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CRISPR/Cpf1-mediated DNA-free plant
genome editing
Hyeran Kim1, Sang-Tae Kim1, Jahee Ryu1, Beum-Chang Kang1, Jin-Soo Kim1,2 & Sang-Gyu Kim1

Cpf1, a type V CRISPR effector, recognizes a thymidine-rich protospacer-adjacent motif and

induces cohesive double-stranded breaks at the target site guided by a single CRISPR

RNA (crRNA). Here we show that Cpf1 can be used as a tool for DNA-free editing of plant

genomes. We describe the delivery of recombinant Cpf1 proteins with in vitro transcribed or

chemically synthesized target-specific crRNAs into protoplasts isolated from soybean

and wild tobacco. Designed crRNAs are unique and do not have similar sequences

(r3 mismatches) in the entire soybean reference genome. Targeted deep sequencing

analyses show that mutations are successfully induced in FAD2 paralogues in soybean and

AOC in wild tobacco. Unlike SpCas9, Cpf1 mainly induces various nucleotide deletions at

target sites. No significant mutations are detected at potential off-target sites in the soybean

genome. These results demonstrate that Cpf1–crRNA complex is an effective DNA-free

genome-editing tool for plant genome editing.
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C
lustered regularly interspaced short palindromic repeats
(CRISPR)–CRISPR-associated proteins (Cas), an adaptive
immune system of prokaryotes1, has now become

a powerful tool for genome editing2–5. In the type II CRISPR-
Cas system, RNase III and the single, large Cas9 protein
are involved in the processing of precursor CRISPR
RNA (crRNA) in the presence of trans-acting crRNA6.
The Cas9 protein has two additional functions: recognizing the
target site and making a site-specific double-stranded break7. In
the type I and type III systems, several Cas proteins are involved
in the recognition and cleavage of target sites8. Because of
the simplicity and efficiency of the type II system, Cas9 proteins
(especially from Streptococcus pyrogene) are widely used
for genome editing.

CRISPR-Cpf1 (CRISPR from Prevoltella and Francisella1)
has recently been reported as a new type of genome-editing
tool9; similar to the type II CRISPR-Cas system, a single Cpf1
protein functions in crRNA processing10, target-site recognition
and DNA cleavage9. Cpf1, however, differs from Cas9 as
follows9,11: (1) Cpf1 recognizes T-rich (such as 50-TTTN-30)
PAM sequences; (2) the PAM sequence is located at the 50-end of
a target DNA sequence, upstream of a protospacer sequence;
(3) Cpf1 is guided by a single crRNA, no trans-acting crRNA is
needed9; and (4) Cpf1 is a ribonuclease, processing precursor
crRNAs10. Among several proteins in the Cpf1 family, LbCpf1
from Lachnospiraceae bacterium ND 2006 and AsCpf1
from Acidaminococcus sp. BV3L6 act more effectively in human
cells compared with other orthologues9,12.

Previously, we reported a DNA-free genome-editing method
in plants using SpCas9 mixed with a single guide
RNA (ribonucleoprotein, RNP)13. Use of RNPs can reduce
off-target effects and cytotoxicity associated with
DNA transfection and also avoid the possibility of integration
of small DNA fragments derived from plasmids. To test whether
the Cpf1 protein can be used as an alternative DNA-free genome-
editing tool in plants, we delivered the recombinant LbCpf1
and AsCpf1 proteins mixed with crRNAs into protoplasts
isolated from soybean and wild tobacco plants and
analysed insertion and deletion (indel) frequencies and
patterns at the targeted loci (Fig. 1). The results show
that Cpf1–crRNA complexes can introduce targeted mutations
in plant genomes.

Results
Cpf1–RNP delivery in protoplasts. We designed nine crRNAs
to simultaneously target two homologous genes, FATTY
ACID DESATURASE 2-1A (FAD2-1A, Glyma10g42470) and
FAD2-1B (Glyma20g24530), in the soybean genome. In
our previous Cpf1 study12, we showed that Cpf1–crRNA
complexes could induce mutations at one- or two-base
mismatches sites. To avoid off-target effect, we selected crRNAs
without allowing three nucleotide mismatches based on the entire
homology search in the current soybean reference genome,
except the target sites using Cas-Designer (http://rgenome.net)14

(Fig. 2a and Supplementary Table 1). FAD2 proteins convert
oleic acid, a monounsaturated fatty acid, to linoleic acid,
a polyunsaturated fatty acid, in seeds15. Thus, FAD2 mutations
can increase the oleic acid level in soybean oil, a highly
desired nutritional trait16. We first performed an in vitro
cleavage assay to examine the activity of Cpf1–RNP complexes,
which comprise in vitro transcribed crRNAs and recombinant
Cpf1 proteins. LbCpf1/AsCpf1–RNPs cleaved the target
DNA efficiently in vitro (Fig. 2b and Supplementary Fig. 1a).

To monitor the location of Cpf1 proteins in soybean
protoplasts, we conjugated a Cy3 fluorophore probe17 to
LbCpf1/AsCpf1 proteins tagged with a nuclear localization
signal peptide. Cy3-labelled LbCpf1/AsCpf1 proteins were
delivered into soybean protoplasts via polyethylene glycol
(PEG)-mediated transformation. After a 24 h incubation,
transformed protoplasts were fixed on poly-lysine-coated slides
and mounted with 4,6-diamidino-2-phenylindole (DAPI),
a nuclear marker, to allow observation of protoplast nuclei.
Cy3-LbCpf1 and Cy3-AsCpf1 proteins were found to be
predominantly located in the nuclei of soybean protoplasts;
the proteins were co-localized with DAPI, but some Cy3-LbCpf1/
AsCpf1 proteins remained in the cytoplasm (Supplementary
Fig. 1b).

Cpf1–RNP-mediated gene editing in soybean and wild tobacco.
We next delivered LbCpf1 or AsCpf1 mixed with crRNAs
into soybean protoplasts at a 1:6 molar ratio (Cpf1:crRNA) in
the presence of PEG in solution13. After delivering the Cpf1–RNP
complexes, we isolated genomic DNA and performed targeted
deep sequencing to analyse indel frequencies and patterns at
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Figure 1 | Schematic overview of CRISPR/Cpf1–RNP-mediated genome editing in plants. To edit the plant genome without introducing DNA,

recombinant Cpf1 proteins and in vitro-transcribed crRNAs were pre-assembled. These active RNP complexes were delivered via conventional

PEG-mediated transformation to protoplasts isolated from the target plant. The delivered RNP complex can recognize the crRNA complementary sequence

and produce cohesive double-stranded breaks. Scale bar, 10mm.
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Figure 2 | CRISPR/Cpf1–RNP-mediated editing of two GlymaFAD2 genes. (a) The position of nine crRNAs in relation to both FAD2-1A and -1B.

FAD2, FATTY ACID DESATURASE 2. (b) The activity of LbCpf1–crRNA3 and AsCpf1–crRNA9 was validated by an in vitro cleavage assay. Pre-assembled

RNP complexes digested the target amplicons. (c) Indel frequencies (%, Log10 scale at Y axis) in LbCpf1- and AsCpf1-transformed protoplasts were

calculated from targeted deep-sequencing analysis at the two FAD2 target loci. Error bars represent s.d. (n¼ 2). (d) Indel patterns at the two target loci

in protoplasts treated with LbCpf1–crRNA3. A deletion of seven base pairs was the most common editing pattern at both the FAD2-1A and -1B loci.

Blue, crRNA base-pairing site; Red, PAM sequences.
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target sites in the FAD2-1A and FAD2-1B genes (Fig. 2c,d).
Indels were observed at target sites with frequencies that
ranged from 0.0 to 11.7% for FAD2-1A and to 9.1% for
FAD2-1B using LbCpf1, and from 0.0 to 1.6% for FAD2-1A
and to 0.6% for FAD2-1B using AsCpf1 in soybean protoplasts
(Fig. 2c and Supplementary Fig. 2). Most Cpf1-induced
mutation sequences were the result of deletions of several
nucleotides (Fig. 2d). We also delivered LbCpf1/AsCpf1–RNPs
(Supplementary Table 1) into protoplasts isolated from the leaves
of wild tobacco, Nicotiana attenuata, to edit the ALLEN OXIDE
CYCLASE gene, which encodes a key enzyme for jasmonic
acid biosynthesis. All Cpf1–RNP complexes completely
cleaved their target sites in vitro and most of the Cpf1–RNP
complexes induced indels at target sites in N. attenuata
protoplasts (Supplementary Fig. 3).

In vivo off-target validation. To validate the specificity of
Cpf1–RNP-mediated genome editing, we surveyed the soybean
genome in silico; using the Cas-OFFinder programme
(http://rgenome.net)18, we first identified potential off-target sites
ranging from four to six nucleotide mismatches (Fig. 3 and
Supplementary Table 2). We designed specific primer sets
(Supplementary Table 3) to amplify the putative off-target
loci from genomic DNA isolated from LbCpf1–RNP-transfected
protoplasts and performed targeted deep sequencing. No indel
mutations were detected at the examined loci (Fig. 3 and
Supplementary Fig. 4), suggesting that Cpf1–crRNA does not
tolerate four or more mismatches. These data are consistent
with recent results in human and mouse cells12,19. We observed
indels at relatively high frequencies in some control samples
(see dOT21 and dOT27 in Supplementary Fig. 4), which are
caused by sequencing errors in AT-rich and A- or T-repeat
regions12.

Chemically synthesized crRNA-mediated gene editing.
When we analysed the indel frequency and patterns induced by
Cpf1–RNP complexes, we found that several bases of DNA were
inserted into the target sites with low frequencies
(0.0028B0.0233%) (Fig. 4a). These sequences were identical
to part of the crRNA sequence, suggesting that the DNA template

for in vitro crRNA transcription might be transfected with
the Cpf1–RNP complexes into soybean protoplasts and
inserted into the target site. Although we treated the reaction
mixture with DNase to remove the DNA template after crRNA
synthesis, a small amount of intact or fragmented DNA template
might still remain in the solution. To eliminate unexpected
integration of DNA fragments in transformed protoplasts,
we transfected soybean protoplasts with Cpf1 protein and
chemically synthesized crRNAs; the crRNA length (B 44 bp) for
Cpf1 is much shorter than the length of guide RNA (B100 bp)
for SpCas9. We found that chemically synthesized crRNAs
successfully induced indels at target sites with activity similar
to that of transcribed crRNAs and eliminated the short insertions
(Fig. 4b,c).

Discussion
We showed here that Cpf1–crRNA RNP complexes successfully
induced indel mutations, mainly deletions of several base pairs,
at two targeted loci simultaneously in the soybean genome.
To implement Cpf1 as a plasmid-based genome-editing tool
for plants, one should consider the host-plant-specific codon
usage and choose appropriate promoters to express Cpf1 and
crRNA in cells as shown in a recent report20, but these concerns
can be circumvented by using the Cpf1–RNP system. In addition,
Cpf1–RNPs can considerably reduce off-target mutations12.
We cloned plant-codon optimized Cpf1 and mature crRNA
into a plasmid that we used to express SpCas9 and guide RNA in
protoplasts13. However, we failed to induce indels in protoplasts
using this system (Supplementary Fig. 5a). Xu et al.20 recently
showed the same result in rice; the delivery of a plasmid
expressing Cpf1 proteins and mature crRNAs into the cells was
not able to induce the targeted mutation. To solve this problem,
Xu et al.20 delivered two different types of precursor crRNA and
were able to edit the target sites with high levels of indel
frequencies. In addition, we found that expression of the Cpf1
protein in protoplasts was not detectable (Supplementary Fig. 5b),
suggesting that codon optimization is not the only issue to
consider for optimizing Cpf1 protein expression in plant cells.

The Cpf1–RNP system has at least three potential benefits
for plant genome editing compared with the Cas9 RNP system.
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Figure 3 | In vivo evaluation of LbCpf1–crRNA3 activity at 13 potential off-target sites in the genome. The indel frequencies (%) at 13 candidate
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First, Cpf1 crRNAs are shorter than Cas9 sgRNAs by
B60 nucleotides, allowing us to use a chemically synthesized
crRNA: no foreign DNA was inserted in the host genome
using the RNP method when chemically synthesized crRNAs
were used. Second, Cpf1 induces larger deletions in the target
sites than does SpCas9. Lastly, the cleavage pattern of Cpf1 might
assist the NHEJ-mediated insertion of donor DNAs. In our

previous study, we edited a target gene in lettuce protoplasts using
the SpCas9-RNP system and successfully regenerated whole
plants from the protoplasts. To fully validate the viability of
our Cpf1-mediated plant genome editing protocol for producing
transgenic plants, we hope to generate whole plants from
Cpf1–RNP-transfected protoplasts in the near future and confirm
the heritability of mutations. The Cpf1–RNP system will be used
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as an additional tool to edit the plant genome without
introducing foreign DNA.

Methods
Protoplast isolation and PEG-mediated transformation. Glycine max
var. William 82 seeds were sterilized and germinated on Murashige and Skoog
medium under 16 h light and 8 h dark conditions at 25 �C±1 �C in a growth
chamber (Koencon, Hanam, South Korea). Seedlings were transferred to 3 L pots 2
weeks after germination. Light was provided by 32 W Osram lamps
(170 mol m� 2 s� 1). We isolated protoplasts from immature Glycine max var.
William 82 beans by incubating them with 3xVCP enzymes21 for 12 h at room
temperature. Seeds of wild tobacco, N. attenuata, were provided by the Department
of Molecular Ecology at the Max Planck Institute for Chemical Ecology in
Germany. N. attenuata seeds were germinated on Gamborg B5 medium (Duchefa,
Biochemie, Harriem, The Netherlands) and 7-day-old young leaves were used for
protoplast isolation13. PEG-mediated RNP delivery was performed as previously
described13,22. Briefly, 2� 105 protoplasts were mixed with pre-assembled
Cpf1/crRNA (1:6 molar ratio) in 300 ml of MMg (4 mM MES, 0.4 M mannitol
and 15 mM MgCl2) via an equal volume of freshly prepared PEG solution (40%
[w/v] PEG 4000, 0.2 M mannitol and 0.1 M CaCl2). Transfected protoplasts were
incubated at 22 �C for 24 h.

Preparation of recombinant Cpf1 proteins and crRNAs. His-MBP-tagged
Cpf1 proteins (LbCpf1 and AsCpf1) were expressed in Escherichia coli and purified
by using the Ni-NTA affinity purification method9. Briefly, Rosetta cells
harbouring Cpf1 plasmids were cultured at 37 �C until OD600¼ 0.4 and incubated
at 18 �C until OD600¼ 0.6, then induced with 1 mM isopropyl-b-D-thiogalactoside
overnight. The cell were harvested and lysed by sonication in 50 ml of lysis buffer
(50 mM, HEPES pH 7.0, 200 mM NaCl, 5 mM MgCl2, 1 mM dithiothreitol and
20 mM imidazole) supplemented with lysozyme (1 mg ml� 1) and protease
inhibitor (Roche complete, EDTA-free). The cell lysate was cleared by
centrifugation at 13,000 r.p.m. for 30 min, followed by passage through a syringe
filter (0.45 mm). The cleared lysate was applied to a nickel column (Ni-NTA
agarose, Qiagen), washed with 2 M salt and 20 mM imidazole, and eluted with
250 mM imidazole contained buffer (50 mM HEPES pH 7.0, 200 mM NaCl and
5 mM MgCl2). To conjugate Cy3 (PA13131, GE Healthcare) fluorophores to
Cpf1 protein cysteine residues, the Cy3 probe was applied to freshly prepared
Cpf1 protein during the purification process17. Briefly, Ni-NTA-bound Cpf1
proteins were washed with buffer A (50 mM HEPES pH 7.0, 2 M NaCl,
5 mM MgCl2 and 10% glycerol) and gently mixed with Cy3 probe in DMSO
(Fisher Scientific, 1 mg ml� 1) at a final 1:1 weight ratio overnight at 4 �C in the
dark. The Cy3-labelled Cpf1proteins were washed with 10 volume of buffer A and
eluted with 250 mM imidazole-containing buffer. The eluted Cpf1 and Cy3-Cpf1
activity were validated by an in vitro cleavage assay.

Candidate crRNAs were designed by Cas-Designer14, which is available
at the CRISPR-RGEN Tools website (http://rgenome.ibs.re.kr) (Supplementary
Table 1), and synthesized as previously described13. Briefly, crRNA templates
were generated by oligo-extension (Supplementary Table 3) using Phusion
High-Fidelity DNA polymerase (Finnzymes, Thermo Scientific, Waltham,
MA, USA). crRNAs were transcribed in vitro with T7 RNA polymerase
(New England Biolabs, Ipswich, MA, USA) according to the manufacturer’s
protocol. The synthetic crRNAs were purchased (Bioneer, Daejeon, Korea) and
used for Cpf1-RNP delivery with the same ratio of Cpf1/CS-crRNA (1:6 molar
ratio).

In vitro cleavage assays and targeted deep sequencing. Soybean and
N. attenuata genomic DNA was isolated with the DNeasy Plant Mini Kit
(Qiagen) and crRNA target regions were amplified with specific primer sets
(Supplementary Table 3). The Cpf1 protein (1 mg) and crRNA (300 ng) were
pre-mixed at room temperature for 10 min to assemble RNP complexes, which
were then applied to cleave the crRNA target amplicon in a reaction buffer
(100 mM NaCl, 50 mM Tris-HCl, 10 mM MgCl2, 100 mg ml� 1 BSA pH 7.9) at
37 �C for 1 h. RNP-digested amplicons were treated with RNase A (4 mg) at
37 �C for 30 min to degrade crRNAs and purified with a PCR purification kit
(GeneAll, Seoul, Korea).

After Cpf1–RNP delivery, genomic DNA was isolated from transformed
protoplasts. The two target loci were amplified by nested PCR with paralogue-
specific primers and subsequently amplified with individual primary primer sets
for each crRNA (Supplementary Table 3). Predicted off-target loci were also
amplified by specific primer sets (Supplementary Table 3). Multiplexing indices
and specific sequencing adaptors were attached to the primary PCR products with
PCR using the protocol supplied by the sequencing company (Macrogen, Seoul,
South Korea). High-throughput sequencing was performed using Illumina
Miseq (v2, 300 cycle) with the paired-end multiplexed library. Raw reads of
paired-end Miseq sequencing were joined by the programme ‘fastq-join’,
and indel frequency and patterns in joined reads were analysed using the
Cas-Analyzer programme implemented in CRISPR RGEN Tools
(http://rgenome.ibs.re.kr).

Confocal laser scanning microscopy. The Cy3-conjugated protein was observed
with a LSM800 confocal microscope (Carl Zeiss AG, Oberkochen, Germany)
equipped with a � 40 objective lens (C-Apochromat � 40/1.1 W). Cy3 and
DAPI were excited with 561 and 405 nm laser lines, respectively.

Cpf1 plasmid construction and expression assay. The plant-codon-optimized
pAsCpf1 and pLbCpf1, and E. coli-codon-optimized eAsCpf1 and eLbCpf1 were
chemically synthesized (Bioneer, South Korea), and the full sequences of those
genes were confirmed by Sanger sequencing. The p2GW7 destination vector was
used to transiently express Cpf1 proteins in protoplasts. All plasmid sequences
are available in Supplementary Note 1 and accompanied by detailed descriptions.

To assess plasmid-based expression of Cpf1 in plant cells, we applied
Cpf1-harbouring plasmids (20 mg) into soybean protoplasts via PEG-mediated
transformation. The transformed protoplasts were harvested after 24 h incubation
and applied to western blot analysis with anti-HA antibody (sc-7392; Santa Cruz
Biotechnology; 1:200) for detecting Cpf1 and anti-Histone-H3 (tri methyl K4)
antibody (ab8580; Abcam; 1 mg ml� 1) for measuring amounts of loading proteins.

Data availability. The data supporting the conclusion of this study are available
within the article or from the authors upon request.
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