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Flutter is an aeroelastic phenomenon affecting flexible structures in a fluid flow and may lead to unstable

oscillations and to critical structural damage. This paper concerns the design of a controller to provide active

flutter suppression on an unmanned flexible-wing demonstrator, currently under construction. The aircraft models

used in the control design are obtained using a combination of balanced andmodal reduction techniques from a high-

fidelity nonlinear aeroservoelastic model, and include information about actuator and sensor dynamics as well as the

phase loss introduced by the flight control computer. The controller is synthesized by posing and solving a weighted

H∞-normoptimization problemwith the goal to provide damping for the fluttermodes and extend the flight envelope

above the open-loop flutter speed. The paper concludes with a thorough analysis and verification of the performance

achieved by the closed-loop system, including simulations with the high-fidelity nonlinear model of the actual

maneuvers that will be performed by the unmanned demonstrator during future flight tests.

Nomenclature

az;AS = antisymmetric wingtip vertical acceleration
measurement

az;cg = vertical acceleration at the center of gravity

az;S = symmetric wingtip vertical acceleration
measurement

az;wL, az;wR = vertical acceleration at the left and right wingtips

Gact = model of the direct drive servo actuator dynamics
Gchain = aggregate model of the parasitic dynamics
Gdelay = model of the computational delay

GIMU = model of the inertial measurement unit sensor
dynamics

GN = Nth synthesis model, with N ∈ f1 : : : ; 26g
GPadé = Padé approximation of the parasitic dynamics
Gred = reduced-order model of the parasitic dynamics
KN = H∞ controller designed for model N, with

N ∈ f15; 19; 22g
Kr;N = reduced H∞ controller for model N, with

N ∈ f15; 19; 22g
Ksch = scheduled flutter controller
TL∕R→S∕AS = sensor coordinate transformation from left/right

to symmetric/antisymmetric
TS∕AS→L∕R = actuator coordinate transformation from

symmetric/antisymmetric to left/right
VIAS = indicated airspeed
VTAS = true airspeed
δAS = antisymmetric flutter control input
δa = allocated aileron input
δe = allocated elevator input
δiL, δiR = left and right wing flaps, with i ∈ f1; : : : 4g
δr = allocated rudder input
δriL, δriR = left and right ruddervators, with i ∈ f1; 2g
δS = symmetric flutter control input
δT = thrust input

η1, η2 = first generalized symmetric and antisymmetric
flutter modes

I. Introduction

A EROSERVOELASTIC flutter is a phenomenon associatedwith
the interaction of aerodynamic, inertial, and structural forces.

It is characterized by the coupling between the aerodynamic loads
acting on a flexible structure and its natural modes of vibration. This
results in a self-excited unstable oscillatory motion that may lead to
structural failure ([1] Chap. 5). Flutter could have catastrophic con-
sequences in wings and airfoils and, as such, is critical for aircraft
design. For this reason, airworthiness authorities require that aircraft
are free from flutter across the flight envelope [2,3].
Traditionally, aircraft are designed so that flutter does not occur

within normal flight conditions. This is normally achieved passively,
that is, through the addition of structural mass to provide stiffness. This
approach has the drawback of increasing the aircraft’s weight and thus
also its fuel consumption. The use of active flutter suppression (AFS)
techniques could potentially lead to flight envelope expansion without
the addition of stiffening structures, thus increasing fuel efficiency and
performance. In addition to the economic benefits, this is aligned with
the current trend of environmental impact reduction, such as the EU
initiative to reduce greenhouse gas emissions by 20% and increase
energy efficiency by 20% by 2020 [4].
The interest in the application of AFS in aircraft is not new, and a

thorough historical review is provided in [5]. The advances in AFS
come from the desire to reduce aircraft weight, which leads to a
reduced separation between rigid-body and flexible modes. Because
of this, AFS is connected with other active control technologies, such
as gust alleviation and deformation control [6]. Early attempts to
achieve AFS were mostly based on knowledge of the physics behind
the flutter mechanisms. The design engineer would make use of this
knowledge to choose an appropriate actuator/sensor positioning
across the wing span to allow for simpler control strategies. The
so-called identically located actuators and forces (ILAF) approach
belongs to this category, where the sensor (accelerometer) is placed at
the force application point, which allows the controller to provide
structural damping (see, e.g., [7]). Such approaches have the advan-
tage of using simple independent Single-Input Single-Output con-
trollers, which could be designed using root-locus or other classic
frequency-domain design techniques, but also themain drawbacks of
potentially not appropriately addressing theMultiple-InputMultiple-
Output nature of the problem and/or limiting the possible optimiza-
tion of the performance versus robustness tradeoff. As computational
power increased and more advanced control techniques were
developed, attentionwas shifted toward newmultivariable and robust
approaches, such as linear quadratic Gaussian (LQG) [8],H∞ [9,10],
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and linear parameter-varying (LPV) [11] control. Seminal research
efforts have seen these techniques applied to unmanned aerial vehicle
(UAV) demonstrators, leading to important flight-test validation
milestones. The X-56A Multi-Utility Technology Testbed (MUTT),
designed by Lockheed Martin under contract to the Air Force
Research Laboratory (AFRL), is a high-aspect-ratio flying wing
developed with the goal of furthering research on the coupling
between rigid and flexible modes as well as AFS [12]. This project
has inspired the Performance Adaptive Aeroelastic Wing (PAAW)
research effort by NASA, under which similar flying-wing UAVs
were developed to test and validate AFS [13]. Another important
experience, butwith highly flexibleUAVs and not directly focused on
the AFS problem, was reported under the X-HALE project [14]. For
more detail on the history of developments on AFS, the reader is
referred to [5] and references therein. Even though considerable
research effort has been devoted to the development of AFS, Livne
ranks “control law design and implementationmethods” as one of the
five areas of importance for future research onAFSmethods and adds
that “it would [ : : : ] be an important contribution to the state of the art
from the certification needs perspective to invest in the development
and testing of such methods and architectures” [5].
The work reported in this paper is part of the Flutter Free Flight

Envelope eXpansion for ecOnomical Performance improvement
(FLEXOP) project, funded by the European Commission under the
Horizon 2020 Research and Innovation Programme (Grant 636307).
Its aim is to develop multidisciplinary aircraft design capabilities by
achieving a closer coupling of wing aeroelasticity and flight control
systems in the design process. A flexible-wing remotely piloted
demonstrator is designed in the framework of this project [15,16]
and will be used to achieve flight-test validation of aeroelastically
tailored design [17] and AFS [18,19]. A concept drawing of the
demonstrator is presented in Fig. 1. The overall goal of the project
is to allow maturation of the technology readiness level (TRL) of
passive and active strategies for flutter mitigation, thus helping to
push them into more widespread use.
This paper concerns the design of an AFS controller with the goal to

provide active damping and attenuate the flutter oscillations of the
FLEXOP demonstrator. The controller is designed using classic H∞
techniques ([20] Chap. 9) and scheduled according to the speed of the
aircraft. This technique has been used before, in the frame of flutter
suppression studies, in, for example, [9,21], including wind-tunnel val-
idation, but they focus onAFS forwings and airfoils only.More recently,
theH∞ techniques have been applied to thedesign ofAFScontrollers for
the X-56A model [11] as well as to the related Mini MUTT UAV [10].
The X-56A and theMiniMUTTare flying-wingUAVs and, as such, are

subjected to a strong coupling between flexible and rigid modes, a
phenomenon known as body freedom flutter (BFF) [5,22]. The
FLEXOP demonstrator, on the other hand, has a more conventional
configuration with a well-distinguishable fuselage and V-tail, which
leads to flutter modes with a less pronounced coupling with the rigid
dynamics. The main contribution of this paper is the application of
well-established H∞ control techniques to the problem of AFS for a
relevant conventional aircraft system, thus advancing the TRL of the
approach.Thedesignedcontroller has successfully increased the flutter
speed by around 30% in closed loop, as verified in simulation with
high-fidelity linear and nonlinear models obtained from CFD/FEM.
This paper is divided as follows. Section II introduces the available

models of the demonstrator and describes the model reduction per-
formed on the high-fidelity models for the design of the controller.
The synthesis framework of theH∞ controller is described in Sec. III,
and Sec. IV presents the analysis of the closed-loop system with the
flutter controller. Finally, the verification of the performance of the
closed-loop system with the addition of a baseline rigid-motion
controller for handling and guidance is presented in Sec. IV.B.

II. FLEXOP Demonstrator Models

A. FLEXOP Demonstrator

The design of the FLEXOP UAV is reported in [23]. The flexible-
wingdemonstrator features awingspanof7m,with anaspect ratio of 20.
It is equippedwith a 300N jet engine, placed on the back of the fuselage,
allowing amaximum takeoff mass of approximately 65 kg. An airbrake
system is present, deflecting from the sides of the fuselage to allow fast
deceleration for speed control and steep-angle approaches. Each wing
features four control surfaces (see Fig. 2a) with the innermost used as
high-lift devices for takeoff and landing. The two middle flaps are used
as ailerons for rollmotion control, and the outermost control surfaces are
dedicated to flutter control. The empennage has aV-tail configuration to
reduce interactionwith the engine. Two pairs of ruddervators are present
in the empennage for controlling pitch and yaw motions.
The demonstrator is equipped with a central inertial measurement

unit (IMU) providing measurements of pitch, roll, and yaw angles (θ,
ϕ, and ψ); pitch, roll, and yaw rates (p, q, and r); and forward, lateral,
and vertical position (x, y, and z). An air data probe is used tomeasure
airspeed (VIAS), altitude (h), and angles of attack (α) and sideslip (β).
Additionally, each wing is equipped with six additional IMUs pro-
viding acceleration and angular velocity measurements in different
positions (see Fig. 2b).
Three sets of wings are planned to be developed for the demon-

strator in the framework of the FLEXOP project. The first is a rigid
wing to allow the validation of aircraft design, including its avionics
and autopilot capabilities. A second set of flexible wings was
designed such that flutter occurs below 55 m∕s, with a low flutter
frequency of less than 10 Hz. This is the set that will be used for
verification and validation of the AFS technologies. Finally, a third
set of wings was developed using aeroelastic tailoring to achieve
maneuver load alleviation and for the validation of aeroelastic design
frameworks [17].
For the purposes of this paper, only the set of flexible wings is

considered. In the next sections the aircraft models used for control
design are detailed.Fig. 1 FLEXOP demonstrator.

Fig. 2 FLEXOP demonstrator’s actuators (a) and sensors (b) for flutter control.
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B. Aeroelastic Aircraft Models

A fully flexible nonlinear model describing the rigid-body motion

aswell as the aeroelastic dynamics of the FLEXOPdemonstrator was

developed by the FLEXOP teams at the German Aerospace Center

(DLR) and the Technical University of Munich (TUM) [24]. It is

based on the interconnection between an aerodynamic model

obtained by the doublet lattice method (DLM) and an elastic model

representing the structural dynamics derived from a finite element

(FE) model. This nonlinear model was subsequently trimmed and

linearized in straight and level flight configuration at N � 26 differ-
ent cruise speeds between 45 and 70 m∕s (i.e., with 1 m∕s incre-
ments), resulting in a set of 1152-state LTI models. The state space of

these models contains the rigid-body states (forward, lateral, and

vertical positions (x, y, and z); forward, lateral, and vertical velocities
(u, v, andw); pitch, roll, and yaw angles (θ,ϕ, and ψ); and pitch, roll,
and yaw rates (p, q, and r); 50 generalized modal coordinates

(η1; : : : ; η50) and their derivatives (_η1; : : : ; _η50); as well as 1040 lag

states (xlag;1; : : : ; xlag;1040). It should be noted that the trimming

routine considers the static trim condition of the rigid and elastic

modes, meaning that the linearization is performed around the

deflected flight shape, and not around the jig shape (the interested

reader is referred to [24] for further details). This is of importance

when dealing with flexible wing configurations, as it can lead to an

overestimation of the open-loop flutter speed of around 40%; see, for

example, Ref. [25].
To obtain a tractable low-order model for controller synthesis, the

Bristol University team applied model reduction techniques on these

initial models ([20] Chap. 11). First, the states x, y, z, and ψ were

removed by truncation. Subsequently, the 35 high-frequency modes

(η16; : : : ; η50) and their respective derivativeswere residualized, result-
ing in 1078-state models. These were subsequently converted to a

balanced realization, and 1034 states were residualized to yield a set of

44-state models. Finally, the models were converted to a modal form,

and an additional four high-frequencymodeswere residualized, result-

ing in a set of 40-state reduced-order models. This final set is used for

controller synthesis purposes. The poles of the full- and reduced-order

models are shown inFig. 3 across speeds. Figure 4 shows a zoomof the

pole map of the full-order (crosses) and reduced-order (squares) mod-

els close to the imaginary axis around the 50 rad∕s frequency. It can be
seen that, as the velocity increases, the damping of two pairs of

conjugate poles deteriorates until instability is reached at N � 8. This
point corresponds to a speed of VTAS � 52 m∕s, and thus the open-

loop flutter speed (i.e., the speed at which the flutter mode poles cross

the imaginary axis) is very close to 52 m∕s. These poles correspond to
the first symmetric and antisymmetric flutter modes (η1 and η2,
respectively). A comparison between the frequency responses of the

twomodels is shown in Fig. 5 for a speed ofVTAS � 59 m∕s. It can be
seen that the reduced model is a good approximation of the aircraft

dynamics below 200 rad∕s. It is important that it gives a good repre-

sentation of the flutter dynamics, around 50 rad∕s, as this is the model

that will be used for active flutter control design.

The separation between the rigid-body dynamics and the elastic
modes of the reduced-order model is highlighted in the pole map in
Fig. 6. The short period and dutch roll modes, respectively, from the
longitudinal and lateral dynamics, are shown to be in the frequency
range below 15 rad∕s, sufficiently away from the symmetric and
antisymmetric flutter modes. One of the elastic modes is seen to be
close to the 20 rad∕s mark at lower speeds, but this is a stable mode
associated with the first symmetric wing bending mode. As the
airspeed increases, this mode moves toward a higher-frequency
region.

C. Actuators and Sensors Models

Schematics of the aircraft control surfaces are seen in Fig. 2a. The
outboard flaps (δ4L and δ4R) are reserved for flutter control, whereas
the midboard flaps (δ2L, δ3L, δ2R, and δ3R) and ruddervators (δr1L,
δr2L, δr1R, and δr2R) are used by the baseline rigid-motion controller.
This separation eases the parallel synthesis of both the baseline and
the flutter controllers and minimizes the risk of saturation due to
concurrent action during maneuvers. Because the effect of both
symmetric and antisymmetric flutter modes must be countered, the
control action is split into symmetric (δS) and antisymmetric (δAS)
inputs, which are allocated to δ4L and δ4R according to the relations

"
δ4L

δ4R

#
�

"
1
2

1
2

1
2

− 1
2

#"
δS

δAS

#
≕ TS∕AS→L∕R

"
δS

δAS

#
(1)

The outboard flaps δ4L and δ4R are controlled via a direct drive
mechanism. This allows a fast and precise actuation by the flutter
controller while limiting the effect of mechanical freeplay and

Fig. 3 Pole map of the full-order (left) and reduced-order (right) models.

Fig. 4 Poles of the full-order and reduced-ordermodels around the first
two flutter modes.
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hysteresis associated with reduction mechanisms. A fourth-order

model for this actuator was identified in [18], and is given by

Gact�s� � e−0.0001s

×
2.741 ⋅105s2�3.117 ⋅106s�1.024 ⋅108

s4�575.8s3�2.814 ⋅105s2�3.324 ⋅106s�1.025 ⋅108

(2)

The specifications of the control surfaces for flutter suppression

are shown in Table 1. The minimal and maximal deflections are

limited to −15° and 20°, respectively, with a maximum deflection

rate estimated to be above 1000°∕s. The model of the aircraft takes

into account not only the flap deflection but also the deflection rate

and acceleration. To take this into account, the first and second

derivatives of the output of the actuator model are also used, that is,

sGact�s� and s2Gact�s�. This is possible because the actuator model

has a relative degree of 2.

As aforementioned, each wing of the demonstrator is equipped
with 6 IMUs; see also Fig. 2b. The outboard sensors (L5,L6,R5, and
R6), together with the IMU on the center of gravity, are used to
provide measurements for the flutter controller. The IMUs used on
the FLEXOP demonstrator have a bandwidth of 200 Hz and are
modeled as simple unitary-gain first-order systems:

GIMU�s� �
2π200

s� 2π200
(3)

The measured outputs used by the controller are the center of
gravity acceleration az;cg and the left and right wingtip accelerations,
az;wL and az;wR, respectively. The latter accelerations are defined as

the mean between the measurements provided by sensors 5 and 6 for
each wing. To clearly separate the action of both flutter modes, the
measurements are split into symmetric and antisymmetric acceler-
ations, az;S and az;AS, defined as

"
az;S

az;AS

#
�

"
1
2

1
2

−1
1
2

− 1
2

0

#264
az;wL

az;wR

az;cg

3
75 ≕ TL∕R→S∕AS

2
64
az;wL

az;wR

az;cg

3
75 (4)

The center of gravity acceleration is subtracted from the symmetric
acceleration in order to decouple the measured symmetric acceler-
ation at the wingtips from the rigid-body acceleration of the aircraft,
as suggested in the seminal work by Wykes [7], as well as in more
recent research efforts [26,27]. As a positive side effect, this guaran-
tees that the gravity offset of the acceleration measurements is
naturally canceled.
The flight computer of the FLEXOP demonstrator is responsible

for the execution of the control laws, which are fed to a servo
controller piloting the direct drive mechanism. The overall delay
introduced by these elements is estimated to be around 15 ms, which
is modeled as a pure delay Gdelay�s� � e−0.015sI2 acting on the
controller output.
The complete feedback chain used for flutter suppression from the

acceleration measurements (az;wL, az;wR, and az;cg) to the flutter-
dedicated control surfaces (δ4L, δ4R, and respective rates and accel-
erations) is presented in Fig. 7.

III. Controller Synthesis

In this section, the synthesis of a controller to achieve AFS is
presented. The main goals of the controller are to provide additional

Fig. 5 Frequency responses of the full-order and reduced-order models at VTAS � 59 m∕s.

Fig. 6 Zoom on the low-frequency modes of the reduced-order model.

Table 1 Actuator limitations

Specification δ4L, δ4R

Min. deflection −15°
Max. deflection 20°
Max. deflection rate > 1000°∕s
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damping to both the first symmetric and antisymmetric flutter modes

below the open-loop flutter speed, and to extend the flight envelope

by pushing the closed-loop flutter speed above 52 m∕s. When in

cruise level-flight at this speed, the aircraft is trimmed at about 22%of

its full throttle, which indicates that there is margin to achieve this

flight configuration from an aerodynamic point of view. With this

objective in mind, the controller design is cast as an H∞-norm

problem, and suboptimal controllers are synthesized at three cruise

speeds. These are subsequently scheduled with respect to the air-

craft’s true airspeed to obtain the final controller for AFS.

The designed flutter controllers will be implemented in the flight

control computer, which operates at a sample time of 5 ms. This

means that a discrete-time controllermust be obtained.A choicemust

bemade between discretizing themodel and performing the design in

discrete time, or synthesizing the controllers in continuous time and

performing an a posteriori discretization. Although the former has the

advantage of directly providing a discrete-time controller, the dis-

cretization of the plant and parasitic dynamics leads to some insight

into the problem being lost. For this reason, the latter approach was

chosen, and aTustin transformation using the aforementioned sample

time is performed to convert the controller from continuous to dis-

crete time.

A. Synthesis Model

The controller is synthesized using the 40-state reduced-order
model at cruise speeds of 59 m∕s (N � 15), 63 m∕s (N � 19),
and 66 m∕s (N � 22), all above the open-loop flutter speed. This
is done tomaximize the efficiency of the controller in this speed range
and thus the flight envelope extension. The strategy for selecting the
design points is based on the analysis of the performance achieved by
each single-point controller, that is, the corresponding closed-loop
flutter speed. Based on the performance of the controller at N � 15,
the next point atN � 19 is selected such that the designed controller
is able to stabilize a range of airspeeds overlapping with that of the
first one and extending over higher speeds while maintaining perfor-
mance. The same strategy is used to select the design point atN � 22.
In these configurations, the eigenfrequencies of the unstable sym-
metric flutter mode are located between 43.9 and 45.7 rad∕s, and
those of the antisymmetric mode are between 41.7 and 44.1 rad∕s.
As it was discussed at the beginning of this section, the goal of the

controller is to damp the flutter oscillations. To translate this speci-
fication into the H∞ optimization problem, the derivatives of the
generalized coordinates corresponding to the first two flutter modes,
_η1 and _η2, are chosen as performance measures. This results in a
transfer matrix having resonance peaks at both of the flutter modes’
eigenfrequencies (see Fig. 8). The damping objective can then be
translated as a desired upper bound on these resonance peaks.
For the sake of controller synthesis, the effects of the deflection rate

and acceleration of the control surfaces on the aircraft dynamics are
ignored. In H∞ control, the designed controller will have as many
states as the synthesis model, and thus the dynamics of the IMU
sensors are shifted to the input of the actuator models in order to
reduce the plant size. This is possible because the model is linear and
the bandwidth on every channel (az;wL,az;wR, andaz;cg) is assumed to

be the same. A reduced-order model of the combined effects of the
delaywith the IMUand actuator dynamics,Gred, is then obtained (see
Fig. 9). For this, a fifth-order Padé approximation (GPadé) of the
sensor/delay/actuator chain (Gchain) is obtained, and then reduced
via balancing and residualization. The result is a third-order model,
which closely resembles the original model around the flutter eigen-
frequencies (see Fig. 10).

Fig. 7 Closed-loop system for flutter control.

Fig. 8 Frequency response from the control inputs to _η1 and _η2.

Fig. 9 Reduced model of the delay, IMU, and actuator dynamics.
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The reduced-order model of the parasitic dynamics is appended to

each of the 2 input channels in the 40-state model of the aircraft.

Because the control action must be split to deal with both the

symmetric and antisymmetric flutter modes, the allocation matrices

TL∕R→S∕AS and TS∕AS→L∕R from Eqs. (1–4) are also included in the

synthesis model GN�s�, with N ∈ f15; 19; 22g. In this way, the

controller sees az;S and az;AS as the measured outputs of the system

and takes δS and δAS to be the controlled inputs (see Fig. 11).

B. H∞ Loop Shaping

The design of H∞ controllers requires the formulation of an H∞
optimization problem whose solution, when found, is a controller

that takes into account the system specifications. This section

describes the formulation of the design problem and the numerical

computation of the controller.

1. Weighting Functions

The performance specifications for the controller synthesis are

translated into anH∞ optimization problem via the addition of input

and output frequency weights (see Fig. 12). There are four weights,

Wz,Wu, Wn, and We, each focusing, respectively, on flutter perfor-

mance (i.e., damping), control action, input signals scaling, and

output signals scaling. The selection of the weights is explained next

for the plant at 59 m∕s, that is, G15.
Thedampingprovidedby the controller for theunstable fluttermodes

is specified via the weightWz. By increasing its magnitude around the

flutter eigenfrequencies, a lower upper bound on the resonance peak of

the respective transfer functions is imposed (as exemplified in Fig. 8),

thus increasing the flutter damping.To reduce thenumberof states in the

synthesis model, these weights are set to constant values, which are

chosen based on the desired bound on the peaks of the corresponding

transfer functions, leading to the final choice ofWz � 0.01 diag�5; 6�.
TheweightWu is chosen so as to confine the control action around

the flutter eigenfrequencies. This is done to avoid exciting high-

frequency aeroelastic modes as well as limiting the coupling with

the low-frequency dynamics that are handled by the baseline rigid-

motion controller. The same weighting function for each control

channel is then chosen and is given by

~Wu�s� � 40
s2 � 101s� 2200

s2 � 127020s� 2200
(5)

This transfer function is inspired by [10] and configures a band-
stop filter centered around the eigenfrequency of the flutter modes,
which imposes a wash-out and roll-off effect on the controller’s
frequency response, thus achieving the desired behavior.
The other weighting functions are chosen as constant matrices

whose goal is to scale the input and output channels, typically based
on normalizing the input–output relations, that is, by making every
transfer function have unitary maximum magnitude. The values of
the weights chosen after tuning for the synthesis at 59 m∕s are

Wn � 200I2 We � 0.001diag�6.7; 4.8�
Wu�s� � diag� ~Wu�s�; ~Wu�s��

Wz � 0.01diag�5; 6� (6)

The same weights are chosen for the synthesis at higher speeds (at
63 and 66 m∕s), in order to obtain consistency across speeds. The
only exception isWe, which is changed toWe � 0.001diag�5.6; 10�
for the synthesis at these two higher speeds. This was done because
previous versions of these controllers, designed with the same
weights as K15, were not able to stabilize the plant in discrete time,
due to a loss of damping for the antisymmetric channel arising from
the controller discretization. The finalWe values were obtained after
tuning, where theweight on the antisymmetric channel was increased
with respect to its symmetric counterpart to increase the damping
provided to the antisymmetric flutter mode, and the resulting con-
trollers show similar adequate behavior in continuous and dis-
crete time.

2. Controller Synthesis and Reduction

The generalized closed-loop system represented in Fig. 12 is given
by the following transfer function matrix

2
4b1
b2
b3

3
5 �

2
4We

Wu

Wz

3
5
2
4 So

KSo
GzKSo

3
5Wna (7)

where So ≔ �I −GyK�−1 is the output sensitivity function and Gy

(resp. Gz) denotes the transfer function from u to y (resp. to z). The
transfer function from a to b � � b1 b2 b3 �T is then given by
F l�M;K�, where F l indicates a lower linear fractional transforma-
tion (LFT) ([28] Chap. 10) andM represents the system, augmented
with the weights, in the standard H∞ formulation (see Fig. 13). The
synthesis model has 50 states, 40 coming from the reduced-order
model of the aircraft, 6 from the reduced parasitic dynamics Gred,
and additional 4 from the control effort weightWu. The controllerK is
then found by solving the associatedH∞ optimization problem, that is,

Fig. 10 Frequency response of actuator/sensor chain, Padé approxima-
tion, and reduced model.

Fig. 11 Synthesis model for theH∞ control design.

Fig. 12 Generalized plant forH∞ optimization.

6 Article in Advance / WAITMAN AND MARCOS

D
ow

nl
oa

de
d 

by
 B

R
IS

T
O

L
 U

N
IV

E
R

SI
T

Y
 o

n 
Ja

nu
ar

y 
29

, 2
02

0 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
46

18
 



K � arg min
K

kF l�M;K�k∞ (8)

This is done numerically in MATLAB via the routine hinfsyn, and

a suboptimal controller is synthesized for numerical stability. As an

example of the results, the designed controller K15 ensures an H∞
norm of 1.38 on the closed-loop system at 59 m∕s.
As mentioned earlier, in H∞ control the computed controller has

the same number of states as the generalized plant, that is, 50 states. In

view of the need for fast computation of the control law with limited

processing power by the flight computer, a model reduction is

performed by truncating a balanced representation of the controller.

The dimension of the reduced controller is determined by analyzing

theH∞ norm of the weighted closed-loop system with the full-order

controller replaced by its reduced version. Another important aspect

is the frequency of the fastest pole of the controller, because the actual

implementation of the control algorithmwill be done in discrete time,

with a sampling time of 5 ms. For this end, the reduced controllers

Kr;i, with i ∈ f15; 19; 22g, are discretized with a Tustin transforma-

tion and frequency prewarping at the eigenfrequency of the first

symmetric flutter mode. Based on this, the reduction is done so as

to ensure that the poles of the reduced controller are slower than the

Shannon frequency of 628 rad∕s so that no dynamics of the con-

troller are lost due to sampling or frequencywarping. The order of the

reduced controller is then chosen as to provide a compromise

between its size, the frequency of its fastest pole, and the performance

degradation. To further ensure proper roll-off of the controller, the

direct feedthrough matrixD of the reduced controller is set to 0 after

reduction. With this method, a 17-state reduced controller Kr;15 is

obtained, which ensures anH∞ norm of 1.46 on theweighted closed-

loop system, a degradation of 5.96% on the performance obtained

with the full-order controller K15. A comparison between the fre-

quency responses of both controllers is shown in Fig. 14a, together

with the comparison atN � 22 in Fig. 14b. The frequency responses
are quite similar around the flutter eigenfrequencies, where the con-

troller action is most important. Although the frequency responses

differ at low and high frequencies, the low-frequency degradation is
still of sufficiently low magnitude to ensure that the flutter controller
does not affect the rigid-motion baseline controller, as it will be
shown in Sec. IV.
The pole-zero maps of both controllers, K15 and Kr;15, are shown

in Fig. 15, with blue markers for the former and red for the latter. The
highest-frequency pole of the full-order controller K15 is located at
around 473 rad∕s, whereas the fastest pole of Kr;15 is at 256 rad∕s.
The importance of the absence of high-frequency poles on the
reduced controller is twofold. First, it ensures that the controller is
not exciting the higher-frequency flexible modes of the aircraft.
Second, because the flight computer has a sampling time of 5 ms,
it is important to avoid the presence of poles above 630 rad∕s. It can
be seen from the pole-zero maps that the reduced controller has
complex pairs of poles and zeros between 50 and 100 rad∕s, which
are very close to those of the full-order controller. These poles are the
ones that are closer to the eigenfrequency of the open-loop flutter
modes, located around 45 rad∕s.
Table 2 shows the dimension of the three reduced controllersKr;N ,

as well as the resulting performance degradation and their fastest
poles. Asmentioned earlier, there is a tradeoff between the size of the
controller, the frequency of its fastest pole, and the performance
degradation. This explains why the controllers have different dimen-
sions, but with a consistent performance degradation in the cases of
Kr;15 and Kr;19. In the case of Kr;22, it was not possible to obtain the

same level of degradation without compromising the dimension of
the controller, which is the reason why a degradation of 18% is
observed in the chosen reduced controller.
The frequency responses and the pole-zero maps of the three

reduced controllers Kr;N are shown in Figs. 16 and 17. A clear
difference can be spotted in the antisymmetric channel of the con-
troller transfer functions between Kr;15 and the other reduced con-

trollers. This is due to the change on the weight We between the
synthesis of Kr;15 and the other controllers, as discussed in

Sec. III.B.1. This leads to a sensible increase in the magnitude of
the controller transfer function from az;AS to δAS for the two last

Fig. 13 StandardH∞ problem.

a) b)
Fig. 14 Frequency responses of the full and reduced controllers at a) N � 15 and b) N � 22.
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controllers (N ∈ f19; 22g), which means that the controller is allowed

more action in the antisymmetric channel at higher speeds. Moreover,

additional peaks can be seen around the frequency of 270 rad∕s,
similar to the response of the symmetric channel (az;S to δS).

C. Controller Scheduling

The single-point controllers synthesized in the previous section are

scheduled to obtain a controllerKsch that provides better performance

and robustness across the extended flight envelope. As discussed in

the previous section, the controllers Kr;15, Kr;19, and Kr;22 are

designed at, respectively,VTAS � f59; 63; 66g m∕s usingH∞ design

and subsequently reduced using balanced truncation, which leads to

controllers of different dimensions. For this reason, an output inter-

polation scheme is selected for the scheduling of the controller. This

has the additional advantage of avoiding numerical issues with the

interpolation of the state-space matrices of the controllers [29]. Care

must be taken so that the controller’s outputs do not cancel each other

during the interpolation phases; that is, that there is not a phase shift of

180° between them.
A piecewise-linear interpolation rule on the true airspeed VTAS is

chosen for simplicity. The scheduling rule is given by

Ksch�VTAS� � �1 − λ1�VTAS���1 − λ2�VTAS��Kr;15

� λ1�VTAS��1 − λ2�VTAS��Kr;19

� λ1�VTAS�λ2�VTAS�Kr;22 (9)

where

λ1�VTAS� ≔ σ

�
VTAS − 59

61 − 59

�
λ2�VTAS� ≔ σ

�
VTAS − 64

66 − 64

�
(10)

are the blending variables, with σ�⋅� ≔ max�0;min�1; ⋅�� represent-
ing saturation between 0 and 1. The airspeed ranges where the

controllers are blended (VTAS ∈ �59; 61� m∕s for Kr;15 and Kr;19,

and VTAS ∈ �64; 66� m∕s for Kr;19 and Kr;22) are selected based on

the ranges where the lower speed controller started to lose perfor-

mance while the corresponding higher speed controller approached

the performance achieved at its design speed. The scheduling strategy

is represented in Fig. 18.

IV. Closed-Loop Analysis of the Flexible Controller

In this section, the performance of the closed-loop systemwith the

continuous-time scheduled controller Ksch is studied, first by itself

and then together with the baseline rigid-motion controller designed

by the Institute for Computer Science and Control (SZTAKI) and

DLR teams [30]. All of the frequency- and time-domain analyses

presented hereafter were performed with the continuous-time con-

troller. The same analyses were also performedwith the discrete-time

version of the controller, obtained as described before in Sec. III.B.2,

and very similar results were obtained (thus, the corresponding plots

are omitted).

A. Without Baseline Rigid-Motion Controller

A thorough analysis of the closed-loop system with the scheduled

controllerKsch is presented, first using the linearizedmodels and then

with the high-fidelity aeroelastic nonlinear model.

1. Linear Analysis

The first step is the analysis of the closed-loop system comprising

the synthesis models GN , for N ∈ f1; : : : ; 26g, with the scheduled

controller. A pole-zero map is given in Fig. 19 for the models with

N ∈ f1; 5; 10; 15; 20; 25g. The plot on the right shows the zoom

around the flutter eigenfrequencies, with emphasis on the symmetric

and antisymmetric flutter modes and without zeros for clarity. The

controller stabilizes the reduced-order closed-loop system for the

flying configurations from 45 m∕s (N � 1) up to 68 m∕s (N � 24).
The non-minimum-phase zeros observed in the left plot are the result

of the performedmodel reduction and are not present in the full-order

models, as it will be seen next.
All of the subsequent analyses are performed with the full-

order (1152 states) LTI aircraft models. The pole map of the

closed-loop system (with the Padé approximation of the sensor/

delay/actuator chain, GPadé; see Fig. 9) is shown in Fig. 20, where

the zeros are omitted for clarity. Once again, the right plot shows the

zoomaround the flutter eigenfrequencies. The scheduled controller is

able to stabilize the flight configurations from VTAS � 45 up to

68 m∕s, effectively extending the flight envelope by 17 m∕s, an
increase of approximately 33% with respect to the open-loop flutter

speed.
Figure 21 shows the maximum singular value from the inputs δS

and δAS to the outputs _η1 and _η2 of the open-loop and closed-loop

systems fromN � 1 up toN � 22. It shows how the flutter controller

damps the flutter modes without adding too much degradation in the

low- and high-frequency dynamics.
To analyze the behavior of the closed-loop system in the time

domain, themodel represented in Fig. 22 is built. Thismodel includes

the aileron, elevator, and rudder commanded inputs, respectively,

denoted δa, δe, and δr. The aileron action is allocated to the anti-

symmetric deflection of actuators δ2L, δ3L and δ2R, δ3R; that is,

Fig. 15 Pole-zero maps of the full-order and reduced-order controllers, with zoom on the right.

Table 2 Number of states, degradation of
performance, and frequency of the fastest pole of Kr;N

N Dimension Degradation, % Fastest pole, rad∕s

15 17 5.96 256
19 16 3.99 259
22 15 18.1 269
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2
664
δ2L
δ3L
δ2R
δ3R

3
775 � 1

4

2
664

1

1

−1
−1

3
775δa (11)

The elevator and rudder controls are allocated to the symmetric and
antisymmetric deflection of the ruddervators δr1L, δr2L and δr1R, δr2R
according to:

2
664
δr1L
δr2L
δr1R
δr2R

3
775 � 1

4

2
664

1 1

1 1

−1 1

−1 1

3
775
�
δr
δe

�
(12)

Figure 23 shows the response to a step input in the elevator δe of the
open-loop (dashed lines) and closed-loop (solid lines) systems in
cruise flight at the speeds of VTAS � 46 and 49 m∕s (i.e., below the
open-loop flutter speed). For VTAS � 46 m∕s, the open- and closed-
loop responses are very similar (almost indistinguishable in the
plots), indicating that the flutter controller does not affect the maneu-
verability of the aircraft—that is, the closed-loop rigid-body dynam-
ics remain virtually the same as the open-loop ones. This indicates
that the flutter controller should not interact with the baseline rigid-
body controller. For the case of VTAS � 49 m∕s it is seen (more
easily on the bottom plots) that the flutter controller is able to damp
the oscillations observed in the open loop. This is more clearly
demonstrated in Fig. 24, which shows the same responses for
VTAS � 56 m∕s, that is, above the open-loop flutter speed. The
simulation shows that the oscillations related to the symmetric flutter
mode are effectively damped within 1 s. The antisymmetric flutter
mode is also stabilized, although with smaller damping.
As a final linear time-simulation test, Fig. 25 shows the response of

the closed-loop system to a doublet of �11° in the ailerons at the
speed of 51 m∕s, just below the open-loop flutter speed, lasting for
1 s. As expected, this maneuver mainly excites the antisymmetric
mode η2 (see bottom-right plot). It is seen that no flutter oscillation is
perceptible on the rigid-body dynamics (top plot) due to the action of
the flutter controller. The deflections of the actuators δ4L and δ4R
remain inside the saturation limits of �−15°;�20°�, with a maximum
of 6.93°. The maximum deflection rate is 239.57°∕s, which is also
below the saturation bound.

2. Robustness Margins

Robustness is an important property to be assessed in the closed-
loop system as the design model is inherently not able to represent all
of the actual dynamics and uncertainties of the physical aircraft. One
of the more widespread indicator of robustness comes in the form of
robustness margins, that is, the maximum allowed variation of gain
and/or phase in the sensor and actuator channels of the control loop.
Traditional gain and phase margins are obtained by breaking each
channel of the feedback loop and finding the minimum independent

gain and phase variation that will destabilize the closed loop. This
approach alone can be inadequate as it does not account for correlated

Fig. 16 Frequency responses of the reduced-order controllers Kr;N, forN ∈ f15; 19; 22g.

Fig. 17 Pole-zero maps of Kr;N, for N ∈ f15; 19; 22g.

Fig. 18 Scheduling of Ksch on the aircraft true airspeed VTAS.
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gain and phase variations. This difficulty is overcome by considering
disk margins, which consider simultaneous gain and phase perturba-
tions. Because Ksch is multivariable, both single-loop and multiloop
disk margins are assessed to ensure that the case of simultaneous
perturbations on different channels of the control loop is also taken
into account [31].
Robustness of the system against uncertain parameters, such as

mass, position of center of gravity, and the eigenfrequencies and

damping of the flutter modes, among others, could be assessed by
making use of the structured singular value ([20] Chap. 8). However,
no perturbed high-order CFD/FEMmodels (obtained by considering
bounded uncertainties in critical parameters) were available. In addi-
tion, the reduced-order model used for designwas obtained through a
combination of modal and balanced reductions, which means that
insight into the internal structure of the model is lost, and so it is
impossible to perform this analysis with the present reduced models.

Fig. 19 Pole-zero map of the reduced-order closed-loop system with zoom around the flutter eigenfrequencies.

Fig. 20 Pole map of the full-order closed-loop system with zoom around the flutter eigenfrequencies.

Fig. 21 Maximum singular value forN ∈ f1; : : : ; 22g from �δS; δAS� to �_η1; _η2�.
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Given that the full-order models have 1152 states, it is numerically
impractical to perform such analysis with those models either. For
this reason, the robustness analysis in this paper is restricted to the
computation of minimum disk margins.
The selection of margin requirements for a flutter suppression

controller is not straightforward, as it does not benefit from the
extensive industrial experience that supports the design of controllers
for rigid-body aircraft. For instance, the literature reports specifica-
tions of minimum phase margins ranging from 60° [32] down to 37°
[10] and 30° [33]. Thus, in the present case, the requirements used in
the design of the flutter controller are aminimum gainmargin of 6 dB
and a minimum phase margin of 35°. In addition, a minimum delay
margin of 20 ms is required. This represents 4 skipped calculation

steps of the flight control computer (in addition to the standard

computational delay of 15 ms that is accounted for in Gdelay). These

requirements are represented in Fig. 26 as red regions in each

respective plot.
For the computation of the robustness margins, the coordinate

transformations in Eqs. (1) and (4) are considered as part of the

controller. This means that the loop breaks happen at the actual input

(δ4L and δ4R) and output (az;cg, az;wL5, az;wL6, az;wR5, and az;wR6)
signals of the aircraft. This is done to ensure that the uncertainties are

considered in the physical actuators and sensors and thus contemplate

important cases such a phase discrepancy between the vertical accel-

eration measurements at the center of gravity and at the wingtips, for

example.
Figure 26 shows the different robustness margins computed with

the scheduled controller Ksch. Figure 26a depicts the single- and

multiloop (SL and ML, respectively) gain margins at the actuators

and sensors. The single-loop input disk margin (blue right-facing

triangles) remains above 13 dB up to VTAS � 56 m∕s, whereas the
corresponding output margin (orange left-facing triangles) is above

20 dB. When multiloop uncertainties are considered, some degrada-

tion of the gain margins is observed as expected. Nonetheless, the

multiloop input disk margin (blue squares) is still above 6 dB up to

58 m∕s. The corresponding output margin (orange circles) drops

below the 6 dB threshold for lower speeds, although remaining close

to the 5 dB mark. Finally, considering the multiloop input–output

case (black crosses), it is seen that further degradation occurs, down

to 3 dB. As pointed out in [10], this robustness margin can be overly

conservative because it considers independent uncertainties in each

actuator and sensor channel, whereas all measurements in the

FLEXOP demonstrator come from the same type of IMU component

and both actuators are the same.
A similar pattern is observed for the phase margins in Fig. 26b. In

this case, the single-loop input and output margins, as well as the

multiloop input case, are above the threshold of 35° for airspeeds

Fig. 22 Closed-loop system for analysis of the flutter controller.

Fig. 23 Open-loop and closed-loop response to an elevator step input at VTAS � 46 and 49 m∕s.

Fig. 24 Open-loop and closed-loop response to an elevator step input at VTAS � 56 m∕s.
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below 58 m∕s, whereas themultiloop output margin stays above 30°.
With respect to the ML input–output disk margin, it is below 20° for
all airspeeds except for a small region between 50 and 58 m∕s,
where it goes up to around 25°. Finally, Fig. 26c depicts the classic
loop-at-a-time input and output delay margins. The latter is infinite
below the open-loop flutter speed, and both stay above the threshold
of 20 ms up to VTAS � 59 m∕s and remain above 17 ms throughout
the stability domain of the closed-loop system.

3. Nonlinear Analysis

This section presents the performance assessment of the flutter
controller using the fully flexible nonlinear model. For this, the same
interconnection presented in Fig. 22 is used, but the LTI model of the
aircraft is replaced by the original nonlinear model. Then, the aircraft
is trimmed in the same flying conditions that yielded the set of LTI
models, and the response of the closed-loop system to step and
doublet inputs is analyzed and compared with the corresponding
linear responses.
Figure 27 shows the response of the aircraft to a step in the elevator

input δe at the speed of VTAS � 56 m∕s, corresponding to the linear
time-domain test performed for Fig. 24. The simulations using both the
nonlinear (solid lines) and linear (dashed lines) systems are shown, for
comparison. The response of the nonlinear and linear systems are fairly
similar, and they show that the controller performs well also in the
nonlinear simulation. The guaranteed closed-loop flutter speed ob-
tained with the nonlinear system is also VTAS � 69 m∕s, the same as
with the linear analysis of Sec. IV.A.1.

The above analysis using the fully flexible high-order nonlinear
model allows the verification of the correct behavior of the controller
and its flutter suppression capabilities without the actual interaction
of a rigid-motion controller. Nonetheless, a coupled (baseline rigid-
motion plus flutter controllers) analysis is necessary in order to fully
assess the flutter controller in more realistic conditions. This coupled
analysis is performed in the next section.

B. With Baseline Rigid-Motion Controller

The demonstrator built in the framework of the FLEXOP project
will allow the validation of the AFS in flight test. For this, an autopilot
system has been developed by the SZTAKI and DLR teams [30]. This
autopilot is based on a baseline rigid-body controller, which consists of
inner loops for the control of the longitudinal and lateral/directional
motions of the aircraft, as well as a trajectory planner for commanding
the altitude h, heading χ, and indicated airspeed VIAS of the aircraft.
After manual takeoff, the autopilot will be engaged with full-authority
over the aircraft motion. The trajectory planner is designed to guide the
aircraft along a horse-race-track shape, as represented in Fig. 28. In one
of the straight legs of the flight course, denominated the test leg, the
aircraft will be accelerated to incrementally increasing cruise flight
velocities, until the open-loop flutter speed is attained. This will allow
the assessment of the in-flight performance of the flutter controller in
cruise conditions at different speeds.
The overall closed-loop system (including the baseline rigid plus

flutter controllers) is shown in Fig. 29. In the previous sections, the
flutter controller was designed and its performance analyzed across

Fig. 25 Closed-loop response to aileron doublet input at the speed of 57 m∕s.

a) b) c)

Fig. 26 Minimum a) gain, b) phase, and c) delay margins with respect to true airspeed.
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the flight envelope with respect to the true airspeed VTAS. The true
airspeedwas used because the LTImodelswere obtained by perform-

ing trimming and linearization with respect toVTAS. Nonetheless, the
baseline rigid-motion controller is designed to allow the aircraft to
track indicated airspeed (VIAS) references, and so the discussion in
this section is based on VIAS instead of VTAS, with the conversion

provided where appropriate. New versions of the nonlinear model
should allow trimming to be done according to indicated airspeed
(VIAS), instead of true airspeed (VTAS). This is important for the
proper scheduling of the flutter controller, as the aircraft does not

include static air temperature and pressure altitude measurements,
and so the true airspeed is unknown to the flight computer. In this

section the nonlinear simulator is now used with both controllers
using two main sets of maneuvers, a so-called speed staircase
(Sec. IV.B.1) and the horse-race track (Sec. IV.B.2). These analyses
will serve to verify the controllers before hardware-in-the-loop (HIL)
validation and subsequent flight tests.

1. Speed Staircase

The baseline and flutter controllers are implemented in the simu-
lator of the nonlinear aerodynamicmodel of the aircraft developed by
DLR. The simulator can then be used as a high-fidelity verification
tool for the performance of both controllers as well as their inter-
action. As a first step in the assessment of the flutter controller
performance, the baseline controller is set to attain level flight, that
is, at constant height (348 m) and heading, and with a staircase speed
reference increase starting from VIAS � 38 m∕s up to 64 m∕s in
increments of 2 m∕s every 20 s (see Fig. 30). It is seen that the steps
tracking are homogeneous and adequate up to a speed of 64 m∕s,
where the simulation was stopped due to the appearance of unstable
dynamics in the antisymmetric flutter modes, as it shall be seen next.
Figure 31 shows the corresponding time evolution of the symmetric

(az;S) and antisymmetric (az;AS) acceleration at the wingtips, without
(graydashed lines) andwith (red solid lines) the flutter controller. In the
former case, the system becomes unstable at VIAS � 50 m∕s, or
VTAS ≈ 52 m∕s, althoughwith a very high time to double (nonpercep-
tible in Fig. 31). This was expected from the open-loop flutter speed
obtained from the analysis of the linearized systems. As VIAS

approaches 52 m∕s (VTAS ≈ 54 m∕s), around the 150 s mark, the
oscillations explode. The flutter controller is able to reduce the oscil-
lations at the wingtips, even below the open-loop flutter speed. The
behavior above this speed remains quite similar to those at lower
speeds, which is a an indicator that the flutter controller allows the
expansion of the flight envelope without affecting maneuverability.
The closed-loop system with flutter controller is stable up to VIAS �
60 m∕s (VTAS ≈ 62 m∕s), and at 62 m∕s (VTAS ≈ 64 m∕s) it can be
seen that the antisymmetric flutter mode becomes unstable, although
with a very large time to double. When VIAS reaches 64 m∕s
(VTAS ≈ 66 m∕s), the time to double becomes much smaller, and the
flutter oscillations quickly diverge. This indicates that there is inter-
action between the flutter and baseline controllers at higher speeds,
as the closed-loop flutter speed is reduced in the presence of the latter.
The deflection of the wingtip ailerons, δ4L and δ4R, is shown in

Fig. 32. Both deflections are quite similar during the greater part of
this simulation, as seen on the zoom over the 80–85 s time region
(plot a), which indicates that the symmetric flutter mode is being
excited. By the end of the simulation, the antisymmetric flutter mode
becomes unstable, and this is observed in the antisymmetric action of
the control surfaces on the zoom over the 255–260 s time region (plot
b). For this level-flight simulation, the maximum deflection below
the closed-loop flutter speed is lower than 0.002°, even during the
acceleration phase. This can be explained by the fact that a linear
elastic model is used to describe the structural dynamics, which are
damped and stabilized by the flutter controller, resulting in stable

Fig. 27 Nonlinear and linear responses to an elevator step input at 56 m∕s.

Fig. 28 Horse-race track for evaluation of active flutter suppression
capabilities [18].

Fig. 29 Closed-loop system including the guidance and active flutter

control loops.
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linear dynamics (in level cruise flight). Because this staircase maneu-
ver does not directly excite the flutter modes, very little control action
is required of the controller. This indicates that the control effort is
very low when in cruise-flight conditions, and then that the AFS has
not a big impact on the energetic efficiency of the aircraft. The
deflection rates in this simulation (not shown) are also very small
with respect to the limits of�1000°∕s, and thus the flutter controller
is far from saturation. As the aircraft approaches the speed of
VIAS � 62 m∕s, the control effort increases and becomes much
higher at 64 m∕s until reaching saturation, as the flutter controller
is no longer able to ensure stability.
As discussed in Sec. IV.A, in the absence of the baseline rigid-motion

controller, the closed-loop flutter speedwas identified in the simulations
with the nonlinear model at VTAS � 69 m∕s. With the addition of
the baseline controller, the closed-loop flutter speed has dropped and
is around a speed of VIAS � 62 m∕s (or VTAS ≈ 64.5 m∕s). This

indicates that there is interaction between the controllers for rigid
motion and AFS, at least at higher speeds. It should be noted that this
interaction is not between the flutter controller and the rigid-motion
dynamics, but rather with the baseline rigid-motion control action, as
this is in contrast with the results presented in Sec. IV.A. Nonetheless,
the flight envelope is expanded up to VIAS � 60 m∕s, or equivalently
VTAS � 62.4 m∕s, an increase of around 22% with respect to the
open loop. Future research will be directed at understanding this
coupling, and how to improve the behavior of the complete closed-loop
system.

2. Horse-Race Track

This section presents the analysis of the closed-loop nonlinear
system as it follows the trajectory reference of the horse-race track. At
each lap, the aircraft is accelerated up to a higher speed in the test leg
in 4 m∕s increments. This simulation is very close to themission that

Fig. 30 Speed reference tracking with flutter controller engaged.

Fig. 31 Symmetric and antisymmetric wingtip acceleration for the speed staircase simulation.

a) b)
Fig. 32 Deflection of the wingtip ailerons for the speed staircase simulation.
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will be undertaken by the demonstrator in the actual flight test and

thus is of vital importance for the verification of the controller.

Figure 33 shows the three-dimensional xyz trajectory of the aircraft
as it follows the horse-race track for the cases without (gray dashed

lines) andwith (red solid lines) flutter controller. Both simulations start

at point �x; y; z� � �790; 0; 350� m, which is marked with a black dot

on the front-left side of the track, andwith a blue cylinder to indicate the

test leg. Outside of the test leg cylinder, both trajectories are virtually

the same, which once again indicates that the flutter controller does not

have an impact on the rigid-motiondynamics.During the test leg, some

deviations between both trajectories can be seen. This is mostly due to

the attempt to fly the aircraft without the flutter controller above the

open-loop flutter speed, which leads to high-magnitude oscillations on

thewings that impact the rigid dynamics (low) frequency region (this is

more clearly seen in Fig. 34b).

Figure 34a shows the speed profile during the horse-race-track

simulation with the flutter controller engaged, along with the speed

reference. The aircraft goes through the test leg six times during

the mission, with the first test at Vref � 42 m∕s, and all subsequent

tests with 4 m∕s increments. It is seen that the response of the speed

tracking presents some overshoot, especially at the highest speed

(Vref � 62 m∕s).

In Fig. 34b, the pitch angle of the aircraft is plotted against time for

the cases without and with the flutter controller. The flutter-induced

oscillations in the rigid dynamics in the former case can be clearly

seen in this figure during the tests from Vref � 54 m∕s onward.

These are not present with the flutter controller engaged, as expected.

The performance of the controller can be further assessed in Fig. 34c,

where the symmetric wingtip accelerations are plotted for the cases

without and with flutter controller. The controller is able to signifi-

cantly reduce the flutter oscillations as the aircraft goes through the

test leg, thus allowing it to fulfill the mission designated by the

autopilot. In test 6, that is, at Vref � 62 m∕s, some level of flutter

oscillation is present. This is due to the overshoot in the speed

tracking, as seen in Fig. 34a, which results in the aircraft accelerating

to speeds above VIAS � 62 m∕s. According to the results presented
in the previous section, the closed-loop system is only able to

effectively damp the flutter modes up to VIAS � 60 m∕s, and so

these oscillations could be expected.

The controller performance is now considered in the presence of

disturbances: measurement noise, turbulence, and gusts. The noise in

the sensormeasurements ismodeledwith the use of coloring filters to

achieve realistic results, as described in ([34] Sec. 3.2.2). For this

simulation, the presence of noise in the acceleration measurements

Fig. 33 xyz trajectory on the horse-race track, with and without flutter controller.

a)

b)

c)

Fig. 34 Speed reference tracking with and without flutter controller.
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provided by the IMUs is considered (both in the center of gravity and
in the wingtips), as well as in the measurement of speed, used for
scheduling purposes. The turbulence is modeled by a Dryden filter,
which is set up using the dimensions of the aircraft and actual wind
data obtained gathered at the sitewhere the flight tests will take place.
In addition, discrete vanishing 1-cosine wind gusts are added along
the y and z axes. These are added at 40 and 100 s in the vertical
direction, and at 165 and 200 s in the lateral direction.
Figure 35 shows the symmetric acceleration at the wingtips of the

aircraft during the simulation of the horse-race track in the presence
of noise, turbulence, and gusts. The case with the flutter controller
shows that it is able to maintain performance below the speed of
VIAS � 60 m∕s, but some degradation is observed above this mark.
Unlike the nondisturbed case, the flutter controller is not able to
maintain stability in the last test track, that is, when the autopilot
attempts to impose a speed of VIAS � 62 m∕s. Nonetheless, as
discussed before when analyzing the speed staircase simulation,
the closed-loop system is unstable at this speed (even if with a very
high time-to-double; see Fig. 31), and so this result is not unexpected.

V. Conclusions

This paper presents the results of the synthesis of a controller to
provide AFS for the demonstrator aircraft developed in the frame-
work of the FLEXOP project. The controller proposed is composed
of three single-point H∞ controllers, scheduled with respect to the
true airspeedVTAS. The proposed controller was shown to extend the
flight envelope above the open-loop flutter critical speed by provid-
ing sufficient damping to the first symmetric and antisymmetric
vibrationmodes. The results obtained are satisfactory and promising,
even in simulation with a high-fidelity nonlinear model and in the
presence of gusts and sensor noise. The flight-test campaigns to
validate the flutter suppression capabilities of the controller are
scheduled for the spring/summer of 2019.
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