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Abstract

This article presents a new paradigm for robust flutter modeling and analysis of high-order uncertain and
linear aeroelastic systems. The fundamental idea is to couple the state-of-art in robust worst-case analysis
(Linear Fractional Transformation modeling and µ analysis) with the state-of-practice in aeroelasticity (fluid-
structure-interaction solvers). The issue with the latter is that, although capable of providing different levels
of fidelity, they are less efficient in coping with the analysis of systems subject to uncertainties. In fact,
while they have the advantage of capturing directly the physical uncertainty, the analyses can only be
applied to a defined parameter combination, and due to their computational cost, it is usually only possible
to consider a limited set of cases. To tackle this lack of robustness, in recent works the application of
analytic worst-case methods has been proposed, but the intimately related problem of constructing accurate
uncertain models has not been fully addressed. In this article, a co-modeling framework is presented that
leverages the main features of both fluid-structure interaction solvers and robust control-based methods. The
key idea is to combine these two typically distinct steps in a single one, enabling in this way to obtain an
uncertainty description which is flexible and reconciles the physical sources of uncertainty with the uncertain
parameters used in the LFT model. An exemplification of the developed framework on an unconventional
aircraft configuration is provided. Results show its potential to provide valuable physical insights into the
problem when analyzing complex systems.

Keywords: Linear Fractional Transformation; uncertain systems; robust modeling and analysis.

1. Introduction

Aeroelasticity studies the interaction of a flexible structure and a fluid. This is typically accomplished
with fluid-structure interaction (FSI) solvers, describing the interplay between elastic deformation and aero-
dynamic loads by means of specialized dedicated tools. Among the aeroelastic phenomena, flutter is a
self-excited dynamic instability which can provoke failure of the structure. For this reason, flutter has been
widely studied and, nowadays, solution methodologies are quite established [1].

One of the main issues in the state-of-practice for flutter analysis originates from the sensitivity of this
instability to modeling assumptions and to variations in the nominal values of the parameters. With the goal
of providing the analyst with tools complementing the conventional approaches for nominal flutter analysis,
in the last two decades researchers have looked at analytical modeling and analysis techniques from the
robust control community, namely the Linear Fractional Transformation (LFT) model representation and
the structured singular value (s.s.v.) or µ analysis [2]. In essence, they represent a generalization of the
linear stability (and performance) analysis for systems subject to uncertainties, which is performed in a
deterministic and methodological manner. Robust flutter analysis aims to quantify the gap between the
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conditions at which the instability occurs when the model has no uncertainties and the worst-case scenario
when uncertainties are considered. This represents a powerful tool when used as a complement to classical
techniques in that it can highlight weak points of the model requiring refinement and conversely identify
parameters that can be coarsely estimated as they do not have a strong influence on the results.
Foundational works are those from [3] and [4], which provided an end-to-end process, from robust modeling
to analysis, and demonstrated the validity of the approach. More recently, in reference [5] the potential of
the µ-LFT framework in providing something more than a simple binomial-type prediction (that is, whether
the system is robustly stable or not in the face of the defined uncertainties) was illustrated with application
to aeroelastic instabilities characteristic of modern aircraft configurations. Complementing the latter work,
reference [6] considered specific features of the LFT model development paths for aeroelastic systems and
investigated the effect of different LFT modeling options. However, despite the research carried out on
these approaches, physical based rationale to select the uncertainties and systematic methods to represent
them as LFTs, which are effective regardless of the fidelity (or order) of the model, are still lacking in the
community.

Driven by these objectives, this article formulates a novel co-modeling LFT-FSI framework, whose dis-
tinctive feature is to reconcile the advantages of robust control tools and aeroelastic solvers by combining
these two classically separated steps in a single one. The main technical contribution (Section 4) consists of
a symbolic LFT modeling algorithm, embedded in the FSI solver, which allows parametric uncertainty de-
scriptions of generic complexity to be accurately captured and efficient µ analysis to be subsequently applied.
Specifically, the developed approach allows LFT models to be obtained with the uncertainties derived from
physical parameters defined within the high-fidelity FSI solvers. It is noted that the connection between
physical sources of uncertainty (well distinguishable in the original high-order system) and uncertain param-
eters captured in the LFT model is a paramount aspect, and yet this has not received full consideration. For
example, in [3, 4] the uncertainties in the structural operators consisted of modal quantities (e.g. natural
frequencies), whereas [7, 8] considered physical sources of uncertainties but the examples were restricted to
a small number, and specific types, of parameters. In addition, prompted by the fact that the computation
of lower bounds on µ is the result of a non-convex optimization, an algorithm to check the optimality of
the found worst-case perturbation matrix is also devised and its usage with the proposed iterative analysis
algorithm formalised.

A second contribution (Section 3) is the discussion of an improved numerical LFT modeling strategy.
This belongs to the class of commonly employed approaches for LFT modeling, but, compared to those
found in the literature, new features are proposed here enable to enable considering a larger number of
variables while keeping the ensuing robust analysis problem computationally tractable. This is achieved
by exploiting the knowledge of the aeroelastic dynamics, and, most importantly, by introducing the idea
of modal-oriented LFT modeling, which allows the definition of uncertainty only in a restricted number of
structural modes.

While in this article application of µ analysis is pursued, it is stressed that methods to construct accurate
LFT models for high-order systems are of more general interest. Indeed, various techniques in robust control
require such a characterization of the uncertainty, for example multi-plant synthesis [9, 10] and Integral
Quadratic Constraints analysis [11, 12].

In order to exemplify the capability of the developed LFT-FSI framework, in Section 5 two case studies
featuring a joined-wing aircraft of the Prandtlplane type [13] are considered. This aircraft layout has
been chosen as demonstration platform because of its complex and only partially understood aeroelastic
behaviour, which makes it a challenging test bed for the presented strategies [14]. Given the current interest
in unconventional aircraft (due to their prospective advantages to tackle the challenges of contemporary
aviation), the results showcased by the developed methods suggest that they can represent a useful tool to
gain a more-in-depth understanding and allow a more efficient design process.

The article, which extends preliminary results published in [15], is structured as follows. Section 2
provides the essential background of the work. Section 3 discusses a numerical LFT methodology which
addresses some of the shortcomings of the available methods. In Section 4 the LFT symbolic framework is
detailed, and a comprehensive discussion on advantages and possible issues is presented. Section 5 demon-
strates the application of the developed framework to the case studies, and Section 6 concludes the work.
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2. Theory fundamentals & Tools

In this section a cursory overview of the robust control-based techniques used here, namely LFT modeling
and µ analysis, is given first. Then, a brief description of the fluid-structure interaction problem is provided
with focus on the in-house solver employed in this work. This section also contains all the assumptions on
the FSI model and the abbreviations used in the remainder of the paper.

2.1. Robust control theory: LFT modeling and µ analysis

Let M be a matrix partitioned as M = [M11 M12; M21 M22]. Let also indicate with ∆ a structured
uncertainty set, i.e. a set defined as follows [2]:

∆x,R−y,C = diag(δRdiIkdi , δ
C
djIkdj ,∆

C
Dz ) (1)

where the uncertainties associated to repeated real scalars δRdi , repeated complex scalars δCdj , and full complex

blocks ∆C
Dz

are listed in diagonal format (and where Ikdi denotes the identity matrix of dimension kdi equal
to the number of repetitions of the parameter). Total real and complex parameters gathered in ∆ are
indicated respectively by (x,R) and (y, C).

The upper LFT model of M with respect to ∆ is:

Fu(M,∆) = M22 + M21∆(I−M11∆)−1M12 (2)

The size of an LFT refers to the total dimension of the associated set ∆, whereas the magnitude of a
realization of ∆ will refer to its maximum singular value, i.e. σ̄(∆) (with ∆ ∈∆).
If M is taken as a proper transfer matrix, then Fu is the closed-loop transfer matrix from input u to output
y when the nominal plant (i.e. the system with no uncertainty) M22 is subject to a perturbation matrix ∆.
A crucial feature, apparent in Eq. (2), is that the LFT is well posed if and only if the inverse of (I−M11∆)
exists.
In this work the focus is on parametric uncertainties, which can be used to describe parameters whose
values are varying or not known within a satisfactory level of confidence. Considering a generic uncertain
parameter d, with wd indicating the uncertainty level with respect to a nominal value d0 and δd ∈ [−1, 1]
representing the normalized uncertainty value, a general uncertain representation is given by:

d = d0(1 + wdδd) (3)

This (scalar) expression is often referred to as multiplicative uncertainty [2]. At a matrix level, the operator
D which is affected by structured uncertainties ∆D can be expressed as:

D = D0(I + WD∆D) (4)

where WD is a scaling matrix gathering the uncertainty levels.
For analysis of uncertain systems, a well-established concept is the structured singular value (s.s.v.) [16],

which is represented by µ∆(M) and defined as:

µ∆(M) =
1

min
∆∈∆
{κ : det(I− κM∆) = 0; σ̄(∆) ≤ 1}

(5)

where ∆ is the structured uncertainty set associated with Fu(M,∆). For ease of calculation and interpre-
tation, and without loss of generality, this set is norm-bounded by scaling of M. Note that M is a transfer
matrix, thus µ∆(M) is a function of the frequency ω.
The result of the robust stability (RS) test, as applied to a system represented by an Fu(M,∆), can then be
interpreted as follows: if µ∆(M) < 1 then there is no perturbation matrix inside the allowable set ∆ such
that the determinant condition is satisfied. That is, Fu(M,∆) is well posed and thus the associated plant is
robust stable within the range of uncertainties considered. On the contrary, if µ∆(M) ≥ 1 a candidate (i.e.
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belonging to the allowed set) perturbation matrix exists that violates the well-posedness, i.e. the uncertain
system described by Eq. (2) is unstable.

It is known that µ∆(M) is in general an NP-hard problem [2], thus all µ algorithms work by searching
for upper (UB) and lower (LB) bounds. The upper bound µUB provides the maximum size perturbation
σ̄(∆UB) = 1/µUB for which RS is guaranteed, whereas the lower bound µLB defines a minimum size per-
turbation σ̄(∆LB) = 1/µLB for which RS is guaranteed to be violated. It is emphasized here that the lower
bound also provides a matrix ∆LB = ∆̂cr satisfying the determinant condition. If the bounds are close in
magnitude, then ∆LB is the worst-case matrix –i.e. the perturbation with the smallest magnitude leading
to instability.

2.2. CSHELL: an advanced fluid-structure interaction solver

CSHELL is an FSI solver developed by the authors of references [17, 18]. Among the available im-
plemented capabilities, in here only the modules and methods required for the proposed framework are
described.

The equation governing the aeroelastic system in the frequency domain is written as:[
−ω2M̄s + iωC̄s + K̄s − q∞Qhh(iω)

]
η = 0 (6)

where q∞ = 1
2ρ∞V

2
∞ is the dynamic pressure, ρ∞ is the air density, V∞ is the speed, ω the frequency, M̄s,

C̄s, K̄s ∈ Rns×ns represent respectively the generalized structural mass, damping and stiffness matrices (ns
is the number of normal modes), Qhh is the generalized aerodynamic force (GAF) coefficient matrix, and η
the generalized coordinates vector. Flutter analysis studies the conditions at which the dynamic aeroelastic
system (6), loses its stability. Specifically, the flutter speed Vf is the lowest value of V∞ such that the system
becomes unstable.

The generalized structural matrices are obtained with the modal decomposition approach from their
finite element counterparts Ms, Cs, Ks ∈ RNs×Ns , with Ns indicating the number of structural independent
degrees of freedom, as:

M̄s = ΦTMsΦ

C̄s = ΦTCsΦ

K̄s = ΦTKsΦ

(7)

where the modal matrix Φ ∈ RNs×ns is obtained by the classic eigenvalue-eigenvector free vibration problem
of the structure and, thus, depends on Ms and Ks: Φ = Φ(Ms,Ks). The structural damping Cs will be
assumed null without loss of generality.

The FE elastic stiffness Ks and mass Ms matrices are modelled with beam finite elements, in addition to
nonstructural elements (e.g. concentrated masses), and are obtained through the well-known procedure of
matrix assembly starting from the contributions at element level. For example, the beam element matrices
Ke will contribute to Ks as follows:

Ks =
∑
e

Le
TKe Le (8)

where Le is the rotation matrix relating the local nodal displacements and the global ones, and the
∑
e

operation is adopted in its general meaning of assembly over all the finite elements [19]. In turn, the matrix
Ke is a function of the local geometry and material properties, e.g., the Young modulus of the beam E, its
moment of inertia I, and the beam length l.

As for the evaluation of unsteady aerodynamic forces, a Double Lattice Method (DLM) solver developed
by the authors of reference [17] is used. Given a reduced frequency k (nondimensional counterpart of the
dimensional frequency ω) and a set of ns normal modes, the DLM tool evaluates, in the frequency domain,
the GAF matrix Qhh(ik). This matrix contains the transfer functions from generalized displacements η to
generalized aerodynamic forces normalized by the dynamic pressure q∞ at the reduced frequency k. Since
Qhh represents a transfer matrix between generalised quantities, it depends on the structural modes Φ,
which are provided as input to the DLM code, and thus variations in the structural parameters do have an
effect on the calculation of Qhh.
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Another important remark is that Qhh does not have a rational dependence on k. Therefore, in order
to build up a linear state-space formulation of Eq. (6), Rational Function Approximation (RFA) strategies
are typically adopted [1]. In particular, the RFA method employed in this work is the so-called Roger’s
Approximation method [20]. According to this RFA approach, the GAF matrix is approximated as follows:

Qhh(ik) ∼= AQ(ik) = (ik)2AQ
2 + (ik)AQ

1 + AQ
0 +

NQ∑
L=3

ik

(ik) + γL−2
AQ

L (9)

where the matrices AQ
i with i = 0, ..., NQ are coefficient matrices found by applying a linear least-square

fitting to the aerodynamic operator Qhh(ik) over the considered set of reduced frequencies k, and γi are
lag coefficients chosen by the user. In practice, the high-pass filters in (9) capture the memory effect of the
wake, which results in a phase shift and magnitude change with respect to the instantaneous aerodynamic
loads (or quasi-steady contribution, represented by the first part of the approximation).

2.3. Aeroelastic equation for LFT modeling

In [6] the application of the LFT paradigm to describe uncertain aeroelastic systems was discussed.
Specifically, it was detailed how to derive LFT models starting from a description of the aeroelastic system
provided in frequency-domain (Eq. 6) or in state-space. This distinction is relevant in the robust control
community [2]. For example, the latter favours the usage of advanced robust analysis (e.g. Integral Quadratic
Constraints [11]) and control design techniques [9]. Therefore, the starting point for LFT modeling will be
formulated here in state-space and the corresponding representation will be derived in this section.

Based on the direct analytical continuation from reference [21], if an analytical function such as that
of Eq. (9) is known in terms of the imaginary variable ik, the same expression can be used with a generic
complex variable s = g + ik without loss of validity. Thus, the problem can be expressed in the s domain
by just substituting in Eq. (6) ik with s and replacing the GAF matrix Qhh with the RFA from (9):[

s2M̄s + sC̄s + K̄s − q∞AQ(s)
]
η(s) = 0 (10)

where s is the (dimensionless) Laplace variable. The resulting state-space equations include augmented
aerodynamic states ηaL (L = 3, ..., NQ) due to the RFA and can be explicitly written out as:

η̇
η̈
η̇a3

...
η̇aNQ

 =


0 I 0 ... 0

−M̂−1K̂ −M̂−1Ĉ qM̂−1AQ
3 ... qM−1AQ

NQ

0 I −V∞
L γ1I ... 0

...
...

...
. . .

0 I 0 −V∞
L γNQ−2I




η
η̇
ηa3

...
ηaNQ



ẋ = Ax

(11)

where A is the state-matrix of the system, x = [η η̇ ηaL]T and M̂, Ĉ and K̂ are respectively the
generalized aeroelastic inertial, damping and stiffness matrices:

M̂ = M̄s −
1

2
ρ∞b

2AQ
2

Ĉ = C̄s −
1

2
ρ∞bV∞AQ

1

K̂ = K̄s −
1

2
ρ∞V

2
∞AQ

0

(12)

Note that the focus of this work is on stability, hence only the state-matrix A is reported in Eq. (11).
Specifically, the flutter speed Vf is the lowest value of V∞ for which A has a pair of eigenvalues on the
imaginary axis. In case the system has inputs (e.g. gust, control surfaces) and outputs (e.g. load factors),
and also robust performance or control design are considered, the state-space model will comprise the four
state-matrices [A B; C D] classically used to describe a Linear Time Invariant (LTI) system.
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Finally, Fig. 1 shows a schematic description of the main components involved in the FSI problem.

DLM

RFA
Aeroelastic

System

Eigenvalue

Analysis

Stability

Structural 

FEM

CSHELL

Figure 1: Sketch of CSHELL and of the flutter stability problem.

3. Numerical LFT approaches

The goal of this section is to first present the state-of-practice in LFT modeling of high-order aeroe-
lastic systems and highlight the current limitations (Section 3.1). Strategies to mitigate these are then
proposed in Section 3.2, where among others the concept of modal-oriented LFT approach is introduced.
Notwithstanding the proposed improvements, inherent limitations hold for this approach to LFT model-
ing, as commented in Section 3.3. These reflections are fundamental to emphasize important aspects often
neglected in the literature, and pave the way for the novel approach developed in Section 4.

3.1. Overview of previous approaches proposed in the literature

The LFT modeling of high-order systems is commonly accomplished via numerical approaches. They are
typically based on linearizing the high-fidelity model at scattered values of the parameters in the uncertainty
set [22, 23], followed by a model-order reduction [7] to obtain lower-size LTI representations. The family of
LTI systems is then interpolated so that a polynomial description is obtained. Finally, advanced algorithms
which allow polynomial expressions to be recast into LFTs [24, 25, 26] are applied.

This approach has been applied already to aeroelastic systems in the last two decades. In [27] a sys-
tematic approach to perform the sequential operations described before was presented. It was shown that
standard modal truncation cannot be employed as reduction technique because numerical and modal con-
sistency problems can be encountered due to the complexity of the models. These issues compel employing
model reduction strategies that achieve state vector consistency among the reduced LTIs. This consistency
property is desirable so that the resulting polynomial interpolation exhibits regular modal trajectories and
frequency responses with respect to the uncertain parameters, but it is not straightforward to achieve. A
more sophisticated version was discussed in [7], where advanced reduced order algorithms were proposed
specifically tailored to address the LFT nature of the final representation in the interpolation step. In both
cases [27, 7], the accuracy of the LFT is only validated by comparing eigenvalues and frequency domain
indicators (e.g. Bode plots), but no µ flutter analysis is pursued. Thus, there was no validation of the re-
sults in terms of worst-case perturbations and resulting flutter speeds with respect to the original high-order
system.
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This type of validation was addressed in [8], which showed that the robust predictions aided in the compre-
hension of nonlinear phenomena observed during flight. However, only a small number of uncertainties was
considered and there was no mention of systematic approaches to deal with broader uncertainty sets.

In view of the scenario described above, it is deemed relevant to develop LFT modeling methodologies
capable of addressing present restrictions and limitations. Starting from the class of numerical approaches,
possible improvements are discussed in Section 3.2.

3.2. Improved construction of numerical LFTs

The proposed methodology consists of distinct approaches for the structural and aerodynamics uncertain
operators.

For the structural uncertainty case, once the corresponding set ∆ is defined, an appropriate number of
samples npts must be selected. A good initial guess is represented by the vertices of the set, i.e. all the possible
combinations of the extreme values of the uncertainties. For cases with a large number of uncertainties this
will be prohibitively large, i.e. npts=2nstr where nstr is the number of independent parameters in ∆. In
these cases it might be necessary to perform a sensitivity analysis and apply as well engineering judgment
to reduce the number of samples.
For each sample, the structural solver is run and the generalized modal operators M̄s and K̄s from Eq. (7)
are evaluated. This leads to a family of matrices M̄s(∆), K̄s(∆) which are interpolated in order to find
polynomial expressions describing the dependence of the modal operators on the parameters of the set. In
this work, this step is performed by means of the APRICOT library [28] of the SMAC toolbox. This library
offers a wealth of routines to perform the polynomial interpolation more efficiently than the classically
employed least-square method. The routine used here is olsapprox, which implements an orthogonal least-
square method that allows obtaining a multivariate sparse polynomial approximation for the coefficients of
the matrices. Sparsity is a highly advantageous feature since it alleviates the issue of data overfitting and it
has the benefit to minimize the size of the resulting LFT. The algorithm allows the definition of a threshold
on the maximum error of the interpolation (checked via a comparison with all the samples provided as
input) and the degree of the approximant. Finally, the polynomial matrices are converted into LFTs and
the state-space representation of the system (Eq. 11) is built up.

An important feature of the methodology proposed here is that the interpolation is applied separately
to the modal operators (i.e. M̄s and K̄s) instead of directly to the state-matrix A. This is referred here
as modal-oriented LFT modeling approach, to stress that the LFT transformation is applied to the distinct
modal operators, rather than to the final state-matrix as typically done [7]. It is also noted that the ad-
vantage of building LFT models starting from specific building blocks of the dynamics rather than directly
from the state-space equation has been already recognized in the community [25, 24, 8]. The advantageous
features of this approach are discussed next.
Since it interpolates directly modal quantities, this algorithm automatically provides state vector consistency
among the different interpolated operators, which in previous applications have proved to require an addi-
tional step. Regarding this, the numerical problems encountered in [27] are not an issue with this approach
because the modal content is discerned at the structural operator level, and not at the aeroelastic one (Eq.
11) where aerodynamic coupling makes it more difficult. A further advantage is that it is possible to generate
different LFTs, each differing in the number of modes nδ affected by uncertainties (with nδ ≤ ns, where ns
is the number of modes retained in the modal decomposition). This allows identifying the minimum number
of modes where uncertainties have to be introduced to obtain a valid flutter analysis result and, by doing
so, can provide a lower size aeroelastic LFT model to be employed in subsequent extensive robust analyses
(e.g. the µ sensitivity analyses commented in [5]). Moreover, the possibility to consider different nδ in the
analyses can provide further insight into the instabilities affecting the system. Finally, this method allows
the structure of the aeroelastic equation (11) to be exploited when performing the numerical approximation.
This helps to further reduce the size of the LFT compared to the case where all the terms of the state-matrix
are interpolated.

With respect to the case of uncertainties related to the aerodynamic operator, it must be noted that the
sources of uncertainty can be ascribed to different causes. For example: variations in structural parameters
not (accurately) taken into account; simplifying modeling assumptions (e.g. potential flow); and numerical
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approximations (e.g. calculation of Qhh on a discrete set of frequencies or rational fitting of AQ).
With regard to the first of the sources of uncertainty, recall from the definition of the aerodynamic operator
in Section 2.2 that perturbations in the structural operators lead to changes in Qhh. In principle, this
can be tackled as for the structural operators, i.e. generating a polynomial interpolation of the state-
space operator AQ (Eq. 9). However, this entails evaluating samples of Qhh (at different frequencies)
and performing a polynomial interpolation of the rational approximants, which could be computationally
demanding. Alternatively, a frequency-domain characterization of the associated error can be estimated
and based on this the aerodynamic uncertainty description can be formulated using the method proposed in
[6]. The fundamental idea is to express the uncertainties directly in the original frequency domain operator
Qhh despite the fact that the system is formulated in state-space (Eq. 11). This approach privileges a
physics-driven definition of the uncertainties because it allows to work with the transfer matrix between
displacements and loads. This is achieved by means of a particular application of the concept of unmodelled
dynamics in the context of aeroelastic operators [2]. Note first that, since the GAF matrix provides a relation

between displacements (but not speeds or accelerations) and loads, only the aeroelastic stiffness matrix K̂
has to be considered. This matrix, recall its definition in Eq. (12), can thus be written as:

K̂ = K̄s −
1

2
ρ∞V

2
∞AQ

0 −VQ∆QWQ (13)

The nominal part of the aeroelastic stiffness matrix (i.e. the first two terms in the right hand side) is given
by the state-space model, while the uncertainty part employs a standard description of the uncertainty (4)
with scaling matrices (potentially frequency dependent) VQ and WQ and structured complex matrix ∆Q

containing the uncertainty in the transfer functions of Qhh. This representation at operator level provides,
at LFT level, the expression for M used by µ for the robust stability test (5). The reader is referred to [6]
for more technical details on the derivation of this uncertainty description.

Compared to standard approaches in the literature, which apply uncertainties in the approximated
aerodynamic matrices forming AQ (e.g. in [3] uncertain lag roots are analysed), this method allows the
uncertainty definition to be assisted by physical considerations. For instance, if a lack of accuracy (based
on the evidence of experimental results or other computational data) is detected in some of the transfer
functions of Qhh, it is then possible to model it directly as an additional uncertain parameter. Moreover,
the matrix coefficients in Qhh are complex and so are the associated uncertainties, resulting in a notable
improvement on the accuracy and run time of the µ analyses [2].

Application of this numerical LFT-FSI modeling approach for the analysis of one of the case studies is
presented in Section 5.2.

3.3. Assessment of issues in numerical LFT approaches

The uncertainty modeling approach discussed in Section 3.2 features improvements with respect to
standard approaches, but some drawbacks can be observed in relation with: i) the accuracy of the LFT
as a result of the polynomial interpolation, ii) the allowed uncertainty descriptions, and iii) computational
efficiency. These aspects will be further discussed next.

Since the proposed approach relies on a polynomial interpolation, the accuracy of the numerical LFT
depends on the uncertainty set considered. This can be shown using the example of Fig. 2 where the
subdivision in N stations of a notional wing is depicted. Each of these regions can be thought of as the
variable space of the structural uncertain parameters that can be exploited to obtain by design a better flutter
behavior for the system. From the system optimization perspective, it is natural to aim at considering a
description characterized by, with reference to Fig. 2, a refined stations’ grid (large N) with localized,
concentrated masses at each wing station (small δMi

).
This uncertainty description might prove to be challenging when the numerical LFT approach is pursued.
The selection of a large number of uncertain parameters with very localized uncertainty values and ranges
might indeed hinder the effectiveness of the LFT modeling, but also of the subsequent µ analysis, algorithms.
The ensuing interpolation can indeed: be inaccurate (e.g. small variations in localized uncertainties might
not be well captured; or a large number of uncertainties might force to consider a coarse parametric grid);
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Figure 2: Schematic uncertainty description of a notional aircraft wing (view from the top).

lead to intractable LFTs (due to the ∆-block size); or be computationally intensive (due to the large
number of samples to be computed with the FSI solver). This is indirectly confirmed by examples from the
literature [8, 27, 7], where a maximum of three parameters were considered, all representing large quantities
(e.g. extreme filling levels of the fuel tanks).
As for the computational aspects, in addition to what was said before, note that the numerical LFT approach
must be performed anew for any change in the model, and this could be particularly computationally
expensive depending on the density of the parametric grid.

4. A novel LFT-FSI co-modeling framework

The limitations observed in Section 3 with respect to numerical LFT approaches prompted the research
for alternative LFT modeling strategies. In [3] (a foundational contribution to the µ-flutter topic) the
uncertainty description is done by introducing a posteriori (and thus avoiding the interpolation) parametric
uncertainties in the generalized structural matrices of Eq. (7) as well as in the approximated aerodynamic
matrices (Eq. 9). This is a practical way of building LFTs, but the reconciliation between physical sources
of uncertainty and LFT parameters is more difficult. A similar approach was taken in [4] for the structural
operators, whereas a physical description of the aerodynamic uncertainties directly applied to the GAF
matrix was proposed. This was however limited to systems described in the frequency-domain (Eq. 6).
It is thus considered of interest the development of an alternative LFT formulation which aims at addressing
the issues discussed above, with particular emphasis on structural parametric uncertainties. Note that,
for the aerodynamic uncertainties case, the solution from [6] commented in Section 3.2 retains already the
desired features discussed here.

4.1. A symbolic LFT-FSI modeling algorithm

The previous discussion prompts the idea of performing the LFT modeling task at FSI solver level. By
this, it is meant here that the uncertain parameters are introduced in the structural solver when the high-
fidelity operators are assembled (as described in Section 2.2). The steps entailed by this symbolic modeling
algorithm are listed in Algorithm 1, whereas Fig. 3 presents the approach by means of a flow chart.
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Algorithm 1 Symbolic co-modeling algorithm’s pseudocode

Input: nominal model, uncertainty set ∆, modal matrix Φ
Output: aeroelastic LFT Fu(•,∆)

1: Define symbolic parameters associated to the elements of ∆ (Step-S1)
2: Assemble the symbolic physical matrix inside the structural solver (Step-S2)
3: Compute the symbolic modal matrices using Φ (Step-S3)
4: Build an LFT representation of the symbolic modal matrices (Step-S4)
5: Compute the aerodynamic operators using Φ
6: Build an LFT representation of (11) (Step-S5)

As an example, let us consider the structural mass matrix MBj of the beam j which, in a similar fashion

as described in Section 2.2 for Ke
B , will contribute to the corresponding structural matrix (in this case

Ms):

MBj =

[
Mtt Mtr

Mtr Mrr

] Mtt = F1(Lj ,mj , Izj , Iyj )

Mtr = F2(Lj ,mj , Izj , Iyj )

Mrr = F3(Lj ,mj , Izj , Iyj )

(14)

where the subscripts t and r refer to translational and rotational degrees of freedom. The parameters Lj ,
mj , Izj , and Iyj are respectively the beam length, mass and moments of inertia, while F1, F2, and F3 are
polynomial matrix functions of these properties. When some of these parameters are considered uncertain
and thus the functions are not evaluated at the corresponding nominal values, the local physical operator
MBj is a matrix function of the uncertainties. If the parameters are defined as symbolic objects (Step-
S1), MBj(∆(δj−•)), with • =L,m, Iz, Iy, is a symbolic operator that will contribute to the structural mass
matrix Ms (Step-S2). This step is general and can be applied to other contributions to the mass operator
(e.g. concentrated masses) and to other operators (e.g. stiffness).

Once the symbolic physical matrices are obtained with the procedure outlined before, a modal truncation
is performed (Step-S3):

M̄s(∆) = ΦTMs(∆)Φ

C̄s(∆) = ΦTCs(∆)Φ

K̄s(∆) = ΦTKs(∆)Φ

(15)

where ∆ indicates the uncertainty set gathering the symbolic parameters –the selection of the modal matrix
Φ will be discussed in the next subsection. Given the symbolic modal matrices M̄s, C̄s, and K̄s, it is possible
to apply standard LFT algorithms [24] which allow polynomial matrices to be recast into the formalism of
Eq. (2). In this way, the modal LFTs Fu(M̄s, ∆), Fu(C̄s,∆), Fu(K̄s,∆) are obtained (Step-S4). The
final step consists in building up the aeroelastic LFT (Step-S5). This can be done by substituting the modal
LFTs and the aerodynamic operator (function also of Φ) in the state-space model (11).

The implementation of the LFT modeling inside the FSI solver can be regarded as a nontrivial aspect
of this approach. To begin with, the development of an LFT-FSI methodology requires a close alignment
between the modeling paradigms used by each corresponding community, i.e. the robust control and the
aeroelastic. Thus, it requires tight collaboration, and a certain level of mutual understanding, between
experts from the two disciplines. In addition to that, the handling of symbolic objects represents an aspect
worth mentioning. If, as in this case, the FSI solver is available in MATLAB c©, the uncertain physical
parameters can be defined as symbolic objects in Step-S1 by means of the Symbolic Math toolbox [29].
With reference to Fig. 3, this allows to work in Step-S2 and Step-S3 with symbolic objects and then, by
means of the LFR toolbox [24], convert them into LFTs (Step-S4). This toolbox allows to handle LFTs in an
efficient fashion by means of LFR objects, which are used also for the aeroelastic LFT (Step-S5) and finally
provides a representation of the system which is suitable for the application of µ. However, the method
discussed in this section can in principle be applied also when the FSI solvers are implemented using other
coding languages, thus the implementation aspects should not be regarded as a limitation. For example
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Figure 3: Symbolic LFT co-modeling algorithm’s chart.

FORTRAN-based codes have been interfaced with symbolic computational languages (e.g. MAPLE) to
provide computationally efficient framework for LFT modeling [30].

A crucial aspect of this formulation is the handling of the modal matrix Φ. First, it should be noted
that many of the approaches to structural uncertainty descriptions assume for the robust analyses a fixed
modal base (typically the one corresponding to the nominal system) [3, 8, 31, 4]. This is an approximation
and potentially a source of error since Φ is also altered when there are structural uncertainties in ∆.

Different solutions have been proposed by the community. In [32] it was proposed a first-order dependence
of the structural modes on the uncertain parameters based on the application of perturbation theory. This
strategy is appealing since it allows the modal matrix to be expressed analytically as a function of the
uncertainties, i.e. Φ(∆). However, it also presents important drawbacks as commented in [33], where
different approaches to tackle the modal bases selection were discussed. For example, the perturbed modal
base approach is deemed the most computationally expensive among them due to the resulting LFT size,
and the linear modal shapes variation hypothesis is shown to be erroneous, even for relatively simple wing
geometry layouts, as the structural uncertainties ranges increase. Higher order Taylor expansions can be
considered, but the overall LFT size grows significantly, making the µ calculation problem numerically
intractable or compromising its accuracy. An interesting idea discussed in [33] consists in updating the
modal base with the worst-case perturbations obtained by µ. This represents the premise of the approach
taken in this work to overcome the issue related to Φ, and will be detailed in Section 4.2.

Note first that, when the operation in Eq. (15) is performed, the obtained symbolic modal matrices
are generally full. This is a source of error related to the fixed modal base-assumption, because due to
eigenvectors properties, the modal mass and stiffness matrices are always diagonal. That is, regardless of
the specific perturbation matrix affecting the system, the perturbed modal matrices will be diagonal. By
leveraging the facts that LFTs are built at FSI solver level with a modal-oriented approach, this inaccuracy
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can be eliminated a priori by retaining, at Step-S3 in Fig. 3, only the diagonal terms of the matrices:

M̄s(∆) ≡ diag(ΦTMs(∆)Φ)

C̄s(∆) ≡ diag(ΦTCs(∆)Φ)

K̄s(∆) ≡ diag(ΦTKs(∆)Φ)

(16)

As a result, the error due to the modes is reduced and confined only to the diagonal terms.
While this modification of Step-S3 allows to mitigate and confine the error in the symbolic modal matrices

to the diagonal terms, the fixed modal base assumption can still lead to wrong predictions. For example, the
effect of perturbations in Φ on the aerodynamic operator must still be addressed. The analysis algorithm
proposed in the next section overcomes this issue.

4.2. A symbolic LFT-FSI µ analysis algorithm

This section proposes an iterative analysis algorithm complementing the symbolic modeling approach
presented in Section 4.1. The aim of Algorithm 2 is to determine (if it exists) a worst-case perturbation
∆̂cr, associated with the LFT built with the symbolic approach, that makes the system flutter at a speed Vµ
chosen by the user. The key feature in order to achieve accurate results is represented by the update of the
modal matrix used in Step-S3 of Algorithm 1, where the transformation from symbolic physical matrices into
symbolic modal matrices takes place. This is performed iteratively, as reported in the associated pseudocode
and schematically illustrated in Fig. 4.

The algorithm requires the symbolic physical matrices Ms(∆), Cs(∆), and Ks(∆) from Step-S2 of
Algorithm 1 (these are provided as input), which are held fixed throughout the iterations. The process is
then started by initializing the modal base with Φ0. This allows to build the aeroelastic LFT (Step-A1)
and a standard µ analysis can thus be performed (Step-A2). The perturbation matrix ∆cr is extracted
from the highest peak of the lower bound µLB, and based on it the associated flutter speed Vfµ can be
calculated using the FSI solver (Step-A3). If the difference between Vfµ and the perturbed flutter speed
Vµ is greater than the given tolerance εV , the modal base is updated with the matrix Φcr corresponding

to ∆cr (Step-A4) and a new iteration is performed. Otherwise, a worst-case perturbation ∆̂cr has been
determined and from it (recall that by definition µ = 1/σ(∆̂cr)) the system robustness can be assessed. It
is stressed the difference between ∆cr and ∆̂cr. The former is provided by the µ-lower bound computation
at a generic iteration and, due to the modal base error, might not correspond to a flutter speed equal to
Vµ. The latter instead determines a flutter speed Vfµ ≈ Vµ within given tolerance and thus is the sought
worst-case perturbation.

Algorithm 2 Iterative algorithm for the worst-case perturbation

Input: Vµ, symbolic physical matrices, nominal modal matrix Φ0, tolerance εV

Output: worst-case perturbation ∆̂cr such that Vµ is the flutter speed
while |Vµ − Vfµ| < εV

1: Φ← Φ0

2: Apply Algorithm 1 from Step-S3 (Step-A1)
3: Compute µ using the aeroelastic LFT Fu(•,∆) from Step-A1 (Step-A2)
4: Extract ∆cr (associated with the highest peak of µ) and compute Vfµ (flutter speed of the

perturbed system) in the FSI solver (Step-A3)
5: Check optimality of the worst-case perturbation (optional)
6: Compute the matrix Φcr (Step-A4) and update Φ0 ← Φcr

return ∆̂cr
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Figure 4: Iterative scheme block diagram.

To interpret the rationale underlying the analysis algorithm from an LFT perspective, the uncertain
aeroelastic description achieved at Step-S5 of the modeling algorithm is expressed as follows:

Fu(M,∆) = M22(∆) + M21(∆)∆(I−M11(∆)∆)−1M12(∆) (17)

Eq. (17) reflects the fact that it is not possible to express the effect of the uncertainties on Φ in the standard
linear fractional fashion used in LFT modeling. Crucially, when compared to the definition of LFT given
in Eq. (2), the ∆ block affects here also the partitioned matrix M. This clearly would not allow to apply
µ analysis, which requires an uncertain system described as a standard LFT. Indeed, the iterative scheme
outlined in Fig. 4 proceeds by updating the matrix M with the value of ∆cr given at the last iteration:

Fu(M,∆) ≈M22(∆cr) + M21(∆cr)∆(I−M11(∆cr)∆)−1M12(∆cr) (18)

where at the first iteration ∆cr = 0 is used, i.e. the nominal modal matrix Φ0 is employed.
It is important to stress that the algorithm is based on the calculation of the lower bound, which is

the result of a nonconvex optimization problem [2]. In addition, it is well known that for LFTs of large
dimension and/or many parameters, the µLB might be conservative (i.e. distant from the upper bound).
This trend can be ameliorated with improved lower bound algorithms [34] or with recently developed µ
solvers which compute µUB and µLB together ensuring they hold values within a certain tolerance [35]. The
latter library has been used in this work to assess the accuracy of the lower bound, but the algorithms are
computationally demanding and thus, at least for the LFTs used in this work, it is not practical to embed
them in the proposed iterative cycle.
For all these reasons, convergence to the global optimum (i.e. the matrix ∆̂cr with the smallest magnitude)
of the solution found with the iterative algorithm cannot be mathematically guaranteed. In order to highlight
this, ∆̂cr has been termed “a” worst-case perturbation matrix. In other words, even if the converged ∆̂cr

leads to a flutter speed equal (within the prescribed tolerance) to Vµ, there could be another one ∆̂cr
glob with

σ̄(∆̂cr
glob) < σ̄(∆̂cr). In addition to the numerical issues mentioned above, failure in converging to the global

optimum can be ascribed to the rule with which the modal matrix Φ is updated. Therefore, strategies to
qualitatively check the optimality of the lower bound at each iteration are introduced now.
First, the directionality of the worst-case is monitored. This entails observing at each iteration the sign
change from the predicted perturbation for each of the uncertain parameters. If this remains the same,
it is reasonable even though not rigorous, to argue that the worst-case perturbation for that parameter is
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detected. Moreover, when this pattern is observed robustness properties such as sensitivity of flutter to
certain parameters [5] can be inferred based on analyses which use the nominal modal matrix Φ0. For those
parameters whose sign (or magnitude) changes, it is advisable to perform a flutter sensitivity analysis, since
the discontinuity could be ascribed to the small importance of that parameter for the instability.

A second strategy, which complements the previous assessments, is represented by Algorithm 3, schemat-
ically depicted in Fig. 5, which can be applied in principle at the end of each iteration (in practice, a trade-off
with computational efficiency will arise). The algorithm takes as input the worst-case matrix ∆cr computed
at Step-A3 of a generic iteration of Algorithm 2 and aims at assessing its optimality (meant here as its
proximity to the actual worst-case). First, Nc potential worst-case perturbations ∆t

i (with i = 1, ...Nc)
having all the same maximum magnitude σ̄(∆cr) are defined (Step-C1). These definitions can be informed:
by the directionality tests on the ∆cr at different iterations (e.g. changing the values for those parameters
having a discontinuous behaviour), by available insights on certain critical parameters (e.g. from sensitivity
analysis), or by considering opposite perturbations for some of the parameters, e.g. ∆t

i = −∆cr if the sign
of all parameters is changed. Note that the idea of testing far away from the current best is a known strategy
in applied optimization. For example, in [36] a hybrid algorithm was proposed which crosses an evolutionary
(global) optimizer with a local one, initialising the latter with either the best candidate in the population
or those far away from the current best, depending on the improvement of the cost function. In this work,
the population is represented by the set of selected ∆t

i and the same idea of exploiting domain knowledge
to define it can be employed.
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Figure 5: µUB-based algorithm to check the optimality of the predicted worst-case.
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Algorithm 3 Algorithm to check optimality of the predicted worst-case

Input: critical perturbation ∆cr (from Step-A3 of Algorithm 2)
Output: µUB-based assessment of the optimality of the worst-case

1: Select Nc perturbation matrices ∆t
i (i = 1, ...Nc) (Step-C1)

2: Compute the modal matrices Φt
i associated with ∆t

i (Step-C2)
3: Use Φt

i to build Nc aeroelastic LFTs centered at ∆t
i (i.e. the parameters in ∆t

i are the nominal
values for the uncertainties) (Step-C3)

4: Compute µUB for each LFT generated at the previous step (Step-C4)
5: Compare the peaks µiUB of the curves and assess the optimality of ∆̂cr (Step-C5)

In Step-C2 the modal matrices Φt
i corresponding to each ∆t

i are computed, and subsequently Nc aeroe-
lastic LFTs centered at each of the worst-case candidates are constructed (Step-C3). Note that the core
idea is to compute each LFT using the relative modal basis Φt

i. Then, µ analysis is applied to each of these
LFTs (Step-C4), focusing on the upper bounds µUB since this is typically computed with convex programs.
The peaks µiUB of each curve are employed as a measure of the proximity of the perturbed system i to the
actual worst-case of the problem (Step-C5). Specifically, perturbations associated to larger µiUB point at
worst-case directions, and thus this strategy can be used to verify that throughout the iterations the actual
worst-case is detected.

5. Application to the Joined Wings aircraft

The LFT-FSI modeling approaches presented in the two previous sections are applied here to two joined-
wing aircraft case studies. These are first presented in Section 5.1, where nominal (i.e. without considering
uncertainty in the system) flutter analysis is also briefly commented.

In Section 5.2 robust analyses are carried out using the numerical LFT approach. An important outcome
is that by exploiting the modal-oriented LFT modeling, the effect of perturbations on different modes can
be captured, and from this interesting physical insights can be gained. However, the drawbacks anticipated
in Sec. 3 are confirmed, especially with respect to the number and type of uncertain parameters that can be
reliably captured in the LFT with this modeling approach. Section 5.3 presents the results obtained with
the symbolic LFT approach, which confirm the favourable features described in Section 4. The modeling
and analysis algorithms are shown to provide accurate predictions of the worst-case flutter speed of the
wing in the face of the given uncertainty set. Importantly, the latter consists of a very fine mass and
stiffness parameters distribution across the wing, which, to the best of the authors’ knowledge, has never
been considered so far in robust flutter analysis with analytic worst-case methods. This, together with
the success of the Algorithm 3 in driving the analysis towards global minima (to these results is devoted
Section 5.3.2), supports the main message conveyed here that the newly proposed co-modeling approach can
represent a valuable tool in robustness analysis of high-order aeroelastic systems.

5.1. Joined-wing aircraft configurations

The analyzed system consists of a PrandtlPlane configuration (a particular case of Joined Wings [14],
see Fig. 6). The only difference between the two case studies is that the first one features fuselage’s inertia
and flexibility, while the second one considers a clamped wing system (i.e. the presence of the fuselage is
neglected).

5.1.1. Case study 1: Wing plus elastic Fuselage (WF)

The unconventional PrandtlPlane was originally studied in [13]. The configuration, denominated PrandtlPlane
250 (PrP250) is a 250 passenger mid-long range (6000 nm) aircraft with a Maximum Take Off Weight of 230
tons, and was designed by considering a multidisciplinary approach. A view of the finite element (FE) model
of the wing is given in Fig. 7. The fuselage is modeled as a beam, whose properties have been extrapolated
and scaled back from the work in [38]. This case study is an evolution of that considered in [18] where only
the fuselage inertial effects were retained.
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Figure 6: PrandtlPlane 250-seat concept, taken from [37].

Front wing

Rear wing
Fin

Vertical joint

Figure 7: Structural model of the wing, taken from [13].

Fig. 8 shows the results of nominal flutter analysis in terms of frequency and damping of the poles of
the system as a function of speed. The analyses have been carried out with CSHELL, and then validated
with the commercial software NASTRAN [39]. Flutter occurs at approximately Vf = 270 m

s due to mode
III. Additional instabilities, occurring at higher speeds, are determined by the coalescence of modes I-II and
modes IV-V.

The effect of uncertainties on the flutter behavior of the case study WF will be analyzed in Section 5.2
making use of the numerical LFT approach from Section 3.

5.1.2. Case study 2: Clamped Wing (CW)

In the second case study the model consists of the same wing previously described (Fig. 7), but the
inertial and elastic effects of the fuselage are not captured now.

The nominal flutter analysis is shown in Fig. 9. It is seen on the right plot that the only mode going
unstable is mode I. Therefore, flutter is now triggered by an adverse coupling of the first two modes (coales-
cence of the frequencies of modes I-II is visible in the left plot). Moreover, instability occurs at a different
speed, i.e. approximately Vf = 297 m

s .
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The results in Figures 8-9 show that as a result of simplifications in the description of the system (for
example in this case neglecting the fuselage) flutter might be wrongly estimated. In addition, different
physical mechanisms might be predicted as responsible for the loss of stability. The effect of uncertainties
on the flutter behavior of the case study CW will be analyzed in Section 5.3 making use of the novel
symbolic LFT approach from Section 4. It will be shown that the robust analyses are able to capture the
instability mechanisms not observed in the nominal analyses (Fig. 9), and only disclosed when the fuselage
was considered (Fig. 8). This important result is made possible by the capability of the method to preserve
the physical meaning of the uncertainties in the LFT models used for robust analysis.
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5.2. Application of the numerical LFT approach to WF case study

The wing with elastic fuselage (WF test case) is considered here to exemplify the favourable features of
the improved numerical LFT methodology proposed in Section 3.2. The first 25 structural modes (ns = 25)
are retained in order to correctly capture flutter and this, together with the adoption of 6 lag states for the
aerodynamic approximation, leads to an aeroelastic system size of 200 states.
Robust analyses are performed taking into account structural parametric uncertainties in all the concentrated
fuel masses on the wing and fuselage (a total of 84 mass points). Five areas are considered: fuselage (f);
front wing root (w1); front wing tip (w2); rear wing tip (w3); and rear wing root (w4). Each of these areas
has associated a value of mass {Mcf , Mcw1, Mcw2, Mcw3, Mcw4} given by the sum of all the fuel masses
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in that area. For each of these area masses, an independent uncertainty of 20% from their nominal values
is considered. Thus the number of uncertain parameters used in the LFT will be 5, one per area. In order
to proceed with the numerical construction of the LFT, a representative set of values inside the uncertainty
set has to be sampled. This is done here including all the possible combinations of vertices and nominal
values of the masses associated to the five stations (npts = 243).
The corresponding two modal matrices M̄s and K̄s are then interpolated by means of the aforementioned
orthogonal least-square algorithm assuming linear polynomials and considering uncertainties in the first 10
modes (i.e. nδ = 10).
Based on the LFT of the two modal matrices, the aeroelastic LFT is assembled using the state-matrix
defined in Eq. 11 and its size is reduced by means of the 1− d order reduction technique [40]. The resulting
uncertainty block, expressed in accordance with the definition given in Eq. (1), is:

∆M
49,R = diag(δRMcf

I9, δ
R
Mcw1

I10, δ
R
Mcw2

I10, δ
R
Mcw3

I10, δ
R
Mcw4

I10) (19)

Note that the size of the LFT, i.e. 49, is relatively small considering the large effect that the selected
uncertainties have on the interpolated quantities. The same problem, addressed by interpolating directly
the state-matrices, would lead in this example to an LFT of size more than double.
Once an LFT is generated it is always required to check its accuracy. The standard approach is to sample
a representative set of parameters inside ∆M, and then build the corresponding reference state-matrices
based on the structural operators computed by the FSI solver. A first (numerical) check aims to quantify
the ability of the LFT to cover the samples employed to generate it. Therefore, the 243 npts sampled LTIs
are compared with the corresponding realizations of the LFT. The comparison is made using an analytical
test based on the modal matching criterion proposed in [27]:

εmodal = max
i∈[1,npts]

(∑nm
k=1 |λik − λ

ref,i
k |∑nm

k=1 |λ
ref,i
k |

)
(20)

where λik is the LFT’s kth eigenvalue at sample i and λref,ik is the corresponding eigenvalue from the reference
model. This test is performed at V∞ = 260 m

s for the first six structural modes (nm = 6) and the result is
εmodal ∼= 4.8× 10−3.
A second (visual) check is done by plotting the poles map of the state-matrix and comparing the reference
eigenvalues (corresponding to the npts samples) and those obtained randomly sampling the parameters in
∆M. This is shown in Fig. 10, where it can be appreciated that the latter (given by red crosses) lie
inside the cloud of points determined by the vertices (given by blue circles). This is expected since the blue
circles correspond to extreme perturbations, whereas the LFT samples are taken randomly covering all the
uncertainty space. Overall, smoothness and regularity can also be appreciated in the map.

It is important to observe that, while the tests on the accuracy of the LFT models performed here are
satisfactory from the point of view of capturing the effect of uncertainties on pole locations (which is of
main concern in flutter analysis), other measures could be more apt to ensure other effects are captured.
For example, in the case of LFT models used for control design, investigations on the time response and
frequency-domain features should be also carried out [23]. In view of the discussion in Section 3.3 on the
issues associated with numerically generated LFT, this is deemed an important step before using the LFT
for synthesis.

After having checked the accuracy of the obtained LFT, the µ analysis technique can be applied. Fig. 11
shows the µ upper (UB) and lower (LB) bounds at V∞ = 260 m

s (the nominal flutter speed is approximately
Vf = 270 m

s ) for different values of nδ.
Consider first the case for nδ = 10 (this is the LFT corresponding to Eq. (19)), and recall that the

nominal analyses in Fig. 8 pointed out the occurrence of instability in nominal conditions due to mode III,
but also highlighted the crossing of the zero damping line (at higher speeds) for modes I and V. It can be
noted that these 3 cases also feature in the µ plot (for the first and last peaks the numbers of the coalesced
modes have been reported in the plot -recall the comments given when presenting Fig. 8), which is thus
able to capture the presence of multiple elastic modes prone to cross the imaginary axis. In particular,
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Figure 10: Poles map of the first 6 aeroelastic modes of the WF case study from sampled LFT and FSI reference solver.
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Figure 11: µ bounds at V∞ = 260 m
s

for LFTs with mass uncertainties in the first nδ modes.

the third mode is confirmed as the most critical also in uncertain conditions (look at the first peak above
µ=1 in Fig. 11, which corresponds approximately to the 13 rad

s of the mode III flutter frequency in Fig.
8). Specifically, the system is predicted to undergo flutter at this speed with uncertainties in the allowed
range (µ ∼= 1.35). The plot corresponding to nδ = 6 (i.e. uncertainties in the first 6 modes only) is very
similar to the previous. This suggests that for robust flutter analysis purposes this reduced size LFT can
be used because it captures the same effects of the uncertain parameters on the instabilities but will result
in a lower LFT size to that of Eq. (19). When nδ is further decreased, it can be observed that not all the
modes’ peaks are found by the analyses and moreover the values of µ are underestimated. For comparison
with the LFT of Eq. (19) and subsequent worst-case reference, the ∆ matrix for the nδ = 6 case is given
next (note that the size has considerably reduced from 49 to 29):

∆M
29,R = diag(δRMcf

I5, δ
R
Mcw1

I6, δ
R
Mcw2

I6, δ
R
Mcw3

I6, δ
R
Mcw4

I6) (21)

It is remarked here that, as discussed in Section 3.2, the possibility of performing analyses for different nδ,
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as those shown in Fig. 11, is enabled by the modal-oriented modelling approach used here. The benefits
of such analysis range from LFT order reduction (note that the number of repetitions of the uncertain
parameters is decreased from Eq. 19 to Eq. 21) to gaining insights on the role played by the uncertainties in
the instabilities and so further understanding the mechanisms prompting the different instabilities. Indeed,
since it is well known in aeroelasticity that instability typically arises as a result of the interaction among a
restricted set of elastic modes, by isolating the effect of the perturbations on each mode this type of analysis
can provide additional information.

For example, while it was expected that the LFT built with nδ = 4 will not show the peak corresponding
to the modes IV-V instability (because these modes are unperturbed in this analysis), it is interesting to see
that the peak corresponding to the third mode is also not well captured. Indeed, this mode of instability is
identified but the peak value is far from the one obtained with nδ = 10. This seems to point out that the
third mode involves also higher frequency modes and thus is something more complex than the standard
binary flutter concerning coalescence of only two modes.
The plot in Fig. 11 showcases also a narrow gap between upper and lower bounds for the nδ = 6 and nδ = 10
LFTs. This thus provides confidence on the insight obtained from inspecting the corresponding worst-case
matrices. The inspection reveals (see Eq. (22) and recall the structure from Eq. (19) or Eq. (21)), that
negative variations of the mass in the fuselage and front wing areas (f , w1, and w2) and positive variations
in the rear wing areas (w3 and w4) are detrimental for the third mode flutter:

∆M
cr
nδ=10 = diag(−0.77I9,−0.77I10,−0.77I10,+0.36I10,+0.59I10)

∆M
cr
nδ=6 = diag(−0.76I5,−0.74I6, −0.68I6, +0.64I6, +0.76I6)

(22)

Note that the two perturbations are qualitatively similar (they both point towards the same direction for
the parameters’ variation).

In order to validate the accuracy of the analyses, the concentrated masses on the fuselage and wing are
modified according to Eq. (22) and a traditional (i.e. fixed parameters) flutter analysis of the perturbed
systems is performed with the FSI solver. The resulting flutter speeds are in both cases approximately 264
m
s , which is slightly larger than the value used for µ analysis (V∞=260 m

s ). This small difference could be
ascribed to the approximations made in building the LFT, as commented above. It is however important
to stress that the strength of µ consists also in identifying worst-case directions within the uncertainty set.
In order to confirm this feature, extensive flutter analyses were performed in the high-fidelity FSI solver by
considering perturbation matrices having magnitude equal or smaller to those in Eq. (22). All of them led
to higher values of the flutter speed, confirming in this way that the two ∆M

cr in Eq. (22) are indeed the
most critical among the tested ones.

5.3. Application of the symbolic LFT algorithms to CW case study

This section presents the application of the co-modeling framework presented in Section 4 to the clamped
wing model (CW) introduced in Section 5.1.2.

5.3.1. Robust flutter analysis of the CW case study

Uncertainties for the stiffness and mass distribution along the CW model are considered as given in Fig.
12. The FE model (depicted in Fig. 7) has 54 beam elements, enumerated as follows: the front wing is
spanned by elements 1-23 (element 1-3 are part of the wing inside the fuselage), the vertical joint by elements
24-29, the aft wing by elements 30-48 and the fin by elements 49-54. From these beam elements, 27 stations
(shown and numbered in Fig. 12(a)) are defined by pairing consecutive beams and for each of them the
bending stiffness parameter EIz is considered uncertain. As a result, the stiffness uncertainty description
consists of 27 uncertainties (i.e. δEIzj with j=1,...,27) which are allowed to vary independently within 10%

of their nominal values. As for the mass, the model has 36 fuel masses mf distributed between the front
and rear wings (shown and numbered in Fig. 12(b)). These are all assumed parametric uncertainties (i.e.
δmfk with k=1,...,36) which are allowed to vary independently within 10% of their nominal values. Thus,
there are in total 63 parametric uncertainties.
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Figure 12: Uncertainty description for the Clamped Wing (CW) test case.

With the above uncertainty definitions, it is possible to apply the symbolic LFT modeling strategy de-
scribed in Algorithm 1. Despite the adoption of order reduction techniques [40], the LFT has an uncertainty
block of size ∆M−K

630,R. While its accuracy in capturing the variability of the structural matrices was
confirmed by tests similar to the one depicted in Fig. 10, its size is such that it cannot be used for µ anal-
ysis. The large number of uncertain parameters was initially considered in order to showcase the modeling
possibilities (especially when compared to the numerical approach), but in a second step a reduced-order

LFT of dimension 225, ∆M−K
225,R
red , is obtained by leveraging distinctive features of this approach, namely

the modal-oriented aspect and the availability of a symbolic expression for the dependence of the structural
matrices on the uncertainties. Further details on this order reduction can be found in [15] and are omitted
here for brevity.

Algorithm 2 can then be applied. The analysis detects a worst-case perturbation that makes the aeroelas-
tic system flutter at the selected subcritical speed Vµ. For the present case, Vµ = 285 m

s is chosen considering
the flutter behaviour of the nominal configuration (Vf = 297 m

s from Fig. 9). Fig. 13 shows the upper
bounds of µ obtained in the first four iterations (ITER#) of Algorithm 2. The lower bound at ITER 1 was
shown in [15] and is close to the corresponding upper bound curve in the range of frequencies relative to the
highest peak.

Note that two peaks are clearly observed, a lower frequency one, taking place at approximately ω1=7.2 rad
s

and associated with the coalesced modes I-II, and a higher frequency one (at ω2=13.2 rad
s ) representing the

mode III flutter. This highlights an important feature of the proposed robust modeling analysis framework
(and of the application of µ analysis for the robust flutter problem in general [5]). Indeed, nominal analyses
(Fig. 9) detected that modes I-II were the only responsible for flutter (note that mode III is stable over the
whole range of speeds). It was necessary to augment the CW model with an elastic fuselage (i.e. the CWF
model) for the nominal analyses to find that mode III is also critical for the instability. As seen in Fig. 13,
robust analyses for the uncertain CW model feature both of these unstable mechanisms when variations
of stiffness and mass parameters are allowed. In other words, a more simplified description of the same
system (model CW ) is able to provide the same information gathered by a more refined one (model WF )
when the model is augmented with uncertainties having a precise physical meaning. This result should be
interpreted by recalling that the uncertainties in Fig. 12 have a clear physical meaning (e.g. perturbation in
the wing’s skin thickness), and thus only certain modes are introduced in the perturbed system which have
the potential to make it unstable. This is a different scenario than that arising when fictitious uncertainties,
e.g. in the natural frequencies or damping ratios, are considered. In view of this, the fact that Fig. 13
captures the mode III instability is deemed an important result and a confirmation of the accuracy offered
by the developed framework.

As prescribed by the analysis algorithm, the worst-case matrix extracted from the highest peak of the
lower bound is used, and hence the instability related to the coalescence of modes I-II (featuring a peak value
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Figure 13: µUB obtained with the symbolic algorithm at V∞ = 285 m
s

. Convergence is attained at the 4th iteration.

of µ ∼=1.15 at ω ∼= 8 rad
s ) is studied here. Tab. 1 reports, at each iteration, the flutter speed Vfµ (calculated

by CSHELL) as well as the perturbations for each uncertain parameter. For the benefit of readability, the
columns are labelled with the symbol of the parameter (e.g. EIz1), but the reported values have to be
interpreted as normalized perturbations (e.g. δEIz1 ). The last column also shows the norm of the critical
perturbation matrix.

The algorithm achieves in 4 iterations a value of Vfµ=285.2 m
s which is within 0.15% of the selected

Vµ=285 m
s . At each iteration #, the magnitude of ∆cr

ITER# increases (this was already noticeable from
Fig. 13 since smaller µUB indicates larger absolute values for the worst-case). The change in magnitude of
∆cr

ITER# can be related to the importance of the perturbations in the modal base Φ, not captured in the
standard LFT representation but taken into account with the iterative strategy (recall the interpretation

given in Eq. 18). Crucially, since σ̄(∆̂cr) = σ̄(∆cr
ITER4) = 1.47 > 1, it can be concluded that the joined-wing

is guaranteed to be robustly stable at V∞=285 m
s in the face of the allowed modeling uncertainties.

5.3.2. Optimality analysis of the worst-case perturbation

A careful evaluation of Table 1 reveals that the perturbations show approximately the same directionality
from one iteration to the other (e.g. positive/negative trends of the uncertain parameters). This qualitatively
supports the accuracy of the predicted ∆̂cr, and more generally indicates that worst-case regions are correctly
detected (further comments on this are given in the next section). This pattern is favourable since robustness
properties such as flutter sensitivity to a set of selected physical parameters [5] can be approximately captured
without updating the modal matrix (i.e. using the nominal Φ0).

However, two uncertain parameters requiring subsequent detailed analysis are identified, namely EIz5
and mf21 , which exhibited a non-uniform pattern. The former has an almost null perturbation in ∆cr

ITER1

but then becomes positive for the other iterations, whereas mf21 changes sign at the second iteration. By
performing a µ sensitivity analysis, it can be concluded that the parameter EIz5 has small importance for
flutter, whereas mf21 (a rear wing tip mass) is proved to be relevant for the instability.

The optimality check proposed in Algorithm 3 is applied to investigate the behavior of mf21 , and in
order to do so the tested perturbation matrices ∆t

i must be selected (Step-C1 of the algorithm). Table
2 reports the definition for the 5 tested LFTs, along with the resulting µUB. The LFTs are centered at:
the perturbation matrix ∆cr

ITER1 found in the first iteration (i.e. first row in Table 1), this LFT is termed
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Table 1: Perturbation matrix ∆cr
ITER# and corresponding speed Vfµ at each iteration.

ITER Vfµ
[

m
s

]
EIz1 EIz2 EIz3 EIz4 EIz5 EIz6 EIz7 EIz8 EIz9 EIz10

1 288.4 -0.98 -0.98 -0.98 -0.98 0.082 0.98 0.98 -0.98 -0.98 -0.98

2 287.4 -1.23 -1.23 -1.23 -1.23 1.08 1.23 1.23 -1.23 -1.23 -1.23

3 285.9 -1.41 -1.41 -1.41 -1.41 1.37 1.41 1.41 -1.41 -1.41 -1.41

4 285.24 -1.47 -1.47 -1.47 -1.47 1.47 1.47 1.47 -1.47 -1.47 -1.47

EIz13 EIz15 EIz17 EIz18 EIz19 EIz20 EIz21 EIz22 EIz23 EIz24 mf7 mf8

-0.98 0.98 -0.98 -0.98 0.98 0.98 -0.98 -0.98 -0.98 -0.98 0.98 0.98

-1.23 1.23 -1.23 -1.23 1.23 1.23 -1.23 -1.23 -1.23 -1.23 1.23 1.23

-1.41 1.41 -1.41 -1.41 1.41 1.41 -1.41 -1.41 -1.41 -1.41 1.41 1.41

-1.47 1.47 -1.47 -1.47 1.47 1.47 -1.47 -1.47 -1.47 -1.47 1.47 1.47

mf9 mf10 mf11 mf12 mf13 mf14 mf15 mf16 mf17 mf18 mf19 mf20

0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 -0.98 -0.98

1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 -1.23 -1.23

1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 -1.41 -1.41

1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.47 -1.47 -1.47

mf21 mf22 mf23 mf24 mf25 mf26 mf27 mf28 mf29 mf30 mf31 σ̄(∆cr)

0.82 0.98 0.92 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

-1.23 1.18 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23

-1.3 1.39 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41

-1.09 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.47

1-1 ; the opposite of ∆cr
ITER1 (case 1-2 ); the second iteration critical perturbation ∆cr

ITER2 (case 2-1 ); the
opposite of ∆cr

ITER2 (case 2-2 ); and a special case of ∆cr
ITER2 which considers an opposite perturbation in

the tip mass mf21 (i.e. positive instead of the negative predicted at this iteration) (case 2-3 ).

Table 2: Tested worst-case perturbations in the optimality check.

case ITER ∆t
i µUB

1-1 1 ∆cr
ITER1 4.4

1-2 1 −∆cr
ITER1 0.53

2-1 2 ∆cr
ITER2 6.3

2-2 2 −∆cr
ITER2 0.44

2-3 2 ∆cr
ITER2, δmf,21 = −δcrmf,21 9

Fig. 14 shows the results which, for a better visualisation, feature reversed axes with respect to the usual
convention, i.e. µUB plotted on the x-axis and ω on the y-axis. For comparison purposes, the curves from
Fig. 13 for iteration 1 (ITER 1) and iteration 2 (ITER 2) are presented as solid lines with cross and square
markers respectively.

Consider first the curves relative to the first iteration, that is 1-1 (blue dash-dot line) and 1-2 (blue
dotted line). The dash-dot line has a higher peak than the one featured by ITER 1, whereas the dotted
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Figure 14: µ analysis of LFTs featuring different nominal plants. The value of the peak is a measure of the proximity of the
nominal plant to the actual worst-case.

line has the smallest (among these 3). This, along with the noticeable sharp peak of the dash-dot curve,
suggests that ∆cr

ITER1 points at a worst-case direction for the system. It is stressed that Algorithm 3 builds
each LFT based on the modal base Φ associated with the tested worst-case perturbation (Step-C3). Note
that when an LFT associated with an actual worst-case perturbation matrix predicted by µ is tested (e.g.
case 1-1 ), in principle the nominal plant has a pole on the imaginary axis and thus one would expect the
µ peak to be infinitely large (recall its definition in Eq. 5). However, the worst-case perturbation matrix
is obtained with an LFT built up with a different modal matrix Φ. Therefore, the nominal plant does not
have a purely complex pole and the procedure is numerically reliable, as it will be apparent next.

The analyses performed with respect to the results from the second iteration are considered next -these
correspond to cases 2-1 (black dash-dot line), 2-2 (red dotted line), and 2-3 (magenta dashed line). A
first remark is that the µ upper bound for 2-1 exceeds 1-1, meaning that as the algorithm proceeds, it
converges to the worst-case of the system (i.e. ∆cr

ITER2 is a better estimation of ∆̂cr than ∆cr
ITER1). Another

important aspect is inferred by comparing the magenta (2-3 ) and black (2-1 ) curves. The former has a
greater peak than the latter, that is, the µUB algorithm detects case 2-3 as a closer worst-case of the system
than 2-1. In other words, the worst perturbation for mf21 is the positive one (as initially predicted in the
first iteration). Interestingly, the peak of µ is not infinitely large for 2-1 (in fact, there exists another LFT
with larger peak), which shows that the algorithm is numerically well-posed and is able to capture the effect
of updating the modal base on the global optimum. Similar evidences on the role of parameter mf21 are
obtained by applying these analyses for ITER 3.

Prompted by these findings, the iterative cycle is restarted at ITER 2 with the perturbation matrix
∆cr

ITER2 but enforcing a positive perturbation in mf21 . Inspired by hybrid strategies common in applied op-
timisation [36], the idea is to initialise the (non-convex) algorithm with the best candidate in the population
(represented by the three tested ∆t

i) according to the cost function, which is here the peak of µ in the plots
of Fig. 14. The new iterative cycle only requires 3 iterations to converge, and the perturbation matrix at
the last iteration has a norm σ̄(∆cr

ITER3−new) ∼= 1.34, whereas before (see Table 1) it was σ̄(∆cr
ITER4) ∼= 1.47.

Thus, the perturbation identified thanks to Algorithm 3 has indeed a smaller norm. These analyses confirm
that the proposed heuristic approach to check the correctness of the worst-case matrix can provide a helpful
tool to monitor the accuracy of the results.
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6. Conclusions

The paper deals with methodologies to address the development of uncertainty descriptions for aeroelas-
tic systems by merging the robust modeling paradigm LFT with representative fluid-structure interaction
solvers. It also proposes strategies to perform reliable and profitable analyses of such uncertain models
within the LFT-µ robust control paradigm. In order to showcase the applicability of the methods, an un-
conventional joined-wing configuration called PrandtlPlane is considered as test case.
Two LFT-FSI modeling approaches are presented. The symbolic LFT approach allows the uncertainty
modeling to be performed in parallel with the assembly of the structural operators in the FSI solvers. The
advantages of this approach range from an enhanced flexibility in the parameters’ selection (very localized
uncertainties can be captured) to a direct connection between uncertainties in the LFT model and physical
quantities in the high-order model. The approximations involved by this approach are critically discussed,
and an iterative algorithm, which updates the structural modes based on the worst-case predicted by µ, is
proposed. Its application leads to predictions validated in the FSI solver, and shows good agreement with
previous findings from the literature.
The work also shows the application of a numerical LFT approach for constructing LFTs of high-order
systems in a more efficient way. Advantages in terms of LFT size’s reduction, easier identification of the
different modes for scattered values of the uncertain parameters, and the possibility of performing multiple
analyses which might enhance understanding of the investigated phenomenon are commented with reference
to the studied examples.
The work showcases the potential of the LFT-µ framework in addressing the challenging flutter problem
of complex aircraft configurations subject to a large set of uncertainties, of which Joined Wings are a
paradigmatic example.
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