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Magnetic-field induced multiple topological phases
in pyrochlore iridates with Mott criticality
Kentaro Ueda1, Taekoo Oh2,3, Bohm-Jung Yang2,3,4, Ryoma Kaneko1, Jun Fujioka1,5, Naoto Nagaosa1,6

& Yoshinori Tokura1,6

The interplay between electron correlation and spin–orbit coupling in solids has been proven

to be an abundant gold mine for emergent topological phases. Here we report the results of

systematic magnetotransport study on bandwidth-controlled pyrochlore iridates R2Ir2O7 near

quantum metal-insulator transition (MIT). The application of a magnetic field along [001]

crystallographic direction (H//[001]) significantly decreases resistivity while producing a

unique Hall response, which indicates the emergence of the novel semi-metallic state in the

course of the magnetic transformation from all-in all-out (AIAO, 4/0) to 2-in 2-out (2/2)

spin configuration. For H//[111] that favours 3-in 1-out (3/1) configuration, by contrast, the

resistivity exhibits saturation at a relatively high value typical of a semimetal. The observed

properties can be identified to reflect the emergence of multiple Weyl semimetal states with

varying numbers of Weyl points and line nodes in respective spin configurations. With tuning

effective bandwidth, all these states appear to concentrate around the quantum MIT region,

which may open a promising venue for topological phenomena and functions.
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T
he pyrochlore R2Ir2O7 is composed of the networks of
corner-linked tetrahedra of rare-earth R ions and Ir ones.
This geometrically frustrated lattice offers a fertile ground

to host exotic electronic/magnetic states1–4. Recent angle-resolved
photoemission spectroscopy unveils that the R¼ Pr compound is
a unique semimetal with a quadratic band crossing at G point,
which is an essential ingredient for versatile topological states5;
for instance, the antiferromagnetic all-in all-out (AIAO) magnetic
order, which breaks time-reversal symmetry while preserving
crystal symmetry, lifts the band degeneracy, leading to linearly
dispersed band touching points in three dimension, here termed
Weyl semimetal (WSM (4/0))3,6,7. Another possibility for
unconventional electronic states is intensively discussed with
different magnetic patterns8–11. Owing to the uniaxial magnetic
anisotropy along the cubic [111] or equivalent directions into the
center of the tetrahedron, various magnetic pattern can be
achieved under the competition between exchange interactions
and external magnetic field12. For example, when a magnetic field
applied along H//[001] (H//[111]) is strong enough to overcome
the exchange interaction, it turns two (three) magnetic moments
point inwards and the other two (one) point outwards of the
tetrahedron, forming 2/2 (3/1) configuration.

Another key parameter is a one-electron bandwidth, exempli-
fying the inverse of the effective electron correlation (U)13. One
can finely tune it by applying hydrostatic pressure14,15 or
substituting R site16,17 that can drive metal-insulator transition
(MIT); the Pr compound is a paramagnetic semimetal down to
120 mK18, whereas the paramagnetic or antiferromagnetic AIAO
insulating phase shows up with smaller R ionic radius19–21,
seemingly akin to the correlation-induced MIT as widely
observed for 3d-electron materials15,22,23. On the verge of
quantum MIT (in between R¼Nd and Pr), however, the
unconventional magnetotransport phenomena have been
reported, including anomalous Hall effect24,25, highly metallic
AIAO domain walls26,27 and field-induced MIT10,11, which may
be potentially correlated to the predicted topological states. The
quantum MIT involving such correlated topological states may
provide an ideal platform of a novel quantum criticality28,29, but
has been rarely explored so far. To address this issue, we perform
systematic magneto-transport measurements on R¼Nd and its
partially Pr-substituted (R¼Nd0.5Pr0.5) compounds under
external pressures (P) and magnetic fields (H), which allow us
to finely and precisely tune the effective bandwidth and magnetic
configuration. We have revealed the rich topological phases as a
function of bandwidth and magnetic field around the quantum
critical point.

Results
Electronic/magnetic phase diagram for pyrochlore iridates. We
show the temperature dependence of resistivity at several pres-
sures in Fig. 1d–h. The resistivity at ambient pressure increases
rapidly below the transition temperature TN¼ 22 K, which is
higher than that of the previous study thanks to the recent
improvement of the sample quality (see Methods). The transition
temperature systematically shifts to lower temperature with
increasing pressure as observed also in previous studies14,15.
Figure 1i displays the temperature dependence of resistivity for
the mixed-crystal compound of x¼ 0.5 (R¼Nd1� xPrx), which
also shows a sharp increase below 4 K. We plot the TN as a
function of pressure and chemical substitution x in Fig. 1j, using
the established empirical relation between the chemical and
physical pressures15 that the composition change Dx¼ 0.1
corresponds to the pressure change DP¼ 0.65 GPa; hereafter,
we regard x¼ 0.5 as being equivalent to the application of
P¼ 3.3 GPa on x¼ 0. The TN is almost linearly suppressed as

(chemical) pressure increases, enabling us to explore a broad
range of effective bandwidth-control effect. It should be noted
that the AIAO insulating phase persists up to PB5.0 GPa
(PB1.7 GPa on the x¼ 0.5 compound) as shown in the
pressure dependence of resistivity for x¼ 0.5 (Supplementary
Fig. 1). Such robustness of the insulating phase is also reported in
ref. 14.

Anomalous magnetotransport phenomena near MIT.
Figure 1d–i also display the resistivity under a magnetic field of
14 T along [001] direction and [111] direction. For H//[001],
whereas the resistivity slightly decreases by the application of
magnetic field at ambient pressure, the abrupt increase of the
resistivity below TN is significantly suppressed above P¼ 1.0 GPa.
It means that the systematic application of pressure brings the
system to the critical region in which various electronic or
magnetic phases strongly compete with each other, as observed
for the colossal magnetoresistance in perovskite manganites30. It
is noteworthy that the similar large magnetoresistance was
reported in refs 10,11 even at ambient pressure. This can be
ascribed to the slight off-stoichiometry of the crystal such as
iridium deficiency, which somewhat changes the band filling of
the system and effectively drive the system closer to the critical
region. The applied magnetic field H//[111], on the other hand,
induces distinct magnetotransport properties from the case of
H//[001]; the resistivity starts to rise gradually even above TN and
appears to nearly saturate at lower temperatures. The observed
property for each field direction is attributable to the emergence
of a novel electronic state induced by H//[001] (H//[111]), which
favours the 2/2 (3/1) magnetic configuration in R 4f moments as
depicted in Fig. 1b,c. In fact, the saturated values of magnetization
for H//[001] (H//[111]) agree well with the expected values in 2/2
(3/1) state (Supplementary Fig. 2a–d). The no d-electron analog
Nd2Zr2O7, in which the Nd 4f moment forms AIAO magnetic
order at zero field, also shows magnetic field-induced 2/2 or 3/1
order31. Furthermore, for the x¼ 0.5 compound, the peak of the
specific heat divided by temperature gradually shifts to higher
temperature, while being broadened on increasing H//[001]
(H//[111]) (Supplementary Fig. 2e,f); these features clearly
indicate that the increasing magnetic field H//[001] (H//[111])
induces the 2/2 (3/1) type magnetic order at higher temperatures
than TN

32,33. Owing to the magnetic coupling between 4f and 5d
moments, the magnetic structure of 5d moments can follow that
of 4f ones, leading to the observed transport properties. It is to be
noticed that the magnetic field is always applied perpendicular to
the electric current in this experiment (see Methods), which
excludes the possibility of chiral anomaly effect, that is, the
negative magnetoresistance effect with the current parallel to the
magnetic field, recently observed in a WSM material34. Hence,
the observed anisotropic magnetoresistance genuinely stems from
the modulation of the magnetic configuration.

Magnetotransport properties for H//[001]. The magnetic field
dependence of resistivity for H//[001] at several pressures are
given in the top panels of Fig. 2. The sharp decrease of resistivity
is accompanied by a hysteresis between field-increasing and field-
decreasing processes below TN, as discerned in previous stu-
dies10,11. The Hall conductivity shown in Fig. 2f–j provides
important insights into the observed field-induced MIT. Above
TN, the Hall conductivity is nearly proportional to magnetic field,
typical of normal Hall effect. By contrast, below TN, the Hall
conductivity exhibits non-monotonous field dependence; it is
nearly zero at low magnetic fields, abruptly rises up at
intermediate fields and eventually decreases towards a negative
value at high fields. This feature is more pronounced as
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temperature is decreased. A similar sign change of Hall response
is also observed in the Nd2Ir2O7 polycrystals25. The observed
complexity of the Hall response can be hardly explained in terms
of the conventional normal or anomalous Hall resistivity35. The
contour plots of the longitudinal and Hall conductivity in the
plane of temperature and magnetic field for H//[001] at various
pressures are shown in Fig. 3a–j, respectively.

In general, the Hall conductivity is sensitive to the relaxation
time. For instance, the vanishing Hall conductivity at low fields
reflects the localized nature of electrons, in accord with the
relatively large value of resistivity (rxx410 mOcm). At high fields,
on the other hand, the Hall conductivity largely decreases towards
a negative value, while the resistivity nearly saturates around
rxxB0.4 mOcm (Fig. 2a–e); one plausible candidate of the
electronic phase for this metallic state can be the topological
state in the 2/2 configuration, which possesses a nodal line in the
kz¼ 0 plane and two Weyl points on the kz axis as presented in
Fig. 4b, dubbed here line node semimetal (LSM) following the
previous study10. The major result of Hall response presented
here is a sizable signal with positive sign in an intermediate field
region. On increasing field, the Hall conductivity shows a
dramatic change including even a sign reversal, which can be
attributed to the crossover between the 4/0 WSM (Fig. 4a) and
2/2 LSM (Fig. 4b), as schematically shown in Fig. 4d,f. As 4/0
WSM and 2/2 LSM have different Fermi surface topology, the
transition between them requires a significant modification of the
band structure near the Fermi level such as accompanied by
emerging electron/hole pockets, which can strongly modify the
Hall conductivity including its sign changes. Such competing
contribution of the normal and anomalous components to the

total Hall conductivity are also theoretically calculated shown in
Supplementary Fig. 3, which demonstrates the nonmonotonic
magnetic field dependency.

In the contour plots of longitudinal and Hall conductivity
shown in Fig. 3a–j, we can unveil the characteristic relation
between the observed MIT and Hall conductivity for H//[001].
Both longitudinal and Hall conductivity are relatively small in a
low-field and low-temperature region (AIAO insulating phase).
On increasing field, the Hall conductivity shows a dramatic
change with a sign reversal, which can be attributed to the
crossover between the WSM and LSM, as schematically shown in
Fig. 4d,f. Interestingly, the WSM phase, which was theoretically
predicted to exist in quite a narrow temperature window at zero
field6,7 and hence would be difficult to detect such an electronic
band state by optical36 and angle-resolved photoemission
spectroscopy37, can be extended by an application of magnetic
field along [001], which deforms the regular 4/0 spin
configuration. Moreover, as the pressure increases, both AIAO
insulating phase and WSM one appear to shrink, whereas the
LSM extends towards zero temperature and zero field. At the
quantum critical point, the various competing phases, not only
antiferromagnetic Mott insulator and paramagnetic semimetal
but also the topological pseudo-4/0 WSM and 2/2 LSM, come
close to each other in free energy, apparently merging into the
quantum critical point.

Unconventional semimetal phases in H//[111]. We now turn to
the magnetotransport properties for H//[111], which are shown
in Fig. 2k–t. Right above TN, the resistivity is largely enhanced by
an applied field, whereas the Hall conductivity shows a sharp
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Figure 1 | Temperature dependence of resistivity in bandwidth-controlled R2Ir2O7. Schematic magnetic configuration for (a) all-in all-out state, (b) 2-in

2-out state and (c) 3-in 1-out state, respectively. Temperature dependence of resistivity for R¼Nd (x¼0) at (d) 0 GPa, (e) 1.0 GPa, (f) 1.4 GPa, (g) 1.8 GPa,

(h) 2.2 GPa and (i) x¼0.5 for R¼Nd1� xPrx (effectively 3.3 GPa), respectively. The black curves denote the resistivity of trained state which was measured

on elevating temperature process at 0 T after magnetic field cooling of 14 T along [111] crystallographic direction, to eliminate the contribution from the

metallic magnetic domain walls. The blue lines denote the resistivity under a magnetic field of 14 T applied parallel to [111] direction and the red ones are for

a field along [001] direction. (j) Metal-insulator transition temperature as a function of pressure (bottom axis) and Pr concentration x (top axis). Dx¼0.1

corresponds to DP¼0.65 GPa. The circles denote the transition temperature for x¼0, the triangles are that for x¼0.5 and the square is that for x¼ 1.
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upturn and changes its sign in high magnetic field (Fig. 2p–t);
similar magnetotransport properties are also reported for the
paramagnetic R¼Pr compound at a much lower temperature
(T¼ 30 mK)38. On lowering temperature below TN, a sharp dip
structure is observed around m0H¼ 3 T in resistivity, attributable
to the emergence of metallic domain walls as demonstrated in the
previous studies26,27. More importantly, the resistivity exhibits
the unique magnetic field dependence accompanied by a
hysteresis between field-increasing and -decreasing processes,
which is most pronounced at T¼ 9 K and P¼ 1.0 GPa as shown
in Fig. 2k. Furthermore, the resistivity appears to saturate around
rxxB7 mOcm above m0H¼ 9 T at which the hysteresis loop
closes, indicative of a transition from the 4/0 to the 3/1 magnetic
state. To see the evolution of the respective phases more clearly,
we plot the contour map of longitudinal conductivity and Hall
conductivity in Fig. 3k–t, respectively, and its schematic phase
diagram in Fig. 4e,g. One can see that the conductivity is relatively
small in a high field region where the sign of Hall conductivity is
positive, which can be assigned to the emergence of the new
semimetal state with the 3/1 magnetic configuration.

To elucidate the electronic band structure in the 3/1 state, we
perform a mean-field calculation (see Methods). The important
feature in the 3/1 state is that there is only one trigonal axis
parallel to H//[111], contrary to the 4/0 state with four trigonal
axes. It is noteworthy that a pair of Weyl points are always on one

of the four trigonal axes in the AIAO state. As each pair of
Weyl points is constrained to be on a one-dimensional line,
pair-annihilation can be easily achieved by increasing the pair
separation until they merge at the Brillouin zone boundary. In the
3/1 state, however, broken threefold rotation symmetry allows six
Weyl points to be shifted away from the relevant one-
dimensional subspace and, instead, to move in two-dimensional
mirror plane. Whereas the remaining two Weyl points on the
trigonal axis parallel to H are still constrained, their
pair-annihilation results in another WSM with six Weyl points
(termed here WSM (3/1)) as described in Fig. 4c. Considering
that the point nodes moving in two-dimensional space have
smaller collision probability than those moving in one-dimen-
sional space, it is natural to expect that WSM (3/1) is more stable
than WSM (4/0), and hence occupies a wider range in the phase
diagram; WSM (3/1) phase survives all the way as H increases,
whereas it is stable within a finite window as U increases.

By combining the systematic transport experiments with the
theoretical calculations, we suggest that multiple topological states
can show up as a function of effective bandwidth (or effective
electron correlation U) and magnetic field, as schematically
shown in Fig. 4d–f. Future neutron and X-ray experiments on the
magnetic states as done in refs 19–21 will serve to verify the
present interpretation for the field-induced emergent topological
states. Another important feature revealed here is that all these
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Figure 2 | Magnetotransport properties of (Nd1� xPrx)2Ir2O7 at several pressures. Magnetic field dependence of resistivity (a–e) and Hall conductivity

(f–j) for a field along the [001] crystallographic direction at (a,f) 1.0 GPa, (b,g) 1.4 GPa, (c,h) 1.8 GPa, (d,i) 2.2 GPa and (e,j) 3.3 GPa (x¼0.5), respectively.

Magnetic field dependence of resistivity (k–o) and Hall conductivity (p–t) for a field along [111] direction at (k,p) 1.0 GPa, (l,q) 1.4 GPa, (m,r) 1.8 GPa, (n,s)

2.2 GPa and (o,t) 3.3 GPa (x¼0.5), respectively. The solid (broken) lines are the resistivity on increasing (decreasing) field process which is indicated by

black arrows.
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topological states appear to merge towards the magnetic
quantum critical point; this may enable the further exploration
for new topological quantum states and related exotic
electromagnetic responses in this ideal system endowed with
Mott criticality.

Methods
Single crystal growth. Single crystals of Nd2Ir2O7 and its partially Pr-replaced
(Nd1� xPrx)2Ir2O7 were grown by the KF flux method as described in ref. 39.
Initially, polycrystalline samples of them were prepared by solid state reactions of
rare-earth oxides (Nd2O3 and Pr6O11) and iridate IrO2. The materials with the
prescribed molar ratios were ground, pressed into pellet, and then sintered at
1,273 K for several days. After taken out from the furnace, the polycrystals were
ground again and mixed with KF flux in a ratio of 1:200. The mixtures are placed in
a platinum crucible covered with a lid. The crucible was cooled down to 1,123 K at
a rate of 2 K h� 1 following anneal for 3–5 h at 1,373 K. After cooling, crystals were
separated from the KF residual flux by rinsing it out with distilled water. Octa-
hedral-shaped single crystals were obtained as reported in ref. 39. The crystals were
characterized by x-ray diffraction. The qualities of the present samples are
improved and the transition temperature becomes higher than that of the crystals
previously reported in ref. 10.

Transport and specific heat measurements. Transport, magnetization and
specific heat measurements were performed using Physical Property Measurement
System (Quantum Design). Resistivity (Hall conductivity) was measured by a
standard four-probe method with the current direction parallel to [110] crystalline
direction while the magnetic field along both [001] and [111] crystallographic
directions was applied perpendicular to the current. The Hall conductivity is
deduced by the anti-symmetrization of the raw transverse signals perpendicular to
the electric current. Pressure was generated by a piston-cylinder pressure cell for
Physical Property Measurement System. To keep the samples in a hydrostatic
pressure, Daphne 7474 oil was used as the pressure-transmitting medium. Pressure
was determined by examining the superconducting transition temperature of lead.

Theoretical analysis. To understand the magneto-transport experiment, we first
performed a numerical study of the lattice Hamiltonian8, H¼H0 þHH þ Hfdþ U

2 �
i

ni � 1ð Þ2 where H0¼ �
i;jh i

cþi t1 þ i t2 dij � s
� �

cj þ �
i;jh ih i

cþi t01 þ i t02 Rij þ t03 Dij
� �

� s
� �

cj .

Here t1,2 ðt01;2;3Þ indicates the hopping amplitude between nearest-neighbour (next
nearest neighbour) Ir sites, and the Pauli matrices sx,y,z represent the doublets with the
total angular momentum Jeff¼ 1/2. The real vectors dij, Rij, Dij describe s dependent
hopping terms. HH¼�

i
H � cþi sci denotes Zeeman coupling to external magnetic field

H. Hfd indicates the f–d exchange coupling between Ir and rare-earth moments, which
has the following form Hfd¼�

i
hfd;i � cþi sci where hfd,i indicates the effective magnetic
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Figure 3 | Contour plot of conductivity and Hall conductivity. Contour map of conductivity (a–e) and Hall conductivity (f–j) for a field along [001]

direction in the plane of temperature and magnetic field at (a,f) 1.0 GPa, (b,g) 1.4 GPa, (c,h) 1.8 GPa, (d,i) 2.2 GPa and (e,j) 3.3 GPa (x¼0.5), respectively.

Contour plot of conductivity (k–o) and Hall conductivity (p–t) for a field along [111] at (k,p) 1.0 GPa, (l,q) 1.4 GPa, (m,r) 1.8 GPa, (n,s) 2.2 GPa and (o,t)

3.3 GPa (x¼0.5), respectively. The black (white) broken lines are the guide to the eyes for the crossover between paramagnetic metal and 3-in 1-out

semimetal state (all-in all-out insulator state and 3-in 1-out semimetal state). The colour bars in figures (e,j,o,t) denote the longitudinal conductivity

sxx (O� 1 cm� 1) (Hall conductivity sxy (O� 1 cm� 1)), respectively.
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field at the i-th Ir site due to six neighbouring rare-earth spins around it. Here we treat
each rare-earth spin as an Ising spin aligned along its local trigonal axis. Finally, the last
term describes electron correlation effect due to the local Hubbard-type interaction (U)
between Ir electrons. To treat the Coulomb interaction, we employ a mean field
approximation by introducing local order parameters m1,2,3,4 at each site i¼ 1, 2, 3, 4 in
a unit cell. To facilitate the analysis, we assumed that the main role of the f–d exchange
and the external magnetic field is to rotate the Ir spin orientation from the AIAO to 2-in
2-out (or 3-in 1-out) state when H//[001] (H//[111]). Then, we can examine the band
structure by changing the direction of Ir moments continuously for a given magnitude
of Ir moments.

To confirm the results from the lattice Hamiltonian analysis, we also performed
the effective model analysis by constructing low energy Hamiltonian near G or L
points. For H//[001], the results from the lattice Hamiltonian study are already
reported in ref. 10. Here we performed additional low-energy Hamiltonian analysis
near G point and obtained consistent results. Namely, magnetic field-induced
modulation of Ir spin orientation induces a WSM with point nodes and also an
LSM with a line node (LSM) accompanying two additional point nodes. On the
other hand, when H//[111], we found the transition from a WSM (4/0) with eight
Weyl points to a WSM (3/1) with six Weyl points numerically. To support this, we
provide detailed effective Hamiltonian analysis as shown in the following.

As a pair annihilation of Weyl points occurs at an L point, we need an
effective Hamiltonian constructed near the L point. In the absence of magnetic field
H//[111], the Hamiltonian at the L point is invariant under inversion (P), a

combination of a mirror and time reversal (MT), and a threefold rotation about
G–L (C3). One can find that P, MT and C3 can be represented by P¼ sz , MT¼K,
C3¼ ei2p

3 sz where sx,y,z denotes the two bands touching at the L point and K stands
for complex conjugation. Then the effective Hamiltonian near the L point can
generally be written as HL qð Þ¼v qxsx þ qysy

� �
þðDþAxyðq2

x þ q2
yÞþAzq2

zÞsz

where v, D, Axy, Az are constants and qz is the momentum along the G–L direction.
This Hamiltonian describes a WSM (a gapped insulator) when DAzo0 DAz40ð Þ.
In the presence of H//[111], the Weyl points can be separated into two groups.
First, in the case of the Weyl point pair located parallel to H//[111], P, MT and C3

symmetries are all preserved, thus the relevant Hamiltonian maintains the same
form as above, except the fact that the constants v, D, Axy and Az depend on H. For
example, D Hð Þ¼D0 þDzH. Thus, the magnetic field H can control the transition
between a WSM and a gapped insulator. On the other hand, in the case of the other
six Weyl points, the relevant effective Hamiltonian has a more complicated form
since C3 symmetry is broken and the magnetic field is not along the local z axis.
Assuming H¼ 0;Hy ;Hz

� �
, the effective Hamiltonian becomes H0L qð Þ¼v1 Hy ;Hz

� �

qxsx þ v2 Hy ;Hz
� �

qy
�

þ v3 Hy ;Hz
� �

qz
�
sy þ D Hy ;Hz

� �
þAx Hy ;Hz

� �
q2

x

�

þAy Hy ;Hz
� �

q2
y þAz Hy ;Hz

� �
q2

z þA0 Hy ;Hz
� �

qyqz
�
sz where D Hy ;Hz

� �
¼D0

þDyHy þDzHz and other constant terms have similar structure. One can clearly
see that the location of Weyl points is no longer on the G–L direction (or the local z
direction) due to the magnetic field. Although a pair annihilation of Weyl points
can also occur in principle, the comparison to the tight-binding analysis shows
that, in general, the magnetic field shifts the location of Weyl points away from the
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Figure 4 | Schematic band structure and phase diagram. Schematic picture of the distribution of Weyl points and line nodes in the three-dimensional

momentum space for (a) WSM with AIAO state (4/0) in a small magnetic field, (b) LSM with 2-in 2-out state (2/2) in a magnetic field along [001]

direction (H//[001]), and (c) WSM with 3-in 1-out state (3/1) in a field along [111] direction (H//[111]), respectively. Red (blue) points denote the Weyl

points with positive (negative) sign of the charge chirality and a purple ring denotes the line node. Schematic phase diagrams obtained from the mean-field

lattice model and the low energy effective k � p Hamiltonian, where the vertical axis is the electron correlation U and the horizontal axis is a magnetic field

along (d) H//[001] and (e) H//[111]. AFI and PM stand for antiferromagnetic insulator and paramagnetic metal, respectively. AFM(4/0) denotes an

antiferromagnetic metal with electron/hole pockets, which is obtained by smooth deformation of the AFI(4/0) band structure without any band crossing

between the conduction and valence bands. ‘Mixed’ indicates the phase in which the nodal points of WSM(4/0) and the nodal points/line of LSM(2/2)

coexist. The dashed lines (i), (ii) and (iii) denote the transition through variation of magnetic modulation at several U. Schematic phase diagram in the plane

of temperature and magnetic field along (f) H//[001] and (g) H//[111] for the case (i), obtained mainly from the experimental results of magnetotransport

(Fig. 3) combined with the assignments of the respective electronic phases (d,e).
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L point stabilizing the WSM phase whereas the electron correlation forces the Weyl
points to move towards the L point inducing the transition to a gapped insulator.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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