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The performance of quantum heat engines is generally based on the analysis of a single cycle. We
challenge this approach by showing that the total work performed by a quantum engine need not be
proportional to the number of cycles. Furthermore, optimizing the engine over multiple cycles leads to the
identification of scenarios with a quantum enhancement. We demonstrate our findings with a quantum Otto
engine based on a two-level system as the working substance that supplies power to an external oscillator.
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Advances in technology have spurred the fabrication and
study of thermal machines at the nanoscale, whose perfor-
mance is governed by quantum fluctuations. Prominent
examples include quantum heat engines (QHEs) and pumps
[1–4]. Various prototypes have been realized in the labo-
ratory bymeans of cold atoms and trapped ions as a working
substance [5,6]. Theoretical studies of these machines are
largely motivated by foundational questions that address the
interplay between thermodynamics and statistical mechanics
in the quantum world [7,8]. At the same time, exciting
applications are in view. Processes varying from laser
emission [1] to light harvesting in both artificial and natural
systems [9–11] can be described in terms of QHEs.
Nonetheless, the quest for quantum signatures of the

performance of thermal devices remains challenging. It is
understood that a universal behavior emerges in the limit of
small action [12]. Identifying scenarios exhibiting quantum
supremacy, with a performance surpassing that in classical
thermodynamics, stands out as an open problem. To this end,
the use of quantum coherence [13], nonequilibrium reser-
voirs [14,15], and many-particle effects [16,17] has been
proposed.
The performance of quantum thermal machines is

usually assessed via the characterization of a single cycle,
as in classical thermodynamics. This approach assumes that
the average single-cycle efficiency and power carry over to
an arbitrary number of cycles; i.e., work done through n
cycles is expected to be equal to n times the work done
per cycle. Yet, in quantum mechanics, work is determined
via projective energy measurements at the beginning and
end of a prescribed protocol [18,19]. As a result, assessing
the performance of a quantum thermal machine can
severely alter its dynamics due to the quantum

measurement backaction. We argue that the QHE perfor-
mance can be best assessed by measurements on an
external system on which work is done (see, e.g., [20]
for a related discussion). By analyzing the dynamics over
many cycles, we elucidate the role of the intercycle
coherence and find scenarios with quantum-enhanced
performance. In particular, we demonstrate that the average
amount of work through n cycles need not be proportional
to n; rather, it may have an additional oscillatory contri-
bution as a function of n. Our work provides clear evidence
that in the quantum regime the characterization of the QHE
focused on a single cycle is insufficient. We propose that
assessments of the performance should address the global
process over many cycles.
Setup.—We consider a quantum engine E coupled to an

external quantum system S on which the engine does work
(see Fig. 1). The engine also interacts with heat bathsB. The
global Hamiltonian is the sumof that of the engine, the baths,
the coupling between the engine and the baths, the system,
and the coupling between the system and the engine:

FIG. 1. Schematic quantum heat engine. The quantum engine E
does work w on an external system S through the coupling HSE
absorbing heat Q from the baths collectively represented by B,
which consists of hot (B1) and cold (B2) baths.
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HðtÞ ¼ HEðtÞ þHB þHEBðtÞ þHS þHSEðtÞ; ð1Þ

where the external system and the baths are assumed to be
time independent. Under periodic driving over identical
cycles, HEðtþ TÞ ¼ HEðtÞ, HEBðtþ TÞ ¼ HEBðtÞ,
HSEðtþ TÞ ¼ HSEðtÞ, and Hðtþ TÞ ¼ HðtÞ, where T is
the period of one cycle. We further assume that the system-
engine interaction HSEðtÞ ¼ gSEðtÞ ~HSE, where gSEðtÞ is a
time-dependent coupling constant and ~HSE is a time-
independent operator.
The work done by the engine is evaluated by energy

measurements on the external system S. We consider two
definitions of work. In the first one, the work w done during
n cycles is evaluated by two energy measurements at the
beginning and the end of n cycles. In the second one, the
work ~w done over n cycles is evaluated by nþ 1 energy
measurements, one at the beginning at t ¼ 0 and one after
the completion of each cycle.While in the classical case both
definitions agree, this is no longer the case in the quantum
regime, as we demonstrate next. For simplicity, we turn off
the coupling gSEðtÞ at t ¼ 0, T, …, nT; at these times,
½HS;HðtÞ� ¼ 0, and the energy eigenbasis of HS, which is
chosen to be the measurement basis, is shared byHðtÞ. The
external system is initially prepared in an energy eigenstate
denoted by jt ¼ 0iS ¼ j0iS with eigenenergy ES

0, i.e.,
HSj0iS ¼ ES

0j0iS. The subindex 0 here denotes t ¼ 0.
The initial state ρ0 of the total system reads ρ0 ¼ ρEB0 ⊗
j0iSSh0j, where ρEB0 is the initial state of the engine and
bath parts.
Averageofworkovermany cycles.—First,we consider the

average of work hwin done on the system S during n cycles.
Because of the periodicity ofHðtÞ, the time evolutionUnT of
the total system from t ¼ 0 to t ¼ nT can be expressed as the
nth power of the propagator UT ¼ T exp ½−i R T

0 dtHðtÞ�
(T is the time-ordering operator) of a single cycle, i.e.,
UnT ¼ ðUTÞn. Thus, the average of work hwin is

hwin ¼
X
i

ðES
i − ES

0ÞTrEB½ShijðUTÞnρ0ðU†
TÞnjiiS�; ð2Þ

whereTrEB½…� denotes the trace over theHilbert space of the
engine and the baths, jiiS the ith eigenvector of HS, and ES

i
the corresponding eigenvalue which is one of the possible
results of an energy measurement.
To evaluate the second definition of work ~w, we perform

energy measurements on the system S at t ¼ T; 2T;…;
ðn − 1ÞT; nT, where we obtain a result k1; k2;…; kn−1; i,
respectively. Writing k≡ ðk1; k2;…; kn−1Þ and summing
over the intermediate states k, the average of work h ~win is
given by

h ~win ¼
X
i

ðES
i − ES

0Þ
X
k

T k;k
i;0 ð3Þ

with

T k;k0
i;0 ≡ TrEB½MEB

i;kn−1
…MEB

k2;k1
MEB

k1;0
ρEB0

×ðMEB
k0
1
;0Þ†ðMEB

k0
2
;k0

1
Þ†…ðMEB

i;kn−1 0
Þ†�; ð4Þ

where MEB
i;j ≡ ShijUT jjiS is the time evolution operator on

the subspace spanned by the engine and the baths. Writing
hwin in terms of T k;k0

i;0 , we obtain

hwin ¼
X
i

ðES
i − ES

0Þ
X
k;k0

T k;k0
i;0 ; ð5Þ

where the sum over intermediate states runs over k and k0.
By contrast, for h ~win given by Eq. (3), it runs only with
respect to k, as the intermediate measurements diagonalize
the state, suppressing the intercycle quantum coherence in
the system S on which work is done.
Model.—We next demonstrate that the average amount

of work w done over n cycles is not proportional to n in the
quantum regime. We choose a harmonic oscillator (HO)
(with frequency ω) as the external system S: HS ¼ ωa†a
with HSjjiS ¼ ES

j jjiS ¼ jωjjiS. For simplicity, we initial-
ize the external system S in the ground state j ¼ 0 with
ES
0 ¼ 0 at t ¼ 0. Since the HO has an unbounded equi-

distant energy spectrum, energy can be deposited without
an upper bound. We consider that, on the engine side, a
two-level system (TLS) works as the interface with the
external system, and the coupling is

HSEðtÞ ¼ gSEðtÞσxða† þ aÞ: ð6Þ

Here, the Pauli matrix σx ≡ σþ þ σ− with σþ ≡ jeiEEhgj
and σ− ≡ jgiEEhej being the raising and lowering operators
of the TLS, respectively, and jgiE and jeiE are the ground
and excited states of the TLS, respectively.
We first consider an impulse-type coupling of the form

gSEðtÞ ¼ g
X∞
m¼0

δ½t − ðmþ bÞT� ð7Þ

with a small coupling constant g ≪ 1 and 0 < b < 1 that
allows a perturbative approach. For this type of coupling,
MEB

i;j can be separated into the contributions from HEðtÞ þ
HB þHEBðtÞ andHSEðtÞ asMEB

i;j ¼ UEB
T;bT Shije−ig ~HSE jjiS×

UEB
bT;0e

−iω½ð1−bÞiþbj�T with UEB
t;0 ≡T exp½−iR t

0dt
0HEðt0Þþ

HBþHEBðt0Þ�. On the rhs of Eq. (2), contributions to the
order of g2 come from i ¼ 0 and 1. Terms with i ≥ 2

contribute only to Oðg4Þ or higher. In addition, only terms
with i ¼ 1 give nonzero values ofworkw. Thus,we obtain to
leading order

hwin ≃ ωg2
Xn−1

m;m0¼0

eiωðm−m0ÞT

× hσðIÞx ½ðm0 þ bÞT�σðIÞx ½ðmþ bÞT�iρEB
0
; ð8Þ
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where σðIÞx ðtÞ≡UEB
t;0

†σxUEB
t;0 is the operator σx in the

interaction picture and h…iρEB
0
≡ TrEB½…ρEB0 �.

The rhs is determined by two-time correlation functions
of the engine operator σðIÞx at different multiples of the
cycle period T. At equal times m ¼ m0, the correlation
functions become equal to one. We assume that the
working substance of the heat engine undergoes
complete thermalization within each cycle; therefore, the
correlation functions at different times are factorized to be

hσðIÞx ½ðm0 þbÞT�σðIÞx ½ðmþbÞT�iρEB
0
¼hσðIÞx ðbTÞi2ρEB

0
. Finally,

the average of work becomes

hwin ≃ ωg2
�
hσðIÞx ðbTÞi2

ρEB
0

cos ðnωTÞ − 1

cos ðωTÞ − 1

þ
�
1 − hσðIÞx ðbTÞi2

ρEB
0

�
n

�
; ð9Þ

which presents a nontrivial dependence on n: An oscillatory
cosðnωTÞ contribution is superimposed on the expected term
proportional to n. The interplay between these oscillatory
and linear terms in hwin is a signature of quantum engines.
When the HO becomes resonant with the engine cycle, i.e.,
forωT ¼ 2πrwith an integer r, the oscillatory term turns into
a steady increase of the work proportional to n2, because
limx→r½cosð2πnxÞ − 1�=½cosð2πxÞ − 1� ¼ n2. Since this is
due to the continuous injection of the energy from the time-
dependent coupling constant instead of the engine, we will
avoid the resonance point in the later discussion.
Also for h ~win, nonzero contributions of the order of g2

come only from i ¼ 0 and 1. From Eq. (4), one findsP
kT

k;k
1;0 ≃ 1 −

P
kT

k;k
0;0 ≃ ng2, and hence from Eq. (3)

one obtains

h ~win ≃ nωg2; ð10Þ

which is strictly proportional to n. Regarding the higher
moments of w and ~w, hwmin and h ~wmin are given by
≃ωmpnð1Þ with the probability pnð1Þ to obtain the final
state i ¼ 1 after n cycles. Therefore, w=ω and ~w=ω follow a
Poisson distributionwith the parameter λ ¼ pnð1Þ to leading
order with respect to the coupling constant g.
Numerical results for an Otto cycle.—Our conclusions

hold for realistic smooth functions gSEðtÞ with a wide range
of values of the coupling strength g, governing the
interaction between the engine and the system during each
work stroke. For the sake of illustration, we choose gSEðtÞ
with the form

gSEðtÞ ¼
g
δtT

X∞
n¼0

�
tanh

�
α

�
t − t1 −

nT
2

��

− tanh

�
α

�
t − t2 −

nT
2

���
ð11Þ

with a fast switching rate α. This coupling function takes
nonzero values in the interval between t1 and t2 ¼ t1 þ
δtT=2 with 0 < δt < 1 and vanishes approximately in the
remaining part.
We numerically study the performance of a heat engine in

a quantum Otto cycle [21,22] using a TLS as a working
substance; see Fig. 2(a). The dynamics includes the initial-
ization and repetition of the four strokes of the cycle:
(0) Initial state.—With gSEð0Þ ¼ 0, the TLS with
Hamiltonian HEð0Þ ¼ Δσx is prepared in thermal equilib-
riumwith the cold bath at inverse temperature βc, fromwhich
it is decoupled at t ¼ 0. The reduced density operator
for the engine and the external system is ρð0Þ ¼
Z−1
βc
ð0Þ exp ½−βcHEð0Þ� ⊗ j0iSSh0j with the partition func-

tion Zβcð0Þ ¼ TrE exp ½−βcHEð0Þ�, where TrE denotes a
trace over the engine degrees of freedom. The energy
separation of the TLS at the initial time is 2Δ.
(1) Isentropic compression.—From 0 ≤ t < T=2, the engine
remains decoupled from the heat baths and the total
Hamiltonian changes according to H1ðtÞ ¼ HEðtÞ þHS þ
HSEðtÞ with HEðtÞ ¼ Δσx − vtσz, where v is a linear
sweep rate. The state of the engine and system at
the end of the stroke is ρðT−=2Þ ¼ U1ρð0ÞU†

1 with U1 ¼
T exp ½−i R T=2

0 dtH1ðtÞ� (where T− ≡ T − ϵ with an infini-
tesimal positive ϵ). At t ¼ T=2, the TLS energy separation
takes its maximum value of Emax ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ ðvTÞ2=4

p
.

(2) Hot isochore.—At t ¼ T=2, setting gSE ¼ 0, the
TLS thermalizes with the hot bath at inverse temperature
βh in a negligible time [23]. At the end of the stroke,
the reduced density operator is given by ρðT=2Þ¼
Z−1
βh
ðT=2Þexp½−βhHEðT=2Þ�⊗TrEρðT−=2Þ. (3) Isentropic

expansion.—In the intervalT=2 ≤ t < T, the engine remains
decoupled from the baths and evolves unitarily according
to the Hamiltonian H2ðtÞ ¼ HEðtÞ þHS þHSEðtÞ with
HEðtÞ ¼ Δσx þ vðt − TÞσz. At the end of the stroke, the
density matrix reads ρðT−Þ ¼ U2ρðT=2ÞU†

2 with U2 ¼
T exp ½−i R T

T=2 dtH2ðtÞ�. (4) Cold isochore.—At t ¼ T, set-
ting gSE ¼ 0, the TLS is brought into contact with the cold
bath and quickly thermalizes such that the engine returns to
the initial state, ρðTÞ¼Z−1

βc
ð0Þexp½−βcHEð0Þ�⊗TrEρðT−Þ.

This is taken as the initial state for any new cycle, starting
with stroke 1 (i.e., isentropic compression).
First, we consider the impulse-type coupling given by

Eq. (7) and compare the analytical expressions (9) and (10)
with the numerical results in the perturbative regime of
g ≪ 1. Figure 2(b) presents an excellent agreement
between the analytic and the numerical results for both
h ~win and hwin. The effect of the oscillation of hwin is most
important for small cycle number n when the oscillation
amplitude of hwin is comparable to the linear component.
Remarkably, hwin can surpass h ~win for small n (n ≤ 15 and
26 ≤ n ≤ 32 in this example). This enhancement of the
work is a consequence of the intercycle quantum coherence
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of the system. By repeatedly performing the energy
measurements at intervals of an optimum number of cycles
(e.g., around every ten cycles for this case), we obtain linear
scaling with respect to this interval of cycles but with a
much larger slope. On the other hand, if the performance of
the engine is evaluated by the work hwi1 ¼ h ~wi1 extracted
only through a single cycle, the slope of the linear scaling is
overestimated asωg2, while the true asymptotic value of the

slope is ωg2½1 − hσðIÞx ðbTÞi2ρEB
0
�.

Figure 2(c) shows the numerical results for a nonimpulse
square-type coupling gSEðtÞ given by Eq. (11) with a finite
duration δtT=2 with δt ¼ 0.98 from t1 ¼ 0.005T to t2 ¼
0.495T and from t1 ¼ 0.505T to t2 ¼ 0.995T in each cycle
[blue dashed line in Fig. 2(d)]. We observe that the
oscillation of hwin persists in spite of the fact that

hσðIÞx ðtÞiρEB
0

oscillates during the time in which the system
interacts with the engine, i.e., when gSEðtÞ ≠ 0 as shown in
the first half cycle in Fig. 2(d). This confirms that the
oscillatory dependence of hwin on n is not an artifact of the
impulsive coupling but rather a generic feature.
Finally, we pose the question whether the quantum

nature of the engine does play a role. For this purpose,
we replace the engine by a time-periodic classical force:

HðtÞ ¼ ωa†a − fðtÞða† þ aÞ; ð12Þ
where the force fðtÞ ¼ fðtþ TÞ has the period T of the
engine cycle. Starting from the ground state of the HO, one
may determine the full statisticss of work [24]. It turns out

that the details of the time dependence of the forcewithin one
period are irrelevant; only the magnitude of j R T

0 dtfðtÞeiωtj
matters. We set this parameter in such a way that hwi1
performed in a single period is equal to the one delivered by
the engine. In Fig. 3(a), we compare the probability dis-
tribution function (PDF) pðwÞ to obtain the work w for the
classical force and that for the engine. The two distributions
pronouncedly differ from each other. The difference is also
apparent for the average work as a function of the number of
cycles; see the inset in Fig. 3(a). It oscillates periodically and
remains bounded for the classical force in contrast to the one
for the engine with an overall linear increase.
The situation is totally different for ~w. As shown in

Fig. 3(b), its PDFpð ~wÞ for the engine is verywell reproduced
by the classical force. Therefore, with respect to ~w, the effect
of the engine on the external system is trivial, in the sense that
it can be reproduced by a classical driving. Effects of the
quantum engine which cannot be mimicked by a classical
force can be observed in w, while they are absent in ~w.
Our work demonstrates that the characterization of a

quantum thermal machine based on its performance for a
single cycle does not carry over multiple cycles, as it
neglects the quantum coherence of the external system on
which work is done. In particular, the work done over many
cycles need not be directly proportional to the value
measured over a single cycle and can exhibit an oscillatory
behavior with respect to the number of cycles. By perform-
ing stroboscopic energy measurements at intervals of an

(a)
(b)

(c) (d)

FIG. 2. Quantum performance of a heat engine. (a) Schematic setup of a TLS engine (Ead being the adiabatic energy levels) running
with a hot (B1) and cold (B2) bath and coupled to a HO system HS via HSE. Average work hwin and h ~win as functions of the number of
cycles n for the perturbative (g ¼ 0.02) and impulse-type coupling [(b)] and for the nonperturbative (g ¼ 0.5, αT ¼ 2142) and continuous
coupling [(c)]. Lines in (b) and (c) are from numerical calculations, and dots in (b) are from the analytical expressions (9) and (10).

(d) gSEðtÞ (cyan dashed line) and hσðIÞx ðtÞiρEB
0
(red solid line) for the first cycle in the case of (c). The marked difference in the dynamics of

σxðtÞ in the two strokes of the engine comes from the interaction of the enginewith the cold bath at t ¼ 0 and the hot one at t ¼ T=2 leading
to an almost pure state at t ¼ 0 and an almost mixed state at t ¼ T=2 for the present choice of parameters. We set b ¼ 0.1=Δ in (b) and
δt ¼ 0.98 in (c) and (d). Other parameters are ωT ¼ 0.05 × 2π, v ¼ 0.5Δ2, T ¼ 20=Δ, βh ¼ 1=4Emax, and βc ¼ 1=Δ.
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optimum number of cycles, work can be extracted at a
quantum-enhanced rate. In addition, while the full statistics
of work measured over a single cycle can be reproduced
by a classical external force, this is no longer the case when
the performance of a quantum engine is assessed over
multiple cycles. Our results should find broad applications
in the design of energy-efficient thermal machines at the
nanoscale.
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FIG. 3. Quantum work statistics. Comparison of the probability
distribution functions p’s of work (a) w and (b) ~w obtained in our
numerical calculations for the quantum engine shown in Fig. 2(c)
and those for a classical force f in Eq. (12). Here, p’s after 20
cycles are shown. The inset in (a) compares hwin performed by a
quantum engine and by a classical force.
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