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Superconductivity below 20 K in heavily
electron-doped surface layer of FeSe bulk crystal
J.J. Seo1,2, B.Y. Kim3,4, B.S. Kim2,5, J.K. Jeong1, J.M. Ok3, Jun Sung Kim3, J.D. Denlinger4, S.-K. Mo4, C. Kim2,5

& Y.K. Kim2,4,5

A superconducting transition temperature (Tc) as high as 100 K was recently discovered in

one monolayer FeSe grown on SrTiO3. The discovery ignited efforts to identify the mechanism

for the markedly enhanced Tc from its bulk value of 8 K. There are two main views about the

origin of the Tc enhancement: interfacial effects and/or excess electrons with strong electron

correlation. Here, we report the observation of superconductivity below 20 K in surface

electron-doped bulk FeSe. The doped surface layer possesses all the key spectroscopic

aspects of the monolayer FeSe on SrTiO3. Without interfacial effects, the surface layer state

has a moderate Tc of 20 K with a smaller gap opening of 4.2 meV. Our results show that

excess electrons with strong correlation cannot induce the maximum Tc, which in turn reveals

the need for interfacial effects to achieve the highest Tc in one monolayer FeSe on SrTiO3.

DOI: 10.1038/ncomms11116 OPEN

1 Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749, Korea. 2 Center for Correlated Electron Systems, Institute for Basic Science,
Seoul 151-742, South Korea. 3 Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Korea. 4 Advanced Light Source,
Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. 5 Department of Physics and Astronomy, Seoul National University, Seoul 151-747,
Korea. Correspondence and requests for materials should be addressed to C.K. (email: changyoung@snu.ac.kr) or to Y.K.K. (email: YKim@lbl.gov).

NATURE COMMUNICATIONS | 7:11116 | DOI: 10.1038/ncomms11116 | www.nature.com/naturecommunications 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IBS Publications Repository

https://core.ac.uk/display/286772029?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:changyoung@snu.ac.kr
mailto:YKim@lbl.gov
http://www.nature.com/naturecommunications


A
strikingly enhanced superconducting transition

temperature (Tc), far above the previous record of Tc

in bulk iron-based superconductors, was discovered in a
relatively simple system of one monolayer (1 ML) FeSe on
SrTiO3 (STO)1–6. The observation quickly initiated extensive
and intensive studies to unveil the key mechanism for the
enhancement. The mechanism, if found, should be important in
its own right, but may also provide key information on the
superconducting mechanism in iron-based superconductors.

Two views are mainly considered on the issue at present. In the
first view, the origin of the enhancement comes from the
FeSe layer. Angle-resolved photoemission spectroscopy (ARPES)
studies have shown that 1 ML FeSe on STO is heavily
electron-doped with electrons provided by the substrate and, as
a result, has only electron pockets7,8. The observed electron bands
are also found to have insulator–superconductor crossover with
an enhanced electron correlation strength that is possibly due to
confinement of electrons in two-dimensional (2D) state or strain
from the substrate9,10. It was then proposed that 1 ML FeSe/STO
shares the same superconducting mechanism with ordinary
iron-based superconductors that are considered to be strongly
correlated electron systems as cuprates11–13.

In the other view, the origin comes from outside of the FeSe
layer. That is, a strong interfacial effect is an essential ingredient
of the large Tc enhancement8,14–17. This view is based on the fact
that the enhanced Tc is observed only near the interface8,17.
As for what exactly the interface effect is, two possibilities
have been raised so far. The first one is an additional pairing
channel provided by the STO phonons15. The observation of a
replica band, believed to be a fingerprint of strong coupling
between an electron in the FeSe layer and an optical phonon
mode of the underlying STO, suggests a significant role of
such additional pairing channel15. The other possibility comes
from the stabilization of an ordered state by the interface that
should provide strong spin fluctuation when it is broken by
electron doping. This view is based on an earlier experimental
observation that the phase transition temperature increases with
less number of layers8.

So far, there is no experimental result that can clearly reveal the
dominant mechanism. A simple way to address the issue would
be to fabricate a free standing 1 ML FeSe with excess electrons.
It can clearly tell us if the interface effect is needed to achieve
the enhanced superconductivity, but is practically impossible to
achieve. Instead, our idea is to closely mimic the situation by
inducing a monolayer-like FeSe state on a FeSe bulk crystal via
surface electron doping that can be done by alkali metal
evaporation18,19. In the electronic structure point of view,
the induced state is found to possess all the key characteristic
aspects of 1 ML FeSe/STO: heavy electron doping, reduced
dimensionality (2D) and enhanced electron correlation strength.
It is thus almost identical to 1 ML FeSe/STO, with the only
difference being the lack of the interface effect. Therefore, the
resulting Tc in the induced state should tell us what the main
ingredients for the enhanced Tc in 1 ML FeSe/STO are. We now
demonstrate that the induced state on bulk FeSe indeed satisfies
these three characteristics of 1 ML FeSe.

Results
Electronic structures and surface electron doping. We first
show that the doping level achieved via surface electron doping
can reach that of the 1 ML FeSe/STO. Figure 1c,d shows the band
dispersions along the G–M high-symmetry line of pristine and
surface-doped samples measured at 30 K. The electron band in
surface-doped sample has a downward shift with a larger Fermi
surface (Fig. 1a,b). The observed shift, judging from the electron

band bottom location at 65 meV, is similar to the value for 1 ML
FeSe/STO4. The doping level estimated from the Fermi surface
volume is 0.1 electrons per Fe, a value similar to that of 1 ML
FeSe/STO with the Tc of 55–65 K (0.1–0.12 electrons per Fe)4,7.
As for the hole band, it first looks as if there is not much
change in the dispersion upon surface doping. However, a close
inspection of the data taken with various geometries shows a
downward shift of the hole band (Fig. 1g,h). In addition, a tiny
and faint electron band at the M-point still remains with the size
very close to that of the pristine sample. The observation of both
surface and bulk states can be understood to be from different
length scales of the charge doping and probing depth. That is, the
probing depth of ARPES is larger than the charge doping depth
and, as a consequence, signals from both the doped surface and
underlying bulk states are seen. From now on, we denote the bulk
state as FeSeBS and doping induced surface state as FeSeSS.

A notable aspect of the band dispersion in FeSeSS is that it does
not have the split bands near the M-point that are believed to be a
manifestation of the ferro-orbital ordering20–22. This suggests
that ferro-orbital ordering is suppressed through the surface
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Figure 1 | Electronic structures of pristine and surface electron-doped

FeSe. (a) Fermi surface mapping of pristine and (b) surface-doped FeSe,

measured at 30 K. (c) Band dispersions along the G-M high-symmetry line

of pristine and (d) surface-doped FeSe, and (e,f) second derivatives of c and

d. White and yellow dashed lines indicate the band dispersions of pristine

and surface-doped FeSe, respectively. (g) Band dispersion around the

G-point in a different geometry for pristine and (h) surface-doped FeSe. (i,j)

Second derivatives of g and h. Schematics for the band dispersions of the

(k) bulk state (FeSeBS) and (l) doping induced surface state (FeSeSS).
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electron doping. With both the hole and electron bands simply
shifted to the higher-binding energy side and the ferro-orbital
ordering suppressed, the overall band dispersion of FeSeSS fully
replicates that of the 1 ML FeSe/STO. The full band assignments
are made with the second derivative data in Fig. 1d,f,i,j, and the
results are summarized in Fig. 1k,l for FeSeBS and FeSeSS,
respectively.

Reduced dimensionality and enhanced correlation. We next
show that the doping induced state on the surface is almost 2D. If
the state is 2D, there is no out-of-plane momentum (kz)
dependence (or photon energy dependence in the experiment) in
the band structure. Figure 2a,c shows Fermi surface maps
of pristine and surface-doped sample in the kz–kx plane. The
out-of-plane dispersion data for FeSeBS was taken at 120 K to
avoid complications from the ordered phase, while FeSeSS data
was taken at a lower temperature of 30 K. Figure 2b,d shows
stacked momentum distribution curves near the M-point. FeSeBS

has a weak but clear three-dimensional electronic structure
modulation in both hole and electron Fermi surfaces. On
the other hand, the FeSeSS case given in Fig. 2c,d shows no
modulation along the kz direction. This implies that the state is
confined within a 2D layer or, at least, it has negligibly weak
inter-layer interaction. We conclude the former is the case, as will
be discussed later. In fact, we believe that only the very first layer
of FeSe is doped.

Another characteristic feature of the 2D confinement is the
strengthening of the electron correlation10,23–27. A way to
examine the electron correlation strength is to check the
effective mass. The effective mass can be obtained from a
parabolic fit of the experimental band dispersion in Fig. 3a,b. As
shown in Fig. 3c, the effective mass of FeSeSS state is m*/me¼ 2.7
(me is the free electron mass), larger than that of FeSeBS

(m*/me¼ 1.1 and 2.1 at kz¼ 0 and p, respectively). It clearly
indicates a stronger electron correlation in FeSeSS. We also note
that the evolution of the effective mass upon surface electron
doping in Fig. 3d–f shows a gradual increase without any abrupt

change. It strongly suggests that no phase transition is involved in
the observed change in the effective mass.

Confinement of doped electrons within the first layer. As
mentioned above, we believe the doping is confined only within
the very first layer, possibly due to the weak van der Waals
coupling between FeSe layers. The first evidence is its large
effective mass and absence of the kz dispersion. It was
recently reported that the band width of the electron pocket at the
M-point of 1 ML FeSe/STO is insensitive to the lattice constant of
the substrate28. This implies that the effective mass of the
electron pocket is hardly affected by strain and is thus almost
solely determined by the dimensionality of the system. Therefore,
the effective mass almost the same as that of 1 ML FeSe/STO tells
us that FeSeSS is likely confined within a layer as is the case
for 1 ML FeSe/STO. Another evidence for a single-layer doping
is that no multilayer band splitting is observed. The sharp and
clear band features in the spectra in Fig. 1d also supports our
view. If electron permeates into several layers with a potential
gradient, then the band should be broad since we will then
measure the sum of bands with different dopings. With all these
evidences, we conclude that the doped electrons reside almost
within the first layer of FeSe. FeSeSS thus can be regarded as 1 ML
FeSe on bulk FeSe without interface effects such as strain
(illustrated in Fig. 4a,b).

Superconducting gap. As we have demonstrated that the induced
state is almost identical to 1 ML FeSe/STO in the electronic
structure point of view, the next step is to check how the Tc
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changes in the induced state. Figure 4 shows the result of
superconducting gap measurements. Leading edge shift upon
cooling is captured in the raw energy distribution curves (EDCs)
from the Fermi momentum of the electron band (Fig. 4c).
Symmetrized EDCs given in Fig. 4d show a gap feature at the
lowest temperature with a size of 4.2 meV(± 0.6), obtained by
fitting the data with a Dynes function29. Temperature dependence
of the gap size in Fig. 4e roughly traces the mean field order
parameter dependence with a Tc of 20 K, which results in 2D/kBTc

of about 5, where kB is the Boltzmann constant. This is somewhat
smaller than but not too different from 6–7 for 1 ML FeSe/STO7.

Discussion
Summarizing the experimental results, judging from observation
of the 2D dispersion of the surface bands and absence of
multilayer band splitting, we find only the very top surface layer
of FeSe is doped upon Na evaporation. The doping level
(0.1 electrons per Fe) and effective mass (2.7 me) are identical
or very similar to those of 1 ML FeSe/STO. As a result, FeSeSS has
heavy electron doping, 2D confined state within a layer and
strong correlation, that is, all the key characteristics of 1 ML
FeSe/STO in the electronic structure.

The increase in the effective mass in FeSeSS, about twice larger
than that in FeSeBS, is from the 2D confinement of the doped
electrons. A higher effective mass means more states available for
the superconductivity near the Fermi energy. It should be pointed
out that, while the increase in the effective mass is expected from
reduced dimensionality in general (due to reduction in hopping
channels), it should be mostly from enhanced electron correlation
because FeSeBS is already almost 2D as seen in Fig. 2a. We note
that there are reports suggesting that enhanced correlation may
enhance the Tc

9,10. These results suggest that increased effective
mass and strong electron correlation resulting from electron
doping can enhance Tc.

On the other hand, gap analysis of our data shows that FeSeSS

has a Tc of B20 K, a value much lower than that of 1 ML
FeSe/STO. It was very recently reported that surface-doped 30 ML
FeSe film with K evaporation has a Tc of B40 K (ref. 30). We
believe that only the top layer of their thin film was also doped,
considering our findings. In addition, Li0.84Fe0.16OHFe0.98Se was
reported to have 2D electronic structure with a Tc of 41 K because
of the enlarged spacing between FeSe layers from (LiFe)OH

intercalation31. Even though it is still to be understood why the Tc

of our surface-doped bulk FeSe is lower than other systems, all
the results including ours point to the notion that electron doping
with strong correlation can increase the Tc only to a limited value
of B40 K.

The lower Tc found in FeSeSS should be attributed to its
difference from 1 ML FeSe/STO. A clear distinction of FeSeSS

from 1 ML FeSe/STO is the absence of the interface effects.
It therefore suggests that the highest Tc observed in 1 ML
FeSe/STO requires interface effect in addition to the heavy
electron doping and strong correlation. The exact role of interface
effect is not clear yet. As mentioned earlier, the interface effect
could be a direct contribution from interface phonons such as
STO optical phonons15, or an indirect one through strengthening
of the ferro-orbital ordering in undoped and subsequent
enhancement of the associated fluctuation upon doping8.
Even though it is yet to be seen which of the two is responsible
and further studies are needed to resolve the issue, it is clear that
the interface effects are needed to achieve the high Tc in 1 ML
FeSe/STO.

Methods
ARPES measurement. ARPES measurements were performed at the Beamline
(BL)10.0.1 and 4.0.3 of the Advanced Light Source. Surface electron doping was
done by Na evaporation on the sample surface using commercial SAES alkali metal
dispensers. Spectra were taken with Scienta R4000 (BL 10.0.1) and R8000 (BL 4.0.3)
electron analysers with overall energy resolutions of 10 meV (BL 10.0.1) and
13 meV (BL 4.0.3), respectively. Photon energy-dependent measurements were
performed with photon energies from 50 to 90 eV. The samples were cleaved and
doped at 30 K in an ultrahigh vacuum better than 4� 10� 11 torr. All
measurements were performed within 1 h per sample because of the short surface
life time after Na evaporation.

Data analysis. The Fermi surface volume of the electron pocket was estimated by
assuming two elliptical Fermi surfaces perpendicular to each other with kF:
a¼ 0.46 Å� 1 and b¼ 0.38 Å� 1 extracted from high-symmetry line band disper-
sions. The symmetrized spectra in Fig. 4d were obtained by folding the spectra with
respect to EF after dividing them by the corresponding Fermi-Dirac distribution
function. For superconducting gap analysis, Dynes function given in ref. 29 was
used. Temperature dependence of the gap was fitted with the Bardeen, Cooper and
Schrieffer functional form in the weak-coupling limit as given by Eg(T)¼Eg(0)

tanh (p2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Tc
T � 1

q
) (refs 32,33).
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