
12 bdjn.org

pISSN 2288-6982  l  eISSN 2288-7105

Biodesign

Biodesign  l  Vol.5  l  No.1  l  Mar 30, 2017  © 2017 Biodesign

INTRODUCTION
Surveillance mechanisms detect and degrade aberrant mRNAs 

for ensuring fidelity and quality of mRNA in the cells. There are 

three pathways of mRNA surveillance; nonsense-mediated decay 

(NMD), no-go decay (NGD), and non-stop decay (NSD) (Doma 

& Parker, 2007). NMD detects transcripts containing premature 

stop codons (PTCs). When a ribosome terminates its translation 

in the PTC, the NMD factors, Upf and Smg associate and target 

the mRNA for degradation (Garneau et al., 2007; Lykke-Andersen 

& Bennett, 2014). NGD detects and degrades transcripts 

that block translation by stable RNA hairpin structures. The 

evolutionary conserved Hbs1 and Dom34 complex plays a critical 

role in NGD (Lykke-Andersen & Bennett, 2014; Shoemaker et al., 

2010; Matsuda et al., 2014; Lee et al., 2007). NSD is involved in 

the detection and decay of mRNA transcripts which lack a stop 

codon (Matsuda et al., 2014; Inada, 2013). A ribosome translating 

the mRNA eventually encounters and stalls at the 3’poly-A tail 

region of transcripts without a stop codon. It is a crucial problem 

for the cells because the ribosome cannot eject the mRNA.

  For NSD, Ski7 (superkiller protein 7) specifically recognizes this 

stalled ribosome and recruits Ski complex (Ski2/Ski3/Ski8) and 

exosome for RNA degradation in Saccharomyces cerevisiae. 

Previous biochemical studies show that Ski7 interacts with the 

stalled ribosome by C-terminal domain, and recruits cytoplasmic 

exosome and Ski complex (Ski2/3/8) by N-terminal domain (van 

Hoof et al., 2002; Frischmeyer et al., 2002; Halbach et al., 2013; 

Kowalinski et al., 2015; Schaeffer et al., 2009; Lee et al., 2014). 

The Ski7 belongs to a family of ribosome-associated GTPases, 

which comprise essential translational factors such as eIF5B, 

eEF1α, and eRF3. All ribosome-associated GTPases carry a 

highly conserved GTPase domain, adjacent to β-barrel domains 

(Atkinson, 2015). The Ski7 shares the structural similarity 

with the ribosome-associated GTPase domains and tmRNA 

(transfer-messenger RNA) that interacts with ribosomal A site in 

prokaryotic NSD pathway and might interact with ribosomal A 

site (van Hoof et al., 2002; Karzai et al., 2000; Gutmann et al., 

2003). Interestingly, the NSD also exists in mammals, but there is 

no Ski7 homolog and thus it has been suggested that Hbs1 and 

Dom34 complex participates in the NSD pathway in mammalian 

cells (Tsuboi et al., 2012; Saito et al., 2013).

  The ribosome-associated GTPases form a heterodimer with 

a binding partner such as Hbs1 for Dom34 and eRF3 for eRF1, 

but the binding partner of Ski7 has not yet identified (Shoemaker 

& Green, 2012; Kowalinski et al., 2015). The GTPase activity 

is crucial for the specificity of eEF1α, eRF3, Hbs1, EF-Tu and 

needs a conserved histidine residue at the active site (Daviter 

et al., 2003). However, Ski7 has no conserved histidine residue. 

Therefore, Ski7 may achieve its function without hydrolyzing 

GTP and indeed, it has a very limited GTPase activity (data not 

shown) and very recently, Kowalinski et al. also reported that 

Ski7 has unique features in the GTP-binding site and may have 

enhanced GTP-binding properties, but not GTP-hydrolysis 

(Kowalinski et al., 2015). All ribosome-associated GTPases 

possess GTP-binding G domain and additional β-barrel domains, 
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domain 2 and 3. The domain 2 and 3 (hereafter, D2/3) contact 

with G domain, and its relative orientation to the G domain is 

important for regulating the function of ribosome-associated 

GTPases. Although the structure of the D2/3 of Ski7 (Ski7-D2/3) 

is predicted to be similar to that of the other D2/3 domains (Chen, 

Muhlrad, et al., 2010; Kong et al., 2004), the primary sequence of 

Ski7-D2/3 has a very limited sequence similarity to that of eRF3 

and Hbs1 (Lee et al., 2014), and thus, there might be unique 

features.

  Previously, we reported a preliminary crystallographic data of 

Ski7-D2/3 crystals (Lee et al., 2014) and conventional multiple 

anomalous dispersion (MAD) approach has been applied for 

phase determination. However, we have identified the serious 

twinning problem of our crystals. Many different efforts have 

been tried for obtaining phases with these twinned crystals, but 

unfortunately, the crystal structure of the C-terminal region of 

Ski7 has been published very recently (Kowalinski et al., 2015). 

Although the structure of Ski7-D2/3 has been finally determined 

by molecular replacement (MR) method, our attempts at 

overcoming the twinning problem will be described in this paper.

RESULTS AND DISCUSSION 

X-ray data analysis of Ski7-D2/3 crystal 

Our initial construct, whole C-terminal domain of Ski7 (residues 

254-747) was soluble using His6-RIP tag (Lee et al., 2012) 

whereas full length Ski7 with GST-tag was not soluble in E. 

coli. However, the crystallization of the C-terminal domain of 

Ski7 alone and its complex with GMP-PNP or GDP was not 

successful. Fortunately, the smaller fragment, Ski7-D2/3 (residues 

520–747) was crystallized, as described previously (Lee et al., 

2014). The crystal diffracted to 2.0 Å resolution and the X-ray 

data has been collected, and thus, we initially thought that the 

structure determination might be straightforward. As a first 

step, MR has been tried, using the similar structural domain in 

Hbs1 (Chen, Muhlrad, et al., 2010). The solution, however, was 

not clear, suggesting that the structure of Ski7-D2/3 might be 

significantly different from that of Hbs1 domain 2 and 3. The 

expression level of selenomethionine (SeMet) substituted Ski7-

2/3 fused with GST was much lower than native protein and 

thus we have changed the expression vectors (See METHODS 

for details). The SeMet crystals were obtained without much 

difficulty. The 2.87 Å-resolution MAD data has been collected, 

but the position of Se was not easily found. Initially we thought 

the number of Se might be a problem for phasing, because 

there is only one methionine (Met 581) out of 228-residue long 

Ski7-D2/3 construct (Figure 1). In the meantime, the twinning 

problem of the crystals was also detected (Figure 2). The crystals 

belong to a trigonal space group and it is a hemihedral twinning. 

Twinning in the trigonal space group was reported in several 

cases (Dauter, 2003) including plastocyanin (Redinbo & Yeates, 

1993), hydroxylamine oxidoreductase (Igarashi et al., 1997), 

bacteriorhodopsin (Luecke et al., 1998), α-lactalbumin (Chandra 

et al., 1998), N-terminal half of lactoferrin (Breyer et al., 1999), 

flavodoxin (Guelker et al., 2009), and Δ1-62NtNBCe1-A (Gill 

et al., 2013). It was not only recognized in diffraction pattern, 

and previously we reported the crystal belongs to the space 

group, either P3121 or P3221, which turned out to be the wrong 

assignment (Figure 3). The twin fraction α of our native crystals 

is in the range between 0.458 and 0.488 in H-test with the twin 

operator [h,-h-k,-l] (Table 1).

Approaches for overcoming the twin problem

It has been known that the structure determination with twinned 

data is not easy and the best way is to obtain new crystal forms 

or crystals with low twin fraction. We have obtained many 

crystals of Ski7-D2/3 using different crystallization conditions 

and also in the presence of diverse additives, but they are 

basically the same twinned crystals. Therefore, we decided 

to introduce mutations in the protein and simultaneously tried 

to increase the number of methionine residues for improving 

the phase information, which might induce different crystal 

packing and/or more Se positions for phasing. To introduce 

methionine residues in Ski7-D2/3, we analyzed the sequence 

homology using BLAST. Ski7 is a highly conserved and yeast-

specific protein, and thus, variable hydrophobic residues were 

not easily detected. Ski7p from Saccharomyces arboricola 

H-6 (GI: 748454621), Ski7p from Saccharomyces cerevisiae x 

Saccharomyces kudriavzevii VIN7 (GI: 365758398), and Ski7-

like proteins from Saccharomyces kudriavzevii IFO1802 (GI: 

401838887) were aligned with Ski7-D2/3. Four possible mutation 

sites, Leu588, Ile630, Leu650, and Ile655 were found (Figure 1). 

We have cloned two mutants, L588M and double L650M/I655M, 

and purified SeMet-substituted protein for crystallization. SeMet 

crystals using L588M and L650M/I655M mutants were grown at 

the same condition with native crystals. However, the L650M/

I655M mutant crystal was a little unstable and the diffraction was 

limited to maximum 3.0 Å resolution. The radiation damage was 

also severe and thus, we have collected the data with the larger 

oscillation angle (3 degrees) to reduce radiation damage. In total, 

16 different X-ray data sets were collected including several MAD 

data sets (Table 1). Although more anomalous scatters were 

included, the phase calculations were not successful. Therefore, 

the twinning problem is the biggest obstacle for the structure 

determination of Ski7-D2/3.

Investigation for the twinned data sets

For acentric reflections, the intensity ratio <I2>/<I>2 is 1.5 and 

2.0 for perfectly twinned and untwinned, respectively (Yeates 

& Fam, 1999). Our native crystals show the average intensity 

ratio is 1.6~1.9 and it highly depends on the resolution of the 

data. The calculated <I2>/<I>2 ratio using high resolution 2.0 Å 

data is 1.6, whereas a 2.8 Å resolution data is 1.96 (Table 1). 

The data sets with SeMet wild-type and L588M mutant crystals 

show that the <I2>/<I>2 ratio is also around 1.7, however, the 

SeMet L650M/I655M double mutant crystal shows an almost 
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untwinned ratio, above 2.0 (Table 1). The other indicators, the 

Wilson ratio <F>2/<F2> as well as the intensity statistics <|E2-

1|> also show the same trends. For acentric reflections, the 

Wilson ratio <F>2/<F2> is 0.885 for perfectly twinned and 0.785 

for untwinned, and the <|E2-1|> is 0.541 and 0.736 for perfectly 

twinned and untwinned, respectively. In general, the values 

using native and SeMet L588M mutant crystals are closer to the 

perfect twin whereas those using SeMet L650M/I655M double 

mutant crystals are somewhat close to the untwinned (Table 1).

  Another indicator for twin detection is the local intensity 

statistic L-test (Padilla & Yeates, 2003). For acentric reflections, 

the mean |L| value is 0.375 and 0.5 for perfectly twinned and 

untwinned, respectively and the <L2> value is 0.200 for twinned 

and 0.333 for untwinned. The multivariate Z-score L-test value 

is over and less than 3.5 for perfectly twinned and untwinned, 

respectively. As shown in Table 1, the L-tests also show similar 

trends in intensity statics including the Wilson ratio. However, 

some indicators suggested that SeMet data using L650M/I655M 

double mutant crystals gave somewhat untwinned or less 

twinned values and therefore, we have dedicated much effort 

to MAD phasing of these data sets. However, a better twin law 

test for each different twin operator gives the same conclusion 

(Yeates & Fam, 1999). There are 3 possible twin operators 

because the Ski7-D2/3 crystal belongs to trigonal space group. 

The hemihedral twinning has twin fraction α between 0.5 for 

perfect twin and 0.0 for untwinned. If the fraction α is not close 

to 0.5, the crystal possesses a partial twin and then, detwinning 

or normal structure determination can be performed. As shown 

in Table 1, all twin law tests such as the Britton analysis, H-test, 

and maximum-likelihood method show the different twin fraction 

α for three, twin operators [-h,-k,l], [h,-h-k,-l], and [-k,-h,-l]. The 

twin fraction of native and SeMet using L588M mutant crystal 

is approximately 0.1 for [-h,-k,l] and [-k,-h,-l] operator, but it 

becomes nearly untwinned with SeMet data using L650M/I655M 

double mutant crystals. Unfortunately, for the other twin operator 

[h,-h-k,-l], the twin fraction remains the same, suggesting that it 

FIGURE 1 I Sequence alignment of domain 2 and 3 of Ski7 from yeast species. Sequence alignment of Ski7-D2/3 orthologs. The following organisms were 
used: Saccharomyces cerevisiae Ski7-D2/3, Saccharomyces cerevisiae x Saccharomyces kudriavzevii VIN7, and Saccharomyces kudriavzevii IFO1802, and 
Saccharomyces arboricola H-6. The boundary between domains 2 and 3 adopts a flexible linker, which is indicated as black dash. Red shading indicates residues 
that are identical in all sequences. Secondary structural elements are shown above the sequence alignment. The mutated residues are marked with red stars. Every 
10th residue is also indicated above sequence.

Structure determination of the C-terminal fragment of yeast Ski7 using twinned crystal data
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FIGURE 2 I Twinning validation. Cumulative distribution functions for |L| test for (a) native data set and (b) SeMet L650M/I655M data set. Red line represents 
observed, and blue and green lines represent expected untwinned and twinned, respectively. Cumulative distribution functions for |H| test for (c) native data set 
and (d) SeMet L650M/I655M data set. The brown line represents the observed twin fraction. Red, blue, green, magenta, and cyan lines are calculated with the twin 
fraction of 0.4, 0.3, 0.2, 0.1, and 0.0, respectively. The twin fraction α with twin operator [h,-h-k,-l] is 0.47 and 0.44 for native and SeMet double mutant data set, 
respectively.

(a)

(c)

(b)

(d)

FIGURE 3 I Space group determination. (a) κ=180 section of the self-rotation function of Ski7-D2/3 data. The three-fold symmetry axis in the plan of the paper 
and a pseudo 2-fold axis perpendicular to the paper are shown. (b) Two molecules of Ski7-D2/3 (green and yellow) were found in the asymmetric unit using the 
data processed with space group P31. (c) One molecule of Ski7-D2/3 (green) was found using the data processed with space group P3121. The crystallographic 
symmetry operation (y, x, -z) generates the second molecule (blue). (d) Superposition of the solutions (green) from two different space groups, P31 and P3121, and 
the orientation and position of symmetry equivalent molecule (cyan) in the P3121 packing shows a slight deviation from those of the solution in the P31 packing 
(yellow).

(a) (b)

(d)

(c)
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is a perfect twin, the most difficult case for phasing. During our 

struggle to overcome this severe problem, the crystal structure 

of the C-terminal region of Ski7 was reported (Kowalinski et al., 

2015) and the atomic coordinates became available (PDB ID: 

4ZKD). The molecular replacement trials were successful using 

the space group P3121, which was initially assigned, however 

there is a problem in the refinement. In order to determine the 

correct space group, we examined the self-rotation function of 

the data processed in lower space group P31 (Figure 3a). This 

showed clear three-fold symmetry along c axis and interestingly, 

pseudo two-fold symmetry in one of the axes in the ab plane. 

Therefore, the true space group must be lower symmetry P31 and 

the trial gave a clear MR solution using the normal procedure 

(McCoy, 2007) and there are two molecules in the asymmetric 

unit (Figure 3b).

Structure of Ski7-D2/3

The crystal structure of Ski7-D2/3 was refined at 2.0 Å 

resolution with Rwork/Rfree factors of 22.5/27.0%, respectively. 

For a molecular replacement solution, the original data set was 

used, but for refinement, a twin operator was applied. The twin 

operator [h,-h-k,-l] gave nearly 10% lower the Rwork/Rfree factors, 

but the other two possible twin operators, [-h,-k,l] and [-k,-h,-l] 

affected R-factors only marginally. The crystallographic statistics 

and refinement are given in Table 2. The overall structure of 

Ski7-D2/3 shows two independent β-barrel structure for each 

domain 2 and 3 (Figure 4a) and the electron density maps for the 

core region are excellent (Figure 4b). Domain 2 and 3 are packed 

tightly and the buried surface area by the contact between two 

domains is 1,825.4 Å2 out of total 14,600 Å2 surface area of 

Ski7-D2/3 calculated by PISA server (http://www.ebi.ac.uk/pdbe/

prot_int/pistart.html)(Krissinel & Henrick, 2007). A flexible linker 

region (residues 638-644; region 4) is not visible in the electron 

density map, but one more residue, Asn637 was built, compared 

to the molecular replacement template, 4ZKD domain 2 and 

3 (Kowalinski et al., 2015). The asymmetric unit contains two 

monomers, chain A and B, and the root-mean-square deviation 

(RMSD) between these is 0.814 Å for 213 Cα atom pairs (Figure 

5). There are structurally deviated regions (regions 1, 2, 3, and 4) 

between our Ski7-D2/3 model and the longer model containing 

GTPase domain (Figure 5). 

  The structure of Ski7-D2/3 is similar to that of domain 2 and 

3 in the other ribosome-associated GTPases. The Z-scores as 

determined by the DALI server for Ski7-D2/3 are 15.8, 18.3, 17.2, 

and 17.3 for free elongation factor 1 alpha-like protein Hbs1 

from Saccharomyces cerevisiae (PDB ID: 3P26)(van den Elzen et 

al., 2010), Dom34 complexed Hbs1 from Schizosaccharomyces 

pombe (PDB ID: 3MCA)(Chen, Muhlrad, et al., 2010), archaeal 

initiation factor 2 gamma subunit from Sulfolobus solfataricus 

(PDB ID: 2AHO)(Yatime et al., 2006), and eukaryotic release factor 

from Schizosaccharomyces pombe (PDB ID: 3E20)(Cheng et al., 

2009), respectively. As noted, the Ski7-D2/3 shares very limited 

sequence identity with the corresponding domain of ribosome-

associated GTPases (lower than 20% sequence identity allowing 

many sequence gaps). When approximately 180 matching Cα 

atoms of Ski7-D2/3 were superposed with equivalent atoms of 

the above proteins, the RMSD was in the range of 2.0~2.6 Å. 

However, the folding pattern and domain orientation was highly 

conserved (Figure 6).

(a) (b)

FIGURE 4 I Structure of Ski7-D2/3 and representative electron density map. (a) Overall structure of domain 2 and 3 of Ski7 from Saccharomyces cerevisiae. 
Domains 2 and 3 are colored in green and cyan, respectively. The secondary structural elements of Ski7-D2/3 are indicated. Invisible residues (from Thr638 to 
Pro644) are indicated as black dots. N- (Glu520) and C-termini (Gln747) of the construct are also indicated. The mutated residues (Leu588, Leu650, and Ile655) 
are shown as a stick model. (b) The final 2Fo–Fc electron density map around the boundary between domain 2 and 3. Cyan and blue colored electron density map 
correspond to domain 2 and 3, respectively. The map was calculated using 50.0–2.0 Å data and contoured at 1.5 σ.

Structure determination of the C-terminal fragment of yeast Ski7 using twinned crystal data
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FIGURE 5 I Structural differences among Ski7-D2/3 models.  The superposition of Cα traces of two chains (A-chain, blue; B-chain, red) in the asymmetric unit of 
our Ski7-D2/3 crystal and the molecular replacement template (cyan; PDB ID: 4ZKD). The boxed regions numbered (1, 2, 3, and 4) are structurally the most variant 
regions. The region 1 (residues 612– 622) locates between β7 and β8 in domain 2, and the region 2 (residues 693–700) between β12 and β13 in domain 3. Region 3 
(residues 582–595) in domain 2 contacts with G domain of Ski7. Region 4 shaded with transparent yellow is the flexible linker (residues 638-644), which is invisible in 
the electron density map. The view left is the same as in Figure 4a and the 180° rotation gives the view right.

Ski7-D2/3 520-747 eRF1 467-662 (PDB: 3E20)

Z=18.3, RMSD=2.5 Å

eIF2 γ-subunit 206-415 (PDB: 2AHO)

Z=17.2, RMSD=2.6 Å

Hbs1 398-592 (PDB: 3MCA)

Z=17.3, RMSD=2.4 Å

FIGURE 6 I Ribbon diagram comparing the domain 2 and 3 structures of Ski7 (red; top left), eRF1 (green; top right), Hbs1 (cyan; bottom left), and eIF2 
(yellow; bottom right). The view is the same as in Figure 4a. PDB ID codes, and Z-scores and root-mean-square deviations (RMSD) from DALI server for each 
structure are provided.
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CONCLUSION
The Ski7-D2/3 crystal has a severe hemihedral twinning problem. 

Initially, we introduced methionine mutations for better phasing 

by location of selenium positions, as well as overcoming the 

twinning problem, because some indicators showed somewhat 

promising statistics (Table 1). Specifically, Wilson ratio and 

L-tests of the SeMet data using L650M/I655M double mutant 

crystals reduced the twin problem, but the twin law test 

considering three possible twin operators [-h, -k, l], [h, -h-k, -l], 

and [-k,-h,-l] for trigonal space group clearly shows that the twin 

fraction α dramatically reduces with the twin operators [-h, -k, 

l] and [-k,-h,-l], but remains the same with the twin operator [h, 

-h-k, -l]. The values are nearly 0.5 in all three analyses (Britton 

analysis, H-test, and Maximum likelihood method), suggesting 

that the crystal still has the difficult perfect twinning problem. 

Therefore, we conclude the twin law test with twin operators 

provided by phenix.xtriage in CCP4 package is the best indicator 

for twinning and the detection of the twin fraction α for each twin 

operator is also important for  later refinement. We successfully 

obtained the phases by MR techniques and the reasonable 

refinement statistics by applying the twin operator (Table 2).

  The structure of Ski7-D2/3 is quite similar to that of 

corresponding domain of ribosome-associated GTPases (Figure 

6). Each domain 2 and 3 forms a β-barrel structure and 

unique connecting loops (Figure 3a). As shown in Figure 5, 

an exceptionally long connecting loop between β7 and β8 in 

domain 2 (region 1), is the most structurally deviated region. 

Especially the connecting linker between domain 2 and 3 is too 

TABLE 2 I Crystallographic statistics and refinement

Ski7-D2/3
Native 520-747

SeMet
L588M

SeMET
L650M/I655M

Data collection 

X-ray Source 7A, PAL 5C, PAL BL44XU, SP8

Resolution (Å) 50-2.00 (2.03-2.00) 50.0-2.20 (2.24-2.20) 50.0-3.10 (3.15-3.10)

Wavelength (Å) 0.97933 0.97943 0.97884

Space group P31 P31 P31

Unit-cell parameters (a=b, c) 73.528, 83.634 73.679, 83.456 71.457, 86.536

Total reflections 217,015 160,847 95,442

Unique reflections 34,188 25,723 8,970

Completeness (%) 99.8 (99.9)a 99.9 (100.0) 99.8 (100.0)

I/σ(I) 33.82 (1.0) 23.8 (2.1) 27.0 (2.37)

Rsymm (%)b 5.9 (81.9) 7.0 (89.9) 11.8 (94.6)

Rmeas (%)c 6.5 (89.7) 7.6 (98.1) 12.5 (99.1)

Redundancy 6.3 (6.0) 6.2 (6.3) 10.6 (11.2)

Refinement

Resolution (Å) 29.8-2.0 34.9-2.20 35.5-3.09

No. of reflections34,162 34,162 25,709 8,826

Refined twin fraction 0.49/0.51 0.50/0.50 0.50/0.50

Refined twin operator [h, -h-k, -l] [h, -h-k, -l] [h, -h-k, -l]

Rwork
d/Rfree

e 22.35 / 26.73 22.28 / 26.07 32.37 / 37.41

R.m.s.d.

Bond lengths (Å) 0.014 0.009 0.006

Bond angles (°) 1.902 1.757 1.244

Ramachandran analysis

Most favored (%) 98.33% 97.62% 97.86%

Additional allowed (%) 1.67% 2.38% 2.14%

aValues in parentheses are for reflections in the highest resolution bin. bRsymm = ΣhΣi|I(h,i)−<I(h)>|/ΣhΣi I(h,i), where I(h,i) is the intensity of the ith measurement 
of reflection h and <I(h)> is the corresponding average value for all i measurements. cRmeas = Rr.i.m. (redundancy-independent merging R-factor) = 
Σh[N/(N−1)]1/2Σi(|Ii(h)−<I(h)>|)/ΣhΣiIi(h). 

dRwork = ∑hkl|Fobs–Fcalc|/∑hkl|Fobs|, where Fobs and Fcalc denote observed and calculated structure factors, respectively. eRfree is 
calculated for the 10% test set of reflections.

Structure determination of the C-terminal fragment of yeast Ski7 using twinned crystal data
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flexible and thus the electron density maps around this region 

are invisible in all three models of Ski7 (region 4). One might 

expect that the deviations are originated from the molecular 

contacts with G domain, especially region 3, but the deviations 

between chain A and B also show quite significant. Therefore, 

it is concluded that these regions are intrinsically flexible. Even 

though the connecting link is flexible, the relative orientation 

between domain 2 and 3 is virtually the same, because there are 

quite significant inter-domain contacts (Figure 4b). Therefore, we 

conclude the Ski7-D2/3 does not show major conformational 

movement upon contacting with G domain (Figure 5).

METHODS

Cloning and mutagenesis

The  gene  encod ing  the  Sk i7 -D2/3  ( res idues  520-747 )  was 
ampl i f ied using S.  cerevis iae  genomic DNA by PCR with the 
primers, 5’-CGCGGATCCGAAACAACTTTGGAAGAGCCATTTG-3’ 
(BamHI site as underlined boldface) and 5’-CTGCTGCTCGAGCTAT 
TACTGGCATGCAATTCTGC-3’ (XhoI site as underlined boldface) as 
before (Lee et al., 2014). For phasing, leucine 650 and isoleucine 655 in 
Ski7-D2/3 were mutated to methionine residues to express more SeMet 
containing protein because there is only one methionine in Ski7-D2/3. 
The mutations were introduced into the Ski7-D2/3 by Quik-change site-
directed mutagenesis. The sequences of forward and reverse primer are 5’- 
GAATTTACCCACACTAAAGTTGATGGCCTTGCGTTTAATGAAATTATCAAT-3’ 
and 5’-GTTTGTATTGATAATTTCATTAAACGCAAGGCCATCAACTTTAGTGT
GTTTGGTAAATTC-3’ (mutated DNA sequence indicated as underlined 
boldface). All constructs were confirmed by DNA sequencing. However, 
the yield of SeMet protein was not high enough using previous GST-
fusion vector (Lee et al., 2014) and thus, we have changed the expression 
vector as follows: The PCR products were digested with the BamHI and 
XhoI restriction enzymes and cloned into the pMALTM-p4X expression 
vector modified with an N-terminal His6-tag followed by MBP (maltose 
binding protein) tag and a TEV (tobacco etch virus) protease cleavage site 
(ENLTFQ/G). The plasmids were transformed into E. coli BL21(DE3) and 

B834(DE3) competent cells (Novagen)

Protein expression and purification

To prepare SeMet-labeled Ski7-D2/3, the L650M/I655M double mutant 
protein was expressed in methionine auxotroph E. coli strain B834(DE3). 
Cells were cultured in minimal medium (Na2HPO4, KH2PO4, and NH4Cl), 
all amino acid stock excluding methionine, vitamins (1 µl of niacinamide), 
40 µg/ml SeMet (Wako Pure Chemicals), 0.4% (w/v) glucose (Sigma-
Aldrich), MgSO4, and 50 µg/ml ampicillin at 37°C until reaching OD600nm 
0.8, and then induced with 0.5 mM isopropyl β-D-thiogalactopyranoside 
(IPTG, Merck) at 18°C for overnight. The cells were harvested by 
centrifugation at 8,000 × g at 4°C for 20 min, and the cell pellets were 
resuspended in cooled buffer A (50 mM Tris-HCl pH 8.0, 200 mM NaCl, 
and 5 mM 2-mercaptoethanol). The resuspended cells were disrupted 
by ultrasonication. The cell debris containing insoluble material and the 
soluble fraction containing the Ski7-D2/3 were separated by centrifugation 
at 27,000 × g at 4°C for 1 h. The protein was loaded onto the column 
pre-equilibrated with buffer A and eluted using buffer A containing 500 
mM imidazole. The TEV protease was added to the elution fraction 
with a 1:50 molar ratio to cleave His6-MBP-tag from Ski7-D2/3 protein 
at 4°C for overnight. The TEV treated protein was loaded onto the His-
Trap column to eliminate the N-terminal His6-tagged TEV protease and 
MBP simultaneously because the target protein was not bound to the 
His column. The Ski7-D2/3 was then concentrated using a 10.0 kDa 
cutoff Amicon Ultra centrifugal filter device (Millipore). The concentrated 

sample was filtered by Spin-X centrifuge tube filter (Costar) with pore 
size of 0.22 µm. The sample was further purified by using a HiLoad 16/60 
Superdex 75 pg (GE Healthcare), pre-equilibrated by gel filtration buffer 
(50 mM Tris-HCl pH 8.0,. 150 mM NaCl, and 1 mM TCEP). After gel 
filtration chromatography, the protein was purified with high-resolution 
anion exchange column Mono QTM (GE healthcare). Fractions containing 
Ski7-D2/3 were confirmed by 12% (w/v) SDS-PAGE stained with 
Coomassie Brilliant Blue.

Crystallization 
The purified Ski7-D2/3 was concentrated to 7 mg/ml for crystallization. 
Initial crystals were obtained at the reservoir conditions of 100 mM 
HEPES-NaOH pH 7.5, 8% (v/v) ethylene glycol, and 10% (w/v) PEG8000 
(Wizard Classic 3 tube #12, Rigaku) by hanging-drop vapor diffusion 
method on 48-well VDX plates at 20°C. The 2 µl drop of 1:1 mixture 
between Ski7-D2/3 protein and reservoir solution was equilibrated against 
140 µl reservoir solution. The crystals were small and grown within the 
precipitation. An additive screen was performed with Hampton Research 
additive screen kits. For better crystals, the crystallization drop was mixed 
in a ratio of 6:3:1 (v/v) for protein solution: reservoir solution: additive 
solution. In total, 11 additives (2 mM magnesium chloride dehydrate, 2 
mM strontium chloride hexahydrate, 10 mM sodium fluoride, 0.6% (v/v) 
2-methyl-2,4-pentamediol, 0.6% (v/v) dimethyl sulfoxide, 0.6% (w/v) 
6-aminohexaanoic acid, 6 mM glycyl-glycyl-glycine, 3% (v/v) 2-propanol, 
0.1% (w/v) polyvinylpyrrolidone K15, 8% (v/v) pentaerythritol ethoxylate, 
and 0.6% (w/v) D-(+)-galactose) enlarged the crystal size. Although the 
additives improved the diffraction quality of Ski7-D2/3 crystal, the twinning 
problem remained the same. The crystallization of SeMet labeled protein 
was performed in the same way.

Data collection and processing

X-ray diffraction data of the Ski7-D2/3 and its mutants were collected at 
the beamline 5C and 7A, PAL (Pohang Accelerator Laboratory, Pohang, 
Korea), the beamline NE3, PF-AR (Photon Factory, Tsukuba, Japan), 
and the beamline BL44XU, SPring-8 (SPring-8, Hyogo, Japan). Data 
were recorded using ADSC Quantum 315 CCD detector, processed and 
integrated using DENZO, and scaled using SCALEPACK from the HKL-
2000 program suite (Otwinowski & Minor, 1997). The PHENIX xtriage result 
for native data showed that the crystal is twinned. Twinning validation was 
calculated by PHENIX (Adams et al., 2010) and CCP4 program suite (Winn 
et al., 2011). X-ray data and twinning validation of all data are listed in 
Table 1.

Structure solution and refinement

The native Ski7-D2/3 and mutants structures were solved by molecular 
replacement method with PHASER (McCoy, 2007) using corresponding 
domain of recently reported C-terminal region of Ski7 (PDB ID: 4ZKD) as a 
search model (Kowalinski et al., 2015). The molecular replacement solution 
resulted in two D2/3 molecules per asymmetric unit with the space group 
P31. The initial model was refined using COOT (Emsley et al., 2010) and 
PHENIX (Adams et al., 2010). The rigid body refinement and reference 
model restraints were performed in initial steps of refinement and then 
non-crystallographic symmetry restraints were applied. Appropriate twin 
laws [h,-h-k,-l] were applied in final steps of refinement. The assessment 
of model geometry and assignment of secondary structural elements 
were achieved using the MolProbity program (Chen, Arendall, et al., 2010). 
Data collection and refinement statistics are described in Table 2. The 
DALI server was used for structural comparisons (Holm & Rosenstrom, 
2010). All figures for structures were generated using PyMOL (http://
www.pymol.org).
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