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SUMMARY

Synaptic adhesion molecules regulate diverse as-
pects of synapse development and plasticity.
SALM3 is a PSD-95-interacting synaptic adhesion
molecule known to induce presynaptic differentia-
tion in contacting axons, but little is known about
its presynaptic receptors and in vivo functions.
Here, we identify an interaction between SALM3
and LAR family receptor protein tyrosine phospha-
tases (LAR-RPTPs) that requires the mini-exon B
splice insert in LAR-RPTPs. In addition, SALM3-
dependent presynaptic differentiation requires all
three types of LAR-RPTPs. SALM3 mutant
(Salm3�/�) mice displaymarkedly reduced excitatory
synapse number but normal synaptic plasticity in the
hippocampal CA1 region. Salm3�/� mice exhibit hy-
poactivity in both novel and familiar environments
but perform normally in learning and memory tests
administered. These results suggest that SALM3
regulates excitatory synapse development and loco-
motion behavior.

INTRODUCTION

Synaptic adhesion molecules regulate aspects of synapse for-

mation, maturation, and plasticity. Recent studies have identified

a large number of synaptogenic adhesion molecules, including

neuroligins and neurexins (Biederer and Stagi, 2008; Dalva

et al., 2007; de Wit and Ghosh, 2014; deWit et al., 2011; Krueger

et al., 2012; Missler et al., 2012; Shen and Scheiffele, 2010; Sid-

diqui and Craig, 2011; Song and Kim, 2013; Südhof, 2008; Taka-

hashi and Craig, 2013; Um and Ko, 2013; Valnegri et al., 2012;

Yamagata et al., 2003; Yuzaki, 2011). These molecules regulate
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synapse development in different spatiotemporal contexts.

Although our understanding of these functions is rapidly

increasing, many important questions still remain to be ad-

dressed. For instance, the types of trans-synaptic adhesions

and the mechanisms underlying their functions are incompletely

understood. Moreover, the available evidence is insufficient to

establish the relative importance of currently identified trans-

synaptic adhesion types and mechanisms in vivo.

SALM (also known as Lrfn) encompasses a family of leucine-

rich repeat (LRR)-containing synaptic cell adhesion molecules

(Ko et al., 2006; Morimura et al., 2006; Nam et al., 2011; Wang

et al., 2006). There are five known members in the family:

SALM1/Lrfn2, SALM2/Lrfn1, SALM3/Lrfn4, SALM4/Lrfn3, and

SALM5/Lrfn5. SALMs share a similar domain structure consist-

ing of six LRRs flanked by NTLRR and CTLRR domains, an

immunoglobulin (Ig) domain, a fibronectin III (FNIII) domain, a

transmembrane domain, and a C-terminal PDZ-binding motif;

the latter is present in SALMs 1–3, but not in SALMs 4 and 5.

However, with the exception of C-terminal PDZ-binding motifs

in SALMs 1–3, the cytoplasmic regions of SALMs differ in length

and amino acid (aa) sequence, suggesting that SALMsmay have

distinct functions.

Indeed, a wealth of data supports this presumption. For

instance, SALMs 3 and 5, but not other SALMs, induce

presynaptic differentiation in contacting axons (Mah et al.,

2010). In addition, SALM1 interacts with and clusters NMDA

(N-methyl-D-aspartate) receptors (NMDARs), but not AMPA

(a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) re-

ceptors (AMPARs) (Wang et al., 2006). In contrast, SALM2 asso-

ciates with both NMDARs and AMPARs (Ko et al., 2006).

Moreover, SALMs 1–3 form heteromeric complexes with each

other, whereas SALMs 4 and 5 do not (Seabold et al., 2008),

but SALMs 4 and 5, unlike SALMs 1–3, can form trans-cellular

and homomeric complexes (Seabold et al., 2008). To date, how-

ever, none of the SALMs has been characterized in knockout

mice; thus, in vivo data supporting this functional diversity are
thors

mailto:kime@kaist.ac.kr
http://dx.doi.org/10.1016/j.celrep.2015.08.002
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2015.08.002&domain=pdf


lacking. In addition, the presynaptic ligands that mediate

SALM3/5-dependent presynaptic differentiation have not been

identified.

The leukocyte common antigen-related (LAR) subfamily of re-

ceptor protein tyrosine phosphatases (LAR-RPTPs), consisting

of the three members, LAR (PTPRF), PTPs (PTPRS), and PTPd

(PTPRD), has been implicated in the organization of synapse

development (Takahashi and Craig, 2013; Um and Ko, 2013).

Early studies on LAR-RPTP homologs in Drosophila and

C. elegans have implicated LAR in the regulation of axon guid-

ance and presynaptic development (Ackley et al., 2005; Johnson

and Van Vactor, 2003; Stryker and Johnson, 2007). Studies on

mammalian LAR-RPTPs have demonstrated that they regulate

dendrite and excitatory synapse development through postsyn-

aptic mechanisms (Dunah et al., 2005; Hoogenraad et al., 2007)

in addition to their reported regulation of axon development.

More recent studies have identified several LAR-RPTP-inter-

acting postsynaptic adhesion molecules, including NGL-3,

TrkC, IL1RAPL1, IL-1RAcP, and Slitrks (Slitrk1-6) (Takahashi

et al., 2011, 2012; Valnegri et al., 2011; Woo et al., 2009; Yim

et al., 2013; Yoshida et al., 2011, 2012). These trans-synaptic

interactions regulate both excitatory and inhibitory synapse

development, suggesting that LAR-RPTPs act as presynaptic

organizers. Moreover, LAR-RPTPs display differential distribu-

tion patterns in various brain regions (Kwon et al., 2010), and

alternative splice inserts in LAR-RPTPs differentially regulate

their trans-synaptic interactions with postsynaptic adhesion

molecules (Takahashi et al., 2011; Yoshida et al., 2011, 2012),

adding additional layers of complexity. These results highlight

the importance of comprehensively identifying and character-

izing existing LAR-RPTP-related trans-synaptic interactions

and the underlying mechanisms.

Defects in SALMs and LAR-RPTPs have been implicated in

diverse neuropsychiatric disorders, providing support for the

clinical importance of these proteins. Specifically, SALM1/

Lrfn2 and SALM5/Lrfn5 are associated with autism spectrum

disorders and intellectual disability (de Bruijn et al., 2010; Mikhail

et al., 2011; Voineagu and Yoo, 2013; Wang et al., 2009), as well

as schizophrenia (Xu et al., 2009). In addition, PTPd has been

linked to autism spectrum disorders (Pinto et al., 2010), attention

deficit/hyperactivity disorder (Elia et al., 2010), bipolar disorder

(Malhotra et al., 2011), and restless leg syndrome (Schormair

et al., 2008; Yang et al., 2011). Most recently, LAR has been

implicated in schizophrenia (Schizophrenia Working Group of

the Psychiatric Genomics Consortium, 2014).

In the present study, we demonstrated that SALM3 trans-syn-

aptically interacts with all three types of presynaptic LAR-RPTPs

in an alternative splicing-dependent manner. Salm3�/� mice

show a reduced excitatory synapse number but normal synaptic

plasticity in the hippocampus. Behaviorally, Salm3�/� mice

show hypoactivity, but no abnormalities in the learning and

memory tests administered.

RESULTS

SALM3 Interacts with LAR-RPTPs
To identify presynaptic ligands for SALM3, we performed cell-

aggregation assays in which one group of L cells expressing
Cell Re
SALM3 was mixed with another expressing candidate synaptic

adhesion molecules or surface membrane proteins (Figure S1).

We found that SALM3-expressing cells coaggregated with cells

expressing PTPs and PTPd, two known members of the LAR-

RPTP family.

In subsequent quantitative cell aggregation experiments,

SALM3 interacted with selected LAR-RPTPs (Figures 1A–1C).

Specifically, PTPs and PTPd containing the two mini exons,

meA and meB (PTPs-A+B+ and PTPd-A+B+), in the N-terminal

Ig domain region (Ig1-3) interacted more strongly with SALM3

than the negative control CD8, but the same PTPs construct

and a similar LAR construct lacking both exons (PTPs-A�B�

and LAR-A�B�) did not. These results suggest that SALM3

may interact with LAR-RPTPs in a splice variant-dependent

manner.

In addition to this candidate approach, we performed an unbi-

ased proteomics screen for PTPd binding proteins. We used the

full ectodomain of PTPd fused to human Fc (PTPd-Fc, A+B+ form)

or just the N-terminal three Ig domains (PTPdIg1-3-Fc, a mix of

A�B� and A�B+ forms) as bait in a pull-down assay with rat brain

crude synaptosomal fraction. Bound material was analyzed by

mass spectrometry. Proteins isolated by high salt elution with

both PTPd-Fc and PTPdIg1-3-Fc, but not with the neurexin ecto-

domain neurexin1b-Fc as a negative control, are listed in Table

S1. Prominent in this list of putative interacting proteins was

SALM3/Lrfn4. Another protein previously shown to interact

with PTPd, IL1RAPL1 (Yoshida et al., 2011; Valnegri et al.,

2011), was also isolated by subsequent low pH elution.

To confirm the interaction with SALM3 and differentiate

among the PTPdIg1–3 forms, we expressed SALM3 with an

extracellular HA tag, HA-SALM3, on the surface of COS7 cells

and performed a cell-based binding assay. PTPdIg1-3-Fc

A�B+ form, but not A�B� form, bound to cells expressing HA-

SALM3 (Figures 1D and 1E). These results further support the

interpretation that SALM3 interacts with LAR-RPTPs in a splice

variant-dependent manner and show that the Ig1-3 domains of

PTPd are sufficient for interaction.

Mini-Exon B in LAR-RPTPs Determines SALM3 Binding
To more systematically test the possibility that meA and meB

splice inserts in LAR-RPTPs regulate interaction with SALM3,

we performed cell-based binding assays in the reverse orienta-

tion. We incubated the SALM3 ectodomain fusion protein

SALM3-Fc with COS7 cells expressing PTPs, PTPd, or LAR con-

taining or lacking meA and/or meB. All of these LAR-RPTPs

show good cell surface expression patterns (Yoshida et al.,

2011), and all the PTPs isoforms bind TrkC-Fc (Takahashi

et al., 2011).

We found that LAR-RPTPs containing meB alone (A�B+) ex-

hibited significant SALM3 binding, whereas SALM3 binding

was undetectable for LAR-RPTPs containing only meA (A+B�)
or lacking both meA and meB (A�B�) (Figures 2A and 2B), indi-

cating that meB alone is sufficient for SALM3 binding. However,

the addition ofmeA tomeB (A+B+) significantly increased SALM3

binding, suggesting that meA in the presence of meB substan-

tially increases SALM3 binding. These results indicate that

SALM3 binds to meB-containing forms of PTPs, PTPd, and

LAR and that meA exerts a modulatory effect.
ports 12, 1618–1630, September 8, 2015 ª2015 The Authors 1619



Figure 1. SALM3 Interacts with LAR-RPTPs

(A) Domain structures of SALM3 and LAR-RPTPs

(LAR, PTPs, and PTPd). LRR, leucine rich repeat;

NT/CT, N/C-terminal domain; FNIII, fibronectin

type-III; TM, transmembrane; PB, PDZ domain

binding; D1/D2, phosphatase domain.

(B and C) SALM3 interacts with a subset of LAR-

RPTPs in cell aggregation assays. A group of L

cells expressing SALM3 (pDisplay) was mixed with

another expressing the indicated LAR-RPTPs

(pDisplay) for cell aggregation. Scale bar repre-

sents 100 mm. Means ± SEM (n = 3 for CD8 [con-

trol], LAR, PTPs, and PTPd, **p < 0.01, ***p <

0.001, ANOVA).

(D and E) SALM3 interacts with PTPd in a cell-

based binding assay. COS7 cells expressing HA-

SALM3 were incubated with PTPdIg1-3-Fc A�B�

or A�B+ and assessed for bound Fc fusion protein.

Scale bar represents 10 mm (n = 20 cells each from

two independent experiments, ANOVA p < 0.0001

and ***p < 0.001 by Bonferroni posthoc test

compared with neighbor non-transfected cells).

See also Figure S1 and Table S1.
To explore in vivo relevance of these findings, we deter-

mined the types and relative abundance of LAR-RPTP splice var-

iants expressed in the hippocampus, a brain region frequently

used in coculture synapse formation assays (see below). When

mRNA samples from rat hippocampi at postnatal day 12 (P12)

were subjected to RT-PCR and DNA sequencing, we found that

the hippocampus expresses LAR-RPTP splice variants in abun-

dances that are similar to those obtained the whole mouse brain

at P11 (Yoshida et al., 2011), with the exception that thePTPd var-

iants missing the A splice insert (PTPdA�B+ and PTPdA�B�) are
more abundant in the hippocampus (58%) than in thewhole brain

(10%) (Figure 2C). The relative abundancesof LAR-RPTP variants

containing the splice B insert, a key determinant of SALM3 inter-

action, were 38%, 80%, and 10% for PTPs, PTPd, and LAR,

respectively, which are largely comparable to the 42%, 96%,

and 10% reported for the mouse whole brain (Yoshida et al.,

2011). Thesedata suggest thatmini exonB-dependent adhesions

may be more important in PTPd than in PTPs or LAR in rats and

mice, although these are the differences at the mRNA level.
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SALM3-Dependent Synaptogenesis
Requires All Three LAR-RPTPs
Next, we tested which LAR-RPTPs are

critical for SALM3-dependent presynap-

tic differentiation. To this end, we cocul-

tured heterologous cells expressing

SALM3 with hippocampal neurons ex-

pressing knockdown constructs for indi-

vidual LAR-RPTPs, LAR (Figure S2)

(Mander et al., 2005), PTPs (Figure S2)

(current study), and PTPd (Takahashi

et al., 2012), or all three LAR-RPTPs.

These cocultured neurons were then

stained for synapsin I as ameasure of pre-

synaptic differentiation, which has been

associated with the positive uptake of
synaptotagmin luminal domain antibodies, indicative of its

functionality (Mah et al., 2010). In triple knockdown of LAR-

RPTPs, SALM3-induced synapsin I clustering was decreased

by 85.2% ± 3.0%, suggesting that LAR-RPTPs play a major

role in SALM3-dependent presynaptic differentiation. Knock-

down of individual LAR-RPTPs revealed a rank order of con-

tribution of PTPd > LAR > PTPs. However, the differences

were small, indicating that efficient SALM3-induced synapsin I

clustering requires all three LAR-RPTPs (Figures 3A and 3C). In

control experiments, presynaptic differentiation induced by

neuroligin 2 was not inhibited by knockdown of LAR-RPTPs (Fig-

ures 3B and 3D).

Generation and Characterization of Salm3�/� Mice
In order to explore the in vivo functions of SALM3, we generated

Salm3�/�mice in which all SALM3-coding exons (exons 2 and 3)

were replaced with a b-geo cassette (b-galactosidase/neomycin

fusion) (Figures 4A and 4B). SALM3 protein was undetectable in

immunoblots of Salm3�/� whole-brain lysates (Figure 4C).



Figure 2. The meB Splice Insert in Ig Domains of LAR-RPTPs Is Sufficient for SALM3 Binding, whereas meA Is Modulatory

(A and B) SALM3 Fc protein was incubated with COS7 cells expressing full-length PTPs, PTPd, or LAR with or without meA and meB splice inserts together with

YFP to mark transfected cells (meA+, nine residue insert for PTPs and PTPd, six residue insert for LAR). Scale bar represents 10 mm. Means ± SEM (n = 20 cells

each from two independent experiments, ANOVA p < 0.0001 and *p < 0.05, **p < 0.01, ***p < 0.001 by Bonferroni posthoc test comparedwith YFP alone, yp < 0.05

and yyyp < 0.001 by Bonferroni post hoc test comparing A�B+ with A+B+ for individual RPTPs).

(C) Amino acid sequence alignment and relative abundance of LAR-RPTP splice variants expressed in the rat hippocampus (P12), determined by RT-PCR and

DNA sequencing of 50 randomly chosen independent clones for each protein.
SALM3 expression, visualized by X-gal staining, was detected

in multiple brain regions, including the hippocampus, cortex,

striatum, olfactory bulb, and cerebellum (Figures 4D and S3). In

the hippocampus, SALM3 expression was stronger in the CA1

and CA3 subfields than in the dentate gyrus region.

The Salm3�/� brain exhibited normal gross morphology and

neuronal numbers, as revealed NeuN (neuronal marker) staining

(Figures 4E–4G). SALM3 deletion had no effect on the expres-

sion levels of diverse synaptic proteins in the whole brain or in
Cell Re
the hippocampus, including other SALMs (SALM1/2/4/5) and

synaptogenic adhesion molecules (NGL-3, Slitrk1, Slitrk3,

IL1RAPL1, and IL-1RAcP) (Figure 4H).

Decreased Excitatory Synapse Number in Salm3�/�

Neurons
Given that SALM3 can induce excitatory and inhibitory presyn-

aptic differentiation in contacting axons in fibroblast-neuron

coculture assays (Mah et al., 2010), we tested whether neuronal
ports 12, 1618–1630, September 8, 2015 ª2015 The Authors 1621



Figure 3. SALM3-Dependent Presynaptic

Differentiation Requires All Three LAR-

RPTPs

(A and C) SALM3-expressing COS7 cells were co-

cultured with hippocampal neurons (DIV 10–11)

nucleofected to express individual knockdown

constructs of LAR-RPTPs (sh-LAR,PTPs, PTPd), or

all three (TKD), followed by monitoring of presyn-

aptic clustering of synapsin I (a presynapticmarker)

as a measurement of presynaptic differentiation.

Means ± SEM (n = 28 for sh-control, 26 for sh-LAR,

28 for sh-PTPs, 25 for sh-PTPd, and 26 for TKD

from three independent experiments, ANOVA p <

0.0001 and **p < 0.01, ***p < 0.001 by Bonferroni

post hoc testcomparedwith thecontrol sh-control).

(B and D) In control experiments, neuroligin 2

(NL2)-dependent presynaptic differentiation is not

affected by LAR-RPTP knockdown (n = 29 for

sh-control, 22 for sh-LAR, 27 for sh-PTPs, 25 for

sh-PTPd, and 29 for TKD from three independent

experiments, ANOVA p > 0.05). Scale bar repre-

sents 10 mm.

See also Figure S2.
synapse number or function was altered in Salm3�/� mice. We

found a substantial decrease (�52.3%) in the frequency, but

not the amplitude, of miniature excitatory postsynaptic currents

(mEPSCs) in Salm3�/� CA1 pyramidal neurons compared with

WT neurons (Figures 5A–5C). In contrast, neither the frequency

nor the amplitude of miniature inhibitory postsynaptic currents

(mIPSCs) was altered (Figures 5D–5F).

Electron microscopic (EM) analyses of the hippocampal CA1

region revealed a significant reduction (�14.5%) in the density

of excitatory synapses, defined by the sites of postsynaptic

density (PSD) apposed to axon terminals (Figures 5G and 5H).

However, there were no significant differences in the fraction

of perforated synapses (a measure of excitatory synaptic matu-

rity), PSD thickness, or PSD length (Figures 5I–5K). An indepen-

dent set of EM experiments analyzing PSDs apposed to axon

terminals immunopositive for the excitatory neurotransmitter

glutamate yielded similar results (Figure S4).

In a rescue experiment, SALM3 expression in Salm3�/� hippo-

campalCA1pyramidal neuronsby lentiviral genedelivery (P9/10–

23/24) reversed the reducedmEPSC frequency to levels compa-

rable to those of WT neurons, whereas a control virus carrying

EGFP alone had no effect (Figures 5L–5N). SALM3 viral expres-

sion did not affectmEPSC amplitude inWT or Salm3�/� neurons.

In contrast to the results from the hippocampus,Salm3�/�dorso-

lateral striatal neurons showed normal frequency or amplitude of
1622 Cell Reports 12, 1618–1630, September 8, 2015 ª2015 The Authors
mEPSCs (Figure S5). These results sug-

gest that SALM3 deletion selectively and

markedly decreases excitatory synapse

number in CA1 pyramidal neurons.

Normal Excitatory Transmission
and Synaptic Plasticity at Salm3�/�

Synapses
SALM3 deletion, which resulted in a

marked reduction in excitatory synapse
number, could also influence synaptic transmission or plasticity

in the remaining excitatory synapses. However, we found no

change in paired pulse ratio at Salm3�/� SC-CA1 synapses

compared with WT synapses (Figure 5O), suggesting that pre-

synaptic neurotransmitter release is unlikely to be changed. In

addition, the ratio of evoked AMPAR- and NMDAR-mediated

synaptic transmission (AMPA-NMDA ratio) was comparable be-

tween genotypes (Figure 5P).

Next, we tested whether Salm3�/� synapses display altered

synaptic plasticity. However, neither long-term potentiation

(LTP) induced by theta burst stimulation nor long-term depres-

sion (LTD) induced by low-frequency stimulation (1 Hz, 900

pulses) was altered at Salm3�/� SC-CA1 synapses compared

with WT synapses (Figures 5Q and 5R). In addition, late LTP

induced by three trains of high-frequency stimulation, known

to involve dopamine modulation (Lisman et al., 2011), was unal-

tered at Salm3�/� SC-CA1 synapses (Figure 5S). Together,

these results suggest that SALM3 deletion has no effect on excit-

atory synaptic transmission or synaptic plasticity tested here.

Hypoactivity of Salm3�/� Mice in Novel and Familiar
Environments
Next, we explored behavioral alterations in Salm3�/� mice. We

found that Salm3�/� mice displayed hypoactivity in a novel envi-

ronment, compared with WT mice, as measured by the total



Figure 4. Generation and Characterization of Salm3�/� Mice

(A) Strategy to generate Salm3�/� mice.

(B) Genotyping of Salm3�/� mice by PCR. WT, Salm3+/+; heterozygous (HT), Salm3+/�; knockout (KO), Salm3�/�.
(C) Absence of SALM3 proteins in Salm3�/� whole brain lysates, revealed by immunoblot analysis with two different SALM antibodies (1929 and 1816).

(D) SALM3 expression patterns visualized by X-gal staining of Salm3+/� brain slices. Ctx, cortex; Hp, hippocampus; Str, striatum; Ob, olfactory bulb;

Cb, cerebellum. Scale bar represents 1 mm.

(E–G) Normal grossmorphology of the brain (E) and neuron number inSalm3�/�mice, as revealed by staining for NeuN (a neuronal marker) (F andG; hippocampal

CA1 pyramidal neurons). Scale bar represents 0. 252 mm. Means ± SEM (n = 3; ns, not significant; Student’s t test).

(H) Salm3�/� brain displays normal levels of synaptic proteins, including other SALMs, and other synaptogenic adhesion molecules (NGL-3, Slitrk1/3, IL1RAPL1,

and IL-1RAcP) in the whole brain (WB) and hippocampus (Hp) (n = 3; ns, not significant; Student’s t test). See also Figure S3.
distance moved in an open field arena (Figures 6A and 6B).

Movement speed of the mice during the first 5 min in the open

field arena were also comparable between genotypes (Fig-

ure 6C), indicating that this parameter does not contribute to

the difference. Notably, the frequency of immobility was

increased inSalm3�/�mice, whereas the duration of each immo-

bility was similar between genotypes (Figures 6D and 6E), sug-

gesting that frequent episodes of immobility contribute to the

hypoactivity of Salm3�/� mice. Salm3�/� mice were also hypo-

active in a familiar environment (home cages), especially during

the first half of the light-off period, when mice are usually quite

active (Figure 6F).

Salm3�/�mice did not show anxiety-like behaviors in the open

field arena, spending normal amount of time in the center region

(Figure 6G). In the elevated plus-maze test, both genotypes

showed comparable levels of time spent in closed and open

arms and similar numbers of entries into closed and open arms

(Figures 6H and 6I).

Finally, motor coordination and motor learning in the rotating

rod test (Figure 6J), and stereotypic behaviors, including
Cell Re
grooming and digging (Figures 6K and 6L), were normal in

Salm3�/� mice.

Normal Hippocampus-Dependent Learning and Memory
in Salm3�/� Mice
Next, we subjected Salm3�/� mice to a battery of learning and

memory behavioral tests, starting from the spontaneous and re-

warded T-maze arm alternation tests, which are sensitive to hip-

pocampal dysfunctions (Deacon and Rawlins, 2006). In the

spontaneous alternation test, where spontaneous and explor-

ative target arm alternations of a mouse are monitored,

Salm3�/� and WT mice showed comparable levels of sponta-

neous arm alternations (Figure 7A). In the rewarded alternation

test, where a mouse has to use working memory to avoid a

recently visited target arm for food reward, WT and Salm3�/�

mice showed comparable improvements over 12 test days (six

blocks) (Figure 7B).

Next, we evaluated Salm3�/� in a Morris water maze test,

which measures hippocampus-dependent spatial learning

and memory (Morris, 1984). Salm3�/� mice performed normally
ports 12, 1618–1630, September 8, 2015 ª2015 The Authors 1623



Figure 5. Reduced mEPSC Frequency and Excitatory Synapse Number but Normal Paired Pulse Ratio, AMPA-NMDA Ratio, and Synaptic

Plasticity in the Salm3�/� Hippocampus

(A–C) Reduced frequency but normal amplitude of mEPSCs in Salm3�/� hippocampal CA1 pyramidal neurons (P17–21). Means ± SEM (n = 14 for WT and KO,

**p < 0.01; ns, not significant; Student’s t test).

(D–F) Normal mIPSC frequency and amplitude in Salm3�/� CA1 pyramidal neurons (P17–21) (n = 14 for WT and 10 for KO, ns, not significant, Student’s t test).

(G–K) Salm3�/� mice (P14) show reduced PSD (arrows) density (G and H), but normal PSD perforation (G and I; arrowheads), thickness (J), and length (K) in EM

analysis of hippocampal CA1 region (stratum radiatum). Scale bar represents 500 nm (n = 3 for WT and KO, *p < 0.05; ns, not significant; Student’s t test).

(L–N) SALM3 expression in Salm3�/� hippocampal CA1 pyramidal neurons by lentiviral gene delivery (P9/10–23/24; an example shown on the left) normalizes the

reduced mEPSC frequency, whereas a control virus (EGFP alone) has no effect (n = 16 for WT-EGFP, 13 for KO-EGFP, 12 for WT-EGFP, and 12 for KO-EGFP,

**p < 0.01; ns, not significant; two-way ANOVA).

(O) Normal paired pulse facilitation at Salm3�/� SC-CA1 synapses (3–4 weeks) (n = 27 slices from 15 animals for WT and 24, 13 for KO, Student’s t test).

(P) Normal AMPA-NMDA ratio at Salm3�/� SC-CA1 synapses, based on AMPAR and NMDAR EPSCs (2–3 weeks) (n = 9, 9 for WT and KO; ns, not significant;

Student’s t test).

(Q) Normal LTP induced by theta burst stimulation at Salm3�/� SC-CA1 synapses (3–4 weeks) (n = 14, 9 for WT and 10, 6 for KO).

(R) Normal LTD induced by low-frequency stimulation (1 Hz, 900 pulses) at Salm3�/� SC-CA1 synapses (3–4 weeks) (n = 10, 6 for WT and 9, 4 for KO).

(S) Normal late LTP induced by three trains of high-frequency stimulation (100 Hz) at Salm3�/� SC-CA1 synapses (P26–32) (n = 6, 5 for WT, 6, 4 for KO).

See also Figures S4 and S5.
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Figure 6. Salm3�/� Mice Display Hypoactiv-

ity but Normal Anxiety-like Behavior, Motor

Coordination, and Stereotypy

(A–E) Salm3�/� mice show reduced locomotor

activity in open field assays compared with WT

mice (A and B; 60 min). Note that Salm3�/� mice

show normal velocity of movement (C; first 5 min),

increased frequency of immobility (D; first 30 min),

and normal duration of each immobility (E; first

30 min). Means ± SEM (n = 12 for WT and 10 for

KO, **p < 0.01; ns, not significant; repeated-mea-

sures ANOVA and Student’s t test).

(F) Salm3�/� mice show hypoactivity in their home

cages (n = 14 for WT and 15 for KO, *p < 0.05,

repeated-measures ANOVA).

(G) Time spent in the center region of an open field

arena.

(H and I) Elevated plus maze test measuring time

spent in and number of entries into closed/open

arms (n = 12 for WT and 15 for KO; ns, not signif-

icant; Student’s t test).

(J) Motor coordination and learning in the rotating

rod test (n = 10 forWT and KO, repeated-measures

ANOVA).

(K and L) Grooming and digging behavior

(grooming, n = 8 for WT and 9 for KO; digging,

n = 10 for WT and 9 for KO; ns, not significant;

Student’s t test).
during the learning phase of the maze (Figure 7C). In probe tests,

performed on day 6 after 5-day learning sessions, Salm3�/�

mice showed normal levels of target quadrant occupancy,

exact platform crossing number, and swimming speed (Figures

7D–7F). Long-term memory, determined by performing the

probe test on day 12, which is 7 days after the last training

(1-week memory), was also unaltered in Salm3�/� mice (Figures

7G and 7H).

In the novel object recognition test, which measures non-

spatial hippocampus-dependent memory (Ennaceur and Dela-

cour, 1988), mice were exposed to the same two objects

24 hr before the test. On the day of test, when one of the two

objects was replaced with a new object, Salm3�/� mice

showed novel object preference comparable to that of WT

mice (Figure 7I). In addition, when one of the two objects was

translocated or displaced to a new position in the same box in
Cell Reports 12, 1618–1630, Se
a spatial version of the object preference

test (Dix and Aggleton, 1999), Salm3�/�

mice preferred to explore the displaced

object to an extent comparable to that of

WT mice (Figure 7J). These results sug-

gest that Salm3�/� mice have normal

recognition memory.

In a contextual fear conditioning test,

which measures hippocampus- and

amygdala-dependent fear memory (Phil-

lips and LeDoux, 1992), mice were

exposed to a foot shock associated with

a particular environment (a foot shock

chamber; complex and polymodal stimuli)

and exposed to the same environment
24 hr or 7 days after the memory acquisition. Salm3�/� mice

showed normal levels of context-dependent freezing at both

time points (Figures 7K and 7L).

Finally, in the contextual fear extinction test, in which the hip-

pocampus plays a critical role (Ji and Maren, 2007), Salm3�/�

mice showed normal fear extinction over the course of 5 days

after memory acquisition (Figure 7M). Therefore, Salm3�/�

mice display unaltered hippocampus-dependent learning and

memory in the tests administered in the present study.

DISCUSSION

Our study identifies that SALM3 interacts with all three LAR-

RPTPs in a splicing-dependent manner and provides in vivo sup-

port for the roles of SALM3 in excitatory synapse development

and locomotion behavior.
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Figure 7. Salm3�/� Mice Perform Normally in T-maze, Morris Water Maze, Object Recognition, and Contextual Fear Conditioning and

Extinction Tests

(A) Spontaneous alternations in a T-maze. Means ± SEM (n = 11 for WT and 16 for KO; ns, not significant; Student’s-test).

(B) Rewarded alternations in a T-maze (n = 13 for WT and 11 for KO, repeated-measures ANOVA).

(C–F) Morris water maze learning and 24-hr spatial memory. Mice were trained for 5 days (learning curve, C) and subject to the probe test on day 6 for target

quadrant occupancy (D), exact platform crossing (E), and swimming speed (F) (n = 10 for WT and 9 for KO; ns, not significant; repeated-measures ANOVA and

Student’s t test).

(G and H) Morris water maze and 7-day spatial memory. Mice after the 5-day training sessions were tested on day 12 for quadrant occupancy (G) and exact

platform crossing (H) (n = 10 for WT and 9 for KO; ns, not significant; Student’s t test).

(I and J) Novel and displaced object recognition. Mice were exposed to two identical objects, and one of the two objects was replaced with a new one (I), or

translocated (or displaced) to a new position in the same box (novel object, n = 9 for WT and KO, novel location, n = 12 for WT and 10 for KO; ns, not significant;

Student’s t test).

(K and L) Contextual fear conditioning. Mice exposed to foot shock were re-exposed to the same environment 24 hr (K) or 7 days (L) after the training and

monitored of freezing responses (24 hr, n = 10 for WT and 9 for KO; 7 days, n = 10 for WT and 9 for KO; ns, not significant; Student’s t test).

(M) Contextual fear extinction. Mice exposed to foot shockwere re-exposed to the same environment for 5 days starting from 24 hr after the training (n = 10 forWT

and 9 for KO, repeated-measures ANOVA).
SALM3 interacts with and requires all three known LAR-

RPTPs (LAR, PTPs, and PTPd) for presynaptic differentiation.

This LAR-RPTP-binding spectrum of SALM3 is most similar to

that of NGL-3 and IL-1RAcP (Kwon et al., 2010; Woo et al.,

2009; Yoshida et al., 2012). However, whether NGL-3 requires

all three LAR-RPTPs for presynaptic differentiation has not

been tested. In addition, NGL-3 binds to the first two FNIII do-

mains of LAR-RPTPs (Kwon et al., 2010; Woo et al., 2009),

whereas SALM3 binds to the Ig1-3 domains. IL-1RAcP slightly

differs from SALM3 in that it binds much more strongly to

PTPd than to PTPs or LAR; consistent with this, IL-1RAcP-

dependent presynaptic differentiation is substantially reduced

in PTPd�/� neurons (Yoshida et al., 2012). SALM3 differs greatly

from other LAR-RPTP-interacting postsynaptic organizers such
1626 Cell Reports 12, 1618–1630, September 8, 2015 ª2015 The Au
as TrkC, Slitrk3, and IL1RAPL1, which interact selectively with

PTPs, PTPd, and PTPd, respectively (Takahashi et al., 2011,

2012; Valnegri et al., 2011; Yoshida et al., 2011). Therefore,

SALM3 appears to be unique in its LAR-RPTP-binding spectrum

and mechanism.

SALM3 displays a splice B code for interactions with LAR-

RPTPs. The presence of the meB splice insert in the Ig domain

region of all three LAR-RPTPs is required for their SALM3 inter-

actions; the meA insert, though not required, enhances these in-

teractions. This property is somewhat similar to but distinct from

the requirement of meB, but not meA, for the interaction of

Slitrk1/2 with LAR-RPTPs (Takahashi et al., 2012; Um et al.,

2014; Yamagata et al., 2015a), and the enhancement of the inter-

action between IL-1RAcP and PTPd involving both meA and
thors



meB (Yamagata et al., 2015b; Yoshida et al., 2012). In addition,

this property is dissimilar to the meA splice code of IL1RAPL1,

in which meA is required and meB enhances the interaction

with PTPd (Yamagata et al., 2015b; Yoshida et al., 2011), and

the splice code of TrkC, in which meA or meB tends to inhibit

the interaction with PTPs (Takahashi et al., 2011). Among the

LAR-RPTPs, PTPd ranks highest both in fraction containing a B

insert and in effect of knockdown on presynaptic induction by

SALM3. However, although only 10% of LAR mRNAs contains

the B insert, knockdown also revealed a functional role of LAR

as a SALM3 interactor, perhaps through high protein level, sur-

face expression, or affinity, as suggested by the cell-based

SALM3-Fc binding assay using equal amounts of LAR-RPTP

expression vectors.

Although the abovementioned overall characteristics of

SALM3 appear to be most similar to IL-1RAcP, SALM3 has

several features that distinguish it from IL-1RAcP. SALM3 con-

tains a C-terminal type I PDZ-binding motif that binds to PSD-

95 (Ko et al., 2006; Morimura et al., 2006; Nam et al., 2011;

Wang et al., 2006), whereas IL-1RAcP does not. Instead, IL-

1RAcP contains a cytoplasmic TIR domain that is absent in

SALM3. A splice variant of IL-1RAcP, termed IL-1RAcPb (Smith

et al., 2009), that contains a type II PDZ-binding motif, however,

has not been demonstrated to bind PSD-95. In terms of brain

distribution, SALM3 is widespread, as revealed by X-gal staining,

similar to the mRNA distribution of IL-1RAcP (Smith et al., 2009).

However, in the hippocampus, SALM3 is more abundant in the

CA3 and CA1 regions, whereas IL-1RAcP expression mainly

maps to the dentate gyrus region (Allen Brain Atlas). Therefore,

SALM3 and IL-1RAcP are likely to have distinct functions in the

brain.

The Salm3�/� mice data indicate that SALM3 is important for

excitatory synapse development in the hippocampal CA1 region,

as supported by substantial reductions in mEPSC frequency

(�52.3%) and PSD density (�14.5%). The lentiviral rescue

experiment, in which only sparse CA1 neurons were transduced

in a Salm3�/� background, including Salm3�/� SC inputs, indi-

cates that SALM3 functions cell autonomously in the postsyn-

aptic cell to control the density of excitatory inputs. Several

mouse lines lacking LAR-RPTP-binding postsynaptic organizers

have been reported. TrkC�/� mice are perinatally lethal (Tessar-

ollo et al., 1997), making it difficult to assess its specific role in

synapse development, although TrkC knockdown in sparse

cortical neurons reduced dendritic spine density (Takahashi

et al., 2011). Il1rapl1�/� mice display decreased excitatory syn-

apse and spine density in the hippocampal CA1 region (synapse,

�25% by EM; spine, �12% and 24% in apical and basal den-

drites, respectively) (Pavlowsky et al., 2010). These mice also

show suppressed GABAergic network in the cerebellum (Gam-

bino et al., 2009) and reduced excitatory transmission in the

lateral amygdala (Houbaert et al., 2013). Slitrk5�/� mice show

reduced levels of AMPAR and NMDAR subunits in the striatum

and decreased amplitude of corticostriatal population spikes

(Shmelkov et al., 2010), whereas Slitrk3�/�mice display reduced

frequency ofmIPSCs andweakened signals of GAD65 (inhibitory

synapse marker) in the hippocampal CA1 region (Takahashi

et al., 2012). Therefore, LAR-RPTP-interacting postsynaptic

organizers seem to regulate excitatory and inhibitory synapse
Cell Re
development in diverse brain regions, and SALM3 and

IL1RAPL1, in particular, appear important for hippocampal excit-

atory synapse development.

Although Salm3�/� hippocampal CA1 region displays signifi-

cantly reduced excitatory synapse number, the remaining syn-

apses seem to display apparently normal synaptic transmission

and plasticity. For instance, WT and Salm3�/� synapses show

comparable paired pulse ratio and AMPA-NMDA ratio. In addi-

tion, Salm3�/� synapses show normal levels of LTP, LTD, and

late LTP. This contrasts with the reported regulation of LTP by

neuroligin-1 and LRRTM1/2 (Blundell et al., 2010; Jedlicka

et al., 2015; Jung et al., 2010; Kim et al., 2008; Shipman and Nic-

oll, 2012; Soler-Llavina et al., 2013), but is similar to the minimal

LTP regulation by neuroligin-3 (Shipman and Nicoll, 2012).

Behaviorally,Salm3�/�mice perform normally in T-maze,Mor-

ris water maze, object recognition, contextual fear conditioning,

and extinction tests, which is apparently in line with the lack of

changes in synaptic plasticity in these animals. This contrasts

with the impairments in cued fear memory and amygdalal

theta-burst stimulation-induced LTP in Il1rapl1�/� mice (Hou-

baert et al., 2013), which show reduced excitatory synapse

and spine densities in the hippocampus (Pavlowsky et al., 2010).

Salm3�/� mice display hypoactivity in both novel and familiar

environments, and this seems to be caused by frequent immo-

bility rather than increased immobility duration or decreased

movement velocity. It has been suggested that �1.56% and

0.75% of genes in the whole genome cause hyperactivity

and hypoactivity, respectively, when dysregulated (Mignogna

and Viggiano, 2010; Viggiano, 2008). In addition, hypoactivity

can be caused by genetic or pharmacological interventions

that suppress dopamine or histamine activity or that enhance

acetylcholine activity in the brain (Mignogna and Viggiano,

2010; Viggiano, 2008). Glutamate and GABA have also been

implicated in the modulation of locomotor activity, although their

alterations mainly cause hyperactivity. A detailed understanding

of how hypoactivity manifests in Salm3�/� mice will require

further exploration.

In conclusion, our data suggest that postsynaptic SALM3 in-

teracts with presynaptic LAR-RPTPs (LAR, PTPs, and PTPd) in

a splice variant-dependent manner and provide in vivo support

for the roles of SALM3 in the regulation of excitatory synapse

development and locomotor behavior.

EXPERIMENTAL PROCEDURES

Constructs

The following constructs have been described: LAR-Ecto-A�B�-pDis, PTPs-
Ecto-A�B�-pDis, PTPd-Ecto-A+B+ (Kwon et al., 2010) and SALM3-Ecto-pDis

(Mah et al., 2010), mPTPs A+B+-CFP, mPTPs A+B�-CFP, mPTPs A�B+-

CFP, and mPTPs A�B�-CFP (Takahashi et al., 2011). PTPs-Ecto-A+B+-pDis

was a kind gift from Dr. Homin Kim at KAIST. The entire coding sequences

of mouse PTPd, PTPdA�B+, PTPdA+B� (A9), PTPdA�B�, LAR A6B+, LAR

A6B�, LARA�B+, LARA�B� in pcDNA3 vector were kind gifts from Dr. Yoshida

at University of Tokyo (Yoshida et al., 2011).

Antibodies

SALM3 (1929) guinea pig polyclonal antibodies were generated using

a synthetic peptide as immunogen (aa 594–608 of mouse SALM3;

CYGYARRLGGAWARR). Peptides mimicking the last 30 aa of mouse

SALM1, SALM2, and SALM4 were used to generate guinea pig polyclonal
ports 12, 1618–1630, September 8, 2015 ª2015 The Authors 1627



antibodies (2022, 2058, and 2026, respectively). The following antibodies

have been described: PSD-95 (1690) (Han et al., 2010), NGL-3 (2020)

(Lee et al., 2014), SALM3 (1816), and SALM5 (1907) (Mah et al., 2010).

The following antibodies were purchased: a-tubulin, synapsin I (Sigma),

synaptophysin, GluA1, GluA2 (Santa Cruz), slitrk1, slitrk3 (Abcam), GluN1

(Invitrogen), GluN2A (Zymed), GluN2B (NeuroMab), PTPs (17G7.2, mouse,

Medimabs), and IL-1RAcP (Millipore). IL1RAPL1 antibody was a kind gift

from Dr. Carlo Sala.

Generation and Characterization of Salm3�/� Mice

Mouse sperms carrying the Salm3 gene, in which exons 2 and 3 were replaced

with a cassette containing lacZ-neomycin gene and a polyadenylation signal

by homologous recombination, were obtained from KOMP. Mice were ob-

tained by in vitro fertilization. Heterozygotes were crossed to obtain SALM3

deficiency mice.

Virus Infection

Lentivirus carrying the SALM3 rescue construct was purchased (Applied

Biological Materials). Briefly, mouse SALM3 cDNA was subcloned into the

pLenti-GIII-CMV-GFP-2A-Puro vector. 293T cells were used for virus pack-

aging of lenti-EGFP (control) and lenti-SALM3. Lentiviral titer for EGFP and

SALM3 was �3 3 108 IU/ml. Mice at P9–10 were anesthetized with xylazine/

ketamine and transcranially injected of virus into the hippocampal CA1 region

using glass pipettes and a syringe pump (KD Scientific) at a rate of 75 nl/min

with a 30-s delay. Electrophysiological experiments were made 2 weeks after

virus injection.

Supplemental Experimental Procedures

The Supplemental Experimental Procedures contain details on Cell Aggrega-

tion Assays, Production of Soluble Fc-fusion Proteins, Pull-down of PTPd-Fc

and Mass Spectrometry, Surface Binding Assay, Knockdown of LAR-PTPs

Family in Co-culture, Electron Microscopy, Field Potential Recording, Patch

Analysis, and Animal Behavioral Tests.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, and one table and can be found with this article online at http://

dx.doi.org/10.1016/j.celrep.2015.08.002.
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