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generalized metric in terms of the dual fields which are pertinent to non-geometric fluxes.
Under certain simplifying assumptions, we construct new effective action for non-geometric
backgrounds. We then study the non-geometric backgrounds sourced by exotic branes and
find their U-duality monodromy matrices. The charge of exotic branes obtained from these
monodromy matrices agrees with the charge obtained from the non-geometric flux integral.
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I do not wish, at this stage, to examine the logical justification
of this form of argumentation; for the present, I am considering
it as a PRACTICE, which we can observe in the habits of men
and animals.

BERTRAND RUSSELL, ‘Philosophy’.

1 Introduction

Recently, a significant progress has been achieved for novel formulations of supergravity
in which duality symmetries in string and M-theory compactification are manifest. They
include the double field theory (DFT) [1-7], the exceptional field theory (EFT) [8-26]
(see also [27-34] for closely related attempts) as well as the generalized geometry [35-
40]. One important advantage of these formulations is that they can treat wide variety of
spacetimes, such as non-geometric backgrounds [41-44], that are not globally describable
in the conventional formulation of supergravity. As pointed out in [45, 46], non-geometric
backgrounds arise quite naturally in superstring theories. Backgrounds sourced by exotic
branes [47-53] are concrete examples. As an application of DFT and related formulations
such as the [-supergravity [54-61], a background of a particular exotic brane, so-called
a 53-brane, was studied in [45, 46, 62-72] and the exotic 53-brane was identified with a
magnetic source of the non-geometric Q-flux [64, 70, 72].



One reason why the exotic 53-brane received special attention is that the non-geometric
Q-flux, which is intrinsic to the 53-brane background, is related to a T-duality monodromy,
and the much developed DFTs efficiently describe such background. It is known that
backgrounds of other exotic branes possess other non-geometric fluxes that are related to
the @-flux via U-duality transformations [51, 73]. In order to describe such non-geometric
backgrounds, variants of the S-supergravity, which can describe the background of an exotic
p-brane (called a pg_p -brane) or a 12—brane, was proposed in [74]. There, each of these
exotic branes was identified as the magnetic sources of a non-geometric P-flux [75-77] or a
non-geometric Q-flux associated with a 6-vector, 516 [74]. However, the reformulation
of [74] is applicable only to a limited situation; coexistence of different non-geometric fluxes
are not allowed and existence of isometries are assumed. In fact, EFT, a manifestly Egq)
U-duality covariant formulation of the supergravity, is a more suitable formulation, and
indeed, backgrounds of the exotic 53-brane, 5%—brane, and the 5§—brane were studied in
SL(5) EFT [78, 79]. One of the main purposes of this paper is to systematically identify
the non-geometric fluxes in Ey4) EFT for the cases of 4 <d < 7.

The goal of this paper is to develop effective actions for a certain class of non-geometric
flux backgrounds in Type II string and M-theories. Our starting point is the duality
covariant action in an extended field theory, such as the manifestly U-duality covariant
EFT. Since the U-duality orbit is of infinite order, there are in practice infinitely many
possible parameterization of the U-duality group. The key idea is to identify the most
effective parameterization for a given set of non-geometric flux background. Note that
our non-geometric parameterization is efficient for backgrounds with only non-geometric
fluxes. For backgrounds with both geometric and non-geometric fluxes, such as the truly
non-geometric backgrounds of [80], a more general treatment will be required.’

Our construction can be extended to non-geometric flux backgrounds in heterotic string
theories. Heterotic string exhibits O(D, D +16) or O(D, D 4+ dim G) duality group, where
G is the heterotic Yang-Mills group, Eg x Eg or SO(32), and the corresponding heterotic
DFT [1, 2, 81] provides a duality manifest description of the effective field theory. Again,
the key idea is to identify the most effective parameterization. Through the non-geometric
parameterization of heterotic generalized vielbein, we construct heterotic @-flux which
includes Chern-Simons like term and an additional non-geometric bi-vector flux associated
with the heterotic Yang-Mills field strength. The corresponding non-geometric effective
action can be constructed from O(D,D + dim G) gauged DFT [82-84]. If we take the
maximal Abelian reduction of heterotic Yang-Mills gauge symmetry, G' = U(1)'%, the non-
geometric gauged DFT reduces to the non-geometric parameterization by Blumenhagen
and Sun [85].

This paper is organized as follows. In section 2, after reviewing some elements of
Lie algebra, we explain the general construction of the generalized metric or vielbein. In

!'Note that the section condition or the strong constraint in DFT/EFT can be relaxed through the
generalized Scherk-Schwarz reduction [82], which provides all the fluxes in the maximal and half-maximal
gauged supergravity [80]. In this paper we will restrict ourselves to the usual section condition, and the
non-geometric fluxes considered in this paper are included in the same duality orbit with geometric fluxes.
However, extension of the non-geometric fluxes to the gauged DFT/EFT would be straightforward via
generalized Scherk-Schwarz reduction.



section 3, we consider the EFT in terms of the M-theory. We show two different parameter-
izations of the generalized vielbein; the conventional geometric parameterization and the
dual non-geometric parameterization. Using the two different parameterizations, we write
down two different eleven-dimensional effective actions. We also consider the dimensional
reduction to the type IIA theory, and obtain the non-geometric fluxes in the type ITA
theory. EFT in terms of the type IIB theory is discussed in section 4 and ten-dimensional
action for the non-geometric fluxes in the type IIB theory is obtained. In section 5, we
find a parameterization of heterotic DFT relevant for non-geometric fluxes. In section 6,
the relation between the non-geometric fluxes and exotic branes are discussed. Discussions
and future directions are given in section 7. We relegated much of technical details to the
appendices. In appendix A, we fix our notations. In appendix B, we show the explicit
calculations of the EFT action. In appendix C, we review double-vielbein formalism for
O(D,D + dim G) gauged DFT. In appendix D, exotic branes in type II/M-theory are
reviewed briefly.

2 General framework

In extended field theories, such as DFT or EFT, it is known that, in a Borel gauge,
fundamental fields are packaged into the generalized metric or the generalized vielbein. In
this section, we review the formal definition of generalized metric used in [11, 86] (but in a
slightly different manner), as a coset representative of G/K where G is the duality group
and K is the maximal compact subgroup of G. We then show how to parameterize the
generalized metric for the well-known examples of DFT and the Einstein gravity.

2.1 Parameterization of Lie algebra

We first recall three decomposition methods for a real semi-simple Lie algebra g.2
The first is known as triangular decomposition. Associated with g is the Cartan matrix
A;j (1,5 =1,...,rank g) that has the structure

A =2, Az‘j S ZSO (Z #* j), Aij =0 < Aji =0, det Az‘j >0, (2.1)

where Z<o denotes non-positive integers. In g, consider the Chevalley basis generators
{H;, E;, F;}, which obey the properties

[H;, H;] =0, (Hi, Ej] = Aji Ej, [H;, Fj] = —Aj; I}, [E;, Fj] = 045 H;
— ——— —— ——
1-Aj; 1-Aj;

It is known that the generators {H;, E;, F;}, together with the commutators of E; or F;,

[Eh?[”'?[Ei EZ}H and [El’[“'7[Fik717Fi]”']]? (2'3)

k—17

2Here, we suppose g is a split real Lie algebra, considering the applications to DFT, g = o(d,d), and
EFT, g = eq(q). Application to a non-split case is considered in section 5.



form a complete set of basis of g. In the Chevalley basis, the generators H; for i =
1,...,rank g form the Cartan subalgebra b, the generator E; is associated with the positive
simple root «; € bh* with «;(H j) = A;j, and the generator F; is associated with the negative
simple root —a; . We denote the space of positive root by A, and the space of negative
root by A_, respectively. For an arbitrary positive root o € A,

k
o= Z o, (2.4)
n=1
we can construct the associated generator as k-tuple left-commutator

Eo=[Ei, [+ By By 1] (2.5)

k—17

For the corresponding negative root —a € A_, we also construct the associated generator
as k-tuple right-commutator

Fo=[--IF, )R (2.6)

k2 ik71]7 ’

Denote the space spanned by E, and F,, (o € A1) as ny and n_, respectively. Then, we
obtain the triangular decomposition by decomposing the Lie algebra g as

g:n_@h@ﬂ+. (27)

The second method is known as the Cartan decomposition. Define the Cartan involu-
tion 0 by

0(H;) = —Hj, 0(E;) = —F;, O(F;) = —E;. (2.8)
From the distributive property that 6([s, t]) = [0(s), 0(t)] for s,t € g, it follows that
0(Eq) = —F,, 0(Fy) = —Eq for every a€ Ay (2.9)
Redefining the generators as
So=E,+F, and Jo=FE, - F, for every a€ Ay, (2.10)
we can diagonalize the Cartan involution as
0(H;) = —H;, 0(Sa) = —Sa, 0(Jo) = +Jo, (2.11)
and classify the generators according to the parity under the involution 6:
t={seg|0(s) =+s} =span(Jy) and p={seg|l(s)=—s}=-span(H;, S,)-
We are thus decomposing the Lie algebra g as
g=top, (2.12)

obtaining the Cartan decomposition. Since the number of the positive roots is (dimg —
rank g)/2, we have

dimg —rankg dimp = dim g + rank g (2.13)

dimt = 5 , >



d 4 5 6 7
® = Eyq | SL(5) | SO(5,5) | Eee) | Erry
D =diml 10 16 27 56

Table 1. Duality group & for various toroidal compactification of M-theory to R ¢,

Although the commutator in p is not closed (since it has the odd parity under ), the Lie
commutators in £ yields a subalgebra, sometimes called the Cartan-involution-invariant
subalgebra, which coincides with the maximal compact subalgebra of g.

The third method is known as the Iwasawa decomposition, the decomposition we shall
be using in the present paper. There are two possible types of Iwasawa decomposition.
The positive decomposition is defined by

g=tehdn,, (214)

where by = h @ ny is referred to as the positive Borel subalgebra. The negative decompo-
sition is defined by

g=n_0Ohot, (2.15)

where b_ =n_ @ b is referred to as the negative Borel subalgebra.

Associated to the Lie algebra g, we construct the corresponding Lie group & as the
exponential map. We can realize group element g € & in any of the above decomposition
of g. In particular, we can straightforwardly extend the definition of the Cartan involution
f to an arbitrary group element g € &, and then define an anti-involution f by

F=0(gY, (ab)f =i where g,a,be®. (2.16)

9

In section 3 and 4, we take the Lie algebra g = e;(g) and its Lie group & = Ey4) as
the duality symmetry (summarized in table 1). Suppose that the (generalized) momenta
Zy (M =1,...,D = dimly), which generate abelian translations ([Zys, Zn] = 0) in the
extended space X of the U-duality action, are in the fundamental representation /; of the
Lie group & [28],

h, Zu) == (o)™ Zn - (heg). (2.17)
N

Here, py, is the matrix realization for the element h € g in the [i-representation. Defining
=M

Z" = —0(Zyr), we obtain from (2.17) the following commutator:
=M =N
[0(h), Z" ] == (o) Z"  (heg). (2.18)
N

To render the position of indices consistent, we introduce the fundamental forms, d;;y and
SMN whose components are equal to 5]\]\2 (and are not generalized tensors), and define the

dual matrix realization ()M ny = 6M¥ (p) k" 6rn. We then obtain

[h, Z") = ~(@o)V N 2" (heg). (2.19)



M

We also introduce a natural &-invariant scalar product (v, w) = v wy for an element v

of the representation l; spanned by Aj; and @ of the dual representation /; spanned by
Vi (see appendix A in [11]). This scalar product is defined so as to satisfy invariance
under adjoint action

([h, v], @) + (v, [h, W]) =0 (he€yg), (2.20)
equivalently,
(Adg-v, Ady-w) = (v, w), (2.21)

where Ady-v = gv g~ ! (g € &). We will normalize the abelian generators Zj; such that
the scalar product becomes the identity matrix,

(Zn, Z") =337, (2.22)
and then from

(Adg v, Adg ’ 'ID) = (ei[h“] U, ei[h’.] TI)) - UM wWN (eph)MK (eﬁe(h))NL (ZKa 7L) ) (223)

=M
forg=e"e® v=0vMZy, and ©=wy Z , we have

()™ (eP00)N g = 3. (2.24)

Hence, we obtain
() p N = (e PNy = (ePnt) Ny = 6NE (ePn#) , K dxear (2.25)
where we defined h? = —0(h) for h € g, and used the dual representation () =

SNE (pn) X Srcar in the last equality. This relation shows that the anti-involution # defined
in (2.16), sometimes called the generalized transpose, acts as the matrix transpose in the
matrix realization of Lie algebra g.

2.2 The generalized metric

We next study the geometry of extended space X associated with the duality transfor-
mation group &. We shall define the generalized metric M ;n of X and explain how to
parameterize M in terms of appropriate physical fields (see [11, 86]). We first define a
bilinear form

(v, w) = —(v, B(w)) = —oM N (Zm, 0(ZN)), (2.26)

for generalized vectors, v = oM Zy and w = wM Z M, in the [j-representation. From the
identities, (ZM, G(ZN)) = —(ZM, 7N) = —5]]\\74 = —0pN, we see that the metric (2.26) is

symmetric and positive-definite,

(v, w) = (w, v) = ™MW Sprn . (2.27)



However, as dp/n is not a generalized tensor, this metric is not -invariant. Indeed, for
general element h € g, we find that the adjoint action

<[h7 U]? w> + <U7 [hv w]> = _([h7 U]? 0(71))) - (U7 [e(h)7 H(w)]) = _([h - e(h‘)7 U], e(w))

is nonzero. However, it is invariant under the maximal compact subgroup, K, of &, since
h =#6(h) for h € t.

Starting from this (constant) positive-definite metric and a group element g € &, we
now define the generalized metric from the generalized bilinear form

M(v, w) = Myy v = (Adj-1-v, Ady-—1-w). (2.28)

The generalized bilinear form is positive-definite by construction, and it is defined to be
B-invariant. We assume that the generalized metric M,y varies over the spacetime, so
the group element g € & should be spacetime-dependent as well. Denoting g = e™" (h € g)

N

and wy; = oy w', we have

0(Adyr-w) = M 1ZM gy = ()M 7Ny (2.29)

and the inner product in (2.28) becomes

M(v, w) = oM (), X (PN Ly (Zi, Z7)

= UM (e’oh)MK (eﬁh)NK WN = UM (eph)MK (ephu)KL OLN wN . (230)

Introducing the generalized vielbein as £y;4 = (e#7)y?, we can express the generalized
metric in the conventional form,

Mun = En EnPoas. (2.31)

Here, the indices A, B run over 1,..., D = dim(;, which play the same role as the original
indices M, N but are interpreted as “flat indices.” As (-, -) is R-invariant, two generalized
metrics constructed from g € & and g - k (k € R), respectively, have the same structure.
Thus, the generalized metric can be parameterized by a coset representative of & /K, and
so the number of the independent parameters is given by dim(®/8) = dim & — dim K.

For an explicit construction of the generalized metric, we find it convenient to use the
Iwasawa decomposition (2.14) and parameterize the representative g € &/$), where § is
the Cartan subgroup, in terms of functions, h’(x) and A%(z), associated with generators
of the positive Borel subalgebra b, and the K equivalence class:

g(m) _ eZi hi(z) H; eZa€A+ A*(z) Ea k(x) ~ eZi hi(z) H; eZaeA+ A%(z) Ea , (2'32)
Here, k(x) denotes an element in the compact subgroup £ and z refers to the coordinate
system adopted. We can then obtain the generalized metric from the following general-
ized vielbein:

5MA(:C) — (ehi(w) PH; eZa€A+ Aa(x) pEa)MA . (233)



Note that the generalized metric My is invariant under the anti-involution g — ¢
(i.e. symmetric), while the generalized vielbein is not. Using the above decomposition,
we have

G (x) = K (z) eXoeay AT@) Fo hi(@)

_ M@ Hi Saca, A%(@) Fa k(z) ~ @) Hy (Saea, A%(@) Fa (2.34)
with certain functions h'(z), A%(z) and k(z) € &, whose relation to hi(x), A*(z), and k(z)
is in general complicated. This expression for ¢* corresponds to the alternative Iwasawa
decomposition (2.15), so we can obtain the generalized vielbein in terms of the functions
associated with the generators of negative Borel subalgebra b_ :

EMA(.’L') _ (ezlﬁl(x) pH; ezaeA+ A () PFa)MA _ (235)

The key idea of this paper is that the above replacement g — g¥, which does not change
the generalized metric, generally corresponds to the replacement from the conventional ge-
ometric parameterization of the generalized metric My to the dual “non-geometric”
parameterization of it. A transformation between the conventional and the dual param-
eterization is sometimes referred to as the exotic duality transformation [62, 74, 87]. In
this paper, we will show that the exotic duality transformation is identifiable with the
generalized transpose.

It remains to confirm the tensorial property of the generalized metric. As we mentioned
above, the flat bilinear form (v, w) = vM w" §y;x was not &-invariant. However, the
generalized bilinear form M(v, w) = (Ady-1-v, Ad,—1-w) is invariant under &. This
constrains the transformation rule for the group element g (i.e. the generalized vielbein).
It then follows that, as the R-invariance of dy;, the transformation rule of the generalized
vielbein generally has the following form:

SMA — gMN (C/'NB kBA for ge®, kcR. (2.36)

2.3 Example: Double Field Theory

Before presenting our new results, we first illustrate the above general consideration for the
DFT. In this case, the T-duality group is & = O(d,d). We can decompose the generators
of g = o(d,d) into representations of the GL(d), the gl(d)-generators K%, R® = Rl

Rap = Rjay) (a,b=1,...,d), which obey the following commutation relations:
(K%, K] =65 K% — 0§ K%,  [R™, Reg] = 45[[2 K%, (2.37)
(K%, R = 6§ R+ 08 R [K®), Rea] = —0% Ryg — 08 Ry '

The Cartan subalgebra b is generated by the diagonal components of K%,: H, = K%, (no
summation). The Cartan involution is given by

0(K%) = K%  and  O(R™) = —R, (2.38)



and the Cartan-involution-invariant subgroup is generated by
T = K% — Kb, and Ty =R™ — Ry . (2.39)

In particular, the (anti)chiral combinations, sz = (Jap = Tap)/2, satisfy the algebra for
o(d) x o(d):

(M= M5 =260 ME —205¢ M;]:d, (M, M) =0. (2.40)

[a " alc [a

The positive and negative Borel subalgebras, by and b_, are spanned by {H,, K% (a <
b), R} and {H,, K% (a > b), Ry}, respectively.

In DFT, we take the fundamental (i.e. vector) representation, whose matrix realization
is given by the matrices,

580 026 0 0
B _ a g B _ ab B _
(,OK d)A - ( 0 _53 55) ) (pRCd)A <0 0 ) ) (pRcd)A (_2 533 0) ’

(2.41)

where 6% = 6%2 5:]] (see appendix A for our conventions). The commutators with the

generalized momenta Zy; = (P, ]5’”) are given by

(K%, P,] = —0% Py, K, P = 0% P*,
[Rab’ Pc] — 9 (SLCL f)b] ’ [Rab’ ﬁC] -0, (2‘42)
[Raba Pc] =0, [Rab, ﬁc] = 25[ca Pb] .

Note that the variable ZM defined by

ZM = MY Zy and (™) = (52 68) , (2.43)

is in the same representation as Z". We thus see that the O(d, d)-invariance of (Zy;, 7N) =
62 is equivalent to the O(d, d)-invariance of another metric, (Zn, Zn)) = nan, which is
commonly used in DFT. We also have the K = O(d) x O(d)-invariant metric d4p.

We define the generalized vielbein in the gauge of positive Borel subalgebra by

En (@) = (eXa @ Prta oLacoha’ @ pxce, o3 Loy Bar@ppar) A (2.44)

Here, Bgy(z) is an anti-symmetric tensor field, which is identified with the Kalb-
Ramond field. If we define (EMA)(x) = e2a (@) pKa, eza<bhab(m)pKab and B2 =
%Zmb Bap() prav , we have

En () = (E(z)B? @) A (2.45)

(Ex™)(z) = <em‘(‘)(x) (eT)ena (w)> and  B®(z) = (8 B“’E](x)> . (2.46)



Here, e,,%(x) is an upper-triangular matrix, to be identified with the (gauge-fixed) vielbein
in d-dimensions, and (e~ 1) is the inverse of the transpose of the vielbein. This generalized
vielbein yields the conventional generalized metric in DFT:

o Gmn - Bmk le Bln Bmk Gkn
(MMN) - ( _Gmk Bkn Gmn

6% B\ (G 0 sto0
_ [ “m n 2.47
(0 5,gn> (0 GF ) \ =By, 8, )’ (2.47)

Upon the anti-involution, ¢ — g%, the generalized vielbein takes the lower-triangular

where Gon = em® en® dgp -

form, parameterized by

En(z) = (E(x) P @) A (2.48)

where

(Ex)(z) = (é’m‘;(m) (g—T)?”a(ﬂc)> nd  BO(x) = (_52) . 8) C(2.49)

where €,,%(x) is a lower-triangular matrix. In this case, the generalized metric becomes

o Gmn émk /Bkn
(MMN) - <_l3mk ékn émn N 5mk ékl ﬁln)

sk 0\ (G 0 (o g
(m) (@R ew

where émn = €n%€," 04 . These dual variables were first introduced and extensively
studied in [88-92].

2.4 Example: Einstein gravity

It is illuminating to compare the above results for DFT with the case of pure Einstein
gravity. In Einstein gravity, the generators Ry, and R are absent, the Cartan-involution-
invariant subgroup is simply generated by the local Lorentz O(d) rotations, and there is
no important difference between the gauges of positive and negative Borel subalgebras.
Indeed, as it is well-known, when we consider decomposing the spacetime into space and
time, there are two natural parameterizations into upper or lower triangular decomposition:

k N2 1
Arnowitt-Deser-Misner [93]:  (gmn) = <(1) i;;) ( é\f hO ) ( N (2) ,
4 kl j

. . 1 0 4goo 0 1 —9g;
Landau-Lifschitz [94]: mn) = .
[94] (gmn) <_gi 55) (0 ’Ykz) (0 8

These two parameterizations are related simply by a usual local Lorentz transformation.

(2.51)

In comparison, the situation is different in the DFT case. In order to relate two param-
eterizations (2.47) and (2.50), we need to use a non-trivial O(d) x O(d) subgroup of the

,10,



T-duality group. In general, the parameterization (2.47) is suited for the conventional
geometric backgrounds, while (2.50) is suited for non-geometric backgrounds, such as T-
folds. As such, we will refer to the latter, negative Borel subalgebra parameterization as
the non-geometric parameterization.

2.5 Effective action for non-geometric fluxes

By definition, the actions of the extended field theories are independent of the explicit
parameterization of the generalized metric. However, once we parameterize the general-
ized metric in terms of appropriate physical fields, we can straightforwardly construct the
effective actions appropriate for describing dynamics of these field excitations.

As is well known in DFT [7] or EFT [11], parameterizing the generalized metric in
terms of the conventional supergravity fields, we can derive the conventional supergravity
action from DFT or EFT action. For example, if we choose the conventional, geometric
parameterization and impose the section constraint om = 0, we find that the DFT action
is reduced to

1
L=e2 <R(G) +4|dg)? — 5 |H(3)|2> , (2.52)

where ¢ is the conventional string dilaton field defined by the T-duality invariant dilaton
of DFT, e 2 = ]G\l/Q e 2% and the three-form H®) = dB®, called the H-flux, is the field
strength for the Kalb-Ramond two-form potential B(2).

On the other hand, if we choose the dual, non-geometric parameterization (2.50), we
reduce the DFT action to the so-called B-supergravity [54-56, 60, 61]. Although the full
expression is complicated, with the simplifying assumption that indices of " contracted
with 0,, always vanishes and the constraint om = 0, the DFT action is reduced to the form

~ 7 ~ ~ 1
L=e2 <R(G) 4l — 5 |Q(172)|2> . (2.53)
Here, the tilde signifies the non-geometric parameterization, and 5 is the dual dilaton field

defined by e2? = \6]1/2 e20 Further, we defined

2

1 ~ ~ ~
QU2 = 5 G™™ Gonmy G @y ™™ Q™" QK™ = O™ (2.54)

The mixed-symmetry tensor,? Q,™", is called the non-geometric Q-flux. In this paper, we
further generalize the S-supergravity starting from the (heterotic) DFT or EFT.

3 Non-geometric fluxes in EFT: M-theory

In this section, we consider the eleven-dimensional supergravity of M-theory compactified
on a d-torus, T¢, equivalently, the ten-dimensional type ITA supergravity compactified on
a (d — 1)-torus, T4~!. This theory possesses the U-duality transformation symmetry, and

3This behaves as a tensor only under the simplifying assumption [55].
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n 7 6 5 4
Eua | SLG) | S0(5,5) | Ege | Er)
Ky | SO(5) | SO(5) x SO(5) | Sp(4) | SU(8)
D | 10 16 27 | 56
Qi 3 4 6 12

Table 2. The U-duality groups, their maximal compact subgroups and the integers, D and «,, for
various noncompact dimensions, 4 < n < 7.

the EFT provides the manifestly U-duality covariant formulation. To construct the EFT,
we consider an exceptional spacetime with the following generalized coordinates:

(XH =@ Y™ (,v=0,....n—1,M=1,...,D), (3.1)

where n = (11 —d) is the dimension of the uncompactified, external spacetime and D is the
dimension of a fundamental representation of the exceptional group Ey(4) whose value for
each n is shown in table 2. In this paper, we consider the cases of noncompact dimensions
n =4,5,6,7, equivalently, cases of compact dimensions d =7,6,5,4.

The EFT actions for n = 4,5,6,7 are presented in [14, 15, 22, 23] (see also [24] for
n =29, [21] for n = 8, and [18] for n = 3). For simplicity, we focus on the following parts
of the action, which are the relevant parts for our purposes:

SpFT = / A"z dPY Lgpr  where  Lppr = Len + Lscalar + Lpot »

»CEH = BR,
»Cscalar = i guy aMMMN 81/MMN7 (3 2)
Loot = i MMN 9y MEL 9y My — g MM 9y MEL 9, My

+edne N MMY 4 e MMN 9y InedyIne

e
+ MMN 916" ON g -

Here, e abbreviates |det gw,ll/ 2, R is the Ricci scalar of the external metric g,,, and a, is
the integer shown in table 2. Note that the potential part in the EFT action is fully taken
into account by Lpot.

In the EFT, to render the gauge algebra closed, we will impose the section condition of
the form, YMN pg 9y (- ) On(-++) = 0, where YM¥ pg for each EFT is given in [12, 13].4
As is well-known, there are two natural routes to solve for the section conditions: the
M-theory section or the type IIB section [14, 98], where all background fields and gauge
parameters depend only on d coordinates 2 or d — 1 coordinates 2™, respectively. In this
section, we study the M-theory section and parameterize the generalized metric in terms

4The section condition of DFT can be relaxed in the flux formulation [82, 95, 96] or in the approach
of [97], and the section condition of EFT may be also relaxed in these approaches.
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of the conventional/dual fields in eleven dimensions. We relegate the parameterization in
the type IIB section to section 4.

In the M-theory section, we decompose the internal D-dimensional coordinates Y
into some representations of SL(d). Explicitly, for each n, we introduce the following
coordinates [11, 28]:

n="17: (YM) = (", Yij) (i,j =7,8,9,M),

n=6: (YM)= (2", yij, Yir-eis) (i, =6,...,9,M),

n YM) = (2", yij, Yiris) (i,5 =5,...,9,M),

n= (Y My = (2, Yijs Yipigs Zi) (i, =4,...,9,M), (3.3)

where the conventional M-theory circle direction, denoted by zM, is one of the internal
coordinates x*. The section condition is satisfied when all fields are functions only of 27,
the physical coordinates on the d-torus. So, 0/0y;; = 0/0y;,....; = 0/0z; = 0.

3.1 Parameterization of the generalized vielbein

We now examine parameterization of the generalized metric (or vielbein) in the M-theory
section of the EFT. The generalized metric in the SL(5) EFT was first obtained in [8]
(which in turn is based on the earlier work [99]) as

Gij + % A Aklj —% Aijm
(MMN) B 1 pivip 142, j1j2 . (3'4)
— s Az Gz,

Subsequently, the same generalized metric (up to an overall factor) was presented in [11]
in the context of Ej; program [27, 28], and its extensions to Eqgq) EFT with 5 <d <7
were also presented (see also [100, 101] for d = 4,5). The parameterization given in [11]
was obtained by choosing the positive (or upper-triangular) Borel gauge. If we instead
choose the negative (or lower triangular) Borel gauge, we can parameterize the generalized
metric using the so-called dual Q-fields (the explicit form of Q-fields for SL(5) EFT is given
in [78, 79], which we repeat below). As the Q-fields are related to the non-geometric fluxes,
we refer to the latter as non-geometric parameterization.

In the rest of this subsection, we present two parameterizations of the generalized
vielbein, i.e., the conventional parameterization and the non-geometric parameterization,
for 4 <d <7 (or 4 <n <T7). Using these parameterizations, we define the non-geometric
fluxes in M-theory and construct the eleven-dimensional effective actions that are useful
for describing these non-geometric fluxes.

3.1.1 n="7 & =SL(5)

For the g = sl(5) Lie algebra, we decompose the 24 generators to® [11]

K%, R*4293 Ra\asas (a,b=1,8,9,M), (3.5)

SWe relegate their commutators in appendix A.1.
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where K%, are the gl(4) generators and R**2* and Rg,a,a, are the generators that trans-
form as totally antisymmetric under gl(4). So, we are decomposing 24 generators into
16 4+ 4 + 4 generators. Using this decomposition, a group element g of & = SL(5) can be
parameterized as

b 1 1, by1bob
g = el KT guita1epe N oy Mbpigny ¢ @ = SL(5). (3.6)

This element can always be rewritten in the form of positive Borel gauge:

g = Xt hal K ggrAarage; B2 where ke $H=S0(5). (3.7)
It turns out that the SO(5) element k& does not contribute to the generalized metric. Dis-
regarding it, the number of independent parameters are 10 + 4, which is equal to the
dimension of the coset space &/ = SL(5)/SO(5). We can identify the parameters,
e = (M)’ € GL(4)/SO(4) and Ay ayas, as the vielbein and the 3-form potential on
the 4-torus, respectively. Note that the left index of the matrix (e”) is changed from a to
7 in order to interpret it as the curved index.

From the formulas (2.31) and (2.33) and the matrix representations (A.12)-(A.16), the
generalized vielbein and the metric become [§]

Muyn = |G]éMMN, Eyt = \G|% Ev, (]G| =detGi;, Gy Eeiaejbéab),

1
eﬂ« _7A
(3) (] 2 1a1a2
(Eut) =Bt = v )
117
0 €L

Gii + L Ay AR — L A 152
(MMN) — (EMA ENB 5AB) _ J + 2 kl J \/5

f% Ailizj Giiz, 12
(3.8)
where
~ e; @ 0 L. _ . B .
(EMA) = < 6 iz > s 61111112(12 = (6 T)Zl[m (6 T)I2a2]’
aiaz
1 0 —L Auws ) 0
3) o abi b2 _ b
A( ) = g Aabc PRabe = ( 0 \/50 ) 0AB = S 5a1az,b1b2 >
Gil'“invjl'“jn — (5,?11]; lejl L Gk:njn ’ 5a1a2,blbz = 510111522 501b1 5021)2 ,
(3.9)
and the indices are changed using the vielbein (e.g. Aju 0, = €€ Acaya,) and raised or

lowered using the metric G;; and its inverse. See appendix A for further details of
our conventions.

— 14 —



If we do not choose the Borel gauge, we can generally parameterize the SL(5) general-
ized metric as [78, 79]

1 1
Ay 5 AB B ¢i + 3 Aieye, 21 V2 Aiaray
(Ey*)=FEe™ e = , (3.10)
— L @iriza el1iz
\/§ ai1ag
Gij + 3 At AN + AquQ j) + A" WP Apg; =5 (A2 + Q172 + G A QN 7172)
MuynN) =
( ) _%(Ailhj + Qiﬂzj + %QiﬂszklmAlm].) Giriz; 12 + %Qiliszkhjz ’
(3.11)
where we defined the Q-matrix:
1 0 0
3) — cicac _
QB = 59 12 s = (_1Qa1a2b NE (3.12)
) V2

Choosing QY% = 0 or A;ji, = 0, we obtain two alternative parameterizations for the
generalized metric,

D kl. 1 Aj1j

(Mary) = |G| Gty hmdly —p AT (3.13)
_% Ai1i2j Giriz; j1j2

=|G|° ’ V2 (3.14)

_ 1 (yivia . (yivie,jije o 1 )itz kj1j2
75 Q j G +3 Q12,0

The first expression is the conventional, geometric parameterization, while the second ex-
pression is the non-geometric parameterization. From these two parameterizations, we
obtain the following relation between the standard fields and the dual fields:

|G’1/9
ij = ‘E‘l/g

a0

Eij, QU2 — (E7Yyik qitkr quzkz A, (3.15)
where

_ 1 A Akl
Eij =Gij + 5 Aint A7 (3.16)

Further, associated to the two parameterizations, the external metric is also expressed in
two alternative ways:

1 ~ L
G = |G["2 g = |G| By - (3.17)

We confirm that g, and G;; are components of the conventional metric in the eleven-
dimensional supergravity, denoted by Gy (1,7 =0,...,9,M).
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3.1.2 n=6: & =S0(5,5)
The generalized metric or vielbein generally has the overall factor,
1
Muny = |Gl72 Myy,  equivalently,  EyA = |G|702 EyA, (3.18)

that comes from the second term in the right-hand-side of (A.12). In the following, we
focus on the parameterizations of M,y and EyA.

In the present case of & = SO(5,5), we can similarly parameterize the generalized
vielbein as [8]

e _% Aia1a2 % Az’[alag Aa3a4a5]
A\ _ D AG) . o
(EyHY=Ee*" =1 o eitiz _\/5%[1/5 5;;32AQ3Q4QS] ; (3.19)
0 0 et
or as
e;* 0 0
- (3) . .
(EyM =E 7 = _% Qitiza iz 0 , (3.20)
2 Qliviada giaisle 20 s isiais] iyt
where we defined
e’ 0 0
E=|0 ez 0 : (3.21)
0 0 e,
! 0 — 5 Aabi, 0
3) —
AB) = 5Amcg PRetcacs = | 0 0 _\/%1/5 5[6211%2 Apgbas] | - (3.22)
0 0 0
0 0
1
Qb = TR —J5 Qmeab [0 0. (3.23)
20 aja .
0 —Rsdneaneed g
We can again redundantly parameterize the generalized vielbein as
Ey? = BeA” 29 (3.24)
3.1.3 n=>5 &= EG(G)
In the case & = Eg ), we can parameterize the generalized vielbein as [8]
e —-L A L(A- +54; A )
7 V2 Hiataz /e ial--as ila1az “tazaqas]
A_p AB _ABG) - 20 o
Eu==Ece™ e =10 €'ayas NENG ﬁf@ Aazagas] , (3:25)
0 0 G
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or as

eia 0 0
Byt =E e 27 = —% Qiriza e 0 )
\% (_Qi1~--i5a+5 Qlirizis Qi4i5]a) _\/2(1/ 5&1;2 ()iatais] givis
5! 512 1as
(3.26)
where we defined
ei“ 0 0
E=| o eitiz 0 : (3.27)
0 0 e
1 O _% Aab1b2 0
A = o Azes preseass = | 0 0 — 275 0092 Ay | (3.28)
0 0 0
' 0 0 = Aahybs
A0 = Gl Acicg PRe1es = | 00 0 ) (3.29)
0 O 0
0 0 0
1
QW = Sameepy = | dyame 0 0|, a0
’ 20 ¢l ;
0 -2 5b‘:1b‘212 Qasasas] ()
0 0 O
1
Q(ﬁ) — _aQCI c6 PRey. e = 0 0 O . (3.31)
_% Qal"'ai’)b 0 0

We remark that the normalization of the 6-form is different from that used in [8] by a factor
2. Note also that, in the middle expression of the last line, the minus sign is introduced in
order to make the exotic duality, Ac,....s >+ 2°7°%, coincides with the matrix transpose.
Stated differently, the negative sign comes from the fact that the Cartan involution (A.17)
for R appears with the positive sign, §(R) = +Re,...cq-

3.14 n=4: G = E7(7)

In the E7(7) case, we can parameterize the generalized vielbein as [11]
(Ey*) =E oA A or (Ev=E 2@ 2% (3.32)

where we defined

e 0 0 0
~ |0 etz 0 0
E= . (; s . , (3.33)
7;1‘“7;5
0 0 0 le| ™ ety
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0 _%Aablbg 0 0
1 0 0 20 Jmaz A 0
3) — S bsbab
AB) = 3! Acicocs PRe1C2Cs = VAV Clonta atate] 1 _ajascic ’
: 0 0 0 727\/516 rasal QAchb
0 0 0 0
(3.34)
' 00 jaAabln.bs [ 0
00 0 2_ gt eazleres A
A©) = 2 A e — a3 % eres 3.35
6‘ cl1Cq pR 1 6 00 0 0 ’ ( )
00 0 0
0 0 0 0
1 ajasb
a® = Loaea,, | =" Y " "
- clecoc a1a a3a4a. ’
3! 1623 0 — o7 O, 20004 0 0
0 0 _%\/5 Qacrc €creaby-bs 0
(3.36)
0 0 0 0
1 0 0 0 0
QO = gy (3.37)
6' Cc1-Cq _% Qal“'afib 0 0 0
. 0 2 5 Qcrcs () 0
513 Oftn Cbaler-ca

We remark that the parameterizations for Eyg) with 4 < d < 6 are obtainable by a

truncation of those for E7(7).

3.2 Eleven-dimensional effective action

The eleven-dimensional effective action is obtained by solving the section condition such

that the eleven-dimensional coordinates are given by (z) = (z#, 2%); see appendix B for
the detailed derivation. For instance, consider the E77) EFT in the geometric parameter-

ization. The action becomes

L =Gz (R(G)
5 Ghi23, j1j2J3 Giie, j1de
B g# |:23' a“AiliQi3 aVAjlejs + Tfﬂ,il-"% vajl"'j6:|
1

o O By iy By — 5 G B e Fj1~~-j7> , (338

where

1 1
R(G) = Rl®)+ " 10,6 0,6y + 10,1160, m ]
1 1
+ R(G) + GY [48igw 0i8u + Zai In |g| 0; ln]g]} ,

Fi1"'i4 =4 6[,1A

121304] >

24

i9-+17] 9 [i19213

F,

i4i5i6i7] 3

Fi1---’£7 =7 6[2114

Frkyke = aMAkr"kG - 10A[k1k2k‘3\ aﬂA\k4k5k6] :
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Note that R(G) is equal to the Ricci scalar associated with the eleven-dimensional metric,

_ (8w O
(Guv) = ( g Gij) ) (3.39)

and the off-diagonal components are absent since we neglected some external parts of the
EFT action. Note also that the above result generalizes the result of [11], where only the
potential part was calculated. Further, the 7-form, Fj,..;,, is the Hodge dual of the 4-form,

Fuppg =4 a[#lAuzﬂsM]’
On the other hand, in the non-geometric parameterization, the effective action becomes

and is independent of the internal components, A; i, -

~ 1 ~ 1 2 1 2
et (R(G) - Lswap - Ljsao) ) , (3.40)
where
- T1 ~ o o
|S(17p)’2 = G/“/ |:p' Gil"'ipajl"'jp Sﬂzlmlp Sf/]lmjp:|

Sﬂilmi?’ = 8ﬂQi1"'i3 ,

Here, we defined the non-geometric fluxes, to be referred to as the S-fluxes. This is one of
the main results of this paper. In deriving (3.40), we used the simplifying assumption,

QUEG () =0, 90U =0, QUBY(..)=0, 9N =0. (3.41)
3.3 Reduction to the type ITA theory

It is well-known that the type IIA supergravity can be derived from the eleven-dimensional
supergravity by the following Kaluza-Klein decomposition of fields:
ds? = e3¢ Gao dz? daz? + 3 ® (dxM +Cy d:c’l) (d:z:M +Cp dx'j) ,
Apifoiis = Cnfois, AppoM = —Bpaps s Apnois = —Bpnis » (3.42)
Aﬂl'"ﬂsM =Chyfps +5 C[ﬂ1ﬂ2ﬂ3 Bﬂ4ﬂ5} ’
where 1,7 =0,...,9.
In the non-geometric parameterization, we consider an analogous Kaluza-Klein decom-

position of fields:

A = ¢ 59 Gpp (dz? + 4P da™) (da” +~7 daM) + 039 (dxM)z,

QPA1h2f3 ,yﬂl[l&ﬂli ’ QA1A2M _ _Blllﬁa 7 QA1 fe — _5[11'“}16 ’ (3.43)
QM ,yﬂl"-ﬂs _ 57[11111217«3 Bﬂzxﬂs} .
In the matrix notation, the two decompositions of the metric can be compared as
. s N
(Gas) = 5z Ca (e 3¢ Gps 9 07 0 7
: 0 1 0 e3?) \Cp 1
(3.44)
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The non-geometric effective action (3.40), up to a total derivative term, becomes

1

O 2 1
£ =[Gl | (R(G) +4ladl - 5102
1

—43 2 2 2
- 5e 4¢(|p(171)‘ + |P1:3)] +|p(175)‘)

- %e*ﬁg ,Q(mﬂ . (3.45)

Here, we defined the non-geometric - and P-fluxes as

Qﬂmn = aﬂﬁmn ,
Pﬂm = 8,nm N

Pﬂmlmgmg — aﬂ,ymlmgmg o 37[m1 Qﬂmzms}

Pﬂmlmms — aﬂ’)/mlm5 N 107[m1m2m3 Qﬂm4M5] 7

Qﬂmlmb — 8ﬂ6m1m6 N 107[m1m2m5 6ﬂ’7m4m5m6] 4 67[m1 Pﬂmzmd :

and
43" = G 946050,
QP = 25 G Gy oy Q™ Qo™
PO = 2 G Gy ony Pa™ 0 P

We also used the identity,

=13 o =15 (23T p i ) o el (1,1),2
IG]” R(G) = |G|* (e *?[R(G) +4G 8,;(]58,;@—?@’ ]

14 ~ 1 o= ~pp
+ 0p <3 IG|2 e2¢0 G* 8,;¢> . (3.46)

Note that the terms proportional to ¢~2% in the action (3.45) match with the action
of the [-supergravity [54-56, 60, 61] once the simplifying assumptions (3.41) are made.
Moreover, (3.45) generalizes the actions for the P-fluxes and the Q1 %)-flux obtained in [74]
with non-trivial dilaton dependence taking into account.

4 Non-geometric fluxes in EFT: type IIB section

We now turn to type IIB EFTs. As previously emphasized in [13, 102, 103] the type IIB su-
pergravity is also derivable from the U-duality covariant formulation. In particular, within
the SL(5) EFT, a solution of the section condition that corresponds to the type IIB theory
was found in [98]. In the following, we present both the conventional parameterization
and the non-geometric parameterization of the generalized vielbein in terms of fields in the
ten-dimensional type IIB supergravity.
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In the type IIB case, we introduce the following generalized coordinates in which
SL(d — 1) and SL(2) covariance are manifest [86, 102, 103]:

n="7: (YM) = (2™ 4%, Ymimoms) (a=1,2, m=7,38,9),
n==6: (YM)= (2™ ¥2, Ymimoms) (a=1,2, m=6,...,9),
n=>5: (YM)= (@™ 2, Ymimams> Yo, ms) (a=1,2, m=5,...,9),
n=4: (YM)= (2" y2, Ymimems> Yo mss 2m) (@ =1,2, m=4,...,9). (41

Here, Ym;myms and yg .., are totally antisymmetric coordinates and zpy is related to
Zm,-.mg, m adopted in [86] by zm = % €™M Lrny-mg, m

The conventional parameterization of the generalized metric in the type IIB section is
shown in [86] (in the context of the E7; program). By taking a suitable truncation of it,
we can obtain the generalized vielbein in Ey4y EFT for various d.

In the type IIB section, corresponding to the curved indices m, we introduce the flat

indices as a and the curved and flat indices are changed with the vielbein, e,°.

4.1 Parameterizations of the generalized vielbein

Here, in a way analogous to those given for M theory in 3.1, we construct the type 1IB pa-
rameterizations of the generalized vielbein. We consider the cases4 <n <7 (or4 <d <7),
and in all cases, we use the following matrices:

(cas) = (01 ;) = (), (12)

¢ (0)
e?/? (eO . > (geometric)
Vo) = _ : (4.3)
50 e® 0 .
e?/ o (non-geometric)
g

where ¢ is the dilaton and C©) is the Ramond-Ramond 0-form potential and 5 and ~(©
are their non-geometric duals. We also define the metric,

~20 1 (C0)2 ¢
’ (e ;—((0) ! 1 ) (geometric)
aB) = VVT = _ , »
e ~ [ o720 ~(0) (4.4)
f MOS0 (non-geometric)

and may denote it by m,g for the non-geometric parameterization. We also introduce the
pair of the Kalb-Ramond B-field and the Ramond-Ramond 2-form as well as their dual

bi-vectors,
Ba s ab
(Bg) = (C E) and (ﬂab) = (fab) . (4.5)

— 21 —



The Ramond-Ramond four-form always appears in the S-duality-invariant combination,
p®—c@ L ge oo (4.6)
2 ’ )
and its dual four-vector field in the combination,
nal..-a4 — ’Yalma4 o 3,3[3132 ,yagad‘ (47)

Finally, the 6-forms and the 6-vectors appear with the combination,

C(G) ai--ag
(B(6)a) = (B(6)> and (ﬁgl---as) = (gar"ae) . (4.8)

As in the case of the M-theory section, the generalized metric and vielbein appear with
the factor,

Muyn = |G|ﬁMMN and MMNEEMAENB5AB. (4.9)

In the following, we present the explicit parameterization for Fp;* only.

411 n=7: & =SL(5)

In the case & = SL(5), the generalized vielbein parameterizations are given by

=~ B2 =~ 32
(EyY) =E 87 e or (B = E 77 e, (4.10)
where
em® 0 0 0 0
E=10 ey 0o |, €e=|o wg o |
0 0 eRnn 0 0 &k
1 0 B 0
2 _— - v ey — 3
B — 2 BClCQ pR-\/l 2 — 0 0 ﬁ €ary 6[ab1 BZZbS] 5 (4.11)
0 0 0
1 0 0 0
2 a
B2 = 5 c1c2 e 0 0].
0 B eMrglpeEl g
V3! b Y

4.1.2 n=6: & =SO(5,5)

In this case, the generalized vielbein parameterizations are given by

(Ey™*) =E DY B v or (Ev™*) =E e e8P gv , (4.12)
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with

emP 0 0 o0 0
E=1|o0 sem o |, =10 wrfe o |,
00 e I
o 0 B 0
B\ = % B, PRare2 = 0 0 % €ary 5[ab1 B;/zbg] ’
0 0 0
0 0 ﬁ Dab1 bobs
D(4) = % De,...cy prera = | 0 0 0 ) (413)
0 0 0
0 0 0
(2) _ 1 ciC2 — ab
6 — 5 B’y pR;YIC2 - _Ba 0 01,
I sl gzl g
0 0 0
(4) _ 1 C1+Cq _
n= — 577 PRey..cy — 0 0 0
: _ﬁ n313233b 0 0

4.1.3 n=>5 &= EG(G)

In this case, the generalized vielbein is given by

= p@ g S @ g
(EyY)=FE PV &P S or (EvM=E ™ B v (4.14)
with
em® 0 0 0 0 0 0
~ 0 d&hem 0 0 0 V.28 0 0
E= o ;o oer=| 0V 0 . (4.15)
R T 00 g o
0 0 0 80 emems 0 0 0 Vol
aCpbs N
0 BY, 0 0
1 0 0 —2eu 02 B 0
2) _ _ 31 77 “lb 2b:
B( ) — § B;Y1C2 pry1cz = 0 0 V3! ([)1 babs] JE guimaes 5 , (416)
[b1b2b3 “bybs]
0 0 0 0
0 0 ﬁDablebs 0
1 0 0 0 —3.68s D
DY = — D, ., preres = V51 %0 Oy Dz o) 4.17
4 Terca PRe1c4 0 0 0 0 ) ( )
0 0 0 0
0 0 0 0
b
(2 — 1 scie _| % v 0 0 4.1
p 2'87 PRc, 0 %6/’761&81 Bl 0 0’ (4.18)
0 0 VS A 0
0 0 0 0
@_ _ 1 e _ 0 0 00
77 - 4' T] pRclA.-c4 - ,ﬁnalazasb 0 0 0 N (419)
0 L 0
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4.1.4 n=4 & = E7(7)

In this case, the generalized vielbein is given by

=~ BO) p@ p® = 56) @) 5(2)
(B = E 87 PV B v or (EyfY) = E &7 e 77 v (4.20)
where
em® 0 0 0 0 op 0 0 0 0
0 dem, 0 0 0 0 VS o0 0 0
E=1|o0 0 o b , 0 0 , e =10 0 opiazes 0 01,
0 0 0 Sa el 0 0 0 0 V&I 0
0 0 0 0 e~ tem, 0 0 0 0 8
(4.21)
0 B 0 0 0
3
o 1 0 0 eay 0%, By 0 0
e 7 C1C pr— /B
B = 5 Bl p RE1°2 0 0 0 VB By bl 0 ,
0 0 0 0 — e fay €17 B
0 0 0 0 0
(4.22)
0 0 ﬁDablbm 0 0
5 <8
g 1 00 0 — 5 00 0f, Doy 0
D( = I Dc wcy PRE1 4 = |0 0 0 0 _3!\1/5 €1829UED Deyesesb |0
0 0 0 0 0
0 0 0 0
(4.23)
1 B
0 0 0 ~ 5 Biby s 0
) 0 0 0 0 31 €ay €170 Bl 63
B( ) = @ B’Y -Cg pryl"'°6 - 0 0 0 0 0 9
0 0 0 0 0
0 0 0 0 0
(4.24)
0 0 0 0 0
—p2b 0 0 0 0
B = ch prz, = 0 e 0 0 0], (4.25)
0 0 VB §iEs 5] 0 0
0 0 0 ——= ey 0
0 0 0 00
0 0 0 0 0
(4) 1 ©C4 — 1, ajasasb
Ui o N PR = | U 0 0 0 01,
0 — L SR o 0 00
0 0 3,\1/37 6b1 b2b3c1cgcg 77 c1eacsa 0 O
(4.26)



0 0 0 0 0
1 0 0 0 0 0
BO) = — gers = 0 0 0 0 0 (4.27)
el PRY ..cg = .
ﬁ [ar-ash 0 0 0 0
0 G € € BSOS 0 0 0

4.2 Ten-dimensional effective action

The type 1IB supergravity action is also obtainable from solving the section condition,
such that the ten-dimensional coordinates are given by (z#) = (z#, ™) (2 =0,...,9). See
appendix B for details. For instance, for the E77) EFT in the geometric parameterization,
the action becomes

o [R(G) + i G 9y Dym™

8,,B§1n2

1
_glw <2 21 Map Gz g B%1m2

mip---mg,Ng--n
+72 A1 Gmrma 4g;¢,m1---m4 gu,nl---n4

1
+ gmaﬂ Gml meg,N1---Ng g;oj,m1 me gg,m---ng)

1 @GM1iMm2mg, ninang fro B

B 9. 3|m01/3 mimams Hn1n2n3
1

— g5 O™ G, Gnl...n5] : (4.28)

where the field strengths are

Guymimy = OuDmyoomy — 3675B
G g = OuBY g — 15 B)

OBl (4.29)
OpBmg] > (4:30)

[m1ma|

15) D|m3 me] T 15 €45 B

[mima| [mim2 m3m4|
Hr?nmgmg = 38[m1 mgmg} )
Gimy-oms = 5 Om, Crmgeems] + 30 Hipn o ms Cmam] 5 (4.31)

and, for the ten-dimensional metric,

(Gus) = (gg” G?ﬂﬂ) , (4.32)

the associated Ricci scalar is given by

R(G) = Rlg) + ¢ |1 0,G™ 0,Gmn + 1 ,1a[G0, 1 G

+ R(G) + G™ Lll Omg"" Onguv + % G™ OmIn|g| On In \g@ . (4.33)

In the standard definitions of six-form potentials, the field strengths are given by
GO =dcl,, + HD Ao, (4.34)
HO =B, + @ adc® - % CAONCONH® + O (4.35)
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and the corresponding expression for gﬁm e should be

td.
gﬁl’qml'“mb‘ = aﬂcfgqsl'“z'ﬂ(i + 15 C[m1~-~m4| 8}LB|m5m6] I (436)
td.
G2 s = OB + 15 Cimy sl OuClmsma] — 45 Clamima Crmgmi| O Bimyme) - (4:37)
Comparing these with the expression (4.30), we see that the conventional six-form poten-
tials are related to the six-form potentials, C,..mg and Bm,...mg, DY

std.

Ot s = Ciny g — 15 Dy, Brnams] + 15 Bimyma Bmgma Comsme] » (4.38)
std.

BS e = Brmyoms — 15 Dimymy Comsmal + 30 Cimima Crmgma Bmsmg] - (4.39)

This completes the conventional, geometric parameterization.
In the non-geometric parameterization, we obtain

1 ~

~ 1 1~ _
L£=|G|? |R(G) + 1 6" Oatiag Dym™

~ aff 1 o
m 1,2 2. m 1,6
=5 QY Q) = SIPOI - (@, Q)| (40)
where we defined
Qo)™ =0u63", P™M™M = gpnm™ 4 3¢9 ﬁgmlmQ Oﬂﬁgmm“] , (4.41)
Qa’ﬂmln-mg = aﬂﬂamlmmg +15 Bgrumz 8ﬂnm2‘“m6] + 15 E’Y‘s 5([;”1""2 B’fyﬂsmzl aﬂﬁg‘SmG] ,
(4.42)
aﬂﬁ ém m nin
(D, QY = TG Qu a™ ™ Q™™ (443)
2 aﬂﬁ ém emg, 1N mi---m ny--n
[P = 14! P P M (4.44)
G G ooy o
Q%9 Q(5176)> = Gmlﬁ!m’m " Qa, ™M Qp, M (4.45)

The above action is manifestly SL(2)-invariant. This action can also be expressed in the
following form:

1

£=1G* [R(E) - % (Idfbl2 +e?|QW2)7 4 o= Q167

4 e 2P0 4 =0 P27 4 LD 4 b 179<176>|2>} . (4.46)

where
Ao =G" 9 dpo, (4.47)
‘Q(Lp)’z = ;!@119 @mlmmp’nlmnp QM Mr QM (4.48)
|73(1,p)|2 = ; G éml---mp,nl---np P e Py (4.49)
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QMM = Q™M™ = g, 4mm2 (4.50)

Qs = Qe _ (0) pumims () miemo) (Sﬁi:i) , (4.51)
Py=Py= 3}17(0) ’ (4.52)
Pﬂmmz — Pﬂm1m2 _ 7(0) Qﬂm1m2 _ 8ﬂ7m1m2 _ 7(0) aﬂﬁm1m2 7 (4.53)
Py = MM = MM g 370 ﬁ[’“lm auﬁm3m4
= Py — G’y[mlmQ aﬂﬁmsmd 7 (4.54)
P, mieme — pmiemg
= Q™™ 4 15 Blmima g ymarmel 15 10 glmima gmama g, ginsmo
— §pA™IMe — 15 Amima g, gmsme] (4.55)

and we defined yMMe = 4MMe 4 15 plmima gmsme] 4 15 glmimz gmsma »msme]  pipa)ly,

& .
in the string frame, (Ggir)pp = €2 Gjp, the above action becomes

1 ~ ~ 1 2
|Gstr‘ ° |: B (R(Gstr) + 4 ’d¢‘§tr - 5 ‘Q(LQ)’str)

1

2 _4¢<‘,P 1 0 |5tr + ”P(L2 |5tr + |P 1 4 |5tr + |7) 1 6 |5tr>

1

- 51O, (4.56)

This action generalize the actions of S-supergravity and its extension obtained in [74].

5 Non-geometric fluxes in heterotic DFT

In this section, we generalize the above constructions to the heterotic DFT, which incor-
porates the Yang-Mills theory with heterotic gauge group Gyy = SO(32) or Eg x Eg to
the O(D, D) DFT in a T-duality covariant manner. The O(D, D + dim G) gauged DFT
provides an elegant framework for describing the heterotic DFT by combining the string
NS-NS sector and gauge fields into a single O(D, D + dim G) multiplet [81, 82]. A sim-
ilar approach has been developed for studying the leading o/-corrections in the heterotic
DFT [104]. The main idea is to extend the heterotic gauge group Gy by including the
Grr, = Spin(1,9) local Lorentz group:

G =Gyum x Gy, . (5.1)

The DFT spin-connection can be understood as the gauge field for G, acting on adjoint
representations, so the heterotic Yang-Mills gauge fields and DFT spin-connection are
treatable on an equal footing [105-110]. As our formalism works equally well for arbitrary
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gauge groups, we do not specify the gauge group G explicitly. We will thus treat G as an
arbitrary Lie group until we need to work for the heterotic gauge group.

Unlike the O(D, D) or Eygy cases, the O(D, D +dim G) is not a split real form, so its
algebra contains non-compact Cartan generators. In section 2, we tacitly assumed that the
duality group G to be a maximally non-compact group, thus we need to slightly modify
the previous construction [111]. In this case, the Iwasawa decomposition reads

g=kan € O(D,D+dimG), (5.2)

where k is an element of the maximal compact subgroup O(D—1,1)® O(1, D—1 + dim G),
a is an element of the maximal non-compact Abelian subgroup, and n is an element of
the nilpotent subgroup generated by the positive (negative) root generators. Also, Cartan
involution flips the sign of non-compact generators only. Note that the non-compact Cartan
generators and positive (negative) root generators form a solvable Lie algebra, which is
a subset of Borel subgroup. If we assume G is a maximally non-compact group, the
solvable Lie group is restored to Borel subgroup. Using (5.2) we will define non-geometric
parameterization of generalized vielbein and non-geometric fluxes for the heterotic DFT.

5.1 Parameterization of generalized vielbein

The fundamental field variables of the heterotic DFT are furnished by O(D, D + dim G)
generalized metric field H and dilaton d in a parameterization independent way. As the
usual DFTs, the generalized metric is defined by a symmetric O(D, D + dim G) matrix
satisfying

HT M =0T, (5.3)

where J is the O(D, D + dim G) metric. In order to interpret the heterotic DFT as the
heterotic supergravity, we need to impose a suitable parameterization of the generalized
metric in terms of the supergravity fields. The simplest way is to solve (5.3), assuming that
the upper-left conner is non-degenerate. However, such a parameterization is not unique
due to the freedom of O(D, D) transformation.5

The geometric parameterization, which yields the usual heterotic supergravity, is one
possible choice among infinitely many viable parameterizations. The others are so-called
non-geometric parameterizations in the sense that they cannot be represented in terms of
the conventional supergravity fields. In this section, we shall focus on a particular non-
geometric parameterization, which is associated to the Zs part within the T-duality group,
and refer to this as the non-geometric parameterization.

One can introduce a local frame field 77 for heterotic DFT in terms of the gauged
DFT [65, 83]. The local structure group is given by the maximal compact subgroup of
O(D, D + dim G),

K =0(D-1,1) x O(1,D—-1+dimG) C O(D,D+dim G). (5.4)

5The duality group for heterotic DFT with unbroken Yang-Mills gauge symmetry is given by just O(D, D)
rather than full O(D, D + dim G). This is because there should be no mixing between NS-NS sector and
Yang-Mills sector [81, 82]. The extended duality group O(D, D + dim @) is a formal device to describe
Yang-Mills sector within duality covariant framework.
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Geometrically, the physical degrees of freedom of heterotic DFT is represented by a local
orthonormal frame field, so-called the generalized vielbein (or double-vielbein):

5]\72 = {Vﬁm , Vﬁﬁz} (5.5)

Here, M is an O(D, D + dim G) vector index, m is an O(D—1,1) vector index, and m
is an O(1, D—1+ dim G) vector index. Under the local structure group, Vi7" and V="
transforms

Vﬁm — AmnVM\n, V]/V[\m — AmﬁVM\n (5.6)
As we discussed in the last section, the double-vielbein is parameterized by the coset

O(D, D + dim G)
O(D—1,1) x O(1,D—1 + dimG)

(5.7)

A necessary step in identifying the gauged DFT with heterotic supergravity is to fix the
parameterization of generalized vielbein in terms of field variables of heterotic supergravity.
To this end, it is necessary to decompose O(D, D+dim G) vector indices M= {M ,a} and
O(1, D—1 + dim G) frame indices m = {m,a}. We first decompose the O(D, D + dim G)
metric and O(1, D—1 + dim G) metric as

Ttz = <°715’N Y ) and 7 = ("m” ! ) . (5.8)

o Fap 0 Kab

Here, Jyn is the O(D, D) metric, while 75 is the O(D — 1,1) metric:

0 o .
TN = (5 , O”) and N = —Tmn = diag(—=1,1,--- 1), (5.9)
L
and kg is the Cartan-Killing form for the heterotic gauge group G
Ky = tr(t® tl_’) , (5.10)

where t® denotes a-th generator in the adjoint representation

()5 = foe" - (5.11)
Here, indices @, b, - -- = 1,--- ,dim G, are adjoint gauge indices, and o, 3,--- = 1,--- ,dim G
are pull-back of @,b,--- indices by introducing a matrix (¢%), that preserves the Kab-

Accordingly, we denote the pull-back of kg5 as kag:

fap = (0")a (#")s ks, (67)a € O(dimG), (5.12)

and they are numerically equivalent. Furthermore, one can always fix ¢%, as the identity
matrix by using part of the local Lorentz transformation (5.6), which is generated by
A% [104].

It is important to note that r,; is embedded into O(dim G) C O(1,D—1+ dimG),
which has negative-definite metric. Thus, in order to get the standard heterotic supergrav-

ity from the heterotic DFT through an explicit parameterization of the double-vielbein (or
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the generalized metric), we must impose a diagonal gauge-fixing of the two local Lorentz
groups, which maps the barred quantities to unbarred quantities

n— -0, Kgp — —Kab - (5.13)
Hereafter, we will assume the diagonal gauge fixing condition and identify «, 8, - - - indices
with a, b, c, - -+ indices.
5.1.1 Parameterization from coset representative

We next construct the geometric and non-geometric parameterizations of double-vielbein
through the Iwasawa decomposition for a non-split real form, as explained in the beginning
of this section.

The parameterization of generalized vielbein is constructed from the exponentiation of
solvable Lie algebra as a generalization of (2.33)

E =explg’]. (5.14)

Here, g° denotes the solvable Lie algebra which consists of the non-compact Cartan gener-
ators and the positive (negative)-root generators. The non-compact Cartan generator H,,
is given by the diagonal components of gl(D) generator K™,

Hy =KK™, . (5.15)
The matrix realization of gl(D) generator K™, is given by
ot om0 0

(prm )= 0 0 0 : (5.16)
0 0 —&hom

and the matrix realization of H,, is also given by
Op om0 0
(o) 3% = (prcm)p® =1 0 0 0 : (5.17)
0 0 —oh, oq'

The corresponding positive-root generators are realized as

[0 0 2557 (0 &rag 0
(ore)® =10 0 0 |,  (rr)p®=[0 0 kKol |, (5.18)
0 0 0 0 0 0
which satisfy the following Lie algebra
H,K™,] =amu, K™y, H, R™"| = by, R™, H,R™,] =cm R™,. (5.19)

Here, a;,, by, and ¢, are positive roots for D-type (assume that dim G is even)

Ann = €, — €, by = e + ey, Cmn =€, (1<m<n<D), (5.20)
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where e, = (0,0,---,0,1,0,0,---,0). These positive root generators obey the commuta-
———

m—1
tion relations:

(K™, KP] =00 K™, — 0q' Ky, [K™,, RPY = oF R™ + §1 RP™ |
[Kmn7 Rpa} - 52 Rma 5 [Rmay Rnb] = Rab R™" 5
[R™, RP,] =0, (5.21)

Using the above results, we construct the explicit geometric parameterization of the
generalized vielbein. The coset representative &% of O(D,D + dim G)/O(1,D — 1) ®
O(1,D—1 + dim G) is given by (5.14) with the noncompact positive root generators

5&72 — @) PHy o2 man B (@) PR, e% Brmn (@) prmn o Am®pRma (5.22)

If we substitute the explicit matrix realizations of generators (5.16) and (5.18), we recover
the usual geometric parameterization of generalized vielbein

n a p R/
et ALY ey Bpn

gL =(BELY M) B =1 0 & (AT |, (5.23)
0 0 (eMm,
where
et 0 0 0 0 Bun
E=[o0 & o0 , B¥ =00 o [,
0 0 (eTm, 00 0
0 A,° 0
A=A0"prm, = |0 0 kee(AD)% |, (5.24)
0 0 0
on Apt B!
eB(z) eA _ 0 5@(, Fac (AT)Cn
0 0 om
Here,
B! . = By + %Am“ Kap (AT, . (5.25)

Then, from the generalized vielbein, we get the geometric parameterization of generalized
metric using the defining relation H = (£7) MA n25E8 5,
g+ B'g Y B + AkA!  Ak+ B'g7'Ax  B'g!
(Hirx) = kAl + kAtg=Y(B")? kAlgTI AR+ Lk kAlgTH| (5.26)
g—l(B/)t g_lAli g—l
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Consider next the non-geometric parameterization. As discussed in the previous sec-

tion, the associated non-geometric parameterization is constructed from the Cartan invo-
lution, which flips the sign of all the non-compact generators,

Kmn — _Knm7 Rmn — _Rm’ru

R, — —R,“*. (5.27)
The matrix realization of negative root generators are
0 0 0 0 0 0
(Pro)p®=1 0 0 0|, (proo)p®=|-026L, 0 o], (528
—260, 0 0 0 —ob, k40

where £ is the inverse matrix of kag- It is straightforward to check that they satisfy
[H, Rmn] = _bmn Rmn 5 [H7 Rma] = —Cnm Rma ;

(K™, Rpgl = =0, Rng — 04" Rpn (K™, Ry = =6, Ry,

[Rmm Rpa] =0 5 [Rmaa Rnb] = _/{'ab R, s

The non-geometric parameterization of the generalized vielbein is defined by the non-

(5.29)

geometric coset representative £, which is expressed in terms of negative root generators

gﬂA(l«) — (@) PHm @ man hm™ (@) PRy, 05 B7(E) PRin @~ AT aPRpa

. (5.30)
Using (5.28), we find that
e 0 0
E=FEc” e A= (AT)," s 0 : (5.31)
*(é_T)Mk ﬁ/km (é—T)uk Akc ey (e—T)um
where
e 0 0 0 0 0
E=|o0 & 0 : P =1 0o o0 of,
0 0 (ehHm, =m0 0
0 0
A=A",ppo = | —(AT)" 0 0l , (5.32)
0 —Am kP 0
on, 0
AP A = (AT, &b 0
_B/mn Amc ch 6rrln
Here,

(5.33)
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Likewise, the non-geometric parameterization of generalized metric is given by the defining
" _(eT\_A_ __cB .
condition Hyzo = (€7) 57" 125" 5

M
g gA —g BT
Hgn) = | A% ATgA+k AT — AT gp"
_Blg 1[1_5/9121 g_l—FB/gﬁlT—}—AI{_lAT
) (5.34)
1 0 0\ /g 0 O 1 A BT
=|AT 1 ofl]lo & o 0 1 wxLAT|,
—p Axt 1) \o 0 ') \o o 1
where § = (Gu), 8/ = (B'"), A= (A*,), k= (/iab), and
Dmn 0 0
Nig = 0 Kep O . (5.35)
0 0 nmn

For the abelian reduction of the heterotic Yang-Mills group to the maximal Cartan sub-
group, U(1)!6
parameterization (5.31) coincides with the previous result in [85].

, we have Kk = I1gx16 and fqpe = 0. Under this reduction, the non-geometric

Moreover, by comparing (5.26) with (5.34), one can confirm that the geometric param-
eterization and the non-geometric parameterization are related each other by field redefi-
nitions. Denote the set of variables in geometric parameterization and the set of variables
in non-geometric parameterization as

geometric: {g, B, A} and non-geometric:  {g, 8, A}, (5.36)

respectively. From the generalized metric, one then finds a relation between the geometric
variables and the non-geometric variables as

g=@G" -8 -8)",
B — —(§_1 _ ﬁ’T)_lﬁ’T(g‘l . B/)—l’ (5'37)
A — —(§_1 _ IB/T)*llzl
Likewise,
g=(g+B)g ' (9+B"),
B =—(g+B") 'BT(9+B)", (5.38)
A=—(g+BM) A

5.2 Non-geometric fluxes and action

We now study the non-geometric fluxes for heterotic supergravity. In the gauged DFT view-
point, various fluxes in gauged supergravity theories, viz. geometric fluxes, are regarded
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as components of the generalized spin connection of the gauged DFT in geometric param-
eterization. Similarly, non-geometric fluxes can be constructed by replacing the geometric
parameterization of gauged DFT to non-geometric parameterization.”

The heterotic DFT action [81] is given in terms of the generalized metric H by

Shet = / e 2 [4HM Noqogd — 0gogHYN — 4N o odogd + 4051 N ogd
L L (5.39)

MN KL MN KL
+ g?‘l OH" " O5H Rt — 57‘[ oM 8}?Hﬁf] .

Using the non-geometric parameterization of the generalized metric (5.34), we obtain the
non-geometric action for heterotic supergravity in the string frame as

1 1 -
Shet = / dPxy/—ge % <R(d)) + 40" $0),d — ZQ“””Q“W — Zo/ tr (FWF‘“’)> +---, (5.40)

where R(w) is the Ricci scalar with respect to the non-geometric frame field é and its
spin connection field @, and the ellipses denote terms of higher-order derivatives. In the
non-geometric action (5.40), three kinds of fluxes are present: geometric flux fmnp, non-
geometric Q-flux and non-geometric gauge field strength ﬁw-

The geometric flux, fmnp = —2¢p,t'e,"0,e,"™, is given by the same form as geometric
m

np 18 written in terms of the flux finp

parameterization case. The dual spin connection @

Ernp = 3y + Famp = Fomn)- (5.41)
The non-geometric Q-flux of the bi-vector field p*” is defined by
Qu"’ = 0,8" + %a’gwmw), (5.42)
where Q*? is the dual Chern-Simons three-form, defined by
Que = 34, v APle — ARe AVD APef, (5.43)
and §" = §*9,. Finally, the field strength of non-geometric gauge field A* are defined by
P, = 20 AV, 4 fop AP AVE, (5.44)
Note that here we have assumed the simplifying ansatz first introduced in [55]
B9, = AP, = 0. (5.45)

The Bianchi identity for the Q-flux is given by

[po] o = 7 & = pap ol o 5 [ O‘IN[ ;o]

o] __ a o a a gja a o a a gla

(9[“621,] P - EFNVFP + EF[“ FV] + gA[May]Fp ‘|‘ §A P 8[HF V}. (546)
If we set AZ = 0, then this right-hand side vanishes and the result of the conventional
O(d,d) DFT is reproduced.

"We present a systematic construction of heterotic non-geometric fluxes and action via semi-covariant
approach in appendix C.
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6 Exotic branes and non-geometric fluxes

Having constructed the effective actions for type IIA / M, type IIB, and heterotic su-
pergravity theories, we now apply them to study exotic branes and backgrounds with
non-geometric fluxes.

Exotic branes in the M-theory and type Il string theory are first found and studied
in [47-52] and their corresponding supergravity solutions are comprehensively constructed
in [53]. Properties of these solutions are revisited in [45, 46], and it was noticed that the
background fields are not single-valued and in particular that exotic brane backgrounds
exhibit nontrivial monodromies under the U-duality transformations. As such, these back-
grounds are referred to as U-folds.

Exotic branes are defect branes of codimension-two. With (2!, 22) denoting the coordi-
nates in the two dimensional transversal space, the supergravity backgrounds, viz. U-folds,

2 =

depend on the transverse space z = 2! +ix re'? in terms of the logarithmic function,

p(z) =p1+ips = i% log(r./z) = % [0 + ilog(re/T)] - (6.1)

Here, o is a positive constant that depends on the brane and r. is an arbitrary positive
constant.® Note that, as one moves around the center counter-clockwise, the imaginary
part, po, is single-valued while the real part, pi, gets a shift, p; — p1 + 0. This shift causes
the monodromy transformations in the defect-brane backgrounds.

In [45, 46], it was shown that the charges of defect branes are characterized by the
monodromies. Therefore, the monodromy matrices are important physical observables.
However, in [45, 46], the explicit form of monodromy matrices was shown only for the
exotic 53-brane in type II theories.

In this paper, using the parameterization of the generalized metric in EFT, we obtain
the explicit form of monodromy matrices for various exotic branes in the M-theory as well
as type II theories compactified on a d-torus (d < 7). We confirm that the monodromy
matrix of each brane is in one-to-one correspondence with the negative root generator
of the exceptional group. This means that the monodromy is not in the geometric sub-
group (i.e. the gauge symmetry of the conventional supergravity) and so the background
is non-geometric.

Another definition for the charges of defect brane is given by the flux integral. As
discussed in [64, 70, 72, 74], the charges of exotic branes are given by the flux integral of the
non-geometric fluxes. As such, it is convenient to use the non-geometric parameterization
of the generalized metric. Below, we show that the metric in an arbitrary exotic-brane
background is single-valued in terms of the non-geometric fields, while it is multi-valued in
terms of fields in the conventional parameterization. We also calculate the flux integrals
of the non-geometric fluxes and identify the exotic branes as the magnetic sources of non-
geometric fluxes.

8The arbitrary constant 7. is the infrared regulator scale, setting a maximum radius of the background,
at which the curvature diverges. This infrared singularity can be removed by introducing additional branes
and interpreting the logarithmic function as a r/r. — 0 limit of a globally defined holomorphic function,
as is well known for the backgrounds of seven-branes [112]. In that setup, the cutoff 7. can be interpreted
as the distance from the neighbouring brane [63].

— 35 —



More recently, exotic-brane solutions in the heterotic supergravity have also been con-
structed in [113], where the monodromies of the backgrounds have been calculated but
using the generalized metric of [114]. In this section, we study the same backgrounds in
terms of the generalized metric obtained in section 5. We also show that, in the non-
geometric parameterization, the metric becomes single valued and discuss non-geometric
fluxes in these backgrounds.

6.1 Exotic branes in the heterotic DFT

Consider first exotic branes in heterotic DF'T. Heterotic supergravity admits three types
of exotic-brane solutions [113]|, which inherit from symmetric, neutral and gauge NS5-
brane solutions [115-118]. Among these solutions, the symmetric solution makes use of the
leading order o'-corrections. Therefore, to analyze the symmetric exotic brane solution, we
first need to retain the leading order o/-corrections in the heterotic supergravity. The first
order o/-correction was constructed by combining the Spin(9,1) local Lorentz group with
the SO(32) or Eg x Eg heterotic Yang-Mills gauge group [119, 120]. The spin-connection is
the gauge potential for the Spin(9,1) local Lorentz transformation, thus Yang-Mills gauge
field A, and the spin-connection w,, are treated on an equal footing. Therefore, at the level
of o’-corrections, the effective action is organized in terms of the modified spin-connection
wﬂﬂb by adding the contribution of three-form field strength H ., which is a pull-back of
H,,, by the vielbein e”,:

wi#“b(e, B,A) = wuab(e) + %Huab(e, B, A). (6.2)
Here, the o/-corrected H,,, is defined by

1 1
Hyyple, B, A) = 30,B,, + §O/QAWP — Q% L, (6.3)

2
and Q4 and Q¥+ are Chern-Simons three-forms of A, and wy,,, respectively. As the field
strength of the deformed spin-connection is given by the deformed Riemann tensor,

ab ab ab ac b ac b
Ri,uu = OpW+p *auwi,u F Wiy Wipe — Wiy Wipe s (64)

the Riemann squared term in the leading o’-correction is straightforwardly obtained from
the kinetic term of Yang-Mills gauge field in (5.40).
Similarly, the leading-order o/-corrections in heterotic DFT is obtainable from extend-
ing the Yang-Mills gauge group. As shown in section 3, the heterotic DFT gauge group G
is composed of G = Gynm X GL1,, where Gy is the heterotic Yang-Mills gauge group and
Gy is the O(1,9) local Lorentz gauge group. The associated O(D, D + dim G) metric is
also decomposed as
Jun 0O 0
Txix 0 Zka 0 |, (6.5)
0 0~k

where @,b--- are O(dim Gy1,) vector indices. It is important to note the relative sign dif-
ference between the coefficients of x4, and of s ;. Because of this difference, the traces
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of Gyym and the trace of Gy, always have the opposite sign. Furthermore, after the di-
agonal gauge fixing, the deformed spin connections, w, and w_, are represented by the
geometric parameterization of generalized spin connection ®g,,,, and épmﬁ,, respectively.
Once the leading-order o/-correction is introduced into the geometric parameterization of
the generalized metric, the symmetric part of B’ is replaced by

1 1
B, :=sym(B'), = By, + ia' tr(A, A)) — 50/ tr (W wiy) (6.6)

and the gauge field associated with the local Lorentz group is given by the generalized

0
/[ — _ ) 6.7
M [mn] (eum o ‘ﬁ) ( )

Likewise, the corresponding double-vielbein and generalized metric are also extended. Here-

spin-connection

after, we will construct several nontrivial solutions of the heterotic DFT that feature all
these structures.

6.1.1 Symmetric dual five-brane

First, we construct the symmetric 52-brane. Denote the coordinates of direction transverse
to the brane as (p, 0, z,1). The metric and Kalb-Ramond field are given by [113]

ds?* = f(dr* 4+ r2d0*) + fK1(dz* +dy?) and B =00K 'dzAdy,  (6.8)
where o is a constant parameter, and f and K are defined as
f= Ulog% and K = {2+ o%6%. (6.9)

The ansatz for Yang-Mills gauge field components are given by

A’/‘:07
AQZ%filt:s?
1 (6.10)
A, = —|—§f_1K_1 [(ff’sin@ — f’a@cosﬁ)tl — (ff’cos@—i—f’a&sinﬁ)tz} )
1
Ay =5t K [(ff’ cos0 + f'ofsinO)t! + (ff sinf — f’aecose)tﬂ ,
where f' = 0, f, and t%(a = 1,2, 3) are SU(2) generators defined as
00 0-1 00-10 0100
g_foorol n fooo 1| s_|-1000 (6.10)
0-10 0 100 O 0 00-1
1000 01 0 O 0010

For consistency, this solution have to satisfy the so-called symmetric embedding ansatz,
which originates from the symmetric NS5-brane solution

Ay =wiy. (6.12)
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According to the definition of the deformed spin-connection (6.2), the direct computation
of wy, gives

Wiy = K—la_ef/ n34 ,
1
wyp = (-0 + Ko fn*) 4+ §f_10t3 g
X (6.13)
T (R el

Wiy = _K3/2 B(J‘Q — 0292)(log f)/t1 — O'@f/t2:| ,

where (n®)4P denotes the SO(4) generators.

As expressed, the above expressions appear to violate the embedding ansatz. However,
one can show that the A, and w,, are related by gauge transformations. We now wish
to find the explicit Yang-Mills gauge transformations and local Lorentz transformations
which connects A, and w,,. First, we take a gauge transformation for A,,

Al = —0,LL™"' + LA, L™, (6.14)

where the gauge parameter is chosen as

sinf —cosf 0 O
0 inf 0 O
L= COS SIE Lo | € som. (6.15)
0 0 0 1
then the AL reads
Al =0,
/ 12, 1,01 .3
(6.16)

1 -1 1 -1 2
AL =+5K f(t = teot?)
1

Next, we take a local Lorentz transformation for the wy,,
Wy, = — O AT+ Awy AT (6.17)

where

0 0 0
1 0 0

0 —K Y250 K-Y2f
0 —K12f _K 120

/
w

is satisfied. The connections AL and wl’J are always combined according to the structure of

€ SO(2). (6.18)

o O O =

After the gauge transformations, w/, exactly matches with A;L, and so the embedding ansatz

leading-order o/-corrections, they are canceled by the embedding ansatz (6.12). Thus, the
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leading-order o/-corrections do not contribute to the equations of motion, and the metric
and By, in (6.8) are reduced to the usual 53-brane solution. However, it is important
to note that the symmetric five-brane solution is not single-valued as the 6 coordinate is
encircled around the origin, » = 0. We will see later that this provides an example of T-fold.

Next, we consider the non-geometric solution given in terms of the fields (g, ﬁ,fl)

Using the inverse map defined in (5.38), we have a non-geometric solution whose metric g
and f fields are

f 0 0 0

_ 0fp> 0 0

=100 1o and =000, N0y, (6.19)
00 0 ft!

and A" components, which correspond to the gauge transformed gauge field (6.16), are

A" =0,

1 11 .
A9 _ 72f_11112 o 5720.]0—2t37
r r

~ 1 (6.20)
AZ — +70—f_1t1 ,
2r
~ 1
AY = ——af_1t2.
2r

The metric and ( field are precisely the same as the non-geometric solution for the con-
ventional 53-brane.

6.1.2 Neutral and gauge branes

If we turn off the o'-corrections in heterotic supergravity, the bosonic part is identical to
the NS-NS-sector of the type II supergravity. Thus, the conventional 53-brane is also the
solution of heterotic supergravity. More generally, for the ansatz of vanishing heterotic
gauge field, heterotic supergravity solutions without o’-corrections is straightforwardly
obtained from type II supergravity solutions.

The gauge brane is also constructed without o'-corrections, and the deformed spin-

connection does not contribute. Using one-form gauge transformation for simplicity, the
Kalb-Ramond field can be set to be zero. The explicit solution is constructed in [113], and

is given by
ds? = h(dr® +r°d6%) + e *h(dz* + dy?)  and B =0, (6.21)
where
) = e = S8 F— o Dlogr/0) (6.22)
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and the gauge field components are

A, =0,
o
AGZ_Zf 1t37
1= (6.23)
A, = Z&f_16_2¢0(0080t2 — sin@tl) ,
r
Loz 9 1 o 2
A¢:47’Gf e ¢°(cos€t —|—sm0t).

Note that all f-dependences disappear once the same gauge transformation (6.14) is applied,

Al =0,

1 -
A = _nl2_ Z&filtg’

1. (6.24)
Al = ——4T&f*16*2¢0 th,

1 -
v = +4—r&f—1e—2¢0 t2.

As such, the gauge brane solution given by (6.22) and (6.24) does not depend on . There-
fore, this solution is single-valued when 6 encircles the origin, and so it just describes a
geometric background.

6.1.3 Generalized metric and monodromy

Consider next the generalized metric for the heterotic 53-branes. While the geometric
and non-geometric solutions are totally different, their associated generalized metrics are
identical. We decompose the O(D, D + dim G) vector indices M into {M, a,a}, where

M,N,---: O(D, D) vector indices,
a,b,---: O(dim Gywm) vector indices, (6.25)
a,b,---: O(dim Gr) vector indices .

The generalized metric is block-decomposed as’

Hun Hare Hyyg
H]TJ\]V: Hanv Hay Hyg | - (6.26)
Han Hav Hgj

We shall now construct explicit form of the generalized metric for each type of five-brane
solutions and, from them, deduce the corresponding monodromy matrix.

°In this section, for simplicity, we use the different index ordering from (5.26) and (5.34).
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For symmetric solution, the corresponding generalized metric may be constructed
from (6.8) and (6.16). Focusing only on z and v directions, we find the explicit form as

! 0 0 off!
Jsvmm _ 0 ~t —efft 0
MN 0 —o0f ' Kft o |’
adf~t 0 0 Kf!
+aff ! (6.27)
H?\}/}mm _ _%flf—Q t2
%f/ffl (t1 B a&f*1t2)
_%f/f—l (t2 + O'Gf_ltl)
symm symm symm 1 2p,—3/7,1 1 2 2
Ho " = HYM = HI = s (et + P et?),

4p?

Again the H%Tvm flux is not single-valued as the angular coordinate 6 encircles the origin.
Rather, it is transformed by an O(2,2) monodromy

MO (0 4 2r) = ()T g v (6:28)

where the monodromy matrix Q%™ is given by

15 27woiTe O 0 —i
, —i
vyt =0 1, 0] €0(2,2) where Ty = < 0 > . (6.29)
i
0 0 =~

In fact, QY™™ is identical to the usual 53-brane solution due to the embedding ansatz.
This shows that symmetric 53-brane background in heterotic supergravity is a T-fold.

Consider next the generalized metric for neutral brane. As we discussed above, the
gauge fields for neutral brane solution are trivial and the metric and Kalb-Ramond fields
are identical to the usual 53-brane solution. Thus, the corresponding generalized metric
should be identical as well:

neutral __ 4 /Symm neutral __ g neutral __ g neutral __ g neutral __
Hun" =Hyn Hira = Hap — =Hy —=H =0, (6.30)
and the monodromy matrix Q""2! is given by
Qneutral — (Qsymm (631)

Consider finally the gauge brane solution. This solution is #-independent, as shown
in (6.22) and (6.24), so the associated monodromy matrix is just the identity matrix:

Qe — 1 (6.32)

Therefore, the gauge brane solution is a geometric background.
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6.2 Exotic branes in the M-theory

We now consider defect brane solutions in the eleven-dimensional M-theory [46, 53, 62]. In
this case, the solution depends not only on the holomorphic function p(z) that behaves as
i 5 log(rc/z) near the center but also on another holomorphic function f(z) that behaves
as f(z) ~ 1 near the center. As observed in [52, 53, 74|, for a given background of a
conventional five-brane, we can easily find a background of its dual exotic branes through
the following redefinitions:

p(z) = —p'(2),  plfP = p2lf?, o—oh (6.33)
In the following, we shall study properties of exotic M5-brane backgrounds using our non-
geometric parameterization in the M-theory section.

6.2.1 53-brane

Consider the M-theory compactified on a d-torus (d > 3) of radii R; along the x’-directions.

In this case, we have the defect M5-brane, which is the M5-brane (extended in 23, ..., z"-

9 zM_directions, and also the Kaluza-Klein vortex, which is

9

directions) smeared along 2%, =

the Kaluza-Klein monopole smeared along 28, 27, 2M-directions. In addition, there exists

an exotic 53-brane (see appendix D). Below, we study each of them in detail.
The background of the defect M5(34567)-brane is given by

ds? = py ' (pa | f? dzdz + dady..r) + p3/* dadon,  Asom = p1 (6.34)

where 0 = oy\i5(34567) = I3,/RsR9Rym. Using the exotic duality transformation (6.33), we
obtain the background of 5%(34567, 89M)-brane as
P1

P2\
o (2) ey
s s

where 0 = 053 (34567,80M) = RsRoRm/ I3, . Since p; is not single-valued, one can see that the

ol

2
3
(p2 |f1?dzdz + dxdsse7) + <’Z|22) dadonm, Asom = (6.35)

metric is not single-valued. In fact, nontrivial monodromy arises only from this function.

By comparing the two parameterization of a single generalized metric M ;n and also
using (3.17), the 53 brane background (6.35) can be rewritten in the non-geometric param-
eterization as

1/3 _ —2/3
ds? = PQ/ (p2 P dzdz + d$334567) + po / dagom - QM = —py, (6.36)

which coincides with the result obtained in [79].

As the multi-valuedness appears only from the function p;, the metric in the non-
geometric parameterization is single-valued. On the other hand, the tri-vector Q%M has a
monodromy, Q8M — 8IM — 053(34567,80M) as one goes around the center. The monodromy
matrix for the generalized metric,

Muyny = Myn=QMAyn (0 —0+27), (6.37)
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is given by

— A~ 953 PR
Q53 (34567,80M) = € 77 (34267 8M) THsoM -, (6.38)

For example, the monodromy matrix in Er77) EFT becomes

Q53 (34567,80M)

8L 0 0 0
3V20 53(34567,89M) 5;&,'\1/12b Opity 0 0
- 0 3 053 (34567,80M) Faons et Oy 0
0 0 5 053(34567.89M) Of €oMlby b5 O
(6.39)

From the expression (6.38), one can see that the exotic 53-brane is in one-to-one cor-
respondence with the Eyq) generator Rgpe, while the defect M5-brane is in one-to-one
correspondence with the generator R,

We can extract the charge of 5%(34567, 89A)-branes from the flux integral:

89A _ _ -1 i g 89A
Q53(34567,89A) = 53 34567,89A) 7{ ds2 T 053(34567,89A) dl‘u Sp s (6.40)

where C'is a contour in the transverse two-dimensional space that enclose the exotic brane
once counter-clockwise. In this sense, the exotic 53-brane can be regarded as the magnetic
source of the non-geometric S(3)-flux.

6.2.2 25-brane

For d > 6, there also arises another exotic 26-brane. The background of the defect M2(34)-
brane is given by

M2 ds? = p, 2 (po |fI dzdz + dadyy) + 5" dadgrgon,  As.on =p1, (6.41)

where o = o34y = I$,/R5--- RyRp, From this, we can obtain the configuration of
26(34, 56789A)-brane using (6.33) as

IN]
-

e 3
& d52 = (p22) (p2 ’f|2 dzdz + dx334) + <p22> dx§6789A 5 A5...9A = —% s
o] ] ol
(6.42)

where 0 = 09634 56780M) = R5 - - RoRm/18, .
In the non-geometric parameterization, the configuration of 25(34,5---9M)-
brane (6.42) can be rewritten as

20: 4 =) (po|fPdzdz +dady)) + oy VP dad gy, M =—pi. (6.43)

Q5~~-9M

The multi-valuedness again appears only through and the generalized metric un-

dergoes the monodromy transformation

My = Mhyn = QMO un, (6.44)
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where the monodromy matrix is given by

_ 096 PRs...
Q96 (34,56789M) = € 2 (34.56780M) F5- oM, (6.45)

Here again, we can count the charge of 2°(34, 56789M)-branes by the flux integral,

_ —1 5---9M __ —1 0 5...0M
Q26 (34,56789M) = ~ 036 (34 56780M) deQ = T 026(34,56789M) ?{Cdx“ S , (6.46)

so the exotic 20-brane may be regarded as the magnetic source of non-geometric S 6)-flux.

Note that, the conventional fields in the M2/Mb5-brane configuration and the non-
geometric fields in the 26/53-brane configuration are related each other in the following

manner:
g;w’conv. = g;w’exotic ) Gij‘conv. = aij‘exotic )
Ailigig ’conv. = - Qi1i2i3 |exotic ; Ai1---i6 |conv. = - Qilmif} ‘exotic 5
equivalently,
g,uzx|conv. = g,uzz|ex0tic 3 MMN|conv. = MMN|exotic . (647)

SN
Here, note that g, = \G!ﬁ G =|G|"? G

6.3 Exotic branes in the type IIB theory
We finally consider defect-brane solutions in the type IIB supergravity [46, 53, 62, 74].

6.3.1 5§-brane
The type IIB 53-brane is the exotic dual to the defect NS5-brane. From the defect
NS5(34567)-brane configuration,

NS5 : ds® = py |f|*dzdz + dadsyser + podady, €2 =pa, Bsg=p1, (6.48)

where o = ongs = 12/Rs Ry , using (6.33), the 53-brane configuration is obtained as

_ 2
5% : d82 = P2 ‘f|2 dzdz + d$(2)34567 + ’p|2 dxgg ) e2¢
1%

:!ZTQ’ Bso = -1 (6.49)

-,
1

where 0 = 052(34567,80) = s Ro /12. Applying the relation (6.47) between the conventional

parameterizations and the non-geometric parameterizations of the generalized metric in

EFT, the 53-brane configuration in the non-geometric parameterization is obtained as

551 5% = po|f1P dzdz + dagsser + 05 ' dady, € =pyt, B =—pr. (6.50)

This coincides with the 53-brane solution in the B-supergravity [64, 74] or the SL(5)
EFT [79]. In the Einstein frame, this solution and the above NS5-brane solution in the
conventional parameterization are also related by (6.47). In fact, such relations persist to
hold for all solutions to be considered below. Since there is no internal-coordinate depen-
dence in the defect background, the potential part of the action does not contribute and
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the action has a symmetry under the map, g, — gu and My — MMN i (6.47) .
This is the reason why the identification (6.47) always connect the solutions in two different
parameterizations.
It is straightforward to check that the monodromy matrix for the generalized metric
is given by
—052 (345 P R8Y
Q53(34567,89) =e ROROTENTRT (6.51)
We can explicitly check that the monodromy transformation is invariant under the T-
duality. To see this, note that the 5%(34567, 89)-brane is also present in the type ITA
theory as the compactification of an (anti) 53(34567,89M)-brane. Therefore, in the type
ITA (i.e. the M-theory) section, the monodromy matrix is given by
Q53 (34567,89) = €2 (45678 Plisom (6.52)
Note that the equality, 053(34567,80M) = RgRygRwm/13; = RgRo/1? = O52(34567,89) » 15 satisfied.
We can count the charge of 53(34567, 89)-branes by the relevant flux integral,

_ -1 89 _ 71 89
Q5§(34567,89) - _0-5%(34567,89) f;’dﬁ 52 34567,89) % dl'u Q (653)

so the exotic 53-brane can be regarded as the magnetic source of the non-geometric QL2
flux. This was previously noted in [64, 70, 72].
6.3.2 pg_p-brane

Consider next exotic D-branes.
The background of defect Dp(3-- - (p 4+ 2))-brane is given by

—1/2 _ 1/2
Dp : d82 = Py / (p2 |f|2 dzdz + dl’%3m(p+2)) + p2/ dx%p+3)m9 s (6 54)
3—p .
* = P2 Clp+3)-9 = P15

where 0 = opy3..(py2)) = = g,l! “P/Ryy3-++ Rg. From this, we obtain the pg_p(B - (p+
2),(p+3)---9) configuration as

1

_ P2\ ? . P
py P d32:(22> (p2|f1?dzdz + dags . 49)) + ( 2) Azl a9

=

] Ipf?
3—p (6.55)
2 p2 \ 2 p1
e* = <2> v Cprapo=—713,
ol ol
— — T—p
where 0= 0,10 (5. (p2) (pr3)-0) = T3 Ro/gs s
In the non-geometric parameterization, the pgfp -brane configuration becomes
1/2 , —-1/2
py " A=) (pa | fP Az dE 4+ dady ) + 00 P el (6.56)
~ E .
P =pyt AP = —pp
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From the above configurations, we obtain the monodromy matrices for 5%, 3§, and

1g—branes given by

_ T 952(3.-7,89) PR2
QS§(3~~-7,89) =e 3 89, (6.57)
_ 934(3...5,6.--9) PR6789
Q3§(345,6---9) =c s ) (6.58)
—04.6 ...9) PRl
Qggang) =€ 5000 Moo (6.59)

Again, by circle compactification and T-duality transformation, the exotic 43 and 23-branes
in the type IIA theory appear as the compactification of 52, and 26-brane, respectively, and
their monodromy matrices are given by

.7 943(3456,789) PR789
Q43(3456,789) =c¢ 3 ) 6.60)

_ 995(34,5...9) PR5...9m
922(3475,..9) = 3( ) 750 . (661)

The charge of pg_p(3 —(p+2),(p+3)---9)-branes is counted by the flux integral,

1 (p+3)--9
ng_p(3~~(p+2)7(p+3)~~9) B Upéf"(3---(p+2)7(p+3)---9) 72 dy

—— it p_(p+3)-9
"pé“’<3~~<p+2>,(p+3>~~9)%Cdx Fa ’ (6:62)

so the exotic pgfp -brane can be regarded as the magnetic source of the non-geometric
PLT=P)_flux.

6.3.3 12—brane

Consider finally exotic fundamental string. The defect fundamental string configuration,
F1(3), is given by

F1: ds? = py ' (p2 |fI?dzdz + dods) +daf.g, € =p,', Big=p1, (6.63)
where 0 = opy(3) = g2 [5/Ry- -+ Rg. Thus, the 1§(3,4---9)-brane configuration becomes

2 2
1. ds* = ‘Z’ (po |fI?dzdZ + dads) +dat. o, €% = lo” . Bpg—=-"'L (6.64)
— 2

2
P2 |l

where 0 = 0163 4..9) = R4+ Rg/g215.
In the non-geometric parameterization, the above 1(3,4---9)-brane configuration

becomes
15 ds? =p2(p2|fPdzdz+dads) +daf g, € =po, B"?=—p1. (6.65)
The monodromy matrix for the generalized metric is obtained as
gy =€ HO0 s, (6.66)

We count the charge of 1§(3,4 - - 9)-branes from the flux integral,

1 4.9 1 iy 49
Q12(3,4~-~9) - _012(374...9) i’ dg - _012(374...9) %Cdxu Qﬂ ’ (6'67)

and so the exotic 1§-brane can also be regarded as the magnetic source of non-geometric
Q%) fux.
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7 Discussion

In this paper, we showed two parameterizations, conventional, geometric parameterization
and non-conventional, non-geometric parameterization, of the generalized metric in ex-
tended field theories from an approach based on different decomposition of the Lie algebra
for the duality transformation group. In this approach, the exotic duality between the two
parameterization was identified with the generalized transpose of the generalized vielbein.
We constructed the action of the extended field theories using the non-geometric parame-
terizations and, from them, obtained the effective actions for the non-geometric fluxes.

In the type IIA and IIB theories, obtained from the EFT, the effective action in-
volves the non-geometric P9 -fluxes and QP)-fluxes with p = 2,6, generalizing the
action of the S-supergravity that includes only the Q2-flux. We also constructed the
effective action for heterotic theories by starting from the heterotic DF'T in non-geometric
parameterization.

The non-geometric effective action we constructed in this work would open up many
directions for future research. Here, we list some of them that we are currently investigating.

e One would like to investigate various non-geometric background directly from the
non-geometric effective action. In particular, exotic brane backgrounds may be con-
structed directly from the non-geometric effective action. We would like to classify
all 1/2-BPS backgrounds.

e One also would like to understand the dynamics of defect branes in non-geometric
background. In particular, one wants to construct worldsheet conformal field theory
approach to the non-geometric backgrounds. These would be the non-geometric
counterpart of type II five-branes, whose near-horizon geometry is described by the
exact conformal field theory of Kazama-Suzuki coset model times super-Liouville
theory [116, 117, 121].

e This effective action we constructed contains multitude of non-geometric fluxes.
Therefore, it can describe the coexistence of different non-geometric fluxes. For exam-
ple, we can describe the non-geometric backgrounds that correspond to a bound-state
of various exotic branes. We would like to classify all 1/4-BPS non-BPS backgrounds.

e Apart from non-standard dilaton dependences, the type II non-geometric ac-
tions, (3.45) or (4.56), has the structure similar to the conventional type II super-
gravity action. It is thus possible to find various classical solutions of that action
that carry not only magnetic charges but also electric charges or dyonic charges. We
note that a family of new classical solutions carrying an electric charge for a non-
geometric potentials (such as §™") was already found in [74] from the action for a
non-geometric flux.

e The non-geometric action in the Eg) EFT with d < 7 does not contain all non-
geometric fluxes associated with all classified exotic branes. In order to describe all
non-geometric fluxes, we will need to consider the Eyg) EFT with higher d. The
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FEg(g) case can be also considered in a similar way, using the results of [122], but the
cases with d > 9 will remain to be a challenging future program.

e The conserved charges in the conventional DFT are studied in [123-125]. There,
the string winding charges are reproduced as the Noether charges associated with
isometries along the dual directions. If we perform the same analysis in the Egg)
EFT, the charges of conventional branes and exotic branes will be reproduced in the
same manner. Even in Egg) EFT with d < 7, one may also reproduce the exotic
brane charges as magnetic charges extending the analysis performed in DFT [126],
where the non-geometric parameterization found in this paper will be useful.
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A Notations

We use the following notations for anti-symmetrization:

1 .
5311_..&” = (5[6211 ~-<5Z:] = ] ((5?11 "-52;’ + permutations) , (A.1)
ehz, = (") gy (e71) 0y, e =dete;", (A2)
Gt ing 1 dn 5]?1%; GRidr ... Ghnin |G| = det Gij (A.3)

where ~T represents a combination of the inverse and the matrix transpose. Similar ex-

pressions, such as 5j1--~ P oor Gt diIn - gre also used.

Jp
Our coordinates are normalized such that the flat metric has the form,
ds? = a5 dz® Az + Saya. byp dx™%2 da?1%2 4.0 (A.4)

Then, if we redefine the coordinates in order to reduce the number of indices, we should
introduce the following numerical factors:

Yay-a, — 200 = p'(;—p)' a1 a—pbrbp Yby-by - (A.5)
Various indices are summarized as follows.
M-theory:  (zf) = (z#, %) (=0,...,9M, i=mn,...,9,M), (A.6)
type IIA:  (2P) = (¢*, 2™) (p=0,...,9, m=n,...,9), (A.7)
type IIB:  (2f) = (a#, 2™) (1=0,...,9, m=n,...,9), (A.8)
where p=0,...,.n—1land n=11—-4d.
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A.1  Eg4yg) algebras: M-theory section
The Eq4) algebra is given by [11]

(K%, K¢ = 6§ K®q — 03 K¢, [k, R#19208] — 36" golozas]
[K%, Rajazas] = =3 Ofay Bojasas] » (K%, R"%] =6 55’1‘ Rolazas]
[K by Ra,.. aﬁ] 65[a1|Rb|a2 g [Ralagag’ Ra4a5a6] — Ruas
[R™9293, Ryypp,] = 1800502 Koy ) — 2674030 D,
[R™19295 Ry | = 120 635257 Rb,bsbe) »
[Rarazass Rasasas) = Ra--ag [Rayazas, RO P0] = 120 glb1babs pbabsbel
(R0, Ry, ] = —4320 813 K90l ) + 480 0710 D, (A.9)

where D =) K“,. Note that the normalizations of R*"% and Ry, ..., are changed from
those used in [11] by a factor 2 and K%, corresponds to K% = K%, — o 0 >, KFy
of [11].

The commutators of the FEyq) generators with the central charges,
(Pa, Z9a2, Z0005 W = 2 €40, Z9777 ), are given by [11]

(K%, P = — 8Py — 2L p, [K¢q, 20192]) = 2.5l zeleal 0 ganes
’ @ n—2 ’ ’ d n—2 ’
[y, 2005] = 561011 zeloaas) — 04 garas
n—2
5¢
(K, W] = GG We+ g We — —4o W,
[RC102€3’ P] _ 35[61 ZCzCs} [R010203 Za1a2] Zeresaiaz
[RCICQC?’, Za1---a5] ca-ascics WCS] [Rcl -c6 Pa] — 5[01 702" 06}’
[RCI.“%? ZalaQ] 2 grazleres yeol ) [ c1eae3) ZalaQ] - 5[6211?:2 Pcs} )
[R Zal..-a5] 5[a1a2a3 Za4a5} [ Wa] _ Zbl...b5
€1C2C3) c1cacs ) €1C2C3) [01 €cocs]by by )
[Reycgs 2977 = — 6516017950 Py, [Reycgs W = = Becycey 2™ (A.10)

Using the normalization of the central charges for Fyq) with d <7 (see [11]),

(ZA) = (PCU W, Wa 3 (A.11)

the algebra (A.10) together with (2.17) gives the following matrix representations for the
Eq(q) generators:

Zalag Za1-~~a5 Wa)

5 st 0 0 0
0 —2glmlsele] 0 0 56
e VaP = bibz o8 A.12
(pK d)A 0 0 55£la1| 5;}:10,2[)5&5] 0 + n—2 A ( )
0 0 0 —26\5°)
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3! :
0o~ o
0 0 _ 5! §C1c2C3a102 0
B = V/2:5! “b1b2b3babs
(quczcd)A - 0 0 0 3 6(11"'(15[C1C2 603] ; (Al?))
NG b
0 0 0 0
6!
0 0 V51 Oaby b 0
B 0 0 0 _ 2 6(:1---c<;[a1 5‘12}
(PRev-es)a” = Ve b, (A.14)
0 0 0 0
0 0 0 0
0 0 0 0
_ 3! saiagb 0 0 0
(pRC162C3 )AB = \/5 0016263 5! ala2a3zaqas O O ’ (A15)
_«/2.5[ ci1cocsbiba
0 0 —% 0L €creslorbs O
0 0 0 0
0 0 0 0
B _
0 —% (5&1 €bolcy--co 0 0
From the Cartan involution,
O(K%) = K%, O(RI“%) = —Ropppey,  O(ROD) = Ry ey (A17)

we can see that the generalized transpose is indeed the same as the matrix transpose;

(- )aB = (-)pA

Concretely, for Eyq) with d = 4,5,6,7, the central charges, equivalently, the general-

ized momenta are given by

Za1a2 Za1-~~a5 Wa
E7(7) (ZA) = <Pa7 \/i ) \/a ) 3> )
Zmag Zal---a5
E6(6) (ZA) - <Pa7 \/§ ’ \/a > )
Juras s (A.18)
SO(5,5): (Za) = (Pa, NG >
Za1a2
SL(5): (Za) = (Pa, 7 )

and the matrix representations for the Fjyg ) generators with d = 4,5,6 are simply given

by truncating those of the E;(7) generators.

A.2  E4g) algebras: type IIB section

In the type IIB section, the E;4) generators are decomposed as [86]

{Kab7 Raﬂ’ Rgzla27 Rglaw

R Ry ey, R, RS LT (A.19)
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and the algebra is given by [86]

(K%, K] = 05 K — 03 K,
a aia . [a \ ala a le% o a lo%

[K b, Ral 2} = 26 ! Ra| 2], [K b, Ralag] - _25[a1|Rb|32]7
[Kab, Ra1...a4] - 45[31\ Ra|a2asa4}’ [Kab, Ral---a4] = — 45Fal| Rb|a2a3a4]a
[Kab, R(axl.“as] _ 65[31\ Rz)azn-ae}’ [ Rg‘l 36] — 65[a1| b|a2 ag]

[Rag, RA/(;] = 5& €8)y R,s + 5& €5)5 R,
aia 0
[Raﬂv RWI 2] - 5(& €8)y RglaQ ) [Ra57 Ra1a2] - 5? €)é R3132 )
ai---a 0
[Ra57 R 6] - 5(a €8)y Rgl *, [Raﬁ’ Ry, ae] = 5? €8)6 Ra1 -ag
[RZIaQ’ Rglb2] = €up RalalebQ 7
(R, R) =488 Ky - L0 D -2 M R,

[RalaQ Rbl"'b4] — Ralale by
(e ? 9
(R, RE |, ] = 30060 621

o)
:| 604,3 Ra132b1b2 9

ROL

alagbl b4 )

[R;az’ Rg bo
[Ralag’ Rbl b4]
[Ral.‘.a4’ Rbl---b4]

[R*124, Rg, ] = 36006773

[bl by RbSbG] ’

- B
(R, Ry = 1260 5%, R,

a “Ibyby Rb3~~b6] ’

[Rgélaz? Rb1..~b4] 12¢ af 62[31322 Rb3b4}’
(R R50] = 3053501 o,

12830734 D — 960573252 Kol

[Rayass RE0] = 360657050 RS,

[R220, Ry ] = 108067 31 2% K2, ) — 13500 631750 D — 180631720 €77 Rary . (A.20)

Note that the definitions of RY , , R3'®?, Ra,..a,, and B3 are changed from those used
in [86] by a minus sign and K%, corresponds to K%, — —L & >, Ky of [86].

The commutators of the Fjy ) generators with the central charges,

(Pa Z3 ZAra3d3  za1ads Zal-nae,a) (A.21)
) o ) o ) bl .
are given by [86]
05 0¢
[ch,pa]:_agpd—n_dzpa, (K4, 23] = 63 25 — _d223,
[ch 2313233] _ 35[31| Zc\agag] . a Zaiazag
' d n— 2 ’
(K<, 23] =55 28l - 4oz,
n —
[ d’Wa]: Wc+5cwa_ 2wa
[R5, 23] =0, €510 25 5 [Rys, 2307°0] = 6/, ey 237,
[RC1C2 P] — 5[C1 Zcz] [R§1C2, Z;] = €0 ZC1C2a,
[RC1C2 Za1aza3] C1C2313233 ’ [R§1C2’ Z;l"‘as] = € 6C1C2[a1--~a4 Was} ’
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[Rcl ‘C4 P:| — 26£C1 ZC2C3C4], [RC1~--C47 Z;] ch C4a
[RC1.~~C4’ 2313233] — g €C1"'C4[3132 WaS] ;
[R,(;/l“.CG, P :| 35£C1 Z§2..-C6] , [Rcl C6 ] E'ya 6 +Cp Wa ,
aia a
[Rzu:z’ ;] = 45;/ 5FC1 PC2] ? [Rzu:z? 2313233] 3' 675 6[ c 2 Z 3}
a122 ~a: dy--d
[RC1C2’ Zal 5] - 2063 5([:11(:22Za3a4a5] ’ [ c1cC2? a] €c1C2d1 Zél 4 )
--a
[Reyocss 292%] = — 48521223 P [Reyeocs, 2307%%) = 5' sbiigr 229,
5 dyd
[RC1"~C47 Wa] = 5 6(:1---C4d1dg Z 1622 )
5
[RY,..csr 2307%] = —12-516] 0% Py [RY .co» W =56 €cpcs 25 - (A22)
Using the normalization of the generators,
Za zaiazaz  zar-as /2
(ZA) = Pa7 7067 ) S s 1n |0 (A23)
2 2v/ 3! 2v/5! 10
we obtain the following matrix representations:
B (] 0 0 0
0 —0388060 0 0 0 c
B
(Preg)a” = | 0 0 =305 05050 0 , 0 + - d S04, (A24)
a a -
0 0 0 —50%, 03l 00 O
0 0 0 0 —260 657
0 0 0 0 0
; 0 5{7 €5)a OF 0 0 0
(PR,5)A" =] 0 0 0 0 0|, (A.25)
0 0 0 —5@ €50 0122 0
0 0 0 0 0
0 20565 o0 0 0
3!
B 0 0 \/5 6?)3)22!33 5 0 0
(ppare2)a” = [0 0 0 Tt Oy Gz 0 , (A.26)
0 0 0 0 — 2 g el 2]
0 0 0 0 0
0 0 Lo, 0 0
5!
N LI 0 — 2L SR 0
(pRCI‘“C4)A =1y 0 0 0 7% 63132315[C1C2C36;4] , (A27)
0 0 0 0 0
0 0 0 0 0
0 0 0 S 67 35, 0
1
5 0 0 0 0 —yq €170 52
(Ppeaes)a” =0 0 0 0 0 : (A.28)
0 0 0 0 0
0 0 0 0 0
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0 0 0 0 0
—20302°, 0 0 0 0
B 3! By sajasa:
(pR;chQ)A = 0 Va € ’Y(;bélg; | 0 0 0 y (A29)
5! Y sai--as
0 0 S S e, 0 0
2
0 0 0 — 5 & €y, 02,) 0
0 0 0 0 0
0 0 0 0 0
B 4! sajasasb
(pRCl‘“C4)A - \/37!5(:11-”2(:43 5! 5031'4435 ! " ! ’ (A3O)
0 L oa oL, ) 0 0 0
0 0 V3l €b1babs[cicacs 654] 0 0
0 0 0 0 0
0 0 0 0 0
(prz .. )A" = 0 0 0 0 0 (A.31)
1 6! aj--asb
N R 0 0 0 0
0 —P ecyocs OF 0 0 0
From the Cartan involution,
0(K%) = — K%, O(RG"™) = — Ry 4, O(R3™) = — Ry, (A32)
/ ’
O(R*'") = R, ..., O(Rap) = €aryeps 077 0% Ryg, (A.33)

we can see that the generalized transpose is indeed the same as the matrix transpose.

B Calculation of the EFT action

In this appendix, we summarize the construction of diverse EFTs. To construct the EFT
action, we find it convenient to decompose the generalized metric as

MMNE(VMVT)MN: ‘G’ﬁMMN where MMNE (VMVT)MN, (B.l)
and define a connection
wﬂMN = (V_I)MK (%VKN s (B.2)

where the index /i runs over all conventional directions, (u, 7) in the M or Type IIA theory
and (u, m) in the type IIB theory. We begin with showing the explicit form of My,
ViV, and Wp mY for various EFTs and then construct the action in each case.

B.1 Redefinitions of coordinates

For explicit computation of the effective action, it is more useful to redefine the coordinates
and central charges to minimize the cluttering indices.

M-theory section. In the M-theory section of the Eyg4) exceptional space with n =
6, 5,4, we redefine the coordinates as follows [11]:

n=>0: (yM) = (xia Yij, Z) (7‘7] = 67"'797M)7
n=>5: (yM) = (2", yij, 2") (i,j =5,...,9,M), (B.3)
n=4: (yM):(wi,yij,zij,zi) (i,7=4,...,9,M).
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Here, we defined
1

Zz‘1...id_5 = (d = 5)' = 61‘1...id_5j1...j5 Yire s (d _ 5’ 6, 7) : (B.4)
and correspondingly, we also redefine the central charge as
1
War"ad—s = g €a1--aqg_sb1---bs Zbl b : (B'5)

The generalized momenta after the redefinitions are given by

(Z ) <P Zaiaz Wa1~--ad_5) (B 6)
A) — a \/§ ) /7(d — 5)' .
The untwisted generalized metric is then given as follows:
— Gij 0
SL(5) : (MMN) = < OJ Gi1i21j1j2> ) (B7)
Gij 0 0
SO(5,5): (Myn)=| 0 Guizd2 , (B.8)
0 0o |G
Gij 0 0
Ege): (Mun)=| 0 G232 0 ’ (B.9)
0 0 |GGy
Gij 0 0 0
—~ 0 G212 0 0
Erqy: (Mun) = _ (B.10)
u 0 0 G Gung 0
0 0 0 [elmye
On the other hand, denoting the non-geometric fluxes as
Sﬂilim = 8ﬂQi”2i3 and Sﬂil'"iﬁ = @;Q“"'iﬁ + 10 Qliriets 8ﬂQi4i5i6] , (B.11)

the twist matrix Vi~ and wﬂMN given in (B.2) for the geometric or non-geometric pa-
rameterizations, respectively, are given as follows (we added tilde for V' and w for the

non-geometric parameterization):

SL(5) :
& —L A . 5 0
V:<Z \/29”2>7 V:< L, Ba2)
0 Ltz — L Qur2g jLit2
Jij2 V2 J1J2
0 —L 0,4, 0 0
Ny V2 THITLg2 ~ Ny _
)= (o) @) = (L )
SO(5,5) :
6 =T Aijuja § Aikar, AME
O I
0 0 1
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& 0 0
vV _ 1 (yiviog i142
1% 7 Q s of,
10 kikoj 13
1 Q/ﬁkz (yr2d V2 lejz 1
1
0 e aﬂAijm 0
. Ny 1 L. ’
(WHM ) =10 0 Ve E’Lllelekd aﬂA/ﬂkzks ,
0 0 0
0 0 0
@) = | -2 s : o).
1
0 — 3775 Ciniakikoks Sp1F2R 0
Aiiz — l€i1i2j1j2j3A. o 0. . :le- o
- 3| J1J233 1172 — 3' 11127317273
Eo(6)
k k J 1 1 Alilaj
& 0 0P As\ [0k —75Akige 1 Ak, AT
— i1i2 k1k2 1 ~k kog
V 0 5k1/€2 O 0 5j1j2 ﬁA e
3 ,
0 0 o 0 0 &
&0 0 5 0 0
7 — ilig 7L klkgj kle
V O 6k1k2 \/5 Q 6j1j2 0
k k 16 lilaj 1o j
Qs 0 0 Tt Q1 =55 Qi G
1 1 < _iq-ig
0 =75 %adijije 6 07 €17 Fpig i
(qu ) =10 0 5 eiizgkikaks 8/1Ak1k2k3 ,
0 0 0
0 0
@)= | i ol
& 67 iyig Spt o — 515 Cidijakikaks S0
I 1
_ k1 koks: _
Airizj — 5 cirizikakzks A L L Ag = Al
~ 1 1
= o kikok =
Qljljg = ? €ij1jok1kaks (prieis s Q6 = g €k ke

Fiyinig = OpAiyig — 10 Afyinig) OpAligisia) -

E7(7) .

V =

o8 0 —J5 Akike
0 0k, 0

0 0 gyike

0 0 0

0

% (AVT)iliZk
0
o
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(B.14)

(B.15)

(B.16)

(B.17)

(B.18)

(B.19)

(B.20)

(B.21)

(B.22)



j 1 Tl 1 Thlalil
O — 75 Ak fAkz 1 Az ol Ay, AN A

K1k 1 Akik 1 Akikalyl
0 5]11]22 A 1k2j172 47\/514 1k2t1t2 Alllzj (B 23)
J172 1 ’ ’
0 0 5](:1]62 _ﬁ Aklkzj
0 0 0 5
oF 0 0 0
1119
‘7 B 0 5k1 ko 0 0
[ o P 0 skik2 g
\/5 2112 1112
0 (QT) k1k2 0 6IZC
0 0 0
_ 1 lekzj 5k1k2 0 0
o J12 i , (B.24)
lekglllz Qhld -3 lekzjljz 5k1 k2 0
1 kl l 15 1 klils O 1 kj1j k
Q IZQllll Q12J 4\79 1QQlllgj1j2 _%Q J1J2 (5]»
0 _ 9Aij gy 25[” e2lki 6 Fa 2 kyoke 0
V2 6!v/2 1
1 _ivinjrjokikak 207t €2l ke By gy kg
(wad™M) =0 O mEm NG Ak, — , (B.25)
0 0 0 — 75 OaAiria;
0 0 0 0
0 0 0 0
Spiri2i
_ 0 0
(WﬂMN) = 280, el \/i Spk1e 1 k1kak ’
i1 €.
o ’ (13!\/56 23' 62112]132161/%‘27‘03 Sy 0 0
ky-ok
0 [gl Cjglky kg S 1O —1 g.ijnj2
6172 V2 TH
(B.Qﬁ)
Jivioqide — L viajijakikoks 4 o o=t (rkaks
= ? € k1koks i1i2j172 — § €iviag1jokikaks )
A J1j2 — 6‘ 5[]1 j2lki ke Ak1 kg (AT)i1i2j = Ajiu'z ,
-9 S .
_ Jj ki--k Tyvi = —(Q. .1t
Qilizj = E 5[“ eig]k‘ynk‘s Qe ) (Q ) J1j2 — Q]1.72 ’
Fiikroks = Op Ay kg = 10 Afky kg O Ay kg - (B.27)

Type IIB section. In the type IIB section, we redefine the coordinates as follows:

n="7: (y") = (=", ym, 2) (@=1,2, m=7,8,9),
n=0: (yM):(xm7y%’zm) (a:1727m:67'--79)7
n=>5: (yM) = (2™, ym, 2MM2 29) (a=1,2, m=5,...,9),
n==4: (yM) = (™, Yo, Ymimamss 25, Zm) (=1,2, m=4,...,9).
Here, we defined
1
mi--Mg_5 — mi--mg_3ninans —
z - (d — 3)' 3' € yn1n2n3 (d 3747 5) 9
1
Q,mi-mg_5 — mi--Mg_5ni---N5 , & —
: ~ A=) Yoy (4=5.6)
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and correspondingly, we also redefined the central charge as

1
Wayoag s = 57 Carau_sbibaby Zbibbs (=3 4 5), (B.31)

1
Wasaiaq 5 = 5] o120 sbr-bs Zb1wbs (d=5,6). (B.32)

After these redefinitions, the generalized momenta are given by

za Waiad—3
Zy) =Py, =2, —— d=4,5), B.33
)=~ % 1) (=45 B.3)
23 W2z W
Za)= Py, =2, —, = d=6 B.34
( A) ( as 2 ) 2\/§ ) 2 ) ( )7 ( )
Za  zajazas Wa s we
Zy) = Py, =, ——, =, =17). B.
o= (r 2 200 B ) =) (B.35)
The untwisted generalized metric is then given as follows:
Gmn 0 0
SL(5): (Myn) = 0 mag Gm™ 0 , (B.36)
0 0o |G™!
Gmn 0 0
SO(5,5): (Myn)=1] 0 meG™ 0 , (B.37)
0 0 |G| Gmn
Gmn 0 0 0
— 0 magG™ 0 0
E M = ) B.38
6(6) ( MN) 0 0 |G‘_1 Gm1m27n1n2 0 ( )
0 0 0 Meas |G|
Gmn 0 0 0 0
0 magG™ 0 0 0
Eyny: (Myn)=1 0 0 GMim2ms, nin2na 0 0
0 0 0 Mas |G~ Gn 0
0 0 0 0 G| tgmn
(B.39)
On the other hand, if we define the non-geometric fluxes as
(Q Amn) — <Qﬂmn> _ (8A5mn) (B 40)
a, B —\ p.mn ) T n-a ’ .
n
P = gpp™™ 43 €1 B%mlmz 6,15:;"3'"4] , (B.41)
(Q ﬂpl”'PG) — <Pﬂpl'“P6
& QpPLPe
= (9887 + 15 BP1P2 PPl 4 157 pleree gpape g gPoPel) (B 49)
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N

the twist matrix ViV and wpnp' are given as follows:

SL(5)
8" Ban 1Bl BY B )
V=1lo ser B |, B = 3 € €M Bl s (B.43)
0 0 1
n 0 0 )
V=| _pgm s ol By = 5 €’ €ngyqy 919, (B.44)
~Llgmpl B o1
0 9;Bon 0
(wﬂMN) =10 0 le, e8], | (B.45)
0 0 0
0 0 0
~ N
(@ant™) = | =Qupm 0 of, (B.46)
0 % M engiqs @y, i 0
SO(5,5) :
V=V, Va, where (B.47)
& Ban 1B, B N0 Dyon,
Vo=1|o0 ssm —Bm™ |, Vi=1|o & o [, (B.48)
0 0 o 0 0 om
pmn — 1 mnpip2 pRvy — 1 myp---my
B" = 92 €ay € BP1P2 J Dy = Al € Dmyoomy (B.49)
V=V, Vy, where (B.50)
Om 0 0 o 0 0
Vo=1| —pm sl 0| Vi=| o & 0| (B.51)
—5 Bhe B Ban  O% mey 0 o
3B — 1 By p1p2 _ 1 my--my B.52
an = 5 € " €mnp1p2 57 ) N = E €my-my 7] ’ ( D )
0 FpBhn 40P Gy,
N
(wanr ™) =0 0 ~eagemee By, | (B.53)
0 0 0
0 0 0
~ N
(@anr™) =] —Qusm 0 ol (B.54)
% L %Eﬂv Emnprps @, pPP2 0
~ = ~ — 2 N 4
Gipr-ps = OpDpypy — 3 €45 B[p1p2| 8;LB|p3p4] ) (B.55)
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Vs

\ 7

>mning
Ba

Dm

(@an™)

gﬂ,ml---m4

Vi- Vo, where

Spning Sp1p2ps 1f
621 Brém 27\1/5 B%p B};nlnz % B‘:{"pl lepzpd Bp2p3
0 shop L Bpme LBIP® B,
0 0 T, 75 Binima
0 0 0 58
om0 JsDp™ 0
0 &56m 0 —68 Dm
bl
0 0 gninz 0
0 0 0 58
16 emninzpip2 RY Dninz — l N1N2P1P2P3 )
g Cov P1p2 m T 3
L mpipa
E € DP1“'P4 )
Vi- Vs, where
5 0 0 0
—prmn 64 om 0 0
~ ~/ )
— 55 Bmumap B 5 Bmiman OhR, O
R Bpap BB LR B 5 A 00
n 0 0 0
0 sism 0 0
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V=V Vi Vs,

(B.67)

6:,1“ B,fm 2%/(: B%p B’s,ﬂlﬂﬂ!z 7% B%p B$,q1q2q3 gﬁ,qmﬂsn 7?14 esc B:l.p BE/,qmmz E(i,qlng_;r BrCn
0 & om %B{T nynons -5 B oaps BB:p1p2psn —Les B o papy B7P1P2P9 Bgn
‘/2 =10 0 Smimam; 7% BB, mimz2msn 7%[6 s B mimamsp B,‘;n ,
1n2n3g 6 276 5
0 0 0 58 on cay Bifm
0 0 0 0 om
(B.68)
om 0 %Dmnlngng 0 71172DmP1P2P3 DRrPePs
0 a4y 0 35 D™ 0
Vi=lo o  gmmms 0 — L Dpumema (B.69)
0 0 0 s4on 0
0 0 0 0 or
om0 0 —BZsn 0
m 6 “m
0 8y 0 0 cay BIOM
V=10 0 oémmms 0 o | (B.70)
0 0 0 846n 0
0 0 0 0 oy
=~ 1
m — m Y Q,mimoman — — _Mim2m3snpip2 o
a,ningng — 3 EQ’Y 6[n1 Bn2n3] ) B - 2 € BP1P2 5 (B?l)
~ 1 ~
mn — — _mnpi--p4 mimams — L _mimaomspipaps
D = 4' € Dp1.~~p4 ) Dn = 3' € Dp1p2p3n s
a— 1 pips ga
B§ = g P By s (B.72)
V=V, -Vy-Vy, where (B.73)
621 0 0 0 0
~ —Ba" 55 .6m 0 0 0
‘/2 = _%[ Bg,mlmzms ﬁgn L~f'mlm2m3 6:‘mnmr%m3 0 0 7
~2V6 Sny oD ~ —_ . nina2n3 4
*% ﬁa, mp1p2p3 /thPlePj 3’3“ 117 Ba, mp1p2p3 Bf.p]pzpd ﬁ "“3("ml"13n2n3 62 021 0

1

144

Y8 gmP 26,919203 grn 146 gm
€7° By B5, parazas Br B§" a5€" By

1

_1_ 0 gmpP _ By gmn m
26 € B5" Bs pninony  —€77 BTN 4y

(B.74)

P 3. 38,1920
ﬂb, P9192q3 Bn

5 0 0 0 0
0 85 6m 0 0 0
Vi=| —gmmee 0 ammm o 0 o, (B.75)
0 08 fonn 0 0o dy 0
% Tpypaps 17 P2P" 0 7% Thin2ny 0 o
an 0 0 0 0
B 0 3o o 0 o 0
Ve=1| o A U U (B.76)
g8 g0 0 0 sdsn 0
0 Il ﬂg o 0 0 o
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) . ~ 1
6nﬂ7m1m2m3 = 3657 5r[1m1 6*?2”‘3} 9 /Ba,mlmgmgn = 5 6m1m2m3np1p2 651!32 i (B77)
~ _1 P1+P4 AN _1 P1P2P3n
TImn = Z €mnpy--pa 1] ) Tmimams = ? €mimamzpip2ps 7] )
6 _ L P1+P6 B.78
ﬁa = g €p1---ps ch ’ ( : )
0 9Ban  Z5Gnmmmns — g omerregh 0
0 0 e dm 9B Lo emmerpig, L oy 6T PP G
/6 €27 %[n |95 ngng) 11 Yo 5 P1°P4 6! ~a7 n f1,p1-+-P6
(wﬂMN) = |0 0 0 _%emlmzmwmpz ap,ngpz _ﬁsmlmzmampzpa G prpapan | 9 (B?g)
0 0 0 0 €ory 03 Bihn
0 0 0 0 0
0 0 0 0 0
7Q017[Lmn 0 0 0 0
(a}ﬂMN) — _% Pymimaman %eﬁyégﬂl Q%ﬂmzms] 0 0 0],
_é 6'?‘ €p1-ps Q"vﬂplmps _4% Efm"Pl"'m Pﬂ’py“m ﬁ €mninanzp1p2 Qa,;]plp? 0 0
0 5557 6? €p1-ps Q%ﬂplmpb 7%‘"1"2"3!’1;’2;’3 Pﬂplpngm —e?7 Q”/-,/lm" 0
(B.80)
— Y RO
gﬁ,m1-~m4 == a,[J,Dm1-~-m4 - 3676 B[m1m2| 8}LB‘m3m4] ’ (BS]-)
3 — 5 B 8 ) 8 o ns
gﬂ,ml---mg = 8,Umel"'m6 —15 B[m1m2 alu‘DmS“'mG] + 15 676 B[m1m2 Bm3m4\ 8#B|m5m6] :
(B.82)
B.2 External part
For the external part, we focus on the following two-derivative terms:
€ uv MN
Ley =eR(g) and Localar = 1Y My Oy M ) (B.83)
n
Recalling the relation, g, = |G|"~2 g, the first term is given by
1 1/2 v _1
Leu = g|? |GI'" R(g) +2(n — 1) 0u(e g™ 0, In |G| 72)
1 n/2 n—1
+lg|2 |G]"2 —-==g" D, In|G| 0, In|G
gl G172 755 ¢ 9 In[Gl 0, |
16} |R(g) + =L g9, 1n|G| 0, |G|, (B.84)
4(n — 2)
1 1 1
where we defined |G|2 = |g|2 |G|2 and neglected the total derivative term at the second

equality. For the scalar part, Lecalar, noting that the matrix V' has a block-wise upper /lower

triangular form with constant diagonal elements, we obtain

Lscalar = gMV a,u,MMN oM - gwj M MPQ WuM w,uNQ )
n

4o 2au,
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where the first term simply becomes

£ g 0, Mgy 0, MMV
4o,
1 s 1
|G|% |:4 guy 8NGU 8VG7,J — m g'm/ 8N In ‘G’ 8,/ In ’G| (M—theory)
11 1
= ‘G‘Q |:4 glﬂ/ a#Gmn (%Gmn — mgﬂVauln\G]&,ln]G|
1
+7 8" Oumag dym°? (type 1IB)
(B.86)
We thus obtain
EEH + ‘Cscalar
(1 1 . 1 m
G2 [R(g)+4 g" 9,G" 0,Gij+ 8" 9,1n|G| 9, n || +£0% - (M-theory)
1 1 1
=< |G|z [R(g) + 1 g 0,G™ 0,Gmn + 1 g" 0,1n|G| 0, In|G] ,
1
+ 8" dumag dym®® | + L) (type 1IB)
(B.87)
1
(mat) _ |G| 1 IMN Voo w P o @ (B.88)
scalar — 2an g PQ WYuM vN ", .
where we used, e g"” = |G|% g’ and MMN M\pQ = MMN ]\/IPQ.
We can calculate the explicit form of Egg?g as follows:
M-theory section:
e SL(5), SO(5,5) (geometric):
G2
¢ o
gg;?a?r = 9.3l ghv Grete 120 aMAilléis aVAjlejs ) (B.89)
o FEg, E7 (geometric):
mat 1 G123, J13273
Egca?az - = ‘G’ ? guy ( 2 . 3! a“A211213 8VAj1j2j3
Gi1ies g1 Je
+ 276' ]:#71'1"'1'6 FV:jl"'j(ﬁ) ) (B.QO)
e SL(5), SO(5,5) (non-geometric):
1
G2 _  ~ o
‘Cg:r;?;,l)r = _|2 ) |3| g,u,l/ Gi1i2i3,j1j2j3 SHZHQZS SVJUZJS > (Bgl)
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e g, E7 (non-geometric):

mat ~ 111213, : 1116, J1°°"J6
[’( ) — _|G|2 g,uu < 12213,7J1J273 S 111213 SV]1j2_]3 4 1°%6,J1°°J6 SM“ 16 Syﬁ 36> ,

scalar 2.3l K 2.6
(B.92)
Type 1IB section:
e SL(5) (geometric):
6?
2
ércr;?;)r = _ﬂ ng Mag Gmme e aﬂBr?an 8”Br?1n2 ’ (B93)
e SO(5,5), Eg (geometric):
1
(mat) - ‘G‘§ u maﬁ Gm1m27nln2
scalar — 9 a 91 auBroléumg ayBl?an
Gmma, n1ng
+ T gu,m1-~~m4 gl&nl“'n4> ) (B‘94)
e FE; (geometric):
1
(mat) B ’G’E u maﬁ Gmlm27n1n2
scalar — 9 gﬂ BY 8ﬂBr?\1m2 al/Bﬁlng
GM1my, ngeeng
+ T gﬂ,m1~~-m4 gu,n1~~n4
M. q (GM17"M6, N1-N6
= 6! g37m1-"m6 ggnr"nG) ) (B.95)
e SL(5) (non-geometric):
~ 1
(mat) ’6’2 ~uv ~af o mims ning
Locatar = 9.9l g m*” Gmimgz,ninz Qo Qpv ) (B.96)

e SO(5,5), Es (non-geometric):

~ 1 ~

3 ~

(mat) o ‘G‘ ~uv maﬁ Gm1m27n1n2 mimo ning
== . Q Q

scalar 9 g 21 o, By

n W p,mms Py"l"'"‘*) , (BI7)

e F; (non-geometric):
1

; G|? _,, (M Gy,
et = -G (Mg g, mm g,

Gm +Myg,N1---N
+ 1 44:7 1 4 PMml my Pynl ng

e
meB Gmy.-mg, n1-ng

6!

+ Qa7uml”.m6 Qﬁ’ynl...n(;) . (BQS)
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B.3 Internal (potential) part

The internal part, or the potential part, consists of three terms

Lpor = Eélc?t + £1(;)20)t + 'Cé?t , (B.99)
1
Eélo)t =e — MMN 9y MEE Oy M1 (B.100)
1
£l = ey MM oy MEE Oy Marie (B.101)
1
E;(j))t =e <8M Ine OnMMN 4 MMV 916 One + 1 MMN 9y g ONgW> . (B.102)
Here, we choose the canonical section, (9yr) = (9;,0,...,0), where the index i represents 4

in the M-theory section or m in the type IIB section. In this case, the first and the third
terms can be obtained as follows:

. 1~ _ 1 o~y —
Lot = oy M M O My, — e M MY Mpq win” win®
1|1 . 1 .
_ 5 | = i) 9.kl o o ij 9 X
G2 [40 OGN 5Gu — gy @O [Cl g [
——2; G pMN ]/W\PQWiMPWjNQ]v (B.103)
@ ek (r(n=3) i, . __n i (Kl 5 .
£ = |6} (4(n_2)2G 010Gl 9 |G| — 5o 6V GH 9 In |6 G

1 . 1 ;
+ 1 G" 0;1n |g| 0jIn |g| + 5 Oi1n[g| 0,G"

1 . 1 .
+ 5 G" 0;1n |G| 0;In [g| + 1 GY ogh ngw,) . (B.104)

(2)

pot Can be written as

On the other hand, as we show later, the second term £

1 —~ — —
£®, = e MMN O MIE O, Mo + ALG) (B.105)
11 kl ij
‘G’ 2 -—5 GY 0,Gy 8]G + m GY 0;In ‘G‘ 8j In ‘G‘
1 »
5 G GM 9, In |G| 0G| + AL (M-theory)
_ 1 [ 1 1
= 5| = mn Pq mn I
[€E =5 G 00Gima 0GP+ 5 G O In|G| 9, In|G]
1 1
g G G0 10 |G 0pGing + § ™" O O™ | + ALY
(type 1IB)

where Aﬁg))t does not include derivatives of metric.
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We thus obtain the potential as

1 [ 1 .. 1 ..
G2 | R(G) + ; GY 9ig"” Ojgw + ; GV 9;1n[g| O;Ing]
i 1 L _—
— 5= G MM Mpguin” win® | + ALY
n

_ [ 1 1
Leot =4 [G|2 [R(G) + 1 G™ Omg"” Ongyus + 7 G™" O In [g] n In [g] ;

(M-theory)

1 1 — —~
+Gm" <4 OmMag Oym®? — EMMN Mpq wmu’ wnNQ>} + Aﬁl()i)t

(type 1IB)
(B.106)

where we used the formula
1 & 1 . 1 .
R(G) = 7 G19Gu G — S G1aGioGH + £ G o |G| 35 In |G

- % G G¥ o In |G| oGy — Lo [1G|2 G G (9,Gha — B Gy)]
G2

1 . 1 . 1 .
= ; G oGw O,G¥ — 5 GG HGH + 1 GO |G| g |G|

1 1. 1 )
-5 G G 91n |G| &G + 5 G 0n g9 In |G| + 3 OiIng| G
1 .
- 7‘ B O [|G|é G GM (9,Gu — Gy)] (B.107)
G|2

and dropped the boundary term.

Calculation of £ Here, we show equation (B.105) and determine the explicit form

pot*
(2)
of AL,
First, let us calculate El(fo)t in the case of the conventional parameterization. In this

case, noticing V' = &4, = (V1) and (V1) =6, = (V™ 1)y, we obtain
(2) €y, T g-1y,—1\Mi —T  —1y,—1\Ki T
L0, =~ (VIR M (VTR Y ) Mg (VYY)

= —g M\Mi 0;/T/I\Kj QM\MK + gﬁ/l\“ .K/l\jk .K/l\pQ wiijk|Q . (B.108)

Thus, comparing this with (B.105), we obtain

1
U GIZ i ik —
AL? gM" MK Mpgwi’ w® = ‘2‘ G G Mpg wi” wa?. (B.109)

pot =

(2)

We next calculate L5

in the non-geometric parameterization. In this case, we use
the simplifying assumption [54] that requires any derivatives contracted with the dual
potentials vanishes (e.g. ™" 0, = 0). In our notation, it can be expressed as

(V) o= (om0, O(--Vu)=0a(0n') (V=VoaV?, (B.110)
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where the ellipsis represent arbitrary tensors or derivatives. Using the simplifying assump-
tion, we obtain
e

L8 = —- MM GMSI M

pot — T g

- _g (VIM VYo (v T MV ) M Mk
; (V=) M9 0 (VK MY] Mo = —g M g MY 9 Mg

- ZMMNa MEL o Mok - (B.111)

where, in the third equality, we used the simplifying assumption and MPi = 5J-P ./\//Tji,

and in the fourth equality, we used (V‘T)M i = 5J-M and My = ﬂm which are generally

satisfied in the non-geometric parameterization. Comparing (B.111) with (B.105), we
obtain ALZ) =

pot = 0 in the non-geometric parameterization.

Summary of the potential L,o;. To summarize, we obtained

1 .. 1 .. ma/
G2 [R(G) + 5 GV 0ig" O + 1 GY O;1ng| O;In g | + £ (M-theory)

Lot = { |G]2 [R(G) + icm“ O™ Oy + iG"‘" O 10 |g| 9n In |g]|

1 . m
+ G™" Ot Oom ﬂ} + L) (type 1IB)

(B.112)

Here, Eéot Y s given as follows:

e geometric parameterization:

m G —
ﬁéotat) ’ 2’ (a GU MMN WiM WJNQ GII ij w,J Wk > MPQ s (B.ll?))
n

e non-geometric parameterization:

SIS

Gl? =~y —~
Lo = —’2 G 3TV Wpg win” i@ (B.114)
Qn,
More explicit form of Eggta %) in each case is given as follows:

M-theory section:
e SL(5), SO(5,5), Es (geometric):

G
Eggtat) — g ’4‘ GHias g1 e Fi i,

Fjyoa s (B.115)
e 7 (geometric):

1 1
‘ngtat) ‘G‘ <2 41 Grt I Fiyoig Fjyojy + 2.7 Gl T Fi,.. ‘7Fj1~“j7>7

(B.116)
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e SL(5), SO(5,5) (non-geometric):

[

. G2~ ~
E(PICI)I? )= 72-73! GY Gilizis,jljzjs St Sjjwws ) (B‘117)

e g, E7 (non-geometric):

mat i 111213, i ; 1116, J1 "
C( ) _ ’G’2 Gz] < 12213, 717273 Siuzzzg Sj]1j2]3 1°%6,]1°°J6 Sizl 16 Sjjl j6> ,

pot 23! 26!
(B.118)
Type 1IB section:
e SL(5), SO(5,5) (geometric):
G2
2
ngg"t) - _2 . 3! Mag Gmrmzms, ans Hr?nmzms Hnﬁlmns ) (B.119)
e FEg), Br(r) (geometric):
1
(mat) ‘G‘? Mo (GM1m2ms; nin2ng
Epot - 9 3! Hg1m2m3 Hl?annii
(GM1-Ms,n1ons
+ T Gy Gm...%) . (B.120)
e SL(5) (non-geometric):
1
Gl® _ .5 ~mn =
E}()I(I)l:t) = _|2 |2' mO(,B Gmn Gm1m27n1n2 Qa,mm1m2 Q57 nnln2 [} (B121)
e SO(5,5), Eg(s) (non-geometric):
-1 5
m G|* ~ m* G
‘C;otat) _ ’ 2’ Gmn < ;?m%nlm Qa,mmlm2 Q,annlng

Gmy--
— Tmimmg pmeem Pn"l‘“”‘*) ;o (B122)

e Ey;(7y (non-geometric):

~ 1 ~
»ngft) _ |G2|2 émn (maﬁ G;}mz,mng Qa7mm1m2 QB,nn1n2
_ Gmiemanieng pomyemy p e
4!
+ maﬁ Gm16'“‘m67n1'“n6 Qa7mm1---m6 Qﬁ,nnl”.%) . (B.123)
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where we defined

35
F"il"'i4 = 48[i1Ai2i3’i4] ) El"'i7 = 78[11A1227] + 3 A[ilizig Fi47ﬁ5i6i7} ) (B124)

Hig mams = 30m, Bryma) s (B.125)
Grnyoms = 5 Omy Dimg-oms) = 15645 Bl Oms By
= 5 jmy Crmgeems] + 30 Hip s O] - (B.126)

B.4 Summary

In this appendix section, we evaluated several external terms in the EFT action,
e
Lon + Lacatar = € R(g) + - — ¢" OuMury Sy MM (B.127)
n

and the potential part, L. Combining these, we obtain

1 1 . 1
£ =|G|> |R(g) + 18" 0uGY0,Gy+ 1 g 0,10 |G| 0, In |G|

1 v 1 ma ma
+R(G) + 1 G 0" Ojgyn + 7 GV 01 [g| 9jIng] | + Ll + Lot
= [G|2 R(G) 4 £ 1 glmat) (B.128)

For example, for the Er77) EFT in the geometric parameterization, this becomes

G213, 15293 Ghie, i de

1 v 4
L =G> [R(G)— 5 a1 8 Oudiiais OAjijejs—— 5 o & fu,i1-~~z’67’u,j1-~j6}

_ |G|2 <2 T G4, I g4 31---1'4 Fjl---j4 + 5 Gt 1T Fil---i7 Fjl"'j7> . (B.129)

C Double-vielbein formalism for gauged DFT

C.1 Parameterization from defining properties of double-vielbein

The previous result from the Iwasawa decomposition provides the upper or lower triangular
parameterization of the generalized vielbein. However, the triangulation breaks the full
local structure group into the diagonal subgroup. If we decompose O(1, D—1 + dim G) as
O(D —1,1) x O(dim G), then we choose the diagonal gauge-fixing by identifying the two
local Lorentz groups,

OD-1,1)x0(1,D-1) =  OD-1,1)p. (C.1)

Here, we shall construct the geometric parameterization and the non-geometric param-
eterization directly from the defining conditions of double-vielbein. This approach does not
require any gauge-fixing condition and ensures manifest O(1, D — 1) x O(1, D—1 4 dim G)
covariance. Analogous to the ordinary O(D, D) case, double-vielbein for O(D, D 4 dim G)
gauged DFT satisfies the following defining properties [127],

Mo o oM s
VMpV q = Mpg » VMﬁv = "pg> (C.2)
_ ]/\4\ . - . _/\ _ . 2~ . AAA °
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where 7, and ﬁﬁé are O(1,D — 1) and O(D — 1,1 + dim G) metric, respectively. The
double-vielbein is then decomposed as

" VMm _ 5 VMm VMEL
V"= <Vam> and Vi = <Vam Vaa) . (C.3)

Note that the usual geometric parameterization is obtained by assuming that the upper-
half blocks of Vj;™ and V3™ are non-degenerate and by identifying them as a pair of
conventional vielbeins [127]. However, the non-degeneracy assumption can be relaxed in a
consistent manner.

Suppose that the upper-half blocks of V™ and V'™ are given by

VHEm — (e~ hypm 4 gl e m and Ve = (gmhrm 4 plive,m (C.4)

where e, and €, are two copies of the D-dimensional vielbein corresponding to the same

metric g,

e;Teunnmn = _é,uméuﬁ Nmn = Juv 5 (05)
and A’ is an arbitrary tensor. Then, V#™ and V#™ are not guaranteed to be non-degenerate.
Substituting the previous decomposition ansatz (C.3) and (C.4) into the defining proper-
ties (C.2), we find the most general parameterization that satisfy all the algebraic con-
straints (C.2) for V™

o 1 eum +BLV((6—1)Vm _ 6/1//) epm)
M = = ;
\/§ (e—l)p,m _ Bl,u,l/eym (CG)
1 -
Vo = =5 (s ATV (717 = B9, ™) — roa(AT) e, )
and for Vfwﬁl
V _ L é”m _|_Bl/u/((é—1)1/m o B/Vp épm)
M= ﬂ (é—l)/u’_n o ﬁ/uuéyﬁ’b ’
_ 1 _ _ ~ _
Vam — E ((AT)O[#((éfl)um _ /Bluuéym) _ (AT)aMé,um) , (07)
o _AEL_'_B/VAVFL o B o
Vit = ~“ Iz ) : V0 = ¢aa + ¢a,8(AT)’BMAua
Aua(¢T)aa

Here, By, and " are defined as

BL,I/ — BNV + %a/Apa(AT)aV 9
Iy v 1/~cz~T v (CS)
B = B — ol Ae(AT),,

in which B, and " are antisymmetric tensors.
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However, if we assume that each blocks of V3;™ and Vj3;™ are non-degenerate, this
solution is over-parameterized. The physical degrees of freedom are determined by the coset

O(D, D + dim G)
O(D—1,1) x O(1, D—1 + dimG) ’

(C.9)
and the associated number of degrees of freedom is given by

1 1 1

5@D+G)(2D+G—1) = 5D(D=1) = 5(D+G)(D+ G~ 1) = D? + DG, (C.10)

where G denotes dim G. The D? components arise from the {gW, BW} or {gu,,, ,6’“”}, and
DG components arise from the A4,% or A**. Thus, only {g, B, A} or {g, 3, A} are sufficient
to make up the parameterization.

The geometric parameterization, which is for the conventional heterotic supergrav-
ity [128], is obtained by turning off #* and A+,

1 e m+B/V(e—1)Vm 1
wr=— c Ve = (AT (C.11)
(e—l)um

and

o1 (e "+ B (e I
V™ = — _ ) Vam =—(4 « Hma
M \/§ < (é—l),um ( ) M(e )

) (C.12)
a(4TY a
VMa = — \/a (AH (d) )a > ’ f/aa = ! (¢a)a'

0

Under the non-degeneracy assumption, one can show through a field redefinition that
the geometric parameterization is essentially the same as the most general solution (C.6)
and (C.7). On the other hand, if we assume that some of components of V™ or VH™ are
vanishing, we can define an another class of non-geometric background, which cannot be
related by field redefinition from geometric parameterization [129].

Using the relation the projection operators and double-vielbein:

Poig = anmn(VT)”N and PJ/\ZN = Vz/u\m _mﬁ(VT)ﬁﬁ—l—VM\aFcag(VT)bﬁ, (C.13)

we construct a geometric parameterization for the projection operators as

g+ ArA'+ B'g (B Ak+ B'g'Ax 1+ B'g™!

1
P= 5 kAt + Kk Alg=1(B')! kAlg~ Ak kAtg™l |, (C.14)
1 —i—g_l(B,)t g_lAli g—l
and
—g—ad'ArA' = B'g (B!  —Ax—-B'g'Ax 1-Bg!
_ 1
P= 5 —kAl — kAlg~Y(B')! —kAlg YAk — 2k —rAlgT | . (C.15)

1— gil(B/)t —gilA/ﬁ _gfl
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Here, we used K5 = —(ta)g/{agt%. In this parameterization, it follows that the projection
operators satisfy the complete relation, J = P+ P and that the generalized metric defined
by H = P — P takes the form:

g+ B'g Y (B + AkA!  Ak+ B'g7'Ax  B'g!
_ t t,—1 t t,—1 1 t,—1
H= kA' + kAtg~H(B) kA'gT AR+ 5k kA'g . (C.16)
gfl(B/)t gilA/ﬁ gfl
Consider next the non-geometric parameterization. As for the geometric parameter-
ization, it is simply given by turning off B, and A,% while keeping 3 and A in (C.6)

and (C.7):
1 e,
VMm = ( -1 umu nx m) ’
V2 \(etyem — give o
1 -
V™" = ——kKas(A Pre m.,
7 8(A%)
and
- 1 e, _ 1
szi 7/-// B Vami_ia A BM m7
M \/5 ((61)/‘”” ﬂ/“l'é m) 9 \/§H B( ) e
(C.18)
Vi — 0 Voa_ qua
YT\ Valdre (g ) C T Vel
The corresponding projection operators are constructed as
g ~gAnk 1-gs"
1 _ o _ -
P = 3 —kATG kATGAK —kAT + kATGp'T , (C.19)
1-8§ —Ax+pB§4r G '+ 3§87 + o/ AAT
and -
-9 gAK 1+g6"
| - T . -
P= 5 kAT  —kATGAR — %/{ kAT — kATgp'™ . (C.20)
1+8G§ Ak—pBgAr -Gt —pge" — o/ ArAT

Once again, in this parameterization, it follows that the complete relation J = P + P is
satisfied and that the generalized metric H = P — P is expressed by

g ~gAr —g8"
H=|-rATG rATGAr+ ilﬁ —rAT + kATGp'T . (C.21)
~8's  —Ar+BGAr G+ B g8 + o/ ArAT
One notes that this result is consistent with the parameterization in terms of the Iwasawa
decomposition given in (5.34).

We should remark that, ultimately, the double-vielbein formalism is imperative. For
the bosonic case, the geometric parameterization and the non-geometric parameterization
of double-vielbein, (C.11) and (C.18), respectively, are equivalent to the previous result
constructed by coset representative, as they should. Even though these two approaches
are consistent for the bosonic case, for introducing supersymmetry, the double-vielbein
formalism is the most adequate approach [128, 130, 131].
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C.2 Connection and curvature

The gauge symmetry for gauged DFT is given by a twisted generalized Lie derivative which

is defined by
s AT S0 NI N PyO G BT
(LxV)M g = (LI 5 = M paX VO — fyp®X VY5, (C.22)
Lxd = L%d.

The ﬁg( is the ordinary generalized Lie derivative defined in the un-gauged DFT by

LV o = XPasvY o (0 X 5 — 05X MWV P o 4 (95 x P — P X )V M 5 o
R — 1 — .
_ M M
d = XMogd - S0 XM,

where f175 5 are the structure constants for Yang-Mills gauge group. The gauge parameter

xM COHSIStS of ordinary generalized Lie derivative part and a Yang-Mills gauge symmetry
part in an O(D, D + dim G) covariant way.

As for the covariant differential operator of the gauge transformations (C.22), we
present a covariant derivative which can be applied to any arbitrary O(D, D + dim G),
Spin(D — 1,1) and Spin(1, D — 1 + dim G) representations as follows

D]\/Z = 81/\4\+F]/\/[\+(I)]/\4\+(I)]\//T' (C.24)

where ®— and . . are spin-connections and I' 5 » is semi-covariant connection which
Mmn Mmn MNP

are constructed in gauged DFT [83]

~ ~ ~ ~ o~ 2 B PPN
_ Rp S Rp S RS
iy = Upirn + (002 P Py + 059Pi " Py®) fams — 5 (P+P) piw “ fans
(C.25)
where I'° ppsn is the connection for ordinary DFT [127],
. R Qp R
Foﬁj/w\ﬁ (Pa PP)[MN] +2( [M JV] - P[J\YQPJV} )8@P§]3 (C.26)
4 ~ ~ _ .
_ . __p-.Q . R .
51 (PP + PoiPu ) (9ge + (POTPP) g )
and PAAAQRS and P}gﬂN@Ag are rank-six projection operators
SQR ._p S QOp R Q pk|S
Ppiin Pp P[ﬁ[QPﬁ] T+ D 1PP[MPN] P,
o R R R (C.27)
" SQR ._p S bR pR|S
Pprin N =Pp P[JT/T[QPJV] It D 1PP[MPN] P,
which are symmetric and traceless
Peitnars = Porspiin = PAiiNIQIRS) > P PiinoRs = PorspiIN = PRINIOIRS)
P _ PM P _ PM 5
P PMOQRS — 0, P PPMNQRS 0, P PMQRS — 0, P PPMNQRS (O )
C.28

Here the superscript ‘0’ indicates a quantity defined in the un-gauged DF'T.
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The spin-connections are defined by using the semi-covariant derivative

_yN N y/P
Qo =VIn0gVi, T PnpV mV n

i Mmn o B _ 5 (029)
Ciinn =V w0 Vea t TapV  aV a
Although these are not gauge covariant, we can project out to the tensor part
q)ﬁmn ) ‘I)amn ) (p[pmn] ) q)ppm )
(I)pmﬁ ) (I)pﬁui ) (I)pal_; ) (I)[pmn] ) ‘I)[pma} ) (P[pab} ) (030)
q’[aéé] ) (I)pﬁm ) (I’pﬁa :

These will be the building block that the formalism uses. Various covariant quantities can
be generated by using these spin-connections and their derivatives [83].

The heterotic DFT action is given by the generalized curvature tensor from semi-
covariant curvature tensor Sﬂﬁ PO 38

1 R
Siinpa = 5 Birvpg T Regirw — T siwl #po) - (C.31)

where R]/\/[\ﬁ I25) is defined from the standard commutator of the covariant derivatives

R R
FK,R@—F];@ T 5A - (C.32)

R oI ol a0t Tamnl )

_ o R R
MNPQ — YM" NPQ N* MPQ +Tiip

Then, the generalized curvature scalar is defined by contraction of S with the pro-

MNPQ
jection operators

opMNpPOg
S:=2PMNPPeS 506

3 1 . 1
= 2(2am¢>”mn — ™, PO, — 5@["1”2’1(1)%, — RPN, — — DD, (C.33)

2 2
- fpmnq)pmn - fﬁmnq)ﬁmn - famn(pamn> .

C.3 Nongeometric fluxes and action

There are several approaches for constructing differential geometry of the gauged DFT [65,
83]. Here, we follow the so called semi-covariant formalism [83] which is well-suited for
supersymmetry.lo

To define non-geometric fluxes, we adopt the non-geometric parameterizations of
double-vielbein obtained in (C.17) and (C.18), and substitute them to the definition of
generalized spin connection (C.29). Not all of the components of generalized spin connec-
tion are involved for defining heterotic DF'T action. The relevant components of generalized
spin-connection should be invariant under the generalized diffeomorphism for gauged DFT

10See appendix C for the concise review of double-vielbein formalism for gauged DFTs.
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or twisted generalized Lie derivative. They define the non-geometric fluxes

m 1 — m
" = + ﬁ((e D™ — 20n0)

1 1
V= v —
q)r?mp = + Wmnp — §qu epme,uneup + Qp'u epneupeum )

V2

1 -~
v
Pamn = — iFu aCum€un ,

1 1
) = + 75 <W{mnp1 — 5@ ep[meun%p]) -

(C.34)

In the above expression, the components of generalized spin connection comprise three
kinds of fluxes that were introduced in (5.40).

Consider now the non-geometric action of heterotic DFT in terms of the non-geometric
fluxes. The action is given by the generalized curvature scalar S, which is defined in (C.33)
in terms of the generalized spin-connections:

Shet = / e 228 (C.35)

where

1_- 1 -
S = 20mon,, — q)mmpq)nnp _ gq)[mnp]q)mnp _ 5(I)zuwm"bq,ﬁnm _ 5(I)amnq)c_mm _ (C.36)

By substituting (C.34) into this action, one can show that (C.36) is equivalent to the
previous non-geometric heterotic action (5.40).

D Exotic branes

A defect brane refers to a codimension-two configuration in type II string theory. Denote

them by
b}(ﬂd,c)(n1 ey, M e, Uy ly) (D.1)

for the configuration wrapped or smeared over the 7-torus [45, 46, 51] and thus has the mass:

1 /R.. - R R -..R N2/R, - Ry \*
Mb(d,c) = — < n1 . nb> < my mc> ( 01 . £d> ' (D.Q)
" 9s lS ls lg ls
Here, R; is the compactification radius in the z’-direction and gs is the string coupling
constant and b¢, = bE,dZO’ 9 and by = bﬁflzovczo).

In this paper, we consider compactification on shrinking tori. As an example, consider a
53(34567, 89)-brane (6.49) in the Ey(7y EFT. In this case, ™ (m = 4,...,9) are compactified
on a six-torus and 3 direction is a noncompact direction. In this case, the “5%(34567, 89)-
brane” is a one-dimensional extended object with the tension,

1 Ry - Ro\ [ RsRy\>
T = . D.
2%9213( 13 >< 12 > (D-3)

S S
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type IIA theory M-theory
0; = DO P(M)

(MP(n) = erl) A p (MP(n) = Rgl)
P(n1) P(n1)
lo(n) = F1(n) N M2(nM)

<~ = 23
21(ning) = D2(ning) M2(ning)
41(n1---ng) =D4 N M5 — 5 M5(ny - - - naM)
= 96
52(n1 tee 7”L5) = NS5 M5(n1 cee TL5)
61(n1~~-n6) = D6 KKM(nl---nﬁ, M)
5y(n1---ns, mg) =KKM o ¢ KKM =065 ¢ KKM(n; ---nsM, ng)
6§(n1 s Ny, TL7) KKM(TLl cNg, n7)
5%(’01 TL4) o 53 53(n1 ©e Ny, mlmQM)
12
4%(711 s Ny, mlmgmg) 53(n1 tee ’)”L4M, ml7an3)
2§(n1n2, m1~--m5) o 26 26(n1n2, m1~--m5M)
15

12(721, ml---m6) 26(n1I\/I, ml---m6)
Og(a 3"'9) o 0%77) 0(1’7)(, 3---9, M)
02176)(7 niy---neg, ml) 0(177)(7 nl"'nGMv ml)

Table 3. Defect branes in the type ITA theory/T” and the M-theory/T8.

We will still call it a point-like 53(34567,89)-brane as its mass becomes that of the usual
52(34567, 89)-brane after further compactifying the z-direction.

A list of defect branes in the type ITA theory compactified on a seven-torus is collected
in table 3. As shown in the table, each defect brane of the type ITA theory can be regarded
as a reduction of a defect brane of the M-theory compactified on an eight-torus. By using
the relation

=Ry and  g.= R, (D.4)

where Ry is the radius in the M-theory direction and [;; is the Planck length in eleven
dimensions, a b;d’ °)_brane in the type ITA theory can be identified with a defect b%d7 °)_brane
in the M-theory with the mass,

M —1<RM>ﬁ<Rn1'”Rnb> <Rm1"'Rmc>2(Rf1'”Réd>3
S VAN R}, Ry, R,

_ (Ruy -+ Ry, (le..; Rmc)2 (Rél...de)?’
Iy ’
_ <b+20—|—3d—n—|—1>
n=3 .

2
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Here, the indices n;, m;, ¢; run over 3, ...,9, M, where M represents the M-theory direction.
We also used the non-trivial identity, n = b+ 2¢+ 3d + 1, satisfied by all M-theory branes.
Note that the subscript n of bgld’ 9 is usually suppressed.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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