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We investigated the electronic structures of strongly correlated metallic LaNiO3 (LNO) and

semiconducting Nb-doped SrTiO3 (Nb:STO) heterostructures by varying the LNO film thickness

using in situ photoemission spectroscopy. We found that, contrary to other interfaces with SrTiO3

and LaAlO3, insulating LNO layers are formed between metallic LNO layers and Nb:STO. Such

behavior seems to be related with an electron transfer from Nb:STO to LNO due to Schottky-

barrier formation at the interface. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4916225]

Semiconductor heterostructures play key roles in mod-

ern electronic devices.1 In particular, Schottky barrier (SB)

formation at a metal-semiconductor (MS) interface induces a

rectifying I-V characteristic, so it has been utilized for vari-

ous devices including diode applications.2 However, conven-

tional MS technology has almost reached its limit,

prompting extensive research in an effort to overcome per-

formance limitations.3 A transition-metal-oxide (TMO) het-

erostructure is a potential solution because of its unique

physical properties that provide enhanced functionality in

electronic or spintronic devices.4–7 For example, a SB at the

interface between a conventional metal and a correlated

TMO semiconductor has been used for memristive devices.6

Additionally, heterostructures consisting of TMOs have

recently been utilized for spintronic devices.7

SrTiO3 (STO) is one of the most important and widely

used materials for functional TMO electronics. Bulk STO is

an uncorrelated nonmagnetic wide-bandgap semiconductor.8

However, STO-based heterostructures exhibit many intriguing

properties including memristive behavior,9 two-dimensional

(2D) electron gas,10 magnetism,11 and 2D superconductivity.12

Similarly, bulk LaNiO3 (LNO) is a paramagnetic metal,13 but

numerous interesting phenomena, such as a charge/spin order-

ing14–16 and potential high-Tc superconductivity,17,18 have

been investigated in heterostructures. Thus, a heterostructure,

composed of strongly correlated metallic LNO and semicon-

ducting STO, can provide another interesting phenomena.

In this work, using in situ photoemission spectroscopy,

we investigated the electronic structures of LNO and Nb-

doped STO (Nb:STO) heterostructures by varying the LNO

film thickness. We found that insulating LNO layers with a

finite band gap are formed between metallic LNO and semi-

conducting Nb:STO, contrary to other LNO/STO and LNO/

LaAlO3(LAO)/Nb:STO heterostructures. Though the mecha-

nism of the insulating-layer formation is not clear at present,

the possible origin would be the SB formation at the

interface by an electron-transfer from Nb:STO to LNO. This

result demonstrates that strongly correlated TMOs can show

anomalous behavior different from that of the conventional

MS heterostructure.

Ultrathin LNO films were grown on semiconducting

Nb-0.5-wt. %-doped STO(001) substrates by pulsed laser

deposition (PLD). Before PLD, atomically flat Nb:STO sub-

strates were prepared by using buffered-hydrofluoric acid

etching and heating processes. Then, we varied LNO film

thickness from 10 to 2 unit cells (UC). We used a KrF exci-

mer laser (k¼ 248 nm) with a repetition rate of 2 Hz to ablate

sintered stoichiometric targets. The laser energy density was

1.0–1.5 J/cm2 at the target position. Note that, to control for

quality variation among films, we deposited all the films on

the same substrate at once by choosing the deposited area

selectively using a mechanical shutter.19

We monitored film quality during the growth using

reflection high energy electron diffraction (RHEED). The

RHEED patterns show that the LNO films have the same

1� 1 surface structure with that of Nb:STO(001). This result

indicates that the surface reconstruction in the LNO films is

negligible up to 10 UC. After deposition, films were trans-

ferred in vacuo to the analysis chamber with a base pressure

of 5� 10�11 Torr. The in situ photoemission spectroscopy

measurements were performed at an end-station equipped

with PLD at the Beamline 7.0.1 of the Advanced Light

Source. The measurement temperature was kept at 90 K, and

the total energy resolution is about 30 meV at h�¼ 150 eV.

Figure 1 shows the angle-integrated valence-band spec-

tra of LNO/Nb:STO heterostructures measured at

h�¼ 200 eV, varying the LNO film thickness from 10 to 2

UC. In the 10-UC LNO film, the two sharp peaks at around

�0.8 eV and near the Fermi level (EF) correspond to the t2g

and the eg bands, respectively.20 The broad O 2p bands,

including non-bonding and bonding states, are located at

around 2–7 eV.20 As the film thickness decreases, the t2g

bands gradually move away from EF and the quasiparticle

peak from the eg bands is strongly suppressed. Below 3 UC,a)Electronic mail: hdkim6612@snu.ac.kr
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the quasiparticle peak is completely removed, a finite insu-

lating gap being opened. This result suggests that an unex-

pected insulating phase appears at the interface between

correlated metal LNO and highly conducting semiconductor

Nb:STO.

To more deeply understand the insulating layer forma-

tion in LNO/Nb:STO heterostructures, we carried out angle-

resolved photoemission spectroscopy (ARPES), which are

presented in Figs. 2(a)–2(c) for 10, 6, and 2 UC, respectively.

The ARPES spectra of the 10-UC LNO film along the CXM
and the ZRA lines consist of the nearly flat t2g bands at

�0.8 eV and the dispersive eg bands near EF. This electronic

structure is consistent with theoretical calculation of bulk

LNO under tensile strain.21

As the film thickness decreases from 10 to 6 UC, the

electronic-structure change is nearly the same with that of

LNO films grown on an insulating 15-UC LAO film using a

Nb:STO substrate, but increasing the film thickness by 3

UC.22 Namely, the dimensional crossover from three- to 2D

electronic structures takes place between 7 and 6 UC in LNO/

Nb:STO, but between 4 and 3 UC in LNO/LAO/Nb:STO. In

Figs. 2(a) and 2(b), we presented only the ARPES spectra of

the 10- and the 6-UC LNO films, because ARPES spectra

before/after the dimensional crossover are qualitatively the

same. After the dimensional crossover, the quasiparticle peaks

in the eg bands are significantly suppressed as seen vaguely in

Fig. 2(b) (denoted by red dashed lines).

Finally, below 3 UC, we can observe a clear insulating

band structure as shown in Fig. 2(c) for 2 UC. ARPES spec-

tra for 3 UC are not presented, because they are nearly the

same as for 2 UC except for peak-position shifts shown in

Fig. 1. To see more clearly the band structure, we depicted

the second derivative of ARPES spectra with respect to

energy in Fig. 2(d). The topmost band with little dispersion

originates from the t2g bands and the dispersive band below

�2 eV from the O 2p bands, which guarantees good single

crystallinity of our films down to 2 UC. We can see that the

eg bands are completely removed from the near-EF region to

make an insulating gap. This insulating layer seems to play

the same role as LAO in LNO/LAO/Nb:STO, because the

ARPES spectra in LNO/Nb:STO above 4 UC change just

like those in LNO/LAO/Nb:STO above 1 UC. Thus, we

believe that a 3-UC insulating LNO film exists between me-

tallic LNO and Nb:STO.

For the insulating-layer formation in the LNO/Nb:STO

heterostructure, we can think of several possibilities: (1)

Enhanced electron-electron correlations due to reduced

dimensionality, (2) charge disproportionation as in other

rare-earth nickelates,13,23 and (3) nanometer-sized NiO pre-

cipitation.24 The first possibility is easily ruled out, because

as mentioned above, our previous study on LNO/LAO/

Nb:STO shows that the reduced dimensionality is not enough

to make a finite gap. Even when the film thickness is reduced

down to 1 UC, the eg bands still persist to form a Fermi sur-

face and there is still a finite spectral weight at EF.22

Second, if there is a rocksalt-type charge order as in other

nickelates,13,23 we can expect a band folding corresponding to

FIG. 1. Valence-band spectra of LNO/Nb:STO heterostructures with the

film thickness from 10 to 2 UC obtained at h�¼ 200 eV. For comparison,

the valence-band spectra of Nb:STO are depicted by red dashed line.

FIG. 2. Electronic band dispersions along the CXM and the ZRA lines for (a)

10-, (b) 6-, and (c) 2-UC LNO films on Nb:STO. (d) Second derivative of

(c) with respect to energy. Vague quasiparticle bands are denoted by red

dashed lines in (b).

121601-2 Yoo et al. Appl. Phys. Lett. 106, 121601 (2015)
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a charge-order wave vector q¼ (1/2,1/2,1/2). However, we

could not find any hint of the band folding or Brillouin-zone

reduction in the whole ARPES data. Under this situation, even

if there is any charge order, the energy gap would be negligi-

bly small.

Third, Detemple et al. reported that nanometer-sized

NiO precipitates can be formed at the interface between po-

lar LNO and nonpolar STO.24 Since the NiO precipitates are

Mott insulators, their presence at the interface can affect

spectroscopic and transport properties. To resolve this issue,

we compare the band structure of a 4-UC LNO film on STO

with that on Nb:STO in Figs. 3(a) and 3(b), which shows

they are totally different. Furthermore, the band structure of

LNO/STO is quite similar to that of 4-UC LNO/LAO/

Nb:STO shown in Fig. 3(c). This result strongly suggests

that Nb doping in STO should be more crucial for the

insulating-layer formation at the interface.

Then, let us consider the role of Nb doping at the LNO/

Nb:STO interface. Since Nb:STO is a n-type semiconductor,9

we can expect SB formation at the interface with metallic

LNO as shown in Fig. 4(a). The work function W of LNO is

about 4.5 eV (Ref. 25) and the electron affinity EA of n-type

semiconducting Nb:STO is about 3.9 eV,26 thus the SB height

is expected to be about 0.6 eV. Then, an electron transfer from

Nb:STO to LNO takes place to make insulating LNO layers

up to 3 UC as schematically shown in Fig. 4(b).

To confirm the SB formation, we measured the Sr 3d
and Ti 2p core-level photoemission spectra of LNO/Nb:STO

at h�¼ 200 and 750 eV, respectively, which are presented in

Fig. 5. We also depicted Sr 3d and Ti 2p core-level spectra

of Nb:STO using bulk-sensitive Al Ka. We can see gradual

spectral changes that spectral weight at lower binding energy

develops as the film thickness increases. The final peak shift

is about 0.63 eV in Sr 2p, which is similar to the estimated

SB height of LNO/Nb:STO and well-explained by the simple

Schottky-Mott rule.26 However, Ti 2p spectra shows a final

shift of about 1.15 eV. This difference might be ascribed to

the potential difference due to the polar layers of positive

LaO and negative NiO2 on top of the TiO2 layer, which will

reduce the binding energy of Ti 2p more than that of Sr 3d in

addition to the shift by the SB formation.27

In the metallic LNO side, extra conduction electrons are

doped within a screening length, called as “electrostatic dop-

ing.”28–30 In conventional MS contact, the effect of the extra

electron doping in the metallic region is negligible since the

metal is considered as an electron reservoir. However, in a

strongly correlated electron system, the electronic phases are

very sensitive to the carrier doping even in a metallic

phase.28,29 Furthermore, a recent work30 demonstrates that

although the amount of the transferred electrons drops rap-

idly away from the interface, the modulation of the carrier

concentration near the interface can be significant. For exam-

ple, in a NdNiO3 film on a La-doped STO substrate, the

interfacial carrier concentration can be modulated larger

than 20%.30 Following this simple model, we estimated the

FIG. 3. (a)–(c) ARPES spectra along

the CXM line of three 4-UC-thick

LNO layers on Nb:STO, STO, and

LAO/Nb:STO, respectively.

FIG. 4. Schematic diagrams of band alignment (a) for the SB formation and

(b) for the formation of insulating LNO layers at the interface of LNO/

Nb:STO.

FIG. 5. (a) Sr 3d and (b) Ti 2p core-level photoemission spectra of LNO/

Nb:STO heterostructures. Each spectrum was normalized at (a) 133 eV and

(b) 456.75 eV.
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modulation of the interfacial carrier concentration in our

LNO film. The Thomas-Fermi screening length and the

dielectric constant for LNO are about 0.6 nm and 30e0,

respectively, which results in that the carrier modulation in a

LNO film with 3 UC or less would be 5%–10%.

The ground-state electronic configuration of rare-earth

nickelate is t2g
6 eg

1 , and their metal-insulator transition (MIT)

along the rare-earth series is ascribed to the variation of

bandwidth or correlated covalency.31 Usually, electron or

hole doping drives a Mott insulator to become an exotic

metal.32 Thus, it is rather puzzling that a metallic LNO film

with an integer-filling configuration can become an insulator

by electron doping. Interestingly, metallic LNO becomes

insulating as the oxygen-vacancy concentration increases.33

Metallic SrFeO3 also shows similar behavior when electrons

are doped.34 However, their energy gaps are much smaller

than our results and have been attributed to enhanced charge

disproportionation, which was discarded in the previous dis-

cussion on our insulating LNO layers. Thus, more elaborate

studies are required.

Although the mechanism for the insulating-layer forma-

tion in LNO/Nb:STO is not clear at present, we suggest that

it can provide an interesting functionality for a device, called

as “Mottronics” that utilizes electronic-property changes

between conducting and Mott insulating phases.35 Our

experiment demonstrates that the electronic phase of a ultra-

thin LNO film could be very sensitive to the carrier concen-

tration. By designing a field effect transistor (FET) structure

with an ultrathin LNO film as a conducting channel, we can

achieve an electric-field-driven MIT. Additionally, we will

be able to improve the device performance using ferroelec-

tric materials as a gate insulator in the FET structure.28 We

also expect that an ultrathin LNO film would have a mag-

netic ordering accompanied with a MIT,14,16 thus being

applicable for spintronic devices.

In summary, we directly observed insulating-layer for-

mation at the interface of LNO/Nb:STO by visualizing the

electronic structure of ultrathin LNO films, combining in situ
ARPES system with the state-of-the-art layer fabrication

methods. We suggest that SB formation should be responsi-

ble for the insulating LNO layer at the interface.
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