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Abstract: Recent discovery of the SM-like Higgs boson with mh ≃ 125GeV motivates

an extension of the minimal supersymmetric standard model (MSSM), which involves a

singlet Higgs superfield with a sizable Yukawa coupling to the doublet Higgs superfields.

We examine such singlet-extended SUSY models with a Peccei-Quinn (PQ) symmetry that

originates from an anomalous U(1)A gauge symmetry. We focus on the specific scheme that

the PQ symmetry is spontaneously broken at an intermediate scale vPQ ∼
√
mSUSYMPl

by an interplay between Planck scale suppressed operators and tachyonic soft scalar mass

mSUSY ∼
√
DA induced dominantly by the U(1)A D-term DA. This scheme also results in

spontaneous SUSY breaking in the PQ sector, generating the gaugino masses M1/2 ∼
√
DA

when it is transmitted to the MSSM sector by the conventional gauge mediation mechanism.

As a result, the MSSM soft parameters in this scheme are induced mostly by the U(1)A
D-term and the gauge mediated SUSY breaking from the PQ sector, so that the sparticle

masses can be near the present experimental bounds without causing the SUSY flavor

problem. The scheme is severely constrained by the condition that a phenomenologically

viable form of the low energy operators of the singlet and doublet Higgs superfields is

generated by the PQ breaking sector in a way similar to the Kim-Nilles solution of the µ

problem, and the resulting Higgs mass parameters allow the electroweak symmetry breaking

with small tanβ. We find two minimal models with two singlet Higgs superfields, satisfying

this condition with a relatively simple form of the PQ breaking sector, and briefly discuss

some phenomenological aspects of the model.
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1 Introduction

Low energy supersymmetry (SUSY) [1, 2] and the QCD axion [3, 4] are compelling can-

didates for physics beyond the Standard Model (SM) as they not only solve the major

fine-tuning problems of the SM, i.e. the gauge hierarchy problem and the strong CP prob-

lem, but also shed a light on different fundamental issues such as dark matter and unifi-

cation. Furthermore there are several virtues of having both SUSY and axion together.

For instance, the axion scale can be determined by an interplay between SUSY break-

ing scalar mass mSUSY and a Planck scale suppressed higher dimensional operator, which

would generate an intermediate axion scale vPQ ∼
√
mSUSYMPl in a natural way [5]. The

absence of a potentially too large bare µ term of the doublet Higgs superfields can be un-

derstood also by a Peccei-Quinn (PQ) symmetry, U(1)PQ [6, 7] for the QCD axion. Then

a right size of the Higgs µ parameter can be generated by the spontaneous PQ breaking

as µ ∼ v2PQ/MPl ∼ mSUSY, solving the µ problem for the supersymmetric Higgs sector [8].

As another possible virtue, the cosmological PQ phase transition in such model can be

preceded by a thermal inflation, thereby solves the cosmological moduli problem [9, 10].

In view of minimizing the fine-tuning for the electroweak symmetry breaking (EWSB),

we are most interested in the case that sparticles, particularly the stops, are as light
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as possible, being close to the present experimental bounds [11]. On the other hand,

to explain the recently discovered SM-like Higgs boson mass mh ≃ 125GeV within the

framework of the minimal supersymmetric standard model (MSSM), the stops need to

have a mass around multi-TeV or even heavier, which is well above the current direct

search limit [12, 13]. A simple way to avoid this difficulty is to extend the MSSM by

adding a singlet Higgs superfield S which has the superpotential coupling λSHuHd to the

doublet Higgs superfields Hu,d [14–16]. In such singlet-extended models, the SM-like Higgs

boson mass receives a contribution δm2
h = λ2m2

Z sin2 2β/(g21 + g22) from the Higgs quartic

coupling |λHuHd|2, and the stops can have a relatively light mass around (or below) TeV,

while being compatible with mh ≃ 125GeV, if λ ∼ 1 and tanβ = 〈H0
u〉/〈H0

d〉 ∼ 1. This is

perhaps the most straightforward extension of the MSSM, minimizing the fine-tuning for

the EWSB under the known experimental constraints.

The model can be extended further by introducing a PQ symmetry [17–21], to solve

the strong CP problem, together with a PQ sector which breaks the PQ symmetry sponta-

neously at an intermediate scale vPQ ∼ 109 − 1012GeV generated by
√
mSUSYMPl without

introducing new bare mass parameters [5, 22, 23]. One can arrange the model further, so

that all the low energy mass parameters of the singlet-extended Higgs sector are generated

by the spontaneous PQ breaking, and have a value comparable to mSUSY in a way similar

to the Kim-Nilles mechanism [8] for the µ problem.

An important issue about the axion solution of the strong CP problem is the UV origin

of the PQ symmetry which is required to be protected well from quantum gravity effects

violating global symmetries in general [24–27]. Note that to solve the strong CP problem,

the explicit PQ breaking by quantum gravity effects should be negligible compared to the

breaking by the QCD anomaly [28–30]. For the UV origin of a PQ symmetry, an appealing

possibility is that U(1)PQ originates from an anomalous U(1)A gauge symmetry whose

gauge boson gains a heavy mass near the Planck scale by the Stückelberg mechanism [31–

36]. Then, quantum gravity effects breaking U(1)PQ can be exponentially suppressed.

In this paper we examine the SUSY breaking, as well as some of the phenomenological

consequences, in singlet-extended SUSY models involving a PQ symmetry which originates

from an anomalous U(1)A gauge symmetry. We are interested in the scheme to yield

flavor conserving soft parameters which lead to the superparticle masses near the present

experimental bounds, together with mh ≃ 125GeV which is largely due to the singlet

superpotential term λSHuHd with λ ∼ 1 and tanβ ∼ 1. In the next section, we first

discuss generic features of SUSY breaking in models with anomalous U(1)A gauge symmetry

broken by the Stückelberg mechanism, while leaving a global PQ symmetry as a low energy

remnant [36]. We then examine the specific scheme that the soft SUSY breaking parameters

in the PQ breaking sector are dominated by the U(1)A D-term contribution as

ǫ ≡ mMM√
DA

≪ 1, (1.1)

where mMM denotes the moduli (or equivalently gravity) mediated soft masses. In this

scheme, the PQ symmetry is spontaneously broken at vPQ ∼ (
√
DAMPl)

1/2, or more

generically vPQ ∼ (
√
DAM

n
Pl)

1/(n+1) (n ≥ 1), by an interplay between the D-term in-

duced tachyonic scalar mass and a Planck scale suppressed operator. A notable feature of
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this scheme is that it leads to a spontaneous SUSY breaking in the PQ breaking sector,

showing a hierarchical structure for vacuum expectation values by ǫ. This SUSY breaking

in the PQ breaking sector can be transmitted to the MSSM sector by the conventional

gauge mediation mechanism, yielding the gauge mediated soft masses:

mGM ∼ g2

8π2ǫ

√

DA. (1.2)

We will focus on a scheme in which ǫ amounts to

ǫ ∼ g2

8π2
, (1.3)

for which the MSSM soft parameters are determined by the gauge mediated SUSY breaking

from the PQ breaking sector and the U(1)A D-term, which are comparable to each other.

To complete the scheme, we need to generate a phenomenologically viable form of the

low energy operators of the singlet and doublet Higgs superfields through the spontaneous

PQ breaking as in the Kim-Nilles solution of the µ problem. It turns out that the hierar-

chical pattern of the SUSY breaking F -components in the PQ breaking sector makes this

non-trivial at least for a relatively simple form of the PQ breaking sector. In section 3,

we present two minimally viable models involving two singlet Higgs superfields and discuss

some of the phenomenological consequences of the models. One of the models is more

interesting as it allows the limit that the Higgs sector including the singlet Higgs is para-

metrically lighter than the other sector of the model, without causing further fine-tuning

than the minimal fine-tuning for the EWSB.

2 Features of PQ symmetry and soft terms with anomalous U(1)A

2.1 Peccei-Quinn symmetry and D-term mediation from an anomalous U(1)A

We begin with an observation that a large fraction of phenomenologically viable string com-

pactifications involves an anomalous U(1)A gauge symmetry. An anomalous U(1)A gauge

symmetry can be quantum mechanically consistent by the Green-Schwarz (GS) anomaly

cancellation [37], which is implemented by introducing the axion-like field ap, a zero mode

of the higher-dimensional p-form gauge field. In the supersymmetric language, ap is a

pseudoscalar component of a chiral multiplet for the GS modulus TA. Then various super-

multiplets transform under U(1)A as

U(1)A : VA → VA + Λ+ Λ∗, TA → TA + δGSΛ, Φi → e−2qiΛΦi, (2.1)

where VA is the U(1)A vector multiplet, Λ is a chiral multiplet parametrizing U(1)A gauge

transformation, and a coefficient δGS is the U(1)A-QCD-QCD anomaly coefficient given by

δGS =
1

8π2

∑

i

qiTr(Tc(Φi)
2), (2.2)

for Tc(Φi) denoting the color charge matrix of Φi. From this, one finds that the Kähler

potential

K = K0(tA, tb, tk) + Zi(tA, tb, tk)Φ
∗

i e
2qiVAΦi, (2.3)
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depends on TA through a gauge invariant combination tA ≡ TA + T ∗

A − δGSVA. We note

that the Kähler potential eq. (2.3) in general contains other moduli tk ≡ Tk + T ∗

k , as well

as a SUSY breaking modulus tb ≡ Tb + T ∗

b , which are not charged under U(1)A.

Let 2ηI = {−δGS, 2qiΦi} be the holomorphic Killing vector fields generating an in-

finitesimal U(1)A gauge transformation of chiral multiplets ΦI = {TA,Φi}. Then the gauge

boson mass and D-term of the U(1)A multiplet of gauge coupling gA are given by

M2
A = 2g2Aη

I η̄J̄∂I∂J̄K = 2g2A(M
2
GS +M2

matter),

DA = −ηI∂IK = ξFI + M̃2
matter,

(2.4)

respectively, where the GS modulus contribution

M2
GS =

δ2GS

4
∂2
tA
K0, ξFI =

δGS

2
∂tAK0, (2.5)

and the matter contribution

M2
matter =

∑

i

(

q2i Zi − qiδGS∂tAZi +

(

δGS

2

)2

∂2
tA
Zi

)

Φ∗

i e
2qiVAΦi,

M̃2
matter = −

∑

i

(

qiZi −
δGS

2
∂tAZi

)

Φ∗

i e
2qiVAΦi,

(2.6)

are written separately.

If the underlying string compactification admits a supersymmetric solution with van-

ishing Fayet-Illiopoulos (FI) term ξFI [38–46],1 matter fields Φi do not develop vacuum

expectation values (VEVs) in the supersymmetric limit in order to make D-term vanish.

When ∂2
tA
K0 ∼ O(1), the U(1)A gauge boson gains a mass MA ∼ δGSMPl ∼ 1016GeV by

eating up an axion-like field ap ≡
√
2ImTA in the GS modulus (Stückelberg mechanism),

rather than a pseudoscalar in the matter (Higgs mechanism), i.e. M2
A ∼ M2

GS ≫ M2
matter ∼

|Φi|2. After the massive vector field Ãµ = (Aµ, ap) is integrated out, the low energy effec-

tive theory below MA involves a global PQ symmetry which can be identified as the global

part of U(1)A without the transformation of ap:

U(1)PQ : Φi → eiqiβΦi (β = constant). (2.7)

Because U(1)PQ differs from the global part of the genuine gauge symmetry U(1)A only

by the absence of the non-linear transformation of ap, any quantum gravity effect which

breaks U(1)PQ explicitly can be exponentially suppressed by e−tp , where tp is the volume

modulus of the p-cycle which is dual to the zero mode ap. The model then has a sensible

limit that the PQ breaking quantum gravity effects are negligible enough for U(1)PQ to

solve the strong CP problem, although it requires an understanding of the dynamics to

stabilize the volume modulus tp at a sufficiently large value [33].

1If it were not the case, we need qi|Φi|2 ∼ ξFI ∼ δGSM
2
pl for vanishing DA in the supersymmetric

limit. Then the Higgs mechanism contribution (∼ δGSM
2
pl) dominates over the Stückelberg mechanism

contribution (∼ δ2GSM
2
pl). This is not appropriate for our purpose to obtain global U(1)PQ symmetry as a

remnant of U(1)A.
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Let us discuss the decoupling of the massive gauge boson in more detail. Since we

expect MA ≫ m3/2, the massive vector multiplet VA is integrated out in an almost super-

symmetric way. Then, VA is fixed by the superfield equation of motion

∂K

∂VA
≃ 0, (2.8)

in the supersymmetric limit. The scalar component of eq. (2.8) provides a stabilization of

tA. On the other hand, if SUSY is mainly broken by the modulus Tb such that ∂2
tb
K|F Tb |2 ≃

3|m3/2|2, the D-component of eq. (2.8) provides the U(1)A D-term VEV

g2ADA ≃ 2

δGS

∂tA∂
2
tb
K0

∂2
tA
K0

|F Tb |2 ∼
(

∂tA∂
2
tb
K0

∂2
tA
K0∂2

tb
K0

) |m3/2|2
δGS

≡ ǫ1
δGS

|m3/2|2, (2.9)

where ǫ1 parametrizes the sequestering between a SUSY breaking sector and an U(1)A
sector, which means that ǫ1 = 0 in the fully sequestered case. The same result is obtained

by imposing the U(1)A invariance condition ηI∂I(VF + VD) = 0 to vacuum values [47].

Suppose the sequestering parameter ǫ1 is of order of 1/8π2 ∼ δGS, which is the case when

ǫ1 represents a mixing between tb and tA through loop correction to tA in the Kähler

potential, as observed in appendix A. Then we have DA ∼ m2
3/2 and it constitutes soft

scalar masses as m2
i = −qiDA.

2.2 Soft terms in the PQ and visible sectors

As we have seen, at energy scale below MA, we have the PQ symmetry as a remnant of

U(1)A. In general, PQ-charged matters and the SM gauge fields are described by Kähler

potential, superpotential, and gauge kinetic functions given by

K = K0(tb, tA, tk) + Zi(tb, tA, tk)Φ
∗

i e
2qiVAΦi,

W = W0(Tb, TA, Tk) +
1

3!
λijk(Tb, TA, Tk)ΦiΦjΦk

+
1

n!
κi1i2...in(Tb, TA, Tk)Φi1Φi2 · · ·Φin ,

fa = γa(Tb, Tk) + kaTA,

(2.10)

where subscript a of fa runs over the SM gauge group components, SU(3)c, SU(2)L and

U(1)Y . Using basic supergravity(SUGRA) relations

m3/2 = eK/2W, F I = −eK/2KIJ̄(DJW )∗, DIW = WI +KIW,

VF = KIJ̄F
IF J̄ − 3eK |W |2, VD =

g2A
2
D2

A,

we deduce soft terms

Lsoft = −1

2
Maλaλa−

1

2
m2

i |φ̂i|2−
1

3!
Aijkλ̂ijkφ̂iφ̂jφ̂k−

1

n!
Ai1i2...in

κ κ̂i1i2...in φ̂i1 φ̂i2 · · · φ̂in , (2.11)
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given by

Aijk = −F I∂I ln

(

λijk

e−K0ZiZjZk

)

+
1

2
(γi + γj + γk)

FC

C
,

Ai1i2...in
κ = (n− 3)

FC

C
− F I∂I ln

(

κi1i2...in
e−nK0/3Zi1Zi2 . . . Zin

)

,

m2
i =

2

3
VF − F IF J̄∂I∂J̄ ln(e

−K0/3Zi)− (qi + ηI∂I lnZi)g
2
ADA − 1

4

∂γi
∂ lnµ

FC

C
,

Ma

g2a
=

1

2
F I∂Ifa −

1

8π2

∑

i

Tr(T 2
a (φi))F

I∂I ln(e
−K0/3Zi)−

ba
16π2

FC

C
,

(2.12)

where φ̂i denotes canonically normalized scalar component of the chiral multiplet Φi and

λ̂, κ̂ are Yukawa couplings in this basis:

λ̂ijk =
λijk

√

e−K0ZiZjZk

, κ̂i1i2...in =
κi1i2...in

√

e−nK0/3Zi1Zi2 . . . Zin

. (2.13)

Therefore, so far as gauge mediation is not concerned, we have three origins of soft terms:

• Moduli mediation (gravity mediation).

When SUSY is mainly broken by the modulus Tb satisfying ∂2
tb
K|F Tb |2 ≃ 3|m3/2|2,

gravity mediation takes a form of moduli mediation [48, 49]. Its effects on soft

masses are parametrized by how much the SUSY breaking sector is sequestered from

the visible sector:

ǫ2m3/2 ≡ F Tb∂tb ln(e
−K0/3Zi) and F I∂Ifa. (2.14)

We assume that these two are of the same order, F I∂Ifa ∼ ǫ2m3/2.
2

• Anomaly mediation.

Anomaly mediation [50–52] is parametrized by the conformal compensator C, whose

SUSY breaking effect is given by

FC

C
=

1

3
KIF

I + eK/2W ∗, (2.15)

where we have taken the Einstein frame gauge C = eK/6.

• D-term mediation.

Soft scalar masses get contribution from D-term mediation [34, 47, 53–74] , −qiDA ∼
8π2ǫ1m

2
3/2. In the specific case of ǫ1 ∼ 1/8π2, we have DA ∼ m2

3/2.

2In fact, when fa = kaTA we need to consider FA, which is estimated to be FA ≃ −eK/2KTAT∗

b F ∗

Tb
∼

eK/2(∂tA∂tbK0/∂
2
tAK0)F

Tb . Hence, F I∂Ifa is relevant to ǫ1, rather than ǫ2. However, since we will be

focusing on the specific choice ǫ1 ∼ ǫ2 ∼ 1/8π2 in the following discussion, our assumption here is acceptable.
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In general, the moduli mediation (or gravity mediation) can cause the SUSY flavor

problem without some non-trivial assumptions. Thus we will consider the situation that

the moduli mediation is somewhat suppressed by some amount of sequestering ǫ2. If the

SUSY breaking modulus Tb contacts with the PQ and visible sector through loop correction

in the Kähler potential, it is plausible to take ǫ2 ∼ 1/8π2, as estimated in appendix A. In

this case, soft scalar masses are dominated by D-term mediation of order of m3/2, whereas

A-terms and gaugino masses mainly come from moduli mediation:

Aijk ∼ F Tb∂tb ln(e
−K0ZiZjZk) ∼

(

∂tb ln(e
−K0/3Z)

√

∂2
tb
K0

)

m3/2 ≡ ǫ2m3/2,

Ai1i2...in
κ ∼ F Tb∂tb ln

(

e−nK0/3Zi1Zi2 . . . Zin

)

∼ ǫ2m3/2 (n 6= 3),

Ma

g2a
∼ 1

2
F Tb∂tbfa −

1

8π2

∑

i

Tr(T 2
a (φi))F

Tb∂tb ln(e
−K0/3Zi) ∼

1

8π2
m3/2,

(2.16)

as well as anomaly mediation.

Concerning the anomaly mediation effects, first consider the case of FC/C ∼ m3/2.

In this case, gaugino masses, coming from moduli and anomaly mediation, are of order of

(1/8π2)m3/2. They are one-loop suppressed compared to
√
DA with ǫ1 ∼ 1/8π2, the main

contribution to soft scalar masses. For gaugino masses of order of TeV, we have the spec-

trum for split SUSY [75–78] with soft scalar masses of order of 100TeV [60–62]. However,

since we are interested in singlet-extended SUSY with a percent level fine-tuning, we look

for the situation in which both soft scalar masses and gaugino masses are of the same order,

around TeV scale. This is achieved in two ways: one is to take m3/2 ∼ 100TeV and two

sequestering parameters satisfying ǫ22 ∼ 8π2ǫ1 ∼ (1/8π2)2. Another is to keep ǫ1 ∼ ǫ2 ∼
1/8π2 and introduce gauge mediation [79–87] to give gaugino masses of order of m3/2 ∼√
DA ∼TeV [57]. The first way requires peculiar three loop order mixing ǫ1 ∼ (1/8π2)3 be-

tween the SUSY breaking sector and U(1)A sector, so we will not pursue this possibility. On

the other hand, as will be discussed in section 2.3, with our specific parameter choice ǫ1 ∼
ǫ2 ∼ 1/8π2, we can realize the latter case by introducing a PQ-charged messenger, with the

help of a one-loop suppressed A-term Ai1···in
κ ∼ ǫ2m3/2 with n 6= 3. In order to obtain such a

one-loop suppressed A-term, we need to make anomaly mediation negligibly small, because

anomaly mediation gives A-term with n 6= 3 of order of FC/C. If FC/C is of order of m3/2,

A-term is of order of m3/2 as well. Therefore, we need a model in which the SUSY breaking

modulus Tb has a no-scale structure [88–92], K ≃ −3 ln tb and superpotential is independent

of Tb at the leading order, to give FC/C ≃ (1/3)∂tbKF Tb +m3/2 ≃ 0. For example, in the

large volume scenario [93, 94], where the large volume modulus Tb of Calabi-Yau (CY) 3-

fold breaks SUSY mainly with a no-scale structure, FC/C is negligibly small. Moreover, the

coupling between Tb and TA through the loop correction of the form of (1/tmb )(tA−αA ln tb)
2

in the Kähler potential, where m is some integer, gives ǫ1 ∼ ǫ2 ∼ 1/8π2. Detailed calcula-

tion can be found in refs. [95, 96], and briefly described in appendix A.
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In summary, in the parameter space we are interested in, in which FC/C is negligible

and ǫ1 ∼ ǫ2 ∼ 1/8π2, we have soft terms given by

m2
i ≃ −qiDA+cim

2
GM ∼ m2

3/2, A ∼ ǫ2m3/2 ∼
1

8π2
m3/2, Ma ≃ camGM ∼ m3/2, (2.17)

where mGM is the gauge mediation contribution of the order of m3/2, as will be discussed

in the following subsection. Here, sfermion soft masses are dominantly given by D-term

and gauge mediation, while A-terms mainly come from moduli mediation. D-term medi-

ation contribution has two properties. First, by assigning flavor universal PQ charges, we

can make sfermion soft masses flavor universal as well. Second, PQ charge conservation

implies that RG running effects on soft masses are negligible down to the messenger scale

for gauge mediation. For this reason, sfermion soft masses are similar to those expected

from general gauge mediation [97–99], in which each of slepton and squark soft masses is

flavor universal, but relation between them depends on the PQ charge assignments and

the type of gauge mediation. On the other hand, gaugino masses are dominantly given by

gauge mediation. Detailed spectrum of gauginos depends on the type of gauge mediation

as well, which is not relevant to following discussion.

2.3 Soft-term-induced spontaneous Peccei-Quinn symmetry breaking and

gauge mediation

Since we are interested in the intermediate PQ breaking scale vPQ obtained through an

interplay between m3/2 and some cutoff scale M∗ (generically either the Planck scale or the

GUT scale), we consider a model similar to that discussed in ref. [5]. In our setup, as a soft

scalar mass squaredm2
i from aD-term mediation is proportional to an PQ charge qi, we can

make some of scalar fields tachyonic by assigning a positive charge. In this regard, our setup

provides a natural situation for PQ symmetry breaking through the scenario in ref. [5].

To begin with, let us consider a non-renormalizable superpotential for PQ charged

chiral multiplets X and Y ,

WPQ = y
Xn+2Y

Mn
∗

. (2.18)

For this, we assign PQ charges to satisfy (n+ 2)qX + qY = 0. Together with soft terms, a

potential for scalars X and Y is given by

VPQ(X,Y ) =
|y|2
M2n

∗

|X|2(n+2) +
|y|2
M2n

∗

(n+ 2)2|X|2(n+1)|Y |2

+m2
X |X|2 +m2

Y |Y |2 +
(

yA
Xn+2Y

Mn
∗

+ h.c.

)

.

(2.19)

Since the sign of qX is opposite to that of qY , one can assign qX > 0 and qY < 0 so that

X is tachyonic whereas Y is not, at the origin of field space. Then the PQ symmetry is

broken as X takes the VEV and it induces non-zero Y VEV:

〈|X|〉 ≃ 1

(n+ 2)1/2(n+1)|y|1/(n+1)
n+1
√

|mX |Mn
∗
,

〈Y 〉 ≃ − 1

(n+ 2)(n+2)/2(n+1)y1/(n+1)

A∗|mX |
(n+ 2)|mX |2 + |mY |2

n+1
√

|mX |Mn
∗
.

(2.20)
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Note that the linear dependence of superpotential on Y results in the Y VEV proportional

to the A-term which is suppressed by ǫ2, so there appears a hierarchy between X and Y

VEVs,
∣

∣

∣

∣

Y

X

∣

∣

∣

∣

=
|A||mX |√

n+ 2[(n+ 2)|mX |2 +m2
Y ]

∼ |A|√
DA

∼ ǫ2. (2.21)

We identify the higher scale X VEV as the PQ scale vPQ. As |mX,Y | ∼ m3/2 ∼
√
DA, for

M∗ = MPl, we have

vPQ ≡ 〈X〉 ∼ |y|−1/(n+1) n+1

√

m3/2Mn
∗
=















|y|−1/21010GeV n = 1

|y|−1/31012−13GeV n = 2

|y|−1/41014GeV n = 3

. (2.22)

On the other hand, for M∗ = MGUT,

vPQ ∼















|y|−1/2109GeV n = 1

|y|−1/31011−12GeV n = 2

|y|−1/41013GeV n = 3

. (2.23)

Therefore, regarding a bound 109GeV < vPQ < 1012GeV, we favor n = 1 for M∗ = MPl

and n = 1, 2 for M∗ = MGUT.

The soft SUSY breaking terms also induce spontaneous SUSY breaking for the X,Y

sector with non-zero VEVs of FX,Y :
∣

∣

∣

∣

FX

X

∣

∣

∣

∣

=
|A||mX |2

(n+ 2)|mX |2 +m2
Y

∼ A ∼ ǫ2m3/2,

∣

∣

∣

∣

F Y

Y

∣

∣

∣

∣

=
(n+ 2)|mX |2 +m2

Y

|A| ∼ DA

A
∼ 1

ǫ2
m3/2.

(2.24)

In short, we have X ∼ vPQ(1+ ǫ2m3/2θ
2) while Y ∼ vPQ(ǫ2+m3/2θ

2). Here we emphasize

that F Y /Y is enhanced by one loop factor compared to m3/2 due to the small Y VEV.

Now we can use non-zero F -terms of X and Y to generate gauge mediation [100, 101]

adopting the KSVZ axion model [102, 103], in which a PQ breaking field couples to a

vector-like quark pair. Since F Y /Y is enhanced compared to FX/X, let us consider the

case where Y couples to a pair of fields which is vector-like under the SM gauge group,

W = YΨΨc. (2.25)

The ΨΨc pair plays the role of messenger of the gauge mediation whose size is given by

mGM ≡ 1

8π2

∣

∣

∣

∣

F Y

Y

∣

∣

∣

∣

∼ 1

8π2

DA

A
∼ 1

8π2ǫ2

√

DA. (2.26)

The gauge mediation gives gaugino masses comparable to soft scalar masses ∼
√
DA for

ǫ2 ∼ 1/8π2. We emphasize that a hierarchy between two SUSY breaking scales A and√
DA and the accordingly induced X and Y VEV hierarchy are important aspects for our

scheme to realize a low fine-tuned SUSY scenario. Especially the X and Y VEV hierarchy

is obtained by the linear dependence of the superpotential on Y . In this regard, our choice

of the superpotential (2.18) is quite generic.
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3 PQ invariant singlet extended SUSY models

In the previous section, we have specified the UV origin of a global U(1)PQ symmetry and

corresponding SUSY breaking mediation scheme which can realize all superparticle masses

around TeV scale in order to minimize fine-tuning for EWSB without causing the SUSY

flavor problem. Now we will apply this scheme to singlet extended SUSY models at TeV

scale to complete a low fine-tuned SUSY scenario.

We will consider singlet extended Higgs sector like the NMSSM models [14, 15] with

∆W = λSHuHd coupling to obtain the Higgs mass of 125GeV through TeV scale SUSY,

however, with possibly more than one singlet superfield in general. Therefore, the general

effective superpotential of the Higgs sector at TeV scale is given by3

Weff =
∑

i

λi(1 + θ2Ai)SiHuHd + f(Si). (3.1)

For convenience, we define a singlet field SH by λSH ≡ ∑

i λiSi. Then, in the field basis

that the singlet fields are given by SH and its orthogonal fields, the general superpotential

becomes

Weff = λ(1 + θ2Aλ)SHHuHd + θ2
∑

j

λ′

jA
′

jSjHuHd + f(SH , Sj), (3.2)

where Sj denotes the singlet fields orthogonal to SH , which do not have a supersymmetric

coupling to the doublet Higgs fields HuHd. In this generalized Higgs sector, the effective

µ and Bµ parameters are given by

µeff = λ〈SH〉, (Bµ)eff = λ〈∂SH
f∗〉+ λAλ〈SH〉+

∑

j

λ′

jA
′

j〈Sj〉. (3.3)

The EWSB conditions in terms of these parameters are expressed as

1

2
m2

Z =
m2

Hd
−m2

Hu
tan2 β

tan2 β − 1
− µ2

eff ,

sin 2β =
2(Bµ)eff

2µ2
eff +m2

Hu
+m2

Hd
+ λ2v2

.

(3.4)

From (3.4), we find that the following condition must be fulfilled to realize a low

fine-tuned EWSB:

100 GeV . µeff . mHu,d
. 1 TeV, (Bµ)eff ∼ m2

Hu,d
, (3.5)

where 1TeV upper bound is set to achieve a small fine-tuning within a percent level [11].

The lower bound for µeff & 100GeV is imposed due to the LEP exclusion on chargino

masses [104, 105]. The remaining part of the condition is obtained as we require tanβ

close to 1 (sin 2β ∼ 1) to get a large tree level Higgs mass beyond the MSSM, because the

Higgs quartic potential λ2|HuHd|2 from ∆W = λSHHuHd is proportional to sin2 2β.

3The bare µ and Bµ parameters can be always shifted away by choosing an appropriate field basis for

Si at some scale, although there can be non-zero RG running contribution to Bµ below the chosen scale.
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X Y S1 S2

U(1)PQ 1 −(n+ 2) (n+ 1)/4 −(n+ 1)/2

Table 1. Charge assignment for a minimal model.

As discussed in section 2, soft scalar masses including mHu,d
are determined by

√
DA

and mGM which are comparable to m3/2. Therefore, to satisfy the above condition (3.5),

it is required that µeff . O(m3/2) and (Bµ)eff ∼ O(m2
3/2) with m3/2 ∼ 1TeV. Since the

magnitude of µeff and (Bµ)eff will be affected by the dimensionful singlet parameters in

the singlet superpotential f(SH , Sj), the requirement means that those singlet parameters

should be of O(m3/2). This can be achieved by PQ invariant higher dimensional operators.

For instance, we find a model that fulfills the condition (3.5) as follows:

Weff = λS1HuHd +
1

2
κ1S

2
1S2 +

1

2
κ2

Xn+1

Mn
∗

S2
2 , (3.6)

where n = 1, 2, or 3 depending on the magnitude of PQ breaking scale vPQ. This model

is given by the PQ charge assignment of table 1. In section 2.3, we found that the PQ

breaking fields X,Y have VEVs as X ∼ vPQ(1+ǫm3/2θ
2), Y ∼ vPQ(ǫ+m3/2θ

2). Therefore,

by the relation vPQ
n+1/Mn

∗
∼ m3/2, we obtain the singlet mass parameter of O(m3/2) for

the S2
2 term. Then all dimensionful parameters of the singlet sector involving the soft

masses m2
S1

and m2
S2

are given around m3/2, so the VEVs of S1 and S2 will be also of

O(m3/2) if dimensionless couplings are of order unity. This gives µeff and (Bµ)eff around

m3/2. A detailed analysis on the vacuum structure of this model will be discussed shortly.

Notice that the model (3.6) includes two singlet fields S1, S2. Actually it can be shown

that at least two singlet fields are needed to satisfy the condition (3.5) with a relatively

simple PQ breaking sector. Moreover, we find that there are only two working models with

two singlet fields, one of which is (3.6). The other model turns out to be

Weff = λS2HuHd +
1

2
κ1S

2
1S2 +

1

2
κ2

Xn+1

Mn
∗

S2
2 . (3.7)

This model has the same singlet sector as the model (3.6). The only difference between

them is which singlet field (S1 or S2) couples to HuHd.

The main reasons why working models with two singlet fields are only those are related

to the sequestering factor ǫ and the sign of PQ charges of singlet fields which determines the

sign of their soft masses due to the D-term mediation. Soft scalar masses m2
S1

= −qS1
DA

and m2
S2

= −qS2
DA must have appropriate sign depending on models for the singlet scalar

fields to have non-zero VEVs, and the sequestering factor ǫ can make some necessary

singlet parameters for a model too small below m3/2. These severely constrain viable

forms of models. The details to end up with the minimally viable models (3.6) and (3.7)

can be found in appendix B.

Now let us discuss the vacuum structure and some phenomenological implications of

the minimal models. Aside from λSiHuHd, the same singlet superpotential of the two
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models give a singlet scalar potential as

Veff(S1, S2) = m2
S1
|S1|2 + (m2

S2
+ µ′2

2 )|S2|2 + κ21|S1|2|S2|2

+
1

4
κ21|S1|4 +

1

2
κ1µ

′

2(S
∗

1
2S2 + h.c.),

(3.8)

where µ′

2 ≡ κ2〈X〉n+1/Mn
∗
. The soft masses m2

S1
and m2

S2
are mainly induced from the

D-term mediation while RG running effect is subdominant, so m2
S1

< 0 and m2
S2

> 0 from

the PQ charges in table 1. Hence S1 gets non-zero VEV with its quartic potential, while

S2 does so from its tadpole term after 〈S1〉 becomes non-zero. Assuming µ′2
2 (∼ κ22DA) .

m2
S1,2

(∼ DA) with κ2 . O(1), S1 and S2 get their VEVs as

|〈S1〉| ≃
√

−2m2
S1

κ21
∼ |mS1

|
κ1

,

|〈S2〉| =
1

2

κ1µ
′

2|S1|2
m2

S2
+ µ′2

2 + κ21|S1|2
∼ µ′

2

κ1
.

(3.9)

The parametric relations between the doublet Higgs sector and singlet sector are very

different depending on which singlet field couples to HuHd. For the model (3.6) in which

SH = S1, µeff = λ〈SH〉 and (Bµ)eff ≃ λ〈∂SH
f〉 are given by4

µeff = λ〈S1〉 ∼
mS1

κ1
∼

√
DA

κ1
,

(Bµ)eff ≃ λκ1〈S1S2〉 ∼
mS1

µ′

2

κ1
∼ κ2

κ1
DA.

(3.10)

On the other hand, for the model (3.7) in which SH = S2, we have

µeff = λ〈S2〉 ∼
µ′

2

κ1
∼ κ2

κ1

√

DA,

(Bµ)eff ≃ λ〈1
2
κ1S

2
1 + µ′

2S2〉 ∼
m2

S1

κ1
∼ DA

κ1
.

(3.11)

From the above relations, one can find that the dimensionless coefficients κ1, κ2 of the

model (3.6) should be of O(1) with
√
DA ∼ m3/2 to satisfy the conditions µeff . O(m3/2)

and (Bµ)eff ∼ O(m2
3/2). On the contrary, for the model (3.7), we observe that

√
DA

smaller than m3/2 is allowed even satisfying µeff . O(m3/2) and (Bµ)eff ∼ O(m2
3/2) if

κ1, κ2 are smaller than order unity.5 Since the singlet masses are governed by the scale of√
DA, this means that the singlet sector of the model (3.6) must be around m3/2 ∼ 1TeV

similarly with the other SUSY sectors, while the singlet sector of the model (3.7) can be

parametrically lighter.

4The A-term contributions to (Bµ)eff can be neglected since they are suppressed by ǫ as discussed in

section 2.
5Smaller

√
DA than m3/2 can be obtained by assuming larger sequestering ǫ1 ∼ g2/8π2 < 1/8π2 between

the U(1)A sector and SUSY breaking modulus in eq. (2.9). In this case, if ǫ2 is also of similar order with

ǫ1, which is shown to be quite plausible in appendix A, mGM in eq. (2.26) is still around m3/2.
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A caveat must be placed, however, for the possibility of the relatively light singlet

sector of the model (3.7). Smaller
√
DA than mGM ∼ m3/2 means that SUSY breaking

is dominantly mediated by the gauge mediation. If we take the minimal gauge mediation

for the simplest case, it is known that µeff cannot be smaller than the scale of mHu(mt̃) ∼
mt̃ ∼ m3/2 for the EWSB to occur (see ref. [107], for instance). This can be problematic

because of the mixing between the singlet scalar SH and the SM-like Higgs boson h:

m2
hSH

= λv
(

2µeff − (Aλ + ∂2
SH

f(S1, S2)) sin 2β
)

, (3.12)

where f(S1, S2) is the singlet sector superpotential. For either SH = S1 or S2 , we find

that ∂2
SH

f(S1, S2) ∼ µ′

2 from (3.9). Thus it will be around λvµeff unless there occurs some

fine cancellation between µeff and µ′

2. To ensure the stability of the electroweak vacuum,

the diagonal elements of the mass matrix must satisfy m2
hhm

2
SHSH

> m4
hSH

so that

m2
SHSH

∼ DA & µ2
eff. (3.13)

Therefore, relatively small
√
DA requires also small µeff, which is impossible in the minimal

gauge mediation. It means that, in the simplest case, the singlet sector is expected to be

as heavy as the other SUSY sectors around m3/2 ∼ 1TeV for both models. Still, the gauge

mediation can be realized more generally as in refs. [97–99] with small µeff < m3/2. A

non-minimal gauge mediation, however, needs another SUSY breaking term comparable to

FY /Y ∼ 16π2m3/2 in section 2.3. It can arise from another copy of the spontaneous PQ

breaking sector with X ′, Y ′, for example. Thus, the singlet sector in the model (3.7) can

be light but implies some complication of the model.

Let us more specifically describe the mass spectrum of the light singlet sector of the

model (3.7). From (3.11), we find that κ2 . κ1 to satisfy µeff . O(m3/2) and (Bµ)eff ∼
O(m2

3/2) as well as the condition (3.13). This gives

√

DA ∼ √
κ1m3/2, µ′

2 ∼ κ2
√
κ1m3/2 . κ

3/2
1 m3/2,

µeff ∼ κ2√
κ1

m3/2 .
√
κ1m3/2.

(3.14)

Hence, for the coupling constants κ2 . κ1 < O(1), there appear hierarchical mass scales

µ′

2 < µeff .
√
DA < m3/2. For instance, κ1 ∼ 0.01 gives

√
DA ∼ 0.1m3/2 ∼ O(100)GeV

and µ′

2 . O(1)GeV. Notice that the limit µ′

2 → 0 corresponds to the PQ symmetric

limit in which one pseudoscalar becomes massless, and we find that the pseudoscalar mass

is ∼ µ′2
2 from the last term in the scalar potential (3.8). Therefore, through the small

coupling constants, we obtain a relatively light singlet scalar sector of their masses given

by
√
DA ∼ √

κ1m3/2 with an even lighter singlet pseudoscalar of mass µ′

2 . κ
3/2
1 m3/2.

The singlet scalars have mixing with the doublet Higgs bosons. Assuming no cancel-

lation between µeff and ∂2
SH

f(S1, S2) ∼ µ′

2 in (3.12), the mixing angle between the SM-like

Higgs boson h and SH is

θhSH
≃

m2
hSH

m2
SHSH

−m2
hh

∼ O
(

κ2

κ
3/2
1

λv

m3/2

)

. O
(

0.1√
κ1

)

, (3.15)
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where κ2 . κ1 for the model (3.7), while both κ1 and κ2 should be of O(1) for the

model (3.6). Similarly, the mixing angle between the SM-like Higgs boson h and another

scalar Sj other than SH is estimated to be

θhSj ≃
m2

hSj

m2
SjSj

−m2
hh

=
−λv∂Sj∂SH

f(S1, S2) sin 2β

m2
SjSj

−m2
hh

∼ O
(

1√
κ1

λv

m3/2

)

∼ O
(

0.1√
κ1

)

,

(3.16)

where ∂Sj∂SH
f(S1, S2) = ∂S1

∂S2
f(S1, S2) = κ1S1 ∼ mS1

for either SH = S1 or S2. There-

fore, the mixing angles can be quite sizable for the model (3.7) with small κ1 which results

in departure from the SM Higgs boson properties with detectable signatures, while they

are always as small as O(0.1) for the model (3.6).

We briefly describe the neutralino sector. The singlino mass matrix in the basis of

(S̃1, S̃2) is given by

Msinglino =

(

κ1〈S2〉 κ1〈S1〉
κ1〈S1〉 µ′

2

)

∼
(

µ′

2 mS1

mS1
µ′

2

)

, (3.17)

and they mix with the doublet Higgsinos through the superpotential λSHHuHd with the

off-diagonal elements of O(λv). Thus the mixing angles between the doublet Higgsinos

and singlinos are around O(λv/
√
κ1m3/2) . O(0.1/

√
κ1). When we assume the minimal

gauge mediation, we have argued that all mass parameters mS1
, µ′

2 and µeff must be around

m3/2 ∼ 1TeV with κ1, κ2 of O(1). In this case, the Higgsinos and singlinos do not mix

with each other so much, and they are all heavy around m3/2 unless there occurs fine

cancellation between µ′

2 and mS1
in the singlino mass matrix, while the bino and winos are

lighter than the Higgsinos and singlinos if the gluino mass is not far above the current lower

bound at the LHC around 1.3TeV [108, 109]. However, for the model (3.7) of small κ1 with

general gauge mediation, mS1
, µ′

2 and µeff can be much smaller than the typical SUSY scale

m3/2 with µ′

2 < µeff .
√
DA < m3/2 as discussed before. In this case, there can be large

mixing between the Higgsinos and singlinos, and they can be lighter than the gauginos.

Also notice that the singlinos are almost Dirac-like when κ1 is small, because µ′

2 ≪ mS1
.

4 Conclusion

In this paper, we have studied singlet-extended SUSY models in the presence of a PQ

symmetry, which originates from an anomalous U(1)A gauge symmetry, to realize a TeV

scale SUSY scenario with less than a percent level fine-tuning as allowed by the current ex-

perimental bounds. An anomalous U(1)A symmetry broken by the Stückelberg mechanism

provides not only a plausible origin of a PQ symmetry, but also soft scalar masses through

the D-term mediation. Especially, we consider the specific case that the SUSY breaking

modulus takes the no-scale form at leading order, and the U(1)A and visible sectors are

sequestered from the SUSY breaking modulus by one-loop order. As a result, the anomaly

mediation is negligible, while the moduli mediation is one-loop suppressed compared to
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the D-term mediation. Moreover, a spontaneous PQ breaking at the intermediate scale,

induced by tachyonic soft scalar mass coming from D-term mediation, also results in a

spontaneous SUSY breaking with a hierarchical VEV structure by one-loop factor as in

eq. (2.24). This SUSY breaking in the PQ breaking sector is transmitted to the MSSM

sector through the gauge mediation, whose magnitude is comparable to the D-term me-

diation. Consequently, superparticle masses around TeV scale without the SUSY flavor

problem can be realized through the mixed D-term and gauge mediation.

We have examined the implication of this UV setup to low energy physics around TeV

scale. To explain the observed Higgs boson mass with TeV scale superpartners, the general

singlet-extended Higgs sector is considered for the low energy models. We find that at

least two singlet fields are necessary to complete a low fine-tuned SUSY scenario with a

relatively simple PQ breaking sector, and the forms of models are quite constrained by our

UV setup so that there are only two working models with two singlet fields.

Some of the phenomenological consequences of the two minimal models are investi-

gated. For the model (3.6), the singlet Higgs sector must be as heavy as other superpar-

ticles around m3/2 ∼ 1TeV scale for a consistent EWSB. On the other hand, the singlet

sector can be parametrically lighter than the other sectors for the other model (3.7) with

the dimensionless couplings κ1, κ2 smaller than order unity, when a general gauge media-

tion is realized. This can lead to significant departure from the SM Higgs boson properties

by singlet mixing with testable signatures. Further phenomenological studies of the models

will be done in future works.
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A Estimation of the soft terms in the large volume scenario framework

In this appendix, we briefly estimate the soft terms in the large volume scenario (LVS)

framework, which provides negligible anomaly mediation and ǫ1 ∼ ǫ2 ∼ 1/8π2. Detailed

calculation with an explicit example can be found in refs. [95, 96].

In the LVS, a volume modulus Tb is stabilized such that tb ≡ Tb+T ∗

b ≫ 1 in the string

length unit Mstring = 1 to give a large compactification volume. This can be achieved

by introducing another Kähler modulus Ts determining a volume of a small cycle. When

Ts admits the non-perturbative effect e−aTs in the superpotential, the α′-correction of

O(1/t
3/2
b ) in the Kähler potential competes with the effect so that Tb is stabilized at an

exponentially large value [93, 94]. For example, in type IIB theory, Calabi-Yau(CY) three-

fold volume is given by VCY ∼ t
3/2
b ∼ |eaTs | and this is just MPl

2/M2
string.

On the other hand, the MSSM sector and an anomalous U(1)A sector are supported by

the visible sector 4-cycle whose volume is determined by a new modulus TA. The modulus

TA cannot be identified with Tb since it gives too small SM gauge couplings g2SM ∼ 1/Tb.

– 15 –



J
H
E
P
0
5
(
2
0
1
5
)
0
6
3

Moreover, TA cannot have a D3 instanton superpotential, the essential feature of Ts to

stabilize Tb [110], therefore Ts cannot play a role of TA. Since an instanton superpotential

e−aTA is absent, the modulus TA should be stabilized in another way. We consider the case

where TA is stabilized through the D-term of the anomalous U(1)A gauge multiplet, which

results in the D-term mediation.

Now consider the dynamics of U(1)A and visible sectors. At leading order, Tb has

the no-scale structure satisfying K = −3 ln tb and ∂W/∂Tb = 0. Subleading effects would

appear as expansions in large volume 1/tb and quantum correction αs,A ln tb. Let us define

t̃s ≡ ts − αs ln tb and t̃A ≡ tA − αA ln tb [111]. Then, the generic forms of Kähler potential,

superpotential, and gauge kinetic functions for U(1)A and MSSM sectors are given by

K = K0(tb, ts, tA) + ZiΦ
∗

i e
2qiVAΦi

= −3 ln tb +
1

tpb
K0,1(t̃s) +

1

tnb

[

Ω0(t̃s, t̃A) +
1

tp
′

b

Ω1(t̃s, t̃A)

]

+
1

tb

[

Yi,0(t̃s, t̃A) +
1

tp
′′

b

Yi,1(t̃s, t̃A)

]

Φ∗

i e
2qiVAΦi,

(A.1)

W = W0(Ts, TA) +
1

3!
λijk(Ts, TA)ΦiΦjΦk +

1

n!
κi1i2...in(Ts, TA)Φi1Φi2 · · ·Φin , (A.2)

fA = γA(Ts) + kATA, fa = γa(Ts) + kaTA (A.3)

where p, p′, p′′ and n are some positive integer, especially p = 3/2 in type IIB string theory.

The matter Kähler metric Zi is in the form of Zi = (1/tb)Yi such that it does not have

power-law dependence on the CY3 volume.

More explicitly, we take a Kähler potential and superpotential

K = −3 ln tb +
2(t̃

3/2
s − ξα′)

t
3/2
b

+
1

2tpb

(

t̃2A +O(t3A)
)

+ ZXX∗e2q1V X + ZY Y
∗e2q2V Y,

W = W0 +Ae−aTs + y
Xn+2Y

Mn
∗

,

(A.4)

as investigated in ref. [95]. In this example, tb is stabilized at large value,

t
3/2
b = eat2/2

W0

aA
ξα′

[

3

2
− 21 + 8aαs

12at̃s
+O

(

1

(at̃2)2

)]

,

t̃3/2s = ξα′

[

1 +
3− 13aαs

3at̃s
+O

(

1

(at̃2)2

)]

.

(A.5)

Once tb ans ts are stabilized, we have the effective potential of the PQ sector fields,

{tA, X, Y } as eq. (A2) of ref. [95]. As a result, tA is stabilized as t̃A = δGSv
2
PQ/M

2
GS+O(δ2GS)

where M2
GS is calculated to be (δGS/2)

2(1/tpb), whereas X,Y have the intermediate scale

VEVs as discussed in section 2.3. This example confirms various features used in our setup

listed below.

Due to the no-scale structure at leading order, the anomaly-mediation effect is negli-

gibly small,
FC

C
= O

(

m3/2
1

tpb
,m3/2

|φ|2
MPl

2

)

. (A.6)
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On the other hand, FI term is extremely suppressed,

ξFI ≃
δGS

tnb

(

∂tAΩ0 +O
(

1

tp
′

b

))

= O
( |φ|2
MPl

2tb

)

, (A.7)

where the last relation implies that an almost vanishing D-term is a result of cancellation

between FI term and matter contribution to D-term. This is explicitly checked in the

example eq. (A.4) as

ξFI = M2
GS

2t̃A
δGS

= 2
v2PQ
M2

pl

+O(δGS), (A.8)

When matter VEVs are developed as a result of SUSY breaking, we can say FI term

vanishes in the supersymmetric limit. Actually, D-term given by

g2ADA ∼
(

∂tA∂
2
tb
K0

∂2
tA
K0∂2

tb
K0

) |m3/2|2
δGS

≡ ǫ1
δGS

|m3/2|2, (A.9)

is estimated as

ǫ1 =
∂tA∂

2
tb
K0

∂2
tA
K0∂2

tb
K0

∼ 1

∂2
tA
Ω0

(a1∂tAΩ0 + a2αA∂
2
tA
Ω0 + a3α

2
A∂

3
tA
Ω0), (A.10)

where a1,2,3 are order one coefficients. Whereas ∂tAΩ0 is suppressed due to FI term sup-

pression, ∂2
tA
Ω0 can be a coefficient of order unity, from e.g. Ω0 = t̃2A, so we find that

ǫ1 ∼ αA ∼ 1/8π2. Finally, using the fact that tb comes in Yi by −αs,A ln tb through the

combinations t̃s,A, we obtain

ǫ2m3/2 ∼ F Tb∂tb ln(Yi,0) ∼ m3/2tb
∂tbYi

Yi
∼ m3/2αs,A

∂ts,AYi

Yi
, (A.11)

and when ∂ts,AYi/Yi ∼ O(1), we have ǫ2 ∼ αs,A ∼ 1/8π2.

B Minimal low energy models

In this appendix, the detailed procedure to obtain the minimal models (3.6) and (3.7)

is presented. In section B.1, we will show that one singlet extension with a simple PQ

breaking sector is not viable for the natural EWSB. As the next minimal possibility, two

singlets extension is discussed in section B.2, where those two minimal models are found.

In section B.3, non-minimal PQ breaking sectors are investigated, by which one singlet

extension can be made viable.

B.1 One singlet extension with a simple PQ breaking sector

The simplest singlet extended Higgs sector will be just one singlet field extension by the

singlet superpotential f(SH , Sj) = f(SH) without any other singlet field Sj interacting

with SH . In this case, the general form of f(SH) is given by

f(SH) = ξ(1 + θ2C)SH +
1

2
µ′(1 + θ2B′)S2

H . (B.1)
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Notice that S3
H is suppressed by a small coupling less than (vPQ/M∗)

p as SH is charged

under a PQ symmetry. Solving equations of motion, µeff and (Bµ)eff are found to be

µeff =
λ

2

−2ξµ′ − 2Cξ + λ(Aλ + µ′)v2 sin 2β

m2
S + λ2v2 + µ′2 +B′µ′

,

(Bµ)eff = λξ + µ′µeff +Aλµeff .

(B.2)

From these equations, one can find that at least two parameters among (ξ, Cξ, µ′) should

be around m3/2 to make µeff and (Bµ)eff around m3/2, when Aλ is negligible.6 However,

the sequestering factor ǫ ∼ 1/8π2 makes it non-trivial. For example, we obtain ξ ∼ m2
3/2

from the following operator,

∆W =
X2n+2

M2n
∗

SH ∼ m2
3/2(1 + θ2ǫm3/2)SH . (B.3)

On the other hand, Cξ is also generated around ǫm3
3/2 ∼ m3

3/2/8π
2 from the same operator.

Thus we cannot obtain ξ and Cξ of O(m3/2) simultaneously from the operator due to the

ǫ factor. This situation is actually generic for an arbitrary single operator because of the

structure X ∼ vPQ(1 + θ2ǫm3/2), Y ∼ vPQ(ǫ + θ2m3/2). Hence one cannot make two

parameters among (ξ, Cξ, µ′) be around m3/2 from a single higher dimensional operator.7

We are thus led to have at least two higher dimensional operators involving the singlet

field for the desired EWSB to occur. However, PQ charges of the three fields (X,Y, SH)

are already determined from WPQ = Xn+2Y/Mn
∗

and a higher dimensional operator for

one parameter among (ξ, Cξ, µ′) to be around m3/2. It means that we cannot arbitrarily

write down another higher dimensional operator for another singlet parameter.

In table 2, we enumerate all possible operators and corresponding PQ charges to pro-

duce each parameter of (ξ, Cξ, µ′) around m3/2.
8 In the table, one can see that there is no

PQ charge assignment that can make two parameters among (ξ, Cξ, µ′) be simultaneously

aroundm3/2. Moreover, for some cases, there appear unavoidable dangerous tadpoles which

produce µeff too larger than m3/2. These tadpoles cannot be forbidden even if one imposes

additional symmetries, because they must be allowed as long as the operators in the table

and WPQ = Xn+2Y/Mn
∗
are allowed by symmetries. This table will turn out to be useful in

the following subsections also. Therefore, we conclude that one singlet extension with the

simple PQ breaking sector given in section 2.3 is not viable for the low fine-tuned EWSB.

6Even though A-term by the moduli mediation is suppressed by ǫ compared to m3/2 as explained in

section 2, sizable Aλ might be generated by RG running, dominantly from gaugino masses. However, it

turns out to be still not large enough to realize the desired EWSB.
7Recall that the factor ǫ ∼ 1/8π2 makes it possible for the gauge mediation to be comparable to m3/2 by

FY /Y ∼ m3/2/ǫ. In this sense, the situation is similar to the µ/Bµ problem in the gauge mediation [106].
8If we allow that the effective suppressing mass scale of higher dimensional operators varies up to one-

loop factor over different operators by varying the magnitude of their dimensionless coefficients, there can

be more possibilities than the cases listed in this table because ǫ suppression can be overcome by one loop

factor smaller mass scale of a higher dimensional operator. We have examined these possibilities also, but it

cannot change the conclusions derived here including the cases of more singlet fields in the next subsection.
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∆K ∆W (qX , qY ) Dangerous term

ξ XnY ∗

Mn
∗

S X2n+2

M2n
∗

S
(

− 1
2(n+1) ,

n+2
2(n+1)

)

qS
X∗nY ∗

Mn
∗

S
(

−1
2 ,

n+2
2

)

qS X2S

Cξ X2n+1Y
M2n

∗

S
(

− 1
n−1 ,

n+2
n−1

)

qS Xn−1S

µ′ Xn+1

Mn
∗

S2
(

− 2
n+1 ,

2(n+2)
n+1

)

qS

Table 2. All higher dimensional operators and PQ charge assignments to give each of ξ, Cξ, µ′

around m3/2. For some cases, there appear unavoidable dangerous tadpoles.

B.2 Two singlets extension

The next minimal possibility will be two singlet extended Higgs sectors with f(SH , Sj) =

f(SH , S1). A generic form of f(SH , S1) is

f(SH , S1) =
1

2
κ(1 + θ2Aκ)S

2
HS1 +

1

2
κ1(1 + θ2Aκ1

)SHS2
1 +M1(1 + θ2B1)SHS1

+ ξ(1+θ2C)SH+
1

2
µ′(1+θ2B′)S2

H+ξ1(1+θ2C1)S1+
1

2
µ′

1(1+θ2B′

1)S
2
1 ,

(B.4)

where A-terms are suppressed by ǫ compared to m3/2, so we will neglect Aκ and Aκ1
.

Non-zero PQ charges of the fields (X,Y, SH , S1) will be fixed by three operators. Thus

besides the operator WPQ = Xn+2Y/Mn
∗
, we can write down two more operators involving

the singlet fields SH , S1 as desired forms. Note that working models must involve at least

one interaction term between SH and S1, like S2
HS1, SHS2

1 , or SHS1, since otherwise the

situation is not actually different from the one singlet extension of the previous subsec-

tion, which is shown to be unviable. Therefore, we should find the models in which two

terms in (B.4) including one of the interaction terms yield µeff ∼ 〈SH〉 . O(m3/2) and

(Bµ)eff ∼ 〈∂SH
f〉 ∼ O(m2

3/2).

There are two ways for SH to get a non-zero VEV. With the κS2
HS1 term, we get a

quartic scalar potential for SH so that it can get a non-zero VEV by its tachyonic mass. In

the absence of this term, one can see from the general form (B.4) that the scalar potential

for SH can be quadratic at most, so a tadpole scalar potential of SH can make a non-zero

VEV for SH if SH is non-tachyonic. Thus we will investigate models with/without the

κS2
HS1 term in the following.

B.2.1 With the cubic interaction S2

H
S1 in f(SH , S1)

The PQ symmetric cubic interaction term κS2
HS1/2 in f(SH , S1) gives a quartic scalar po-

tential κ2|SH |4/4, so SH can get its VEV by |SH | ∼ |mSH
|/κ if it is tachyonic (m2

SH
< 0).

Note that the singlet fields get their masses mainly from the D-term mediation with sub-

dominant RG running effect. Therefore, if SH is tachyonic, then S1 must be non-tachyonic

because the sign of their soft mass squared is determined by their PQ charges in the D-term

mediation. In this case, the right size of (Bµ)eff ∼ ∂SH
f ∼ κSHS1 + · · · is to be obtained

either by 〈S1〉 ∼ m3/2 or by another supersymmetric term in f(SH , S1) when 〈S1〉 vanishes.
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First, let us consider the way to obtain (Bµ)eff by non-vanishing 〈S1〉. Since S1 is not

tachyonic, it needs a tadpole or cubic scalar potential for a non-zero VEV. A cubic scalar

potential for S1 can be obtained from another superpotential term κ1SHS2
1 , but this term

is not allowed by the PQ symmetry unless SH and S1 are uncharged, because of κS2
HS1

term. On the other hand, in order to obtain a tadpole scalar potential for S1, one can find

that there are five possible models:

f(SH , S1) =
1

2
κS2

HS1 +

(

θ2C1ξ1S1, θ2B1M1SHS1, ξSH ,
1

2
µ′S2

H , or
1

2
µ′

1S
2
1

)

. (B.5)

The first model θ2C1ξ1S1 is not viable, because it allows unavoidable large tadpole superpo-

tentialXn−1S1 as shown in table 2 so that it induces (Bµ)eff ≫ O(m2
3/2). The second model

θ2B1M1SHS1 can be shown to be only realized by the superpotential term XnY S1SH/M∗,

but this case also suffers from a large tadpole X2SH which results in µeff ≫ O(m3/2).

The third and fourth models ξSH , µ′S2
H/2 require such a PQ charge assignment for SH

that SH is non-tachyonic in order to render X tachyonic for a spontaneous PQ symmetry

breaking, as seen in table 2. Hence it will make S1 tachyonic, and then it can be shown

that S1 is destabilized and 〈SH〉 vanishes to make µeff = 0, so they are excluded. Finally,

the last model turns out to give a consistent scenario with µ′

1 ∼ Xn+1/Mn
∗

which allows

non-tachyonic S1 and tachyonic SH . Therefore we have found a working model:

f(SH , S1) =
1

2
κ1S

2
HS1 +

1

2
κ2

Xn+1

Mn
∗

S2
1 . (B.6)

The other way to obtain (Bµ)eff is through another supersymmetric term besides

κS2
HS1 in f(SH , S1) when 〈S1〉 vanishes. This could be achieved by either ξSH or µ′S2

H/2

giving ∂SH
f ∼ (ξ, µ′SH) ∼ O(m2

3/2) if SH is consistently stabilized through its quartic

scalar potential. However, these cases are already included in (B.5), which turned out to

be not working.

Finally, if SH is not tachyonic, there should be a tadpole or cubic scalar potential for

SH to get a non-zero VEV even with its quartic scalar potential. Barring the cases already

included in (B.5), we find that the following models can give such a scalar potential for SH ,

f(SH , S1) =
1

2
κS2

HS1 +
(

θ2CξSH , or M1SHS1

)

. (B.7)

The first case θ2CξSH suffers from the large tadpole superpotential Xn−1SH as discussed

before, and then (Bµ)eff ∼ ∂SH
f ∼ M3−n

∗
Xn−1 is much larger than O(m2

3/2). The sec-

ond case M1SHS1 can be only realized by M1 ∼ Xn+1/Mn
∗
. However, this also allows an

unavoidable tadpole superpotential XY SH . Therefore, we conclude that there is only one

working model with the cubic interaction S2
HS1 in f(SH , S1).

B.2.2 Without the cubic interaction S2

H
S1 in f(SH , S1)

In the absence of the cubic interaction S2
HS1 in f(SH , S1), the scalar potential for SH can

be quadratic at most. Thus SH needs a tadpole scalar potential with its non-negative mass
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squared to get a non-zero VEV. The first obvious choice is through soft terms which are

linear in SH ,

f(SH , S1) =
(

θ2CξSH , or θ2B1M1S1SH

)

+ (something). (B.8)

The θ2CξSH term is not available because of the large tadpole problem as in the previous

cases. The second case θ2B1M1S1SH requires that S1 gets a non-zero VEV to give a tadpole

for SH , and this should be done by another term. That term must be a supersymmetric

term to give non-negligible (Bµ)eff ∼ ∂SH
f . Then one can find that there is only one

possibility, which is through κ1S
2
1SH/2 with tachyonic S1. However, this is similar to the

second case of (B.5), so it suffers from a large tadpole X2S1 which produces (Bµ)eff ≫
O(m2

3/2).

The second way to get a tadpole scalar potential for SH is through supersymmetric

terms. Such models are found to be

f(SH , S1) = M1S1SH +

(

ξ1S1, or
1

2
µ′

1S
2
1

)

, (B.9)

f(SH , S1) =
1

2
κ1S

2
1SH +

(

ξ1S1,
1

2
µ′

1S
2
1 , or

1

2
µ′S2

H

)

. (B.10)

In the first model ξ1S1 in (B.9), there is no scalar potential for S1 other than its mass

term so that (Bµ)eff ∼ ∂SH
f ∼ M1S1 is destabilized or vanishes depending on whether S1

is tachyonic or non-tachyonic. The second model µ′

1S
2
1/2 in (B.9) has only bilinear scalar

potentials for SH and S1, so they will either have a vanishing VEV, or be destabilized,

meaning both µeff and (Bµ)eff cannot have the right size.

The first and second models of (B.10) are similar to the third and fourth models of (B.5)

by just interchaging SH ↔ S1, and so now SH is destabilized and 〈S1〉 vanishes. Thus they
result in µeff ≫ O(m3/2) and (Bµ)eff ∼ 0. The last case of (B.10) is also similar to the

working model of (B.6) by interchaging SH ↔ S1. The only difference is that now S1 gets

a non-zero VEV by its quartic scalar potential with a tachyonic mass and SH through its

tadpole scalar potential after 〈S1〉 becomes non-zero. Therefore, we conclude that there is

one more viable model without the cubic interaction S2
HS1 in f(SH , S1):

f(SH , S1) =
1

2
κ1S

2
1SH +

1

2
κ2

Xn+1

Mn
∗

S2
H . (B.11)

B.3 Non-minimal PQ breaking sector

In section B.1, we see that the one singlet extension with a simple PQ breaking sector is

not working because the number of fields is not enough so that PQ charges of each field is

determined by smaller number of operators than necessary. Thus if the spontaneous PQ

breaking sector consists of more than two fields, the restriction can be removed. In this

subsection, we will explore the possibility that the one singlet extension can be made viable

with more than two fields in the spontaneous PQ breaking sector.

Let us start with three fields X,Y, Z. One of the three fields must be tachyonic if they

are not PQ singlet, because at least one should have a positive PQ charge to conserve the
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PQ symmetry. We will call this field X as in the case of two fields in section 2.3. Likewise,

at least one of them should have a negative PQ charge so that it is non-tachyonic, and we

call this field Y . The superpotential for the PQ breaking sector must consist of only one

operator in order to allow two higher dimensional operators involving SH to be in desired

forms. Therefore, the most general form of the PQ breaking sector with three fields can

be written as

WPQ =
Xn1Y n2Zn3

Mn
∗

, (B.12)

where n1 + n2 + n3 = n + 3 and n, ni ≥ 1. The corresponding scalar potential containing

soft terms is

VPQ = m2
X |X|2 +m2

Y |Y |2 +m2
Z |Z|2 +A3

Xn1Y n2Zn3

Mn
∗

+
|X|2(n1−1)|Y |2n2 |Z|2n3

M2n
∗

+
|X|2n1 |Y |2(n2−1)|Z|2n3

M2n
∗

+
|X|2n1 |Y |2n2 |Z|2(n3−1)

M2n
∗

,

(B.13)

with m2
X < 0 and m2

Y > 0 in our convention.

Now we require that at least one non-tachyonic state gets a relatively small VEV

proportional to the small A3 to generate a sizable gauge mediation as discussed in sec-

tion 2.3. To this end, one can find that n2 should be 1 so that the A3-term is linear in Y .

Also we observe that X,Z must get their non-zero VEVs when Y = 0 in order to make

A3-proportional tadpole term for Y . Then Y can get its small VEV proportional to A3.

With Y = 0, we examine the potential in arbitrary field directions in X-Z plane by

parametrizing the fields as |X| = |ϕ| cosα, |Z| = |ϕ| sinα with 0 ≤ α ≤ π/2. In the field

direction ϕ with a constant value of α, the potential becomes

VPQ = (m2
X cos2 α+m2

Z sin2 α)|ϕ|2 + (cosα)2n1(sinα)2n3
|ϕ|2(n+2)

M2n
∗

, (B.14)

where m2
X < 0. If (m2

X cos2 α + m2
Z sin2 α) < 0, the potential will be minimized along ϕ

direction at

|ϕ| = 1

(cosα)n1/(n+1)(sinα)n3/(n+1)

(

Mn
∗

√

∣

∣m2
X cos2 α+m2

Z sin2 α
∣

∣

)1/(n+1)

∼ vPQ

(cosα)n1/(n+1)(sinα)n3/(n+1)
.

(B.15)

At this field value, the potential turns out that VPQ ∼ −(cosα)−2n1/(n+1)(sinα)−2n3/(n+1)

and ∂2VPQ/∂α
2 < 0. Thus this point actually corresponds to a saddle point in the X-Z

field space. Also the potential is unbounded from below in the field direction Z = 0 (α = 0)

unless n3 = 0. Therefore, ϕ is destabilized in the X-Z plane. It means that generically

one cannot make the required pattern of PQ symmetry breaking with three fields.

We are thus led to consider even more than three fields. The simplest possibility with

four fields will be

WPQ = y1
Xn+2Y

Mn
∗

+ y2
X ′n+2Y ′

Mn
∗

, (B.16)
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where (X ′, Y ′) fields have some different PQ charges from the (X,Y ) fields so that any inter-

action betweem them is suppressed. Then each term will realize the correct PQ symmetry

breaking pattern as in the two fields case, and we can use the two kinds of fields of different

PQ charges to generate two parameters among (ξ, Cξ, or µ′) with the PQ charge assign-

ments in table 2. In this way, one can realize the low fine-tuned EWSB with one singlet

field extended Higgs sector, but it requires such a complication of the PQ breaking sector

that there must be more than three fields and a non-trivial PQ charge relation among them.
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[33] P. Svrček and E. Witten, Axions in string theory, JHEP 06 (2006) 051 [hep-th/0605206]

[INSPIRE].

– 24 –

http://dx.doi.org/10.1016/j.physrep.2010.07.001
http://arxiv.org/abs/0910.1785
http://inspirehep.net/search?p=find+EPRINT+arXiv:0910.1785
http://dx.doi.org/10.1103/PhysRevD.75.035007
http://arxiv.org/abs/hep-ph/0607332
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0607332
http://dx.doi.org/10.1007/JHEP04(2012)022
http://arxiv.org/abs/1112.1014
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.1014
http://dx.doi.org/10.1007/JHEP09(2012)007
http://arxiv.org/abs/1205.2486
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.2486
http://dx.doi.org/10.1142/S0217732312501660
http://arxiv.org/abs/1201.6547
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.6547
http://dx.doi.org/10.1007/JHEP11(2012)118
http://arxiv.org/abs/1208.2555
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.2555
http://dx.doi.org/10.1007/JHEP01(2014)072
http://arxiv.org/abs/1308.4447
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.4447
http://dx.doi.org/10.1016/0370-2693(95)00620-Z
http://arxiv.org/abs/hep-ph/9504420
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9504420
http://dx.doi.org/10.1103/PhysRevD.91.015003
http://arxiv.org/abs/1410.7500
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.7500
http://dx.doi.org/10.1016/0550-3213(89)90503-8
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B325,687
http://dx.doi.org/10.1016/0550-3213(90)90149-8
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B329,387
http://dx.doi.org/10.1103/PhysRevD.52.912
http://arxiv.org/abs/hep-th/9502069
http://inspirehep.net/search?p=find+EPRINT+hep-th/9502069
http://dx.doi.org/10.1103/PhysRevD.83.084019
http://arxiv.org/abs/1011.5120
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.5120
http://dx.doi.org/10.1103/PhysRevD.46.539
http://inspirehep.net/search?p=find+J+Phys.Rev.,D46,539
http://dx.doi.org/10.1016/0370-2693(92)90492-M
http://arxiv.org/abs/hep-th/9202003
http://inspirehep.net/search?p=find+EPRINT+hep-th/9202003
http://dx.doi.org/10.1016/0370-2693(92)90491-L
http://arxiv.org/abs/hep-ph/9203206
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9203206
http://dx.doi.org/10.1016/0370-2693(85)90440-X
http://inspirehep.net/search?p=find+J+Phys.Lett.,B158,397
http://dx.doi.org/10.1016/0370-2693(88)90678-8
http://inspirehep.net/search?p=find+J+Phys.Lett.,B207,434
http://dx.doi.org/10.1088/1126-6708/2006/06/051
http://arxiv.org/abs/hep-th/0605206
http://inspirehep.net/search?p=find+EPRINT+hep-th/0605206


J
H
E
P
0
5
(
2
0
1
5
)
0
6
3

[34] K. Choi, K.S. Jeong, K.-I. Okumura and M. Yamaguchi, Mixed mediation of supersymmetry

breaking with anomalous U(1) gauge symmetry, JHEP 06 (2011) 049 [arXiv:1104.3274]

[INSPIRE].

[35] G. Honecker and W. Staessens, On axionic dark matter in type IIA string theory,

Fortsch. Phys. 62 (2014) 115 [arXiv:1312.4517] [INSPIRE].

[36] K. Choi, K.S. Jeong and M.-S. Seo, String theoretic QCD axions in the light of PLANCK

and BICEP2, JHEP 07 (2014) 092 [arXiv:1404.3880] [INSPIRE].

[37] M.B. Green and J.H. Schwarz, Anomaly cancellation in supersymmetric D = 10 gauge

theory and superstring theory, Phys. Lett. B 149 (1984) 117 [INSPIRE].

[38] L.E. Ibanez and A.M. Uranga, String theory and particle physics: an introduction to string

phenomenology, Cambridge Univ. Pr., Cambridge U.K. (2012) [INSPIRE].
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