-geometric S(1, 6)-flux.

Note that, the conventional fields in the M2/M5-brane configuration and the non-

geometric fields in the 26/53-brane configuration are related each other in the following

manner:

gµν |conv. = gµν |exotic , Gij |conv. = G̃ij |exotic ,
Ai1i2i3 |conv. = − Ωi1i2i3 |exotic , Ai1···i6 |conv. = − Ωi1···i6 |exotic ,

equivalently,

gµν |conv. = gµν |exotic , MMN |conv. = M̃MN |exotic . (6.47)

Here, note that gµν = |G|
1

n−2 Gµν = |G̃|
1

n−2 G̃µν .

6.3 Exotic branes in the type IIB theory

We finally consider defect-brane solutions in the type IIB supergravity [46, 53, 62, 74].

6.3.1 522-brane

The type IIB 522-brane is the exotic dual to the defect NS5-brane. From the defect

NS5(34567)-brane configuration,

NS5 : ds2 = ρ2 |f |2 dz dz̄ + dx2034567 + ρ2 dx
2
89 , e2φ = ρ2 , B89 = ρ1 , (6.48)

where σ = σNS5 ≡ l2s/R8R9 , using (6.33), the 522-brane configuration is obtained as

522 : ds2 = ρ2 |f |2 dz dz̄ + dx2034567 +
ρ2

|ρ|2
dx289 , e2φ =

ρ2

|ρ|2
, B89 = − ρ1

|ρ|2
, (6.49)

where σ = σ522(34567,89) ≡ R8R9/l
2
s . Applying the relation (6.47) between the conventional

parameterizations and the non-geometric parameterizations of the generalized metric in

EFT, the 522-brane configuration in the non-geometric parameterization is obtained as

522 : ds̃2 = ρ2 |f |2 dz dz̄ + dx2034567 + ρ−1
2 dx289 , e2φ̃ = ρ−1

2 , β89 = −ρ1 . (6.50)

This coincides with the 522-brane solution in the β-supergravity [64, 74] or the SL(5)

EFT [79]. In the Einstein frame, this solution and the above NS5-brane solution in the

conventional parameterization are also related by (6.47). In fact, such relations persist to

hold for all solutions to be considered below. Since there is no internal-coordinate depen-

dence in the defect background, the potential part of the action does not contribute and
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the action has a symmetry under the map, gµν → gµν and MMN → M̃MN in (6.47) .

This is the reason why the identification (6.47) always connect the solutions in two different

parameterizations.

It is straightforward to check that the monodromy matrix for the generalized metric

is given by

Ω522(34567,89)
= e

−σ
522(34567,89)

ρ
R89
1 . (6.51)

We can explicitly check that the monodromy transformation is invariant under the T-

duality. To see this, note that the 522(34567, 89)-brane is also present in the type IIA

theory as the compactification of an (anti) 53(34567, 89M)-brane. Therefore, in the type

IIA (i.e. the M-theory) section, the monodromy matrix is given by

Ω522(34567,89)
= e

σ53(34567,89M) ρR89M . (6.52)

Note that the equality, σ53(34567,89M) = R8R9RM/l311 = R8R9/l
2
s = σ522(34567,89) , is satisfied.

We can count the charge of 522(34567, 89)-branes by the relevant flux integral,

Q522(34567,89)
= −σ−1

522(34567,89)

∮

C
dβ89 = −σ−1

522(34567,89)

∮

C
dxµ̂Qµ̂

89 , (6.53)

so the exotic 522-brane can be regarded as the magnetic source of the non-geometric Q(1, 2)-

flux. This was previously noted in [64, 70, 72].

6.3.2 p
7−p
3 -brane

Consider next exotic D-branes.

The background of defect Dp(3 · · · (p+ 2))-brane is given by

Dp : ds2 = ρ
−1/2
2

(
ρ2 |f |2 dz dz̄ + dx203···(p+2)

)
+ ρ

1/2
2 dx2(p+3)···9 ,

e2φ = ρ
3−p
2

2 , C(p+3)···9 = ρ1 ,
(6.54)

where σ = σDp(3···(p+2)) ≡ gs l
7−p
s /Rp+3 · · ·R9 . From this, we obtain the p7−p

3 (3 · · · (p +

2), (p+ 3) · · · 9) configuration as

p7−p
3 : ds2 =

(
ρ2

|ρ|2
)− 1

2 (
ρ2 |f |2 dz dz̄ + dx203···(p+2)

)
+

(
ρ2

|ρ|2
) 1

2

dx2(p+3)···9 ,

e2φ =

(
ρ2

|ρ|2
) 3−p

2

, C(p+3)···9 = − ρ1

|ρ|2
,

(6.55)

where σ = σ
p7−p
3 (3···(p+2),(p+3)···9) ≡ Rp+3 · · ·R9/gs l

7−p
s .

In the non-geometric parameterization, the p7−p
3 -brane configuration becomes

p7−p
3 : ds̃2 = ρ

1/2
2

(
ρ2 |f |2 dz dz̄ + dx203···(p+2)

)
+ ρ

−1/2
2 dx2(p+3)···9 ,

e2φ̃ = ρ
p−3
2

2 , γ(p+3)···9 = −ρ1 .
(6.56)
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From the above configurations, we obtain the monodromy matrices for 523 , 3
4
3 , and

163-branes given by

Ω523(3···7,89) = e
−σ

523(3···7,89)
ρ
R2
89 , (6.57)

Ω343(345,6···9) = e
σ
343(3···5,6···9)

ρR6789 , (6.58)

Ω163(3,4···9) = e
−σ

163(3,4···9)
ρ
R1
4···9 . (6.59)

Again, by circle compactification and T-duality transformation, the exotic 433 and 253-branes

in the type IIA theory appear as the compactification of 53, and 26-brane, respectively, and

their monodromy matrices are given by

Ω433(3456,789)
= e

−σ
433(3456,789)

ρR789 , (6.60)

Ω253(34,5···9) = e
σ
253(34,5···9)

ρR5···9M . (6.61)

The charge of p7−p
3 (3 · · · (p+ 2), (p+ 3) · · · 9)-branes is counted by the flux integral,

Q
p7−p
3 (3···(p+2),(p+3)···9) = −σ−1

p7−p
3 (3···(p+2),(p+3)···9)

∮

C
dγ(p+3)···9

= −σ−1

p7−p
3 (3···(p+2),(p+3)···9)

∮

C
dxµ̂ Pµ̂

(p+3)···9 , (6.62)

so the exotic p7−p
3 -brane can be regarded as the magnetic source of the non-geometric

P (1, 7−p)-flux.

6.3.3 164-brane

Consider finally exotic fundamental string. The defect fundamental string configuration,

F1(3), is given by

F1 : ds2 = ρ−1
2

(
ρ2 |f |2 dz dz̄ + dx203

)
+ dx24···9 , e2φ = ρ−1

2 , B4···9 = ρ1 , (6.63)

where σ = σF1(3) ≡ g2s l
6
s/R4 · · ·R9 . Thus, the 164(3, 4 · · · 9)-brane configuration becomes

164 : ds2 =
|ρ|2
ρ2

(
ρ2 |f |2 dz dz̄ + dx203

)
+ dx24···9 , e2φ =

|ρ|2
ρ2

, B4···9 = − ρ1

|ρ|2
, (6.64)

where σ = σ164(3,4···9) ≡ R4 · · ·R9/g
2
s l

6
s .

In the non-geometric parameterization, the above 164(3, 4 · · · 9)-brane configuration

becomes

164 : ds̃2 = ρ2
(
ρ2 |f |2 dz dz̄ + dx203

)
+ dx24···9 , e2φ̃ = ρ2 , β4···9 = −ρ1 . (6.65)

The monodromy matrix for the generalized metric is obtained as

Ω164(3,4···9) = e
−σ

164(3,4···9)
ρ
R2
4···9 . (6.66)

We count the charge of 164(3, 4 · · · 9)-branes from the flux integral,

Q164(3,4···9) = −σ−1
164(3,4···9)

∮

C
dβ4···9 = −σ−1

164(3,4···9)

∮

C
dxµ̂Qµ̂

4···9 , (6.67)

and so the exotic 164-brane can also be regarded as the magnetic source of non-geometric

Q(1, 6)-flux.
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7 Discussion

In this paper, we showed two parameterizations, conventional, geometric parameterization

and non-conventional, non-geometric parameterization, of the generalized metric in ex-

tended field theories from an approach based on different decomposition of the Lie algebra

for the duality transformation group. In this approach, the exotic duality between the two

parameterization was identified with the generalized transpose of the generalized vielbein.

We constructed the action of the extended field theories using the non-geometric parame-

terizations and, from them, obtained the effective actions for the non-geometric fluxes.

In the type IIA and IIB theories, obtained from the EFT, the effective action in-

volves the non-geometric P (1, q)-fluxes and Q(1, p)-fluxes with p = 2, 6, generalizing the

action of the β-supergravity that includes only the Q(1, 2)-flux. We also constructed the

effective action for heterotic theories by starting from the heterotic DFT in non-geometric

parameterization.

The non-geometric effective action we constructed in this work would open up many

directions for future research. Here, we list some of them that we are currently investigating.

• One would like to investigate various non-geometric background directly from the

non-geometric effective action. In particular, exotic brane backgrounds may be con-

structed directly from the non-geometric effective action. We would like to classify

all 1/2-BPS backgrounds.

• One also would like to understand the dynamics of defect branes in non-geometric

background. In particular, one wants to construct worldsheet conformal field theory

approach to the non-geometric backgrounds. These would be the non-geometric

counterpart of type II five-branes, whose near-horizon geometry is described by the

exact conformal field theory of Kazama-Suzuki coset model times super-Liouville

theory [116, 117, 121].

• This effective action we constructed contains multitude of non-geometric fluxes.

Therefore, it can describe the coexistence of different non-geometric fluxes. For exam-

ple, we can describe the non-geometric backgrounds that correspond to a bound-state

of various exotic branes. We would like to classify all 1/4-BPS non-BPS backgrounds.

• Apart from non-standard dilaton dependences, the type II non-geometric ac-

tions, (3.45) or (4.56), has the structure similar to the conventional type II super-

gravity action. It is thus possible to find various classical solutions of that action

that carry not only magnetic charges but also electric charges or dyonic charges. We

note that a family of new classical solutions carrying an electric charge for a non-

geometric potentials (such as βmn) was already found in [74] from the action for a

non-geometric flux.

• The non-geometric action in the Ed(d) EFT with d ≤ 7 does not contain all non-

geometric fluxes associated with all classified exotic branes. In order to describe all

non-geometric fluxes, we will need to consider the Ed(d) EFT with higher d. The
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E8(8) case can be also considered in a similar way, using the results of [122], but the

cases with d ≥ 9 will remain to be a challenging future program.

• The conserved charges in the conventional DFT are studied in [123–125]. There,

the string winding charges are reproduced as the Noether charges associated with

isometries along the dual directions. If we perform the same analysis in the E8(8)

EFT, the charges of conventional branes and exotic branes will be reproduced in the

same manner. Even in Ed(d) EFT with d ≤ 7, one may also reproduce the exotic

brane charges as magnetic charges extending the analysis performed in DFT [126],

where the non-geometric parameterization found in this paper will be useful.
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A Notations

We use the following notations for anti-symmetrization:

δ
a1···ap
b1···bp = δa1[b1 · · · δ

ap
bp]

=
1

p!

(
δa1b1 · · · δapbp ± permutations

)
, (A.1)

ei1i2a1a2 = (e−T)i1 [a1 (e
−T)i2a2] , e ≡ det ei

a , (A.2)

Gi1···in, j1···jn = δi1···ink1···kn G
k1j1 · · ·Gknjn , |G| ≡ detGij , (A.3)

where −T represents a combination of the inverse and the matrix transpose. Similar ex-

pressions, such as δ
i1···ip
j1···jp or G̃i1···in, j1···jn , are also used.

Our coordinates are normalized such that the flat metric has the form,

ds2 = δab dx
a dxb + δa1a2, b1b2 dx

a1a2 dxb1b2 + · · · . (A.4)

Then, if we redefine the coordinates in order to reduce the number of indices, we should

introduce the following numerical factors:

ya1···ap → za1···ad−p ≡ 1√
p!(d− p)!

ǫa1···ad−pb1···bp yb1···bp . (A.5)

Various indices are summarized as follows.

M-theory: (xµ̂) = (xµ, xi) (µ̂ = 0, . . . , 9,M, i = n, . . . , 9,M) , (A.6)

type IIA: (xµ̂) = (xµ, xm) (µ̂ = 0, . . . , 9, m = n, . . . , 9) , (A.7)

type IIB: (xµ̂) = (xµ, xm) (µ̂ = 0, . . . , 9, m = n, . . . , 9) , (A.8)

where µ = 0, . . . , n− 1 and n = 11− d .
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A.1 Ed(d) algebras: M-theory section

The Ed(d) algebra is given by [11]

[
Ka

b, K
c
d

]
= δcb K

a
d − δad K

c
b ,

[
Ka

b, R
a1a2a3

]
= 3 δ

[a1|
b Ra|a2a3] ,

[
Ka

b, Ra1a2a3

]
= − 3 δa[a1|Rb|a2a3] ,

[
Ka

b, R
a1···a6] = 6 δ

[a1|
b Ra|a2···a6] ,

[
Ka

b, Ra1···a6
]
= − 6 δa[a1|Rb|a2···a6] ,

[
Ra1a2a3 , Ra4a5a6

]
= Ra1···a6 ,

[
Ra1a2a3 , Rb1b2b3

]
= 18 δ

[a1a2
[b1b2

Ka3]
b3] − 2 δa1a2a3b1b2b3

D ,
[
Ra1a2a3 , Rb1···b6

]
= 120 δa1a2a3[b1b2b3

Rb4b5b6] ,[
Ra1a2a3 , Ra4a5a6

]
= Ra1···a6 ,

[
Ra1a2a3 , R

b1···b6] = 120 δ[b1b2b3a1a2a3 R
b4b5b6] ,

[
Ra1···a6 , Rb1···b6

]
= −4320 δ

[a1···a5
[b1···b5 Ka6]

b6] + 480 δa1···a6b1···b6 D , (A.9)

where D ≡ ∑
aK

a
a . Note that the normalizations of Ra1···a6 and Rb1···b6 are changed from

those used in [11] by a factor 2 and Ka
b corresponds to K̃a

b ≡ Ka
b − 1

n−2 δ
a
b

∑
µK

µ
µ

of [11].

The commutators of the Ed(d) generators with the central charges,(
Pa, Z

a1a2 , Za1···a5 , W a ≡ 1
7! ǫa1···a7 Z

a1···a7, a
)
, are given by [11]

[
Kc

d, Pa

]
= − δca Pd −

δcd
n− 2

Pa ,
[
Kc

d, Z
a1a2

]
= 2 δ

[a1|
d Zc|a2] − δcd

n− 2
Za1a2 ,

[
Kc

d, Z
a1···a5] = 5 δ

[a1|
d Zc|a2···a5] − δcd

n− 2
Za1···a5 ,

[
Kc

d, W
a
]
= δad W

c + δcdW
a − δcd

n− 2
W a ,

[
Rc1c2c3 , Pa

]
= 3 δ[c1a Zc2c3] ,

[
Rc1c2c3 , Za1a2

]
= Zc1···c3a1a2 ,

[
Rc1c2c3 , Za1···a5] = ǫa1···a5[c1c2 W c3] ,

[
Rc1···c6 , Pa

]
= − 6 δ[c1a Zc2···c6] ,

[
Rc1···c6 , Za1a2

]
= − 2 ǫa1a2[c1···c5 W c6] ,

[
Rc1c2c3 , Z

a1a2
]
= 3! δa1a2[c1c2

Pc3] ,

[
Rc1c2c3 , Z

a1···a5] = 5!

2
δ[a1a2a3c1c2c3 Za4a5] ,

[
Rc1c2c3 , W

a
]
=

9

5!
δa[c1 ǫc2c3]b1···b5 Z

b1···b5 ,

[
Rc1···c6 , Z

a1···a5] = − 6 · 5! δa1···a5bc1···c5c6 Pb ,
[
Rc1···c6 , W

a
]
= − 3 ǫc1···c6b Z

ba . (A.10)

Using the normalization of the central charges for Ed(d) with d ≤ 7 (see [11]),

(
ZA

)
=

(
Pa,

Za1a2
√
2

,
Za1···a5
√
5!

,
W a

3

)
, (A.11)

the algebra (A.10) together with (2.17) gives the following matrix representations for the

Ed(d) generators:

(ρKc
d
)A

B =




δca δ
b
d 0 0 0

0 −2 δ
[a1|
d δ

c|a2]
b1b2

0 0

0 0 −5 δ
[a1|
d δ

c|a2···a5]
b1···b5 0

0 0 0 −2 δ
(a
b δ

c)
d


+

δcd
n− 2

δBA , (A.12)
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(ρRc1c2c3 )A
B =




0 − 3!√
2
δc1c2c3a1b1b2

0 0

0 0 − 5!√
2·5! δ

c1c2c3a1a2
b1b2b3b4b5

0

0 0 0 − 3√
5!
ǫa1···a5[c1c2 δc3]b

0 0 0 0




, (A.13)

(ρRc1···c6 )A
B =




0 0 6!√
5!
δc1···c6ab1···b5 0

0 0 0 − 2√
2
ǫc1···c6[a1 δa2]b

0 0 0 0

0 0 0 0




, (A.14)

(ρRc1c2c3
)A

B =




0 0 0 0

− 3!√
2
δa1a2bc1c2c3 0 0 0

0 − 5!√
2·5! δ

a1a2a3a4a5
c1c2c3b1b2

0 0

0 0 − 3√
5!
δa[c1 ǫc2c3]b1···b5 0




, (A.15)

(ρRc1···c6
)A

B =




0 0 0 0

0 0 0 0
6!√
5!
δa1···a5bc1···c5c6 0 0 0

0 − 2√
2
δa[b1ǫb2]c1···c6 0 0


 . (A.16)

From the Cartan involution,

θ(Ka
b) = −Ka

b , θ(Rc1c2c3) = −Rc1c2c3 , θ(Rc1···c6) = Rc1···c6 , (A.17)

we can see that the generalized transpose is indeed the same as the matrix transpose;

(· · · )AB → (· · · )BA.

Concretely, for Ed(d) with d = 4, 5, 6, 7, the central charges, equivalently, the general-

ized momenta are given by

E7(7) :
(
ZA

)
=

(
Pa,

Za1a2
√
2

,
Za1···a5
√
5!

,
W a

3

)
,

E6(6) :
(
ZA

)
=

(
Pa,

Za1a2
√
2

,
Za1···a5
√
5!

)
,

SO(5, 5) :
(
ZA

)
=

(
Pa,

Za1a2
√
2

,
Za1···a5
√
5!

)
,

SL(5) :
(
ZA

)
=

(
Pa,

Za1a2
√
2

)
,

(A.18)

and the matrix representations for the Ed(d) generators with d = 4, 5, 6 are simply given

by truncating those of the E7(7) generators.

A.2 Ed(d) algebras: type IIB section

In the type IIB section, the Ed(d) generators are decomposed as [86]

{
Ka

b, Rαβ , R
a1a2
α , Rα

a1a2
, Ra1···a4 , Ra1···a4 , R

a1···a6
α , Rα

a1···a6
}
, (A.19)
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and the algebra is given by [86]

[
Ka

b, K
c
d

]
= δcb K

a
d − δad K

c
b ,

[
Ka

b, R
a1a2
α

]
= 2 δ

[a1|
b Ra|a2]

α ,
[
Ka

b, R
α
a1a2

]
= − 2 δa[a1|R

α
b|a2] ,[

Ka
b, R

a1···a4] = 4 δ
[a1|
b Ra|a2a3a4] ,

[
Ka

b, Ra1···a4
]
= − 4 δa[a1|Rb|a2a3a4] ,

[
Ka

b, R
a1···a6
α

]
= 6 δ

[a1|
b Ra|a2···a6]

α ,
[
Ka

b, R
α
a1···a6

]
= − 6 δa[a1|R

α
b|a2···a6] ,[

Rαβ , Rγδ

]
= δσ(α ǫβ)γ Rσδ + δσ(α ǫβ)δ Rγσ ,

[
Rαβ , R

a1a2
γ

]
= δδ(α ǫβ)γ R

a1a2
δ ,

[
Rαβ , R

γ
a1a2

]
= − δγ(α ǫβ)δ R

δ
a1a2

,
[
Rαβ , R

a1···a6
γ

]
= δδ(α ǫβ)γ R

a1···a6
δ ,

[
Rαβ , R

γ
a1···a6

]
= − δγ(α ǫβ)δ R

δ
a1···a6 ,[

Ra1a2
α , Rb1b2

β

]
= ǫαβ R

a1a2b1b2 ,

[
Ra1a2

α , Rβ
b1b2

]
= 4 δβα δ

[a1
[b1

Ka2]
b2] −

1

2
δβα δa1a2b1b2

D − 2 δa1a2b1b2
ǫβγ Rαγ ,

[
Ra1a2

α , Rb1···b4] = Ra1a2b1···b4
α ,

[
Ra1a2

α , Rb1···b4
]
= 12 ǫαβ δ

a1a2
[b1b2

Rβ
b3b4]

,
[
Ra1a2

α , Rβ
b1···b6

]
= 30 δβα δa1a2[b1b2

Rb3···b6] ,
[
Rα

a1a2
, Rβ

b1b2

]
= ǫαβ Ra1a2b1b2 ,

[
Rα

a1a2
, Rb1···b4] = 12 ǫαβ δ

[b1b2
a1a2 R

b3b4]
β ,

[
Rα

a1a2
, Rb1···b4

]
= Rα

a1a2b1···b4 ,
[
Rα

a1a2
, Rb1···b6

β

]
= 30 δαβ δ

[b1b2
a1a2 Rb3···b6] ,

[
Ra1···a4 , Rb1···b4

]
= 12 δa1···a4b1···b4 D − 96 δ

[a1a2a3
[b1b2b3

Ka4]
b4] ,

[
Ra1···a4 , Rα

b1···b6
]
= 360 δa1···a4[b1···b4 R

α
b5b6]

,
[
Ra1···a4 , R

b1···b6
α

]
= 360 δ

[b1···b4
a1···a4 Rb5b6]

α ,
[
Ra1···a6

α , Rβ
b1···b6

]
= 1080 δβα δ

[a1···a5
[b1···b5 K

a6]
b6] − 135 δβα δa1···a6b1···b6 D − 180 δa1···a6b1···b6 ǫ

βγ Rαγ . (A.20)

Note that the definitions of Rα
a1a2

, Ra1a2
α , Ra1···a4 , and Ra1···a4 are changed from those used

in [86] by a minus sign and Ka
b corresponds to Ka

b − 1
n−2 δ

a
b

∑
µK

µ
µ of [86].

The commutators of the Ed(d) generators with the central charges,

(
Pa, Za

α, Za1a2a3 , Za1···a5
α , Za1···a6, a) , (A.21)

are given by [86]

[
Kc

d, Pa

]
= − δca Pd −

δcd
n− 2

Pa ,
[
Kc

d, Za
α

]
= δad Zc

α − δcd
n− 2

Za
α ,

[
Kc

d, Za1a2a3
]
= 3 δ

[a1|
d Zc|a2a3] − δcd

n− 2
Za1a2a3 ,

[
Kc

d, Za1···a5
α

]
= 5 δ

[a1|
d Zc|a2···a5]

α − δcd
n− 2

Za1···a5
α ,

[
Kc

d, W
a
]
= δad W

c + δcdW
a − δcd

n− 2
W a ,

[
Rγδ, Za

α

]
= δβ(γ ǫδ)αZ

a
β ,

[
Rγδ, Za1···a5

α

]
= δβ(γ ǫδ)αZ

a1···a5
β ,

[
Rc1c2

γ , Pa

]
= − δ

[c1
a Zc2]

γ ,
[
Rc1c2

γ , Za
α

]
= ǫγαZc1c2a ,

[
Rc1c2

γ , Za1a2a3
]
= −Zc1c2a1a2a3

γ ,
[
Rc1c2

γ , Za1···a5
α

]
= ǫγα ǫ

c1c2[a1···a4 W a5] ,

– 51 –



J
H
E
P
0
7
(
2
0
1
7
)
0
7
5

[
Rc1···c4 , Pa

]
= − 2 δ

[c1
a Zc2c3c4] ,

[
Rc1···c4 , Za

α

]
= Zc1···c4a

α ,

[
Rc1···c4 , Za1a2a3

]
= − 3

5
ǫc1···c4[a1a2 W a3] ,

[
Rc1···c6

γ , Pa

]
= 3 δ

[c1
a Zc2···c6]

γ ,
[
Rc1···c6

γ , Za
α

]
=

1

5
ǫγα ǫ

c1···c6 W a ,

[
Rγ

c1c2
, Za

α

]
= 4 δγα δ

a
[c1

Pc2] ,
[
Rγ

c1c2
, Za1a2a3

]
= 3! ǫγβ δ

[a1a2
c1c2 Za3]

β ,

[
Rγ

c1c2
, Za1···a5

α

]
= − 20δγα δ

[a1a2
c1c2 Za3a4a5] ,

[
Rγ

c1c2
, W a

]
=

5

24
ǫγδ ǫc1c2d1···d4 Zd1···d4a

δ ,

[
Rc1···c4 , Za1a2a3

]
= − 48 δa1a2a3[c1c2c3

Pc4] ,
[
Rc1···c4 , Za1···a5

α

]
= − 5! δ

[a1···a4
c1···c4 Za5]

α ,

[
Rc1···c4 , W

a
]
=

5

2
ǫc1···c4d1d2 Zd1d2a ,

[
Rγ

c1···c6 , Z
a1···a5
α

]
= −12 · 5!δγα δa1···a5[c1···c5 Pc6] ,

[
Rγ

c1···c6 , W
a
]
= 5 ǫγδ ǫc1···c6 Z

a
δ . (A.22)

Using the normalization of the generators,

(ZA) ≡
(
Pa,

Za
α

2
,
Za1a2a3

2
√
3!

,
Za1···a5
α

2
√
5!

,
W a

10

)
, (A.23)

we obtain the following matrix representations:

(ρKc
d
)A

B =




δca δ
b
d 0 0 0 0

0 −δad δ
c
b δ

β
α 0 0 0

0 0 −3 δc[b1|δ
a1a2a3
d|b2b3] 0 0

0 0 0 −5 δc[b1|δ
a1···a5
d|b2···b5] δ

β
α 0

0 0 0 0 −2 δ
(a
d δ

c)
b



+

δcd
n− 2

δBA , (A.24)

(ρRγδ
)A

B =




0 0 0 0 0

0 −δβ(γ ǫδ)α δ
a
b 0 0 0

0 0 0 0 0

0 0 0 −δβ(γ ǫδ)α δ
a1···a5
b1···b5 0

0 0 0 0 0



, (A.25)

(ρRc1c2
γ

)A
B =




0 2 δβγ δ
c1c2
ab 0 0 0

0 0 3!√
3!
ǫαγ δ

ac1c2
b1b2b3

0 0

0 0 0 5!√
3! 5!

δβγ δa1a2a3c1c2b1···b5 0

0 0 0 0 − 2√
5!
ǫαγ ǫ

a1···a5[c1δc2]b

0 0 0 0 0



, (A.26)

(ρRc1···c4 )A
B =




0 0 4!√
3!
δc1···c4ab1b2b3

0 0

0 0 0 − 5!√
5!
δβα δac1···c4b1···b5 0

0 0 0 0 − 4√
3!
ǫa1a2a3[c1c2c3δ

c4]
b

0 0 0 0 0

0 0 0 0 0



, (A.27)

(ρRc1···c6
γ

)A
B =




0 0 0 − 6!√
5!
δβγ δc1···c6ab1···b5 0

0 0 0 0 −ǫγα ǫ
c1···c6 δab

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



, (A.28)
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(ρRγ
c1c2

)A
B =




0 0 0 0 0

−2 δγαδabc1c2 0 0 0 0

0 3!√
3!
ǫβγ δa1a2a3bc1c2

0 0 0

0 0 5!√
3! 5!

δγα δ
a1···a5
b1b2b3c1c2

0 0

0 0 0 − 2√
5!
ǫβγ ǫb1···b5[c1δ

a
c2]

0



, (A.29)

(ρRc1···c4
)A

B =




0 0 0 0 0

0 0 0 0 0
4!√
3!
δa1a2a3bc1···c4 0 0 0 0

0 5!√
5!
δβα δa1···a5bc1···c4 0 0 0

0 0 4√
3!
ǫb1b2b3[c1c2c3δ

a
c4]

0 0



, (A.30)

(ρRγ
c1···c6

)A
B =




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
6!√
5!
δγα δa1···a5bc1···c6 0 0 0 0

0 −ǫγβ ǫc1···c6 δ
a
b 0 0 0



. (A.31)

From the Cartan involution,

θ(Ka
b) = −Ka

b , θ(Ra1···a6
α ) = −Rα

a1···a6 , θ(Ra1a2
α ) = −Rα

a1a2
, (A.32)

θ(Ra1···a4) = Ra1···a4 θ(Rαβ) = ǫαγ ǫβδ δ
γγ′

δδδ
′

Rγ′δ′ , (A.33)

we can see that the generalized transpose is indeed the same as the matrix transpose.

B Calculation of the EFT action

In this appendix, we summarize the construction of diverse EFTs. To construct the EFT

action, we find it convenient to decompose the generalized metric as

MMN ≡ (V M̂V T)MN = |G|
1

n−2 MMN where MMN ≡ (V M̂V T)MN , (B.1)

and define a connection

ωµ̂M
N ≡ (V −1)M

K ∂µ̂VK
N , (B.2)

where the index µ̂ runs over all conventional directions, (µ, i) in the M or Type IIA theory

and (µ, m) in the type IIB theory. We begin with showing the explicit form of M̂MN ,

VM
N , and ωµ̂M

N for various EFTs and then construct the action in each case.

B.1 Redefinitions of coordinates

For explicit computation of the effective action, it is more useful to redefine the coordinates

and central charges to minimize the cluttering indices.

M-theory section. In the M-theory section of the Ed(d) exceptional space with n =

6, 5, 4, we redefine the coordinates as follows [11]:

n = 6 :
(
yM

)
= (xi, yij , z) (i, j = 6, . . . , 9,M) ,

n = 5 :
(
yM

)
= (xi, yij , z

i) (i, j = 5, . . . , 9,M) ,

n = 4 :
(
yM

)
= (xi, yij , z

ij , zi) (i, j = 4, . . . , 9,M) .

(B.3)
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Here, we defined

zi1···id−5 ≡ 1√
(d− 5)! 5!

ǫi1···id−5j1···j5 yj1···j5 (d = 5, 6, 7) , (B.4)

and correspondingly, we also redefine the central charge as

Wa1···ad−5
≡ 1

5!
ǫa1···ad−5b1···b5 Zb1···b5 . (B.5)

The generalized momenta after the redefinitions are given by

(
ZA

)
=

(
Pa,

Za1a2
√
2

,
W a1···ad−5

√
(d− 5)!

)
. (B.6)

The untwisted generalized metric is then given as follows:

SL(5) : (M̂MN ) =

(
Gij 0

0 Gi1i2, j1j2

)
, (B.7)

SO(5, 5) : (M̂MN ) =



Gij 0 0

0 Gi1i2, j1j2 0

0 0 |G|−1


 , (B.8)

E6(6) : (M̂MN ) =



Gij 0 0

0 Gi1i2, j1j2 0

0 0 |G|−1Gij


 , (B.9)

E7(7) : (M̂MN ) =




Gij 0 0 0

0 Gi1i2, j1j2 0 0

0 0 |G|−1Gi1i2, j1j2 0

0 0 0 |G|−1Gij


 . (B.10)

On the other hand, denoting the non-geometric fluxes as

Sµ̂
i1i2i3 ≡ ∂µ̂Ω

i1i2i3 and Sµ̂
i1···i6 ≡ ∂µ̂Ω

i1···i6 + 10Ω[i1i2i3 ∂µ̂Ω
i4i5i6] , (B.11)

the twist matrix VM
N and ωµ̂M

N given in (B.2) for the geometric or non-geometric pa-

rameterizations, respectively, are given as follows (we added tilde for V and ω for the

non-geometric parameterization):

SL(5) :

V =

(
δji − 1√

2
Aij1j2

0 δi1i2j1j2

)
, Ṽ =

(
δji 0

− 1√
2
Ωi1i2j δi1i2j1j2

)
, (B.12)

(
ωµ̂M

N
)
=

(
0 − 1√

2
∂µ̂Aij1j2

0 0

)
,

(
ω̃µ̂M

N
)
=

(
0 0

− 1√
2
Sµ̂

i1i2j 0

)
, (B.13)

SO(5, 5) :

V =




δji − 1√
2
Aij1j2

1
4 Aik1k2 Ã

k1k2

0 δi1i2j1j2
− 1√

2
Ãi1i2

0 0 1


 ,
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Ṽ =




δji 0 0

− 1√
2
Ωi1i2j δi1i2j1j2

0

1
4 Ω̃k1k2 Ω

k1k2j − 1√
2
Ω̃j1j2 1


 , (B.14)

(
ωµ̂M

N
)
=




0 − 1√
2
∂µ̂Aij1j2 0

0 0 − 1
3!

√
2
ǫi1i2k1k2k3 ∂µ̂Ak1k2k3

0 0 0


 , (B.15)

(
ω̃µ̂M

N
)
=




0 0 0

− 1√
2
Sµ̂

i1i2j 0 0

0 − 1
3!

√
2
ǫi1i2k1k2k3 Sµ̂

k1k2k3 0


 , (B.16)

Ãi1i2 ≡ 1

3!
ǫi1i2j1j2j3 Aj1j2j3 , Ω̃i1i2 ≡ 1

3!
ǫi1i2j1j2j3 Ω

j1j2j3 , (B.17)

E6(6) :

V =




δki 0 δki A6

0 δi1i2k1k2
0

0 0 δki







δjk − 1√
2
Akj1j2

1
4 Akl1l2 Ã

l1l2j

0 δk1k2j1j2
− 1√

2
Ãk1k2j

0 0 δjk


 , (B.18)

Ṽ =




δki 0 0

0 δi1i2k1k2
0

δki Ω6 0 δki







δjk 0 0

− 1√
2
Ωk1k2j δk1k2j1j2

0

1
4 Ω̃kl1l2 Ω

l1l2j − 1√
2
Ω̃kj1j2 δjk


 , (B.19)

(
ωµ̂M

N
)
=




0 − 1√
2
∂µ̂Aij1j2

1
6! δ

j
i ǫ

i1···i6 Fµ̂, i1···i6

0 0 − 1
3!
√
2
ǫi1i2jk1k2k3 ∂µ̂Ak1k2k3

0 0 0


 , (B.20)

(
ω̃µ̂M

N
)
=




0 0 0

− 1√
2
Sµ̂

i1i2j 0 0

1
6! δ

j
i ǫi1···i6 Sµ̂

i1···i6 − 1
3!
√
2
ǫij1j2k1k2k3 Sµ̂

k1k2k3 0


 , (B.21)

Ãi1i2j ≡ 1

3!
ǫi1i2jk1k2k3 Ak1k2k3 , A6 ≡

1

6!
ǫk1···k6 Ak1···k6 ,

Ω̃ij1j2 ≡ 1

3!
ǫij1j2k1k2k3 Ω

k1k2k3 , Ω6 ≡
1

6!
ǫk1···k6 Ω

k1···k6 ,

Fµ̂, i1···i6 ≡ ∂µ̂Ai1···i6 − 10A[i1i2i3| ∂µ̂A|i4i5i6] , (B.22)

E7(7) :

V =




δki 0 − 1√
2
Ãi

k1k2 0

0 δi1i2k1k2
0 1√

2
(ÃT)i1i2k

0 0 δk1k2i1i2
0

0 0 0 δik



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·




δjk − 1√
2
Akj1j2

1
4
√
2
Akl1l2 Ã

l1l2j1j2 − 1
24 Akl1l2 Ã

l1l2l1l2 Al1l2j

0 δk1k2j1j2
−1

2 Ã
k1k2j1j2 1

4
√
2
Ãk1k2l1l2 Al1l2j

0 0 δj1j2k1k2
− 1√

2
Ak1k2j

0 0 0 δkj




, (B.23)

Ṽ =




δki 0 0 0

0 δi1i2k1k2
0 0

− 1√
2
Ω̃i1i2

k 0 δk1k2i1i2
0

0 1√
2
(Ω̃T)ik1k2 0 δik




·




δjk 0 0 0

− 1√
2
Ωk1k2j δk1k2j1j2

0 0

1
4
√
2
Ω̃k1k2l1l2 Ω

l1l2j −1
2 Ω̃k1k2j1j2 δj1j2k1k2

0

− 1
24 Ω

kl1l2 Ω̃l1l2l1l2 Ω
l1l2j 1

4
√
2
Ωkl1l2 Ω̃l1l2j1j2 − 1√

2
Ωkj1j2 δkj




, (B.24)

(
ωµ̂M

N
)
=




0 −∂µ̂Aij1j2√
2

−2 δ
[j1
i ǫj2]k1···k6 Fµ̂, k1···k6

6!
√
2

0

0 0 − 1
2·3! ǫ

i1i2j1j2k1k2k3∂µ̂Ak1k2k3

2 δ
[i1
j ǫi2]k1···k6 Fµ̂, k1···k6

6!
√
2

0 0 0 − 1√
2
∂µ̂Ai1i2j

0 0 0 0




, (B.25)

(
ω̃µ̂M

N
)
=




0 0 0 0

−Sµ̂
i1i2j√
2

0 0 0

−
2 δ[i1 ǫj

i2]k1···k6
Sµ̂

k1···k6

6!
√
2

− 1
2·3! ǫi1i2j1j2k1k2k3 Sµ̂

k1k2k3 0 0

0
2 δi

[j1
ǫj2]k1···k6 Sµ̂

k1···k6

6!
√
2

− 1√
2
Sµ̂

ij1j2 0




,

(B.26)

Ãi1i2j1j2 ≡ 1

3!
ǫi1i2j1j2k1k2k3 Ak1k2k3 , Ω̃i1i2j1j2 ≡ 1

3!
ǫi1i2j1j2k1k2k3 Ω

k1k2k3 ,

Ãi
j1j2 ≡ 2

6!
δ
[j1
i ǫj2]k1···k6 Ak1···k6 , (ÃT)i1i2j ≡ Ãj

i1i2 ,

Ω̃i1i2
j ≡ 2

6!
δj[i1 ǫi2]k1···k6 Ω

k1···k6 , (Ω̃T)ij1j2 ≡ Ω̃j1j2
i ,

Fµ̂, k1···k6 ≡ ∂µ̂Ak1···k6 − 10A[k1k2k3|∂µ̂A|k4k5k6] . (B.27)

Type IIB section. In the type IIB section, we redefine the coordinates as follows:

n = 7 :
(
yM

)
= (xm, yαm, z) (α = 1, 2, m = 7, 8, 9) ,

n = 6 :
(
yM

)
= (xm, yαm, z

m) (α = 1, 2, m = 6, . . . , 9) ,

n = 5 :
(
yM

)
= (xm, yαm, z

m1m2 , zα) (α = 1, 2, m = 5, . . . , 9) ,

n = 4 :
(
yM

)
= (xm, yαm, ym1m2m3 , z

α,m, zm) (α = 1, 2, m = 4, . . . , 9) .

(B.28)

Here, we defined

zm1···md−5 ≡ 1√
(d− 3)! 3!

ǫm1···md−3n1n2n3 yn1n2n3 (d = 3, 4, 5) , (B.29)

zα,m1···md−5 ≡ 1√
(d− 5)! 5!

ǫm1···md−5n1···n5 yαn1···n5 (d = 5, 6) , (B.30)
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and correspondingly, we also redefined the central charge as

Wa1···ad−3
≡ 1

3!
ǫa1···ad−3b1b2b3 Zb1b2b3 (d = 3, 4, 5) , (B.31)

Wα, a1···ad−5
≡ 1

5!
ǫa1···ad−5b1···b5 Zb1···b5 (d = 5, 6) . (B.32)

After these redefinitions, the generalized momenta are given by

(
ZA

)
≡

(
Pa,

Za
α

2
,

W a1···ad−3

2
√
(d− 3)!

)
(d = 4, 5) , (B.33)

(ZA) ≡
(
Pa,

Za
α

2
,
W a1a2

2
√
2

,
Wα

2

)
(d = 6) , (B.34)

(ZA) ≡
(
Pa,

Za
α

2
,
Za1a2a3

2
√
3!

,
Wα,a

2
,
W a

10

)
(d = 7) . (B.35)

The untwisted generalized metric is then given as follows:

SL(5) : (M̂MN ) =



Gmn 0 0

0 mαβ G
mn 0

0 0 |G|−1


 , (B.36)

SO(5, 5) : (M̂MN ) =



Gmn 0 0

0 mαβ G
mn 0

0 0 |G|−1Gmn


 , (B.37)

E6(6) : (M̂MN ) =




Gmn 0 0 0

0 mαβ G
mn 0 0

0 0 |G|−1Gm1m2, n1n2 0

0 0 0 mαβ |G|−1


, (B.38)

E7(7) : (M̂MN ) =




Gmn 0 0 0 0

0 mαβ G
mn 0 0 0

0 0 Gm1m2m3, n1n2n3 0 0

0 0 0 mαβ |G|−1Gmn 0

0 0 0 0 |G|−1Gmn



.

(B.39)

On the other hand, if we define the non-geometric fluxes as

(
Qα, µ̂

mn
)
≡

(
Qµ̂

mn

Pµ̂
mn

)
≡

(
∂µ̂β

mn
α

)
, (B.40)

Pµ̂
m1···m4 ≡ ∂µ̂η

m1···m4 + 3 ǫγδ β[m1m2
γ ∂µ̂β

m3m4]
δ , (B.41)

(
Qα, µ̂

p1···p6) ≡
(
Pµ̂

p1···p6

Qµ̂
p1···p6

)

≡
(
∂µ̂β

p1···p6
α + 15β[p1p2

α ∂µ̂η
p3···p6] + 15 ǫγδ β[p1p2

α βp3p4
γ ∂µ̂β

p5p6]
δ

)
, (B.42)
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the twist matrix VM
N and ωµ̂M

N are given as follows:

SL(5) :

V =




δnm Bβ
mn

1
2 B

γ
mp B̃

p
γ

0 δβα δmn B̃m
α

0 0 1


, B̃m

α ≡ 1

2
ǫαγ ǫ

mp1p2 Bγ
p1p2

, (B.43)

Ṽ =




δnm 0 0

−βmn
α δβα δmn 0

−1
2 β

mn
α β̃β

n β̃β
n 1


, β̃β

n ≡ 1

2
ǫβγ ǫnq1q2 β

q1q2
γ , (B.44)

(
ωµ̂M

N
)
=




0 ∂µ̂B
β
mn 0

0 0 1
2 ǫαγ ǫ

mp1p2∂µ̂B
γ
p1p2

0 0 0


 , (B.45)

(
ω̃µ̂M

N
)
=




0 0 0

−Qα, µ̂
mn 0 0

0 1
2 ǫ

βγ ǫnq1q2 Qγ, µ̂
q1q2 0


 , (B.46)

SO(5, 5) :

V = V4 · V2 , where (B.47)

V2 =




δnm Bβ
mn −1

2 B
γ
mp B̃

pn
γ

0 δβα δmn −B̃mn
α

0 0 δnm


, V4 =




δnm 0 D4 δ
n
m

0 δβα δmn 0

0 0 δnm


, (B.48)

B̃mn
α ≡ 1

2
ǫαγ ǫ

mnp1p2 Bγ
p1p2

, D4 ≡
1

4!
ǫm1···m4 Dm1···m4 , (B.49)

Ṽ = Ṽ4 · Ṽ2 , where (B.50)

Ṽ2 =




δnm 0 0

−βmn
α δβα δmn 0

−1
2 β̃

γ
mp β

pn
γ β̃β

mn δnm


, Ṽ4 =




δnm 0 0

0 δβα δmn 0

η4 δ
n
m 0 δnm


, (B.51)

β̃β
mn ≡ 1

2
ǫβγ ǫmnp1p2 β

p1p2
γ , η4 ≡

1

4!
ǫm1···m4 η

m1···m4 , (B.52)

(
ωµ̂M

N
)
=




0 ∂µ̂B
β
mn

1
4! δ

n
m ǫp1···p4 Gµ̂, p1···p4

0 0 −1
2 ǫαγ ǫ

mnp1p2 ∂µ̂B
γ
p1p2

0 0 0


 , (B.53)

(
ω̃µ̂M

N
)
=




0 0 0

−Qα, µ̂
mn 0 0

1
4! δ

n
m ǫp1···p4 Pµ̂

p1···p4 1
2 ǫ

βγ ǫmnp1p2 Qγ, µ̂
p1p2 0


 , (B.54)

Gµ̂, p1···p4 ≡ ∂µ̂Dp1···p4 − 3 ǫγδ B
γ
[p1p2| ∂µ̂B

δ
|p3p4] , (B.55)
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E6(6) :

V = V4 · V2 , where (B.56)

V2 =




δnm Bβ
mn

1
2
√
2
Bγ

mp B̃
pn1n2
γ

1
12 B

γ
mp1 B̃

p1p2p3
γ Bβ

p2p3

0 δβα δmn
1√
2
B̃mn1n2

α
1
4 B̃

mp1p2
α Bβ

p1p2

0 0 δn1n2m1m2

1√
2
Bβ

m1m2

0 0 0 δβα




(B.57)

V4 =




δnm 0 1√
2
D̃n1n2

m 0

0 δβα δmn 0 −δβα D̃m

0 0 δn1n2m1m2
0

0 0 0 δβα



, (B.58)

B̃mn1n2
α ≡ 1

2
ǫαγ ǫ

mn1n2p1p2 Bγ
p1p2

, D̃n1n2
m ≡ 1

3!
ǫn1n2p1p2p3 Dmp1p2p3 ,

D̃m ≡ 1

4!
ǫmp1···p4 Dp1···p4 , (B.59)

Ṽ = Ṽ4 · Ṽ2 , where (B.60)

Ṽ2 =




δnm 0 0 0

−βmn
α δβα δmn 0 0

− 1
2
√
2
β̃β
m1m2p β

pn
α

1√
2
β̃β
m1m2n δn1n2m1m2

0

− 1
12 βp1p2

α β̃γ
p1p2p3 β

p3n
γ

1
4 β

p1p2
α β̃β

p1p2n
1√
2
βn1n2
α δβα



, (B.61)

Ṽ4 =




δnm 0 0 0

0 δβα δmn 0 0

1√
2
η̃nm1m2

0 δn1n2m1m2
0

0 −δβα γ̃n 0 δβα



, (B.62)

β̃β
m1m2n

≡ 1

2
ǫβγ ǫm1m2np1p2 β

p1p2
γ , η̃nm1m2

≡ 1

3!
ǫm1m2p1p2p3 η

np1p2p3 ,

γ̃n ≡ 1

4!
ǫnq1···q4 γ

q1···q4 , (B.63)

(
ωµ̂M

N
)
=




0 ∂µ̂B
β
mn

1
3!
√
2
δ
[p1
m ǫp2p3p4]n1n2 Gµ̂, p1···p4 0

0 0 1
2
√
2
ǫαγ ǫ

mn1n2p1p2 ∂µ̂B
γ
p1p2 − 1

4! δ
β
α ǫmp1···p4 Gµ̂, p1···p4

0 0 0 1√
2
∂µ̂B

β
m1m2

0 0 0 0



, (B.64)

(
ω̃µ̂M

N
)
=




0 0 0 0

−Qµ̂, α
mn 0 0 0

1
3!
√
2
δn[p1 ǫp2p3p4]m1m2

Pµ̂
p1···p4 1

2
√
2
ǫαγ ǫm1m2np1p2 Qµ̂, γ

p1p2 0 0

0 − 1
4! δ

β
α ǫnq1···q4 Pµ̂

q1···q4 1√
2
Qµ̂, α

n1n2 0



, (B.65)

Gµ̂,m1···m4 ≡ ∂µ̂Dm1···m4 − 3 ǫγδ B
γ
[m1m2| ∂µ̂B

δ
|m3m4]

, (B.66)
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E7(7) :

V = V6 · V4 · V2 , (B.67)

V2 =




δnm Bβ
mn

1
2
√
6
Bγ

mpB
p
γ, n1n2n3 − 1

36 B
γ
mpB

p
γ, q1q2q3 B̃

β, q1q2q3n − 1
144 ǫδζ B

γ
mpB

p
γ, q1q2q3 B̃

δ, q1q2q3r Bζ
rn

0 δβα δmn
1√
6
Bm

α, n1n2n3 − 1
12 B

m
α, p1p2p3 B̃

β, p1p2p3n − 1
36 ǫγδ B

m
α, p1p2p3 B̃

γ, p1p2p3qBδ
qn

0 0 δm1m2m3
n1n2n3

− 1√
6
B̃β,m1m2m3n − 1

2
√
6
ǫγδ B̃

γ,m1m2m3pBδ
pn

0 0 0 δβα δnm ǫαγ B
γ
mn

0 0 0 0 δmn




,

(B.68)

V4 =




δnm 0 1√
6
Dmn1n2n3 0 − 1

12 Dmp1p2p3 D̃
p1p2p3
n

0 δβα δmn 0 δβα D̃mn 0

0 0 δm1m2m3
n1n2n3

0 − 1√
6
D̃m1m2m3

n

0 0 0 δβα δnm 0

0 0 0 0 δmn




, (B.69)

V6 =




δnm 0 0 −Bβ
6 δnm 0

0 δβα δmn 0 0 ǫαγ B
γ
6 δ

m
n

0 0 δm1m2m3
n1n2n3

0 0

0 0 0 δβα δnm 0

0 0 0 0 δmn




, (B.70)

Bm
α, n1n2n3 ≡ 3 ǫαγ δ

m
[n1

Bγ
n2n3]

, B̃α,m1m2m3n ≡ 1

2
ǫm1m2m3np1p2 Bα

p1p2
, (B.71)

D̃mn ≡ 1

4!
ǫmnp1···p4 Dp1···p4 , D̃m1m2m3

n ≡ 1

3!
ǫm1m2m3p1p2p3 Dp1p2p3n ,

Bα
6 ≡ 1

6! ǫ
p1···p6 Bα

p1···p6 , (B.72)

Ṽ = Ṽ6 · Ṽ4 · Ṽ2 , where (B.73)

Ṽ2 =




δnm 0 0 0 0

−βmn
α δβα δmn 0 0 0

− 1
2
√
6
β̃γ,m1m2m3
p βpn

γ
1√
6
β̃β,m1m2m3
n δm1m2m3

n1n2n3
0 0

− 1
36 β̃α,mp1p2p3 β̃

γ, p1p2p3
q βqn

γ
1
12 β̃α,mp1p2p3 β̃

β, p1p2p3
n

1√
6
β̃α,mn1n2n3 δβα δnm 0

− 1
144 ǫ

γδ βmp
γ β̃δ, pq1q2q3 β̃

δ, q1q2q3
r βrn

δ
1
36 ǫ

γδ βmp
γ β̃δ, pq1q2q3 β̃

β, q1q2q3
n

1
2
√
6
ǫγδ βmp

γ β̃δ, pn1n2n3 −ǫβγ βmn
γ δmn



,

(B.74)

Ṽ4 =




δnm 0 0 0 0

0 δβα δmn 0 0 0

− 1√
6
ηm1m2m3n 0 δm1m2m3

n1n2n3
0 0

0 −δβα η̃mn 0 δβα δnm 0

1
12 η̃

m
p1p2p3

ηp1p2p3n 0 − 1√
6
η̃mn1n2n3 0 δmn




, (B.75)

Ṽ6 =




δnm 0 0 0 0

0 δβα δmn 0 0 0

0 0 δm1m2m3
n1n2n3

0 0

−β6
α δ

n
m 0 0 δβα δnm 0

0 ǫβγ β6
γ δ

m
n 0 0 δmn




, (B.76)
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ββ,m1m2m3
n ≡ 3 ǫβγ δ

[m1
n βm2m3]

γ , β̃α,m1m2m3n ≡ 1

2
ǫm1m2m3np1p2 β

p1p2
α , (B.77)

η̃mn ≡ 1

4!
ǫmnp1···p4 η

p1···p4 , η̃nm1m2m3
≡ 1

3!
ǫm1m2m3p1p2p3 η

p1p2p3n ,

β6
α ≡ 1

6!
ǫp1···p6 β

p1···p6
α , (B.78)

(
ωµ̂M

N
)
=




0 ∂µ̂B
β
mn

1√
6
Gµ̂,mn1n2n3 − 1

6! δ
n
m ǫp1···p6 Gβ

µ̂, p1···p6 0

0 0 3√
6
ǫαγ δ

m
[n1|∂µ̂B

γ
|n2n3]

1
4! δ

β
α ǫmnp1···p4 Gµ̂, p1···p4

1
6! ǫαγ δ

m
n ǫp1···p6 Gγ

µ̂,p1···p6
0 0 0 − 1

2
√
6
ǫm1m2m3np1p2 ∂µ̂B

β
p1p2 − 1

3!
√
6
ǫm1m2m3p1p2p3 Gµ̂, p1p2p3n

0 0 0 0 ǫαγ ∂µ̂B
γ
mn

0 0 0 0 0




, (B.79)

(
ω̃µ̂M

N
)
=




0 0 0 0 0

−Qα, µ̂
mn 0 0 0 0

− 1√
6
Pµ̂

m1m2m3n 3√
6
ǫβγ δ

[m1
n Qγ, µ̂

m2m3] 0 0 0

− 1
6! δ

n
m ǫp1···p6 Qα, µ̂

p1···p6 − 1
4! δ

β
α ǫmnp1···p4 Pµ̂

p1···p4 1
2
√
6
ǫmn1n2n3p1p2 Qα, µ̂

p1p2 0 0

0 1
6! ǫ

βγ δmn ǫp1···p6 Qγ, µ̂
p1···p6 − 1

3!
√
6
ǫn1n2n3p1p2p3 Pµ̂

p1p2p3m −ǫβγ Qγ, µ̂
mn 0




,

(B.80)

Gµ̂,m1···m4 ≡ ∂µ̂Dm1···m4 − 3 ǫγδ B
γ
[m1m2| ∂µ̂B

δ
|m3m4]

, (B.81)

Gβ
µ̂,m1···m6

≡ ∂µ̂B
β
m1···m6 − 15Bβ

[m1m2
∂µ̂Dm3···m6] + 15 ǫγδ B

β
[m1m2

Bγ
m3m4| ∂µ̂B

δ
|m5m6]

.

(B.82)

B.2 External part

For the external part, we focus on the following two-derivative terms:

LEH = eR(g) and Lscalar =
e

4αn
gµν ∂µMMN ∂νMMN . (B.83)

Recalling the relation, gµν = |G|
1

n−2 gµν , the first term is given by

LEH = |g|
1
2 |G|1/2R(g) + 2 (n− 1) ∂µ

(
e gµν ∂ν ln |G|−

1
n−2

)

+ |g|
1
2 |G|

n/2
n−2

n− 1

4(n− 2)
gµν ∂µ ln |G| ∂ν ln |G|

= |G|
1
2

[
R(g) +

n− 1

4(n− 2)
gµν ∂µ ln |G| ∂ν ln |G|

]
, (B.84)

where we defined |G|
1
2 = |g|

1
2 |G|

1
2 and neglected the total derivative term at the second

equality. For the scalar part, Lscalar, noting that the matrix V has a block-wise upper/lower

triangular form with constant diagonal elements, we obtain

Lscalar =
e

4αn
gµν ∂µM̂MN ∂νM̂MN − e

2αn
gµν M̂MN M̂PQ ωµM

P ωµN
Q , (B.85)
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where the first term simply becomes

e

4αn
gµν ∂µM̂MN ∂νM̂MN

=





|G|
1
2

[
1

4
gµν ∂µG

ij ∂νGij −
1

4(n− 2)
gµν ∂µ ln |G| ∂ν ln |G|

]
(M-theory)

|G|
1
2

[
1

4
gµν ∂µG

mn ∂νGmn −
1

4(n− 2)
gµν ∂µ ln |G| ∂ν ln |G|

+
1

4
gµν ∂µmαβ ∂νm

αβ

]
(type IIB)

.

(B.86)

We thus obtain

LEH + Lscalar

=





|G|
1
2

[
R(g)+

1

4
gµν ∂µG

ij ∂νGij+
1

4
gµν ∂µ ln |G| ∂ν ln |G|

]
+L(mat)

scalar (M-theory)

|G|
1
2

[
R(g) +

1

4
gµν ∂µG

mn ∂νGmn +
1

4
gµν ∂µ ln |G| ∂ν ln |G|

+
1

4
gµν ∂µmαβ ∂νm

αβ

]
+ L(mat)

scalar (type IIB)

,

(B.87)

L(mat)
scalar ≡− |G|

1
2

2αn
gµν M̂MN M̂PQ ωµM

P ωνN
Q , (B.88)

where we used, e gµν = |G|
1
2 gµν and M̂MN M̂PQ = M̂MN M̂PQ .

We can calculate the explicit form of L(mat)
scalar as follows:

M-theory section:

• SL(5), SO(5, 5) (geometric):

L(mat)
scalar = − |G|

1
2

2 · 3! g
µν Gi1i2i3, j1j2j3 ∂µAi1i2i3 ∂νAj1j2j3 , (B.89)

• E6, E7 (geometric):

L(mat)
scalar = − |G|

1
2 gµν

(
Gi1i2i3, j1j2j3

2 · 3! ∂µAi1i2i3 ∂νAj1j2j3

+
Gi1···i6, j1···j6

2 · 6! Fµ,i1···i6 Fν,j1···j6

)
, (B.90)

• SL(5), SO(5, 5) (non-geometric):

L(mat)
scalar = − |G̃|

1
2

2 · 3! g̃
µν G̃i1i2i3, j1j2j3 Sµ

i1i2i3 Sν
j1j2j3 , (B.91)
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• E6, E7 (non-geometric):

L(mat)
scalar = −|G̃|

1
2 g̃µν

(
G̃i1i2i3, j1j2j3

2 · 3! Sµ
i1i2i3 Sν

j1j2j3 +
G̃i1···i6, j1···j6

2 · 6! Sµ
i1···i6 Sν

j1···j6
)
,

(B.92)

Type IIB section:

• SL(5) (geometric):

L(mat)
scalar = − |G|

1
2

2 · 2! g
µν mαβ G

m1m2, n1n2 ∂µB
α
m1m2

∂νB
β
n1n2

, (B.93)

• SO(5, 5), E6 (geometric):

L(mat)
scalar = −|G|

1
2

2
gµν

(
mαβ G

m1m2, n1n2

2!
∂µB

α
m1m2

∂νB
β
n1n2

+
Gm1···m4, n1···n4

4!
Gµ,m1···m4 Gν,n1···n4

)
, (B.94)

• E7 (geometric):

L(mat)
scalar = −|G|

1
2

2
gµν

(
mαβ G

m1m2, n1n2

2!
∂µB

α
m1m2

∂νB
β
n1n2

+
Gm1···m4, n1···n4

4!
Gµ,m1···m4 Gν,n1···n4

+
mαβ G

m1···m6, n1···n6

6!
Gα
µ,m1···m6

Gβ
ν,n1···n6

)
, (B.95)

• SL(5) (non-geometric):

L(mat)
scalar = − |G̃|

1
2

2 · 2! g̃
µν m̃αβ G̃m1m2, n1n2 Qα,µ

m1m2 Qβ,ν
n1n2 , (B.96)

• SO(5, 5), E6 (non-geometric):

L(mat)
scalar = −|G̃|

1
2

2
g̃µν

(
m̃αβ G̃m1m2, n1n2

2!
Qα,µ

m1m2 Qβ,ν
n1n2

+
G̃m1···m4, n1···n4

4!
Pµ

m1···m4 Pν
n1···n4

)
, (B.97)

• E7 (non-geometric):

L(mat)
scalar = −|G̃|

1
2

2
g̃µν

(
m̃αβ G̃m1m2, n1n2

2!
Qα,µ

m1m2 Qβ,ν
n1n2

+
G̃m1···m4, n1···n4

4!
Pµ

m1···m4 Pν
n1···n4

+
m̃αβ G̃m1···m6, n1···n6

6!
Qα,µ

m1···m6 Qβ,ν
n1···n6

)
. (B.98)
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B.3 Internal (potential) part

The internal part, or the potential part, consists of three terms

Lpot ≡ L(1)
pot + L(2)

pot + L(3)
pot , (B.99)

L(1)
pot ≡ e

1

4αn
MMN ∂MMKL ∂NMKL , (B.100)

L(2)
pot ≡ −e

1

2
MMN ∂NMKL ∂LMMK , (B.101)

L(3)
pot ≡ e

(
∂M ln e ∂NMMN +MMN ∂Me ∂Ne+

1

4
MMN ∂Mgµν ∂Ngµν

)
. (B.102)

Here, we choose the canonical section, (∂M ) = (∂i , 0, . . . , 0), where the index i represents i

in the M-theory section or m in the type IIB section. In this case, the first and the third

terms can be obtained as follows:

L(1)
pot = e

1

4αn
Mij ∂iM̂

KL ∂jM̂KL − e
1

2αn
Mij M̂MN M̂PQ ωiM

P ωjN
Q

= |G|
1
2

[
1

4
Gij ∂iG

kl ∂jGkl −
1

4(n− 2)
Gij ∂i ln |G| ∂j ln |G|

− 1

2αn
Gij M̂MN M̂PQ ωiM

P ωjN
Q

]
, (B.103)

L(3)
pot = |G|

1
2

(
n (n− 3)

4(n− 2)2
Gij ∂i ln |G| ∂j ln |G| − n

2(n− 2)
GijGkl ∂i ln |G| ∂lGjk

+
1

4
Gij ∂i ln |g| ∂j ln |g|+

1

2
∂i ln |g| ∂jGij

+
1

2
Gij ∂i ln |G| ∂j ln |g|+

1

4
Gij ∂ig

µν ∂jgµν

)
. (B.104)

On the other hand, as we show later, the second term L(2)
pot can be written as

L(2)
pot = −e

1

2
M̂MN ∂NM̂KL ∂LM̂MK +∆L(2)

pot , (B.105)

=





|G|
1
2

[
−1

2
Gij ∂kGil ∂jG

kl +
1

2(n− 2)2
Gij ∂i ln |G| ∂j ln |G|

+
1

n− 2
Gij Gkl ∂i ln |G| ∂kGjl

]
+∆L(2)

pot (M-theory)

|G|
1
2

[
−1

2
Gmn ∂pGmq ∂nG

pq +
1

2(n− 2)2
Gmn ∂m ln |G| ∂n ln |G|

+
1

n− 2
GmnGpq ∂m ln |G| ∂pGnq +

1

4
Gmn ∂mmαβ ∂nm

αβ

]
+∆L(2)

pot

(type IIB)

,

where ∆L(2)
pot does not include derivatives of metric.
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We thus obtain the potential as

Lpot =





|G|
1
2

[
R(G) +

1

4
Gij ∂ig

µν ∂jgµν +
1

4
Gij ∂i ln |g| ∂j ln |g|

− 1

2αn
Gij M̂MN M̂PQ ωiM

P ωjN
Q

]
+∆L(2)

pot (M-theory)

|G|
1
2

[
R(G) +

1

4
Gmn ∂mg

µν ∂ngµν +
1

4
Gmn ∂m ln |g| ∂n ln |g|

+Gmn

(
1

4
∂mmαβ ∂nm

αβ − 1

2αn
M̂MN M̂PQ ωmM

P ωnN
Q

)]
+∆L(2)

pot

(type IIB)

,

(B.106)

where we used the formula

R(G) =
1

4
Gij ∂iGkl ∂jG

kl − 1

2
Gij ∂kGil∂jG

kl +
1

4
Gij ∂i ln |G| ∂j ln |G|

− 1

2
GijGkl ∂i ln |G| ∂kGjl −

1

|G|
1
2

∂i
[
|G|

1
2 GijGkl

(
∂jGkl − ∂kGlj

)]

=
1

4
Gij ∂iGkl ∂jG

kl − 1

2
Gij ∂kGil ∂jG

kl +
1

4
Gij ∂i ln |G| ∂j ln |G|

− 1

2
GijGkl ∂i ln |G| ∂kGjl +

1

2
Gij ∂i ln |g| ∂j ln |G|+ 1

2
∂i ln |g| ∂jGij

− 1

|G|
1
2

∂i
[
|G|

1
2 GijGkl

(
∂jGkl − ∂kGlj

)]
, (B.107)

and dropped the boundary term.

Calculation of L
(2)
pot. Here, we show equation (B.105) and determine the explicit form

of ∆L(2)
pot.

First, let us calculate L(2)
pot in the case of the conventional parameterization. In this

case, noticing VM
i = δiM = (V −1)M

i and (V T)iM = δiM = (V −T)iM , we obtain

L(2)
pot = −e

2

(
V −TM̂−1V −1

)M i
∂i
(
V −TM̂−1V −1

)Kj
∂j
(
V M̂V T

)
MK

= −e

2
M̂M i ∂iM̂Kj ∂jM̂MK +

e

2
M̂il M̂jk M̂PQ ωij

P ωkl
Q . (B.108)

Thus, comparing this with (B.105), we obtain

∆L(2)
pot =

e

2
M̂il M̂jk M̂PQ ωij

P ωkl
Q =

|G|
1
2

2
GilGjk M̂PQ ωij

P ωkl
Q . (B.109)

We next calculate L(2)
pot in the non-geometric parameterization. In this case, we use

the simplifying assumption [54] that requires any derivatives contracted with the dual

potentials vanishes (e.g. βmn ∂m = 0). In our notation, it can be expressed as

(
· · ·VM

i
)
∂i =

(
· · · δM i

)
∂i , ∂i

(
· · ·VM

i
)
= ∂i

(
· · · δM i

) (
V = V or V −1

)
, (B.110)
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where the ellipsis represent arbitrary tensors or derivatives. Using the simplifying assump-

tion, we obtain

L(2)
pot = −e

2
MM i ∂iMKj ∂jMMK

= −e

2

(
V −TM̂−1V −1

)M i
∂i
(
V −TM̂−1V −1

)Kl
∂lMMK

= −e

2
(V −T)M k M̂ki ∂i

[
(V −T)K l M̂lj

]
∂jMMK = −e

2
M̂ki ∂iM̂lj ∂jM̂kl

= −e

2
M̂MN ∂NM̂KL ∂LM̂MK . (B.111)

where, in the third equality, we used the simplifying assumption and M̂P i = δPj M̂ji,

and in the fourth equality, we used (V −T)M j = δMj and Mkl = M̂kl which are generally

satisfied in the non-geometric parameterization. Comparing (B.111) with (B.105), we

obtain ∆L(2)
pot = 0 in the non-geometric parameterization.

Summary of the potential Lpot. To summarize, we obtained

Lpot =





|G|
1
2

[
R(G) +

1

4
Gij ∂ig

µν ∂jgµν +
1

4
Gij ∂i ln |g| ∂j ln |g|

]
+ L(mat)

pot (M-theory)

|G|
1
2

[
R(G) +

1

4
Gmn ∂mg

µν ∂ngµν +
1

4
Gmn ∂m ln |g| ∂n ln |g|

+
1

4
Gmn ∂mmαβ ∂nm

αβ

]
+ L(mat)

pot (type IIB)

.

(B.112)

Here, L(mat)
pot is given as follows:

• geometric parameterization:

L(mat)
pot = −|G|

1
2

2

(
1

αn
Gij M̂MN ωiM

P ωjN
Q −GilGjk ωij

P ωkl
Q

)
M̂PQ , (B.113)

• non-geometric parameterization:

L(mat)
pot = −|G̃|

1
2

2αn
G̃ij M̂MN M̂PQ ωiM

P ωjN
Q . (B.114)

More explicit form of L(mat)
pot in each case is given as follows:

M-theory section:

• SL(5), SO(5, 5), E6 (geometric):

L(mat)
pot = − |G|

1
2

2 · 4! G
i1···i4, j1···j4 Fi1···i4 Fj1···j4 , (B.115)

• E7 (geometric):

L(mat)
pot = −|G|

1
2

(
1

2 · 4! G
i1···i4, j1···j4 Fi1···i4 Fj1···j4+

1

2 · 7! G
i1···i7, j1···j7 Fi1···i7 Fj1···j7

)
,

(B.116)

– 66 –



J
H
E
P
0
7
(
2
0
1
7
)
0
7
5

• SL(5), SO(5, 5) (non-geometric):

L(mat)
pot = − |G̃|

1
2

2 · 3! G̃
ij G̃i1i2i3, j1j2j3 Si

i1i2i3 Sj
j1j2j3 , (B.117)

• E6, E7 (non-geometric):

L(mat)
pot = −|G̃|

1
2 G̃ij

(
G̃i1i2i3, j1j2j3

2 · 3! Si
i1i2i3 Sj

j1j2j3 +
G̃i1···i6, j1···j6

2 · 6! Si
i1···i6 Sj

j1···j6
)
,

(B.118)

Type IIB section:

• SL(5), SO(5, 5) (geometric):

L(mat)
pot = − |G|

1
2

2 · 3! mαβ G
m1m2m3, n1n2n3 Hα

m1m2m3
Hβ

n1n2n3
, (B.119)

• E6(6), E7(7) (geometric):

L(mat)
pot = − |G|

1
2

2

(
mαβ G

m1m2m3, n1n2n3

3!
Hα

m1m2m3
Hβ

n1n2n3

+
Gm1···m5, n1···n5

5!
Gm1···m5 Gn1···n5

)
, (B.120)

• SL(5) (non-geometric):

L(mat)
pot = − |G̃|

1
2

2 · 2! m̃
αβ G̃mn G̃m1m2, n1n2 Qα,m

m1m2 Qβ, n
n1n2 , (B.121)

• SO(5, 5), E6(6) (non-geometric):

L(mat)
pot = − |G̃|

1
2

2
G̃mn

(
m̃αβ G̃m1m2, n1n2

2!
Qα,m

m1m2 Qβ, n
n1n2

− G̃m1···m4, n1···n4
4!

Pm
m1···m4 Pn

n1···n4
)
, (B.122)

• E7(7) (non-geometric):

L(mat)
pot = −|G̃|

1
2

2
G̃mn

(
m̃αβ G̃m1m2, n1n2

2!
Qα,m

m1m2 Qβ, n
n1n2

− G̃m1···m4, n1···n4
4!

Pm
m1···m4 Pn

n1···n4

+
m̃αβ G̃m1···m6, n1···n6

6!
Qα,m

m1···m6 Qβ, n
n1···n6

)
. (B.123)
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where we defined

Fi1···i4 ≡ 4 ∂[i1Ai2i3i4] , Fi1···i7 ≡ 7 ∂[i1Ai2···i7] +
35

2
A[i1i2i3 Fi4i5i6i7] , (B.124)

Hα
m1m2m3

≡ 3 ∂[m1
Bα

m2m3]
, (B.125)

Gm1···m5 ≡ 5 ∂[m1
Dm2···m5] − 15 ǫγδ B

γ
[m1m2

∂m3B
δ
m4m5]

= 5 ∂[m1
Cm2···m5] + 30H1

[m1m2m3
Cm4m5] . (B.126)

B.4 Summary

In this appendix section, we evaluated several external terms in the EFT action,

LEH + Lscalar = eR(g) +
e

4αn
gµν ∂µMMN ∂νMMN , (B.127)

and the potential part, Lpot. Combining these, we obtain

L =|G|
1
2

[
R(g) +

1

4
gµν ∂µG

ij ∂νGij +
1

4
gµν ∂µ ln |G| ∂ν ln |G|

+R(G) +
1

4
Gij ∂ig

µν ∂jgµν +
1

4
Gij ∂i ln |g| ∂j ln |g|

]
+ L(mat)

scalar + L(mat)
pot

≡ |G|
1
2 R(G) + L(mat)

scalar + L(mat)
pot . (B.128)

For example, for the E7(7) EFT in the geometric parameterization, this becomes

L = |G|
1
2

[
R(G)−Gi1i2i3, j1j2j3

2 · 3! gµν ∂µAi1i2i3 ∂νAj1j2j3−
Gi1···i6, j1···j6

2 · 6! gµν Fµ,i1···i6 Fν,j1···j6

]

− |G|
1
2

(
1

2 · 4! G
i1···i4, j1···j4 Fi1···i4 Fj1···j4 +

1

2 · 7! G
i1···i7, j1···j7 Fi1···i7 Fj1···j7

)
. (B.129)

C Double-vielbein formalism for gauged DFT

C.1 Parameterization from defining properties of double-vielbein

The previous result from the Iwasawa decomposition provides the upper or lower triangular

parameterization of the generalized vielbein. However, the triangulation breaks the full

local structure group into the diagonal subgroup. If we decompose O(1, D−1 + dimG) as

O(D − 1, 1) × O(dimG), then we choose the diagonal gauge-fixing by identifying the two

local Lorentz groups,

O(D − 1, 1)×O(1, D − 1) → O(D − 1, 1)D . (C.1)

Here, we shall construct the geometric parameterization and the non-geometric param-

eterization directly from the defining conditions of double-vielbein. This approach does not

require any gauge-fixing condition and ensures manifest O(1, D− 1)×O(1, D−1 + dimG)

covariance. Analogous to the ordinary O(D,D) case, double-vielbein for O(D,D+dim G)

gauged DFT satisfies the following defining properties [127],

V
M̂p

V M̂
q = ηpq , V̄

M̂ ˆ̄p
V̄ M̂

q̄ = ˆ̄η ˆ̄pˆ̄q ,

V
M̂p

V̄ M̂
ˆ̄q = 0 , V

M̂p
V
N̂

p + V̄
M̂ ˆ̄p

V̄
N̂

ˆ̄p = Ĵ
M̂N̂

,
(C.2)

– 68 –



J
H
E
P
0
7
(
2
0
1
7
)
0
7
5

where ηmn and ˆ̄η ˆ̄pˆ̄q are O(1, D − 1) and O(D − 1, 1 + dimG) metric, respectively. The

double-vielbein is then decomposed as

V
M̂

m =

(
VM

m

Vα
m

)
and V̄

M̂
ˆ̄m =

(
V̄M

m̄ V̄M
ā

V̄α
m̄ V̄α

ā

)
. (C.3)

Note that the usual geometric parameterization is obtained by assuming that the upper-

half blocks of VM
m and V̄M

m̄ are non-degenerate and by identifying them as a pair of

conventional vielbeins [127]. However, the non-degeneracy assumption can be relaxed in a

consistent manner.

Suppose that the upper-half blocks of V m and V̄ m̄ are given by

V µm = (e−1)µm + β′µνeν
m and V̄ µm̄ = (ē−1)µm + β′µν ēν

m , (C.4)

where eµ
m and ēµ

m̄ are two copies of the D-dimensional vielbein corresponding to the same

metric gµν

emµ eν
nηmn = −ēµ

m̄ēν
n̄η̄m̄n̄ = gµν , (C.5)

and β′ is an arbitrary tensor. Then, V µm and V̄ µm̄ are not guaranteed to be non-degenerate.

Substituting the previous decomposition ansatz (C.3) and (C.4) into the defining proper-

ties (C.2), we find the most general parameterization that satisfy all the algebraic con-

straints (C.2) for VM̂
m

VM
m =

1√
2

(
eµ

m +B′
µν

(
(e−1)νm − β′νρ eρm

)

(e−1)µm − β′µνeνm

)
,

Vα
m =

1√
2

(
καβ(A

T)βµ
(
(e−1)µm − β′µνeνm

)
− καβ(Ã

T)βµeµ
m
)
,

(C.6)

and for V̄
M̂

ˆ̄m

V̄M
m̄ =

1√
2

(
ēµ

m̄ +B′
µν

(
(ē−1)νm̄ − β′νρ ēρm̄

)

(ē−1)µm̄ − β′µν ēνm̄

)
,

V̄α
m̄ =

1√
2

(
(AT)αµ

(
(ē−1)µm̄ − β′µν ēνm̄

)
− (ÃT)α

µēµ
m̄
)
,

V̄M
ā =

(
−Aµ

ā +B′
µνÃ

νā

Ãµα(φT)α
ā

)
, V̄α

ā = φā
α + φā

β(Ã
T)βµAµα .

(C.7)

Here, B′
µν and β′µν are defined as

B′
µν = Bµν +

1

2
α′Aµ

α(AT)αν ,

β′µν = βµν − 1

2
α′Ãµα(ÃT)α

ν ,

(C.8)

in which Bµν and βµν are antisymmetric tensors.
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However, if we assume that each blocks of VM
m and V̄M

m̄ are non-degenerate, this

solution is over-parameterized. The physical degrees of freedom are determined by the coset

O(D,D + dim G)

O(D−1, 1)×O(1, D−1 + dimG)
, (C.9)

and the associated number of degrees of freedom is given by

1

2
(2D +G)(2D +G− 1)− 1

2
D(D − 1)− 1

2
(D +G)(D +G− 1) = D2 +DG , (C.10)

where G denotes dimG. The D2 components arise from the
{
gµν , Bµν

}
or

{
g̃µν , β

µν
}
, and

DG components arise from the Aµ
ā or Ãµā. Thus, only {g,B,A} or {g̃, β, Ã} are sufficient

to make up the parameterization.

The geometric parameterization, which is for the conventional heterotic supergrav-

ity [128], is obtained by turning off βµν and Ãµā,

VM
m =

1√
2

(
eµ

m +B′
µν(e

−1)νm

(e−1)µm

)
, Vα

m =
1√
2
(AT)αµ(e

−1)µm , (C.11)

and

V̄M
m̄ =

1√
2

(
ēµ

m̄ +B′
µν(ē

−1)νm̄

(ē−1)µm̄

)
, V̄α

m̄ =
1√
2
(AT)αµ(ē

−1)µm̄ ,

V̄M
ā = −

√
α′

(
Aµ

α(φT)α
ā

0

)
, V̄α

ā =
1√
α′ (φ

ā)α .

(C.12)

Under the non-degeneracy assumption, one can show through a field redefinition that

the geometric parameterization is essentially the same as the most general solution (C.6)

and (C.7). On the other hand, if we assume that some of components of V µm or V̄ µm̄ are

vanishing, we can define an another class of non-geometric background, which cannot be

related by field redefinition from geometric parameterization [129].

Using the relation the projection operators and double-vielbein:

P
M̂N̂

= V
M̂

mηmn(V
T)nN̂ and P̄

M̂N̂
= V̄

M̂
m̄η̄m̄n̄(V̄

T)n̄
N̂
+ V̄

M̂
āκāb̄(V̄

T)b̄
N̂
, (C.13)

we construct a geometric parameterization for the projection operators as

P =
1

2



g + α′AκAt +B′g−1(B′)t Aκ+B′g−1Aκ 1+B′g−1

κAt + κAtg−1(B′)t κAtg−1Aκ κAtg−1

1+ g−1(B′)t g−1Aκ g−1


 , (C.14)

and

P̄ =
1

2



−g − α′AκAt −B′g−1(B′)t −Aκ−B′g−1Aκ 1−B′g−1

−κAt − κAtg−1(B′)t −κAtg−1Aκ− 2
α′κ −κAtg−1

1− g−1(B′)t −g−1Aκ −g−1


 . (C.15)
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Here, we used Kαβ = −(tā)Tακāb̄t
b̄
β. In this parameterization, it follows that the projection

operators satisfy the complete relation, J = P + P̄ and that the generalized metric defined

by H = P − P̄ takes the form:

H =



g +B′g−1(B′)t +AκAt Aκ+B′g−1Aκ B′g−1

κAt + κAtg−1(B′)t κAtg−1Aκ+ 1
α′κ κAtg−1

g−1(B′)t g−1Aκ g−1


 . (C.16)

Consider next the non-geometric parameterization. As for the geometric parameter-

ization, it is simply given by turning off Bµν and Aµ
ā while keeping β and Ã in (C.6)

and (C.7):

VM
m =

1√
2

(
eµ

m

(e−1)µm − β′µνeνm

)
,

Vα
m = − 1√

2
καβ(Ã

T)βµeµ
m ,

(C.17)

and

V̄M
m̄ =

1√
2

(
ēµ

m̄

(ē−1)µm̄ − β′µν ēνm̄

)
, V̄α

m̄ = − 1√
2
καβ(Ã

T)βµēµ
m̄ ,

V̄M
ā =

(
0√

α′Ãµα(φT)α
ā

)
, V̄α

ā =
1√
α′φ

ā
α .

(C.18)

The corresponding projection operators are constructed as

P =
1

2




g̃ −g̃Ãκ 1− g̃β′T

−κÃTg̃ κÃTg̃Ãκ −κÃT + κÃTg̃β′T

1− β′g̃ −Ãκ+ β′g̃Ãκ g̃−1 + β′g̃β′T + α′ÃκÃT


 , (C.19)

and

P̄ =
1

2




−g̃ g̃Ãκ 1+ g̃β′T

κÃTg̃ −κÃTg̃Ãκ− 2
α′κ κÃT − κÃTg̃β′T

1+ β′g̃ Ãκ− β′g̃Ãκ −g̃−1 − β′g̃β′T − α′ÃκÃT


 . (C.20)

Once again, in this parameterization, it follows that the complete relation J = P + P̄ is

satisfied and that the generalized metric H = P − P̄ is expressed by

H =




g̃ −g̃Ãκ −g̃β′T

−κÃTg̃ κÃTg̃Ãκ+ 1
α′κ −κÃT + κÃTg̃β′T

−β′g̃ −Ãκ+ β′g̃Ãκ g̃−1 + β′g̃β′T + α′ÃκÃT


 . (C.21)

One notes that this result is consistent with the parameterization in terms of the Iwasawa

decomposition given in (5.34).

We should remark that, ultimately, the double-vielbein formalism is imperative. For

the bosonic case, the geometric parameterization and the non-geometric parameterization

of double-vielbein, (C.11) and (C.18), respectively, are equivalent to the previous result

constructed by coset representative, as they should. Even though these two approaches

are consistent for the bosonic case, for introducing supersymmetry, the double-vielbein

formalism is the most adequate approach [128, 130, 131].
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C.2 Connection and curvature

The gauge symmetry for gauged DFT is given by a twisted generalized Lie derivative which

is defined by

(L̂XV )M̂
N̂

= (L̂0
XV )M̂

N̂
− fM̂

P̂ Q̂
X P̂V Q̂

N̂
− f

N̂P̂
Q̂X P̂V M̂

Q̂
,

L̂Xd = L̂0
Xd .

(C.22)

The L̂0
X is the ordinary generalized Lie derivative defined in the un-gauged DFT by

(L̂0
XV )M̂

N̂
= X P̂∂

P̂
V M̂

N̂
+ (∂M̂X

P̂
− ∂

P̂
XM̂ )V P̂

N̂
+ (∂

N̂
X P̂ − ∂P̂X

N̂
)V M̂

P̂
,

L̂0
Xd = XM̂∂

M̂
d− 1

2
∂
M̂
XM̂ ,

(C.23)

where f
M̂N̂P̂

are the structure constants for Yang-Mills gauge group. The gauge parameter

XM̂ consists of ordinary generalized Lie derivative part and a Yang-Mills gauge symmetry

part in an O(D,D + dim G) covariant way.

As for the covariant differential operator of the gauge transformations (C.22), we

present a covariant derivative which can be applied to any arbitrary O(D,D + dim G),

Spin(D − 1, 1) and Spin(1, D − 1 + dim G) representations as follows

D̂
M̂

:= ∂
M̂

+ Γ
M̂

+Φ
M̂

+ Φ̄
M̂

. (C.24)

where Φ
M̂mn

and Φ̄
M̂ ˆ̄mˆ̄n

are spin-connections and Γ
M̂N̂P̂

is semi-covariant connection which

are constructed in gauged DFT [83]

Γ
P̂ M̂N̂

= Γ0

P̂ M̂N̂
+
(
δP

Q̂P
M̂

R̂P
N̂

Ŝ + δ
P̂
Q̂P̄

M̂
R̂P̄

N̂
Ŝ
)
f
Q̂R̂Ŝ

− 2

3

(
P + P̄

)
P̂ M̂N̂

Q̂R̂Ŝf
Q̂R̂Ŝ

.

(C.25)

where Γ0
PMN is the connection for ordinary DFT [127],

Γ0

P̂ M̂N̂
= 2(P∂

P̂
PP̄ )

[M̂N̂ ]
+ 2(P̄

[M̂
Q̂P̄

N̂ ]
R̂ − P

[M̂
Q̂P

N̂ ]
R̂)∂

Q̂
P
R̂P̂

− 4

D − 1

(
P̄
P [M̂

P̄
N̂ ]

Q̂ + P
P̂ [M̂

P
N̂ ]

Q̂
)(

∂
Q̂
d+ (P∂R̂PP̄

)
[R̂Q̂]

)
,

(C.26)

and P
P̂ M̂N̂

Q̂R̂Ŝ and P̄
P̂ M̂N̂

Q̂R̂Ŝ are rank-six projection operators

P
P̂ M̂N̂

ŜQ̂R̂ :=P
P̂
ŜP

[M̂
[Q̂P

N̂ ]
R̂] +

2

D − 1
P
P̂ [M̂

P
N̂ ]

[Q̂P R̂]Ŝ ,

P̄
P̂ M̂N̂

ŜQ̂R̂ :=P̄
P̂
ŜP̄

[M̂
[Q̂P̄

N̂ ]
R̂] +

2

D − 1
P̄
P̂ [M̂

P̄
N̂ ]

[Q̂P̄ R̂]Ŝ ,

(C.27)

which are symmetric and traceless,

P
P̂ M̂N̂Q̂R̂Ŝ

= P
Q̂R̂ŜP̂ M̂N̂

= P
P̂ [M̂N̂ ]Q̂[R̂Ŝ]

, P̄
P̂ M̂N̂Q̂R̂Ŝ

= P̄
Q̂R̂ŜP̂ M̂N̂

= P̄
P̂ [M̂N̂ ]Q̂[R̂Ŝ]

,

P P̂
P̂ M̂Q̂R̂Ŝ

= 0 , P P̂ M̂P
P̂ M̂N̂Q̂R̂Ŝ

= 0 , P̄ P̂
P̂ M̂Q̂R̂Ŝ

= 0 , P̄ P̂ M̂ P̄
P̂ M̂N̂Q̂R̂Ŝ

= 0 .

(C.28)

Here the superscript ‘0’ indicates a quantity defined in the un-gauged DFT.
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The spin-connections are defined by using the semi-covariant derivative

Φ
M̂mn

= V N̂
m∂

M̂
V
N̂n

+ Γ
M̂N̂P̂

V N̂
mV P̂

n ,

Φ̄
M̂ ˆ̄mˆ̄n

= V̄ N̂
ˆ̄m∂

M̂
V̄
N̂ ˆ̄n

+ Γ
M̂N̂P̂

V̄ N̂
ˆ̄mV P̂

ˆ̄n .
(C.29)

Although these are not gauge covariant, we can project out to the tensor part

Φp̄mn , Φāmn , Φ[pmn] , Φp
pm ,

Φ̄pm̄n̄ , Φ̄pm̄ā , Φ̄pāb̄ , Φ̄[p̄m̄n̄] , Φ̄[p̄m̄ā] , Φ̄[p̄āb̄] ,

Φ̄[āb̄c̄] , Φ̄
ˆ̄p
ˆ̄pm̄ , Φ̄

ˆ̄p
ˆ̄pā .

(C.30)

These will be the building block that the formalism uses. Various covariant quantities can

be generated by using these spin-connections and their derivatives [83].

The heterotic DFT action is given by the generalized curvature tensor from semi-

covariant curvature tensor S
M̂N̂P̂ Q̂

as

S
M̂N̂P̂ Q̂

=
1

2

(
R

M̂N̂P̂ Q̂
+R

P̂ Q̂M̂N̂
− ΓR̂

M̂N̂
Γ
R̂P̂ Q̂

)
, (C.31)

where R
M̂N̂P̂ Q̂

is defined from the standard commutator of the covariant derivatives

R
M̂N̂P̂ Q̂

= ∂
M̂
Γ
N̂P̂ Q̂

− ∂
N̂
Γ
M̂P̂ Q̂

+ Γ
M̂P̂

R̂Γ
N̂R̂Q̂

− Γ
N̂P̂

R̂Γ
M̂R̂Q̂

+ f
R̂M̂N̂

ΓR̂
P̂ Q̂

. (C.32)

Then, the generalized curvature scalar is defined by contraction of S
M̂N̂P̂ Q̂

with the pro-

jection operators

S := 2P M̂N̂P P̂ Q̂S
M̂P̂ N̂Q̂

= 2
(
2∂mΦn

mn − Φm
m

pΦn
np −

3

2
Φ[mnp]Φmnp −

1

2
Φp̄mnΦp̄mn − 1

2
ΦāmnΦāmn

− fpmnΦ
pmn − fp̄mnΦ

p̄mn − fāmnΦ
āmn

)
.

(C.33)

C.3 Nongeometric fluxes and action

There are several approaches for constructing differential geometry of the gauged DFT [65,

83]. Here, we follow the so called semi-covariant formalism [83] which is well-suited for

supersymmetry.10

To define non-geometric fluxes, we adopt the non-geometric parameterizations of

double-vielbein obtained in (C.17) and (C.18), and substitute them to the definition of

generalized spin connection (C.29). Not all of the components of generalized spin connec-

tion are involved for defining heterotic DFT action. The relevant components of generalized

spin-connection should be invariant under the generalized diffeomorphism for gauged DFT

10See appendix C for the concise review of double-vielbein formalism for gauged DFTs.
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or twisted generalized Lie derivative. They define the non-geometric fluxes

Φm
mn = +

1√
2

(
(e−1)µmωµmn − 2∂nφ

)
,

Φm̄np = +
1√
2

(
ωm̄np −

1

2
Qρ

µν ēρm̄eµneνp +Qρ
µνeρneµpēνm̄

)
,

Φāmn = − 1

2
F̃µν

āeµmeνn ,

Φ[mnp] = +
1√
2

(
ω[mnp] −

1

2
Qρ

µνeρ[me|µ|ne|ν|p]

)
.

(C.34)

In the above expression, the components of generalized spin connection comprise three

kinds of fluxes that were introduced in (5.40).

Consider now the non-geometric action of heterotic DFT in terms of the non-geometric

fluxes. The action is given by the generalized curvature scalar S, which is defined in (C.33)

in terms of the generalized spin-connections:

Shet =

∫
e−2d 2S , (C.35)

where

S = 2∂mΦn
mn − Φm

m
pΦn

np −
3

2
Φ[mnp]Φmnp −

1

2
Φp̄mnΦp̄mn − 1

2
ΦāmnΦāmn . (C.36)

By substituting (C.34) into this action, one can show that (C.36) is equivalent to the

previous non-geometric heterotic action (5.40).

D Exotic branes

A defect brane refers to a codimension-two configuration in type II string theory. Denote

them by

b
(d, c)
n (n1 · · ·nb, m1 · · · ,mc, ℓ1 · · · ℓd) , (D.1)

for the configuration wrapped or smeared over the 7-torus [45, 46, 51] and thus has the mass:

M
b
(d, c)
n

=
1

gns ls

(
Rn1 · · ·Rnb

lbs

)(
Rm1 · · ·Rmc

lcs

)2(Rℓ1 · · ·Rℓd

lds

)3

. (D.2)

Here, Ri is the compactification radius in the xi-direction and gs is the string coupling

constant and bcn ≡ b
(d=0, c)
n and bn ≡ b

(d=0, c=0)
n .

In this paper, we consider compactification on shrinking tori. As an example, consider a

522(34567, 89)-brane (6.49) in the E7(7) EFT. In this case, xm (m = 4, . . . , 9) are compactified

on a six-torus and x3 direction is a noncompact direction. In this case, the “522(34567, 89)-

brane” is a one-dimensional extended object with the tension,

T =
1

2πg2s l
2
s

(
R4 · · ·R9

l5s

)(
R8R9

l2s

)2

. (D.3)
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type IIA theory M-theory

01 = D0

P(n1)



 (MP(n) = R−1

n ) ↔ P





P(M)

P(n1)
(MP(n) = R−1

n )

10(n) = F1(n)

21(n1n2) = D2(n1n2)



 ↔ M2 = 23





M2(nM)

M2(n1n2)

41(n1 · · ·n4) = D4

52(n1 · · ·n5) = NS5



 ↔ M5 = 56





M5(n1 · · ·n4M)

M5(n1 · · ·n5)

61(n1 · · ·n6) = D6

512(n1 · · ·n5, n6) = KKM

613(n1 · · ·n5, n7)





↔ KKM = 619





KKM(n1 · · ·n6, M)

KKM(n1 · · ·n5M, n6)

KKM(n1 · · ·n6, n7)

522(n1 · · ·n4)

433(n1 · · ·n4, m1m2m3)



 ↔ 5312





53(n1 · · ·n5, m1m2M)

53(n1 · · ·n4M, m1m2m3)

253(n1n2, m1 · · ·m5)

164(n1, m1 · · ·m6)



 ↔ 2615





26(n1n2, m1 · · ·m5M)

26(n1M, m1 · · ·m6)

073(, 3 · · · 9)
0
(1, 6)
4 (, n1 · · ·n6, m1)



 ↔ 0

(1, 7)
18





0(1, 7)(, 3 · · · 9, M)

0(1, 7)(, n1 · · ·n6M, m1)

Table 3. Defect branes in the type IIA theory/T 7 and the M-theory/T 8.

We will still call it a point-like 522(34567, 89)-brane as its mass becomes that of the usual

522(34567, 89)-brane after further compactifying the x3-direction.

A list of defect branes in the type IIA theory compactified on a seven-torus is collected

in table 3. As shown in the table, each defect brane of the type IIA theory can be regarded

as a reduction of a defect brane of the M-theory compactified on an eight-torus. By using

the relation

ls = R
−1/2
M l

3/2
11 and gs = R

3/2
M l

−3/2
11 , (D.4)

where RM is the radius in the M-theory direction and l11 is the Planck length in eleven

dimensions, a b
(d, c)
n -brane in the type IIA theory can be identified with a defect b

(d, c)
ñ -brane

in the M-theory with the mass,

M
b
(d, c)
ñ

=
1

RM

(
RM

l11

)ñ(Rn1 · · ·Rnb

Rb
M

)(
Rm1 · · ·Rmc

Rc
M

)2(Rℓ1 · · ·Rℓd

Rd
M

)3

=

(
Rn1 · · ·Rnb

) (
Rm1 · · ·Rmc

)2 (
Rℓ1 · · ·Rℓd

)3

lñ11
, (D.5)

ñ ≡ 3

(
b+ 2c+ 3d− n+ 1

2

)
. (D.6)
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Here, the indices ni, mi, ℓi run over 3, . . . , 9,M, where M represents the M-theory direction.

We also used the non-trivial identity, ñ = b+2c+3d+1, satisfied by all M-theory branes.

Note that the subscript ñ of b
(d, c)
ñ is usually suppressed.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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