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 5 

Pine Island Glacier has contributed more to sea level rise over the last four decades than 6 

any other glacier in Antarctica. Model projections indicate that this will continue in the 7 

future but at conflicting rates. Some models suggest that mass loss could dramatically 8 

increase over the next few decades, resulting in a rapidly growing contribution to sea level, 9 

and fast retreat of the grounding line, where the grounded ice meets the ocean. Other 10 

models indicate more moderate losses. Resolving this contrasting behaviour is important 11 

for sea level rise projections. Here, we use high resolution satellite observations of elevation 12 

change since 2010 to show that thinning rates are now highest along the slow-flow margins 13 

of the glacier and that the present-day amplitude and pattern of elevation change is 14 

inconsistent with fast grounding line migration and the associated rapid increase in mass 15 

loss over the next few decades. Instead, our results support model simulations that imply 16 

only modest changes in grounding line location over that timescale. We demonstrate how 17 

the pattern of thinning is evolving in complex ways both in space and time and how rates in 18 

the fast-flowing central trunk have decreased by about a factor five since 2007.  19 

Pine Island Glacier (PIG) has been the single largest contributor to sea level rise from the 20 

continent 1. Combined with its neighbour, Thwaites Glacier, it contributes 32% of the ice 21 

discharge from the West Antarctic Ice Sheet (WAIS). This region, the Amundsen Sea 22 
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Embayment (ASE), has been described as the “weak underbelly” of the WAIS because of the 23 

steep retrograde bedrock slope that it rests on which reaches up to 2500 m below sea level in the 24 

interior 2. As a consequence of its recent behaviour and its inferred importance for the stability of 25 

the WAIS, PIG is one of the most intensively and extensively investigated glacier system in 26 

Antarctica, including numerous satellite 3-5, modelling 6-9 and field studies  10-12 aimed at 27 

understanding its response to external forcing, the geophysical controls on mass loss and, in turn, 28 

improving projections of its future trends.  29 

Recent behaviour and model projections 30 

Sustained retreat of the grounding line and linearly increasing thinning rate at the hinge-line has 31 

been reported between 1992 and 2011, with thinning rates exceeding 7 m/yr in 2007-2008 near 32 

the grounding line 13. The grounding-line retreat coincided with an inland migration of surface 33 

lowering, which was confined to the central trunk up to 2004 5,14. From 2004 onward, thinning 34 

spread inland with the maximum rates appearing to be concentrated in regions of faster flow and 35 

approximately following the velocity contours into the glacier tributaries 5,15. Numerical 36 

modelling suggested that this could be explained by a diffusive process resulting from reduced 37 

basal friction at the grounding line that could be transmitted about 200 km inland over a decadal 38 

time scale 16. More recently, a study using three different numerical ice sheet models, concluded 39 

that the grounding line had started an irreversible retreat that could result in a major increase in 40 

ice discharge over the next few decades 9. For a plausible melt scenario, they found that the mass 41 

imbalance could increase by as much as a factor six, resulting in an additional sea level 42 

contribution of up to 10 mm in the next 20 years 9. This is, however, at odds with other studies 43 

that suggest that doubling 8 or quadrupling 6 sub-shelf basal melt rates will only have a modest 44 

impact on the projected sea level contribution. In the latter case, the 4 x melt experiment resulted 45 
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in an additional mass loss stabilising at 25 Gt/yr (1.4 mm sea level equivalent over 20 years). 46 

While these modelling studies agree that the glacier will remain out of balance, they produce 47 

markedly different trajectories into the future.  48 

Observations of change since 2010 49 

Volume change estimates of the PIG catchment have been based, until recently, on the analysis 50 

of satellite radar altimeter data using radar returns from the Point Of Closest Approach (POCA) 51 

to the satellite. Until the launch of CryoSat-2 in 2010, this was the only approach available for 52 

processing such data.  It is, however, limited in the spatial resolution and sampling that can be 53 

achieved. Previous studies have gridded the data somewhere between 10 and 20 km, depending 54 

on the time interval and latitude. In addition, POCA data are biased in how they sample 55 

undulating terrain that is typical of the margins of the ice sheets 17. The radar returns tend to be 56 

clustered around topographic highs and absent from troughs. CryoSat-2 has a unique capability 57 

known as the Synthetic Aperture Interferometric mode, which operates around the steeper, 58 

sloping margins of the Greenland and Antarctic ice sheets 18. In addition to “conventional” 59 

POCA processing of the radar waveforms, the phase information recorded in this mode makes it 60 

possible to retrieve elevation estimates beyond the POCA location in the waveform 19. This is 61 

known as swath processing and results in about two orders of magnitude greater sampling of the 62 

surface compared to POCA processing, but with data of lower accuracy and a dependency on 63 

knowledge of the satellite roll angle19. More importantly, swath data overcome the spatial 64 

sampling issues that POCA data can suffer from (Extended Fig 1). Combined with the long 65 

repeat cycle of CroySat-2 (369 days), dense radar altimeter sampling of the ice sheet margins is, 66 

for the first time, achievable. The approach has been successfully used to derive high resolution 67 

elevation change estimates from, for example, the Patagonian icefields 20. Here, we use the 68 
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complete CryoSat-2 record from 2010-2018 to derive high resolution (500 m) elevation change 69 

estimates over PIG. We also investigate how the spatial pattern of elevation change has evolved 70 

over time. 71 

Elevation rates for CryoSat-2 swath data were based on L1b baseline C data, processed using 72 

established methods 19. To make optimal use of the high spatial sampling we mapped surface 73 

elevation rates on a grid of 500 m posting. This approach reduced the effect of topographic 74 

variability within a grid cell and allowed us to calculate a linear surface elevation rate at each 75 

grid cell (see Methods for further details). We calculated the time-mean surface elevation rate 76 

over the entire CryoSat-2 recorded from October 2010-2018 at 500 m posting (Figure 1) and for 77 

two periods between 2010-2014 and 2015-2018, with 2 km postings (Figure 2) as well as 78 

annually-resolved at a lower resolution (Extended Fig 2) to illustrate the evolution of the pattern 79 

of thinning. Mean surface elevation rates derived from ICESat-1 laser altimeter data 80 

(GLAS/ICESat L2 Global Land Surface Altimetry Data, version 34, GLA14) were also 81 

calculated using recent data pre-processing and repeat-track methods 21. 82 

We also examined changes in velocity over the same time period. We used annual ice velocity 83 

maps from the MEaSUREs Version 1 data set 22 for the years 2005-2017 to calculate the velocity 84 

difference between the ICESat-1 and CryoSat-2 epochs. The GoLIVE velocity time series, 85 

recorded between 2013-2017 23, was used to determine velocity change over the CryoSat-2 time 86 

period (for further information see Methods). 87 

Mass loss from the PIG has been steadily increasing up until about 2009 and has dominated the 88 

contribution to sea level rise from the Antarctic Ice Sheet over the last decade 1,24. This mass loss 89 

is associated with a speed-up of the glacier1 and, based on the principle of conservation of mass, 90 

a concomitant reduction in volume (surface thinning). Ice speed remained relatively constant 91 
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from 2009-2014 (fluctuating by about 4 percent)24, while , thinning rates peaked around 2008 92 

13,14. Mass loss and the associated volume reduction, after this date, was sustained by  inland 93 

propagation of thinning rather than an increase in its amplitude.7,24. In Fig. 1, we compare 94 

thinning rates derived from ICESat-1 for 2003-2009, with swath processed CryoSat-2 data from 95 

2010-2018. For the earlier epoch, highest thinning rates are found in the central trunk of the 96 

glacier, near the grounding line, consistent with previous assessments 5,14. Up until about 2009, 97 

the pattern of inland propagation is consistent with a diffusive process travelling upstream in 98 

response to a transient forcing at the grounding line 14,16. During the CryoSat 2 period, however, 99 

the pattern of thinning is markedly different and reduced in amplitude, which is also supported 100 

by a recent study employing digital elevation models derived from Worldview image stereo pairs 101 

13. Changes in driving stress, due to a steeper slope at the glacier margin could be responsible for 102 

the ice drawdown on the northern flank. We investigated this possibility by calculating the 103 

change in slope and driving stress between Envisat, ICESat-1 and CryoSat-2 epochs. The 104 

coloured triangles in Fig. 1f show the magnitude and direction of change in driving stress at 105 

ICESat and Envisat cross-over track locations. Maximum changes are about 6 kPa and likely too 106 

small to explain the change in the spatial pattern of dh/dt. A recent numerical modelling study 107 

infers that both loss of basal traction and surface geometry play a role in modulating mass loss 13. 108 

The lower amplitude of thinning in the main trunk could, in part, be due to a weakening in the 109 

ocean forcing and, consequently, sub-shelf melting between 2010 and 2012 7 as reported 110 

elsewhere 25. We note, however, that sub-shelf melt rates increased from 2013 to values similar 111 

to those from 1998-2010 (Fig. 4). Our results do not follow the linearly increasing elevation rate 112 

proposed for the hinge-line from InSAR and altimetry up to 2010 26. Instead, thinning rates have 113 

declined by about a factor 6 since their peak in 2009 (Fig. 1e and Extended Fig 2). 114 
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Our results indicate a more complex pattern of thinning than previously reported 14 or modelled 9 115 

that is evolving in time (Fig. 2 and Extended Fig 2). Most striking, is the fact that the maximum 116 

thinning rates during the CryoSat-2 epoch, exceeding 3 m/yr (Fig. 1g and 2a), are occurring, not 117 

in the fast flowing main trunk or tributaries, as previously reported, but beyond the shear 118 

margins, in areas of relatively slow-flow (50-100 m/yr) where motion is controlled by ice 119 

deformation, not basal sliding. In contrast, the fast-flowing main trunk has mean thinning rates of 120 

about a factor three lower than the inter-stream region (Fig. 2a). The peak thinning rate in the 121 

inter-stream region is also associated with an acceleration in flow (Fig 1c and f) and a modest 122 

increase in gravitational driving stress (Fig. 1f). Thus, mass loss is now propagating into areas of 123 

slow, deformation-dominated flow (Fig. 1b). The evolution of thinning (and hence mass loss) for 124 

two approximately four-year epochs is shown in Fig 2a and b. Although the central trunk has 125 

sped up by about 0.7% during this time (Fig 3b), thinning rates have decreased slightly from the 126 

grounding line to about 50 km inland (Fig 2, 3c and Extended Fig 2). The 50% reduction in sub-127 

shelf melting between 2010 and 2012 coincides with a hiatus in ice shelf thinning, as would be 128 

expected, which persists until 2013  (Fig. 4)27. However, from 2013 ice shelf thinning 129 

recommences with a rate comparable to the early 2000s (Fig. 4). We detect a modest increase in 130 

the thinning rate close to the grounding line coincident with the resumption of oceanic melting 131 

(Fig. 2, 3c and 4) but, in general, the highest thinning rates have shown a decline between 2012 132 

and 2017 (Extended Fig. 2). 133 

Implications for future evolution of PIG 134 

Based on extrapolation of observed thinning rates, it has been suggested that ungrounding of the 135 

entire main trunk of PIG within a century was possible5. Some model projections for PIG under 136 

different ice shelf melt scenarios suggest a 6-fold increase in mass loss and a 40 km migration of 137 
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the grounding line in less than two decades 9.  These simulations use an idealised melt scenario 138 

and propagate thinning in the central trunk and tributaries, as implied by the satellite radar 139 

altimeter observations that were used for comparison 9. This is, however, not reflected in the 140 

present-day evolution of thinning nor the recent behaviour of the glacier.  Hence, we investigate 141 

what is required to achieve the modelled magnitudes of retreat based purely on geometric 142 

constraints and compare with the observations from CryoSat-2. In Fig. 2b we plot the grounding 143 

line positions for thinning rates of 2, 5 and 10 m/yr over 50 years alongside the mean rate from 144 

CryoSat-2 over the period 2010-2018. The present-day thinning rates result in a negligible 145 

grounding line retreat over the next five decades (dashed white line in Fig. 2b). This is consistent 146 

with model simulations that suggest modest changes in mass balance and grounding line as a 147 

consequence of enhanced sub-shelf melt 6,8. Even for a mean thinning rate of 5 m/yr (about five 148 

times present day), over the central trunk, the grounding line has receded by less than 20 km in 149 

50 years (Fig 2b). We conclude, therefore, in the absence of anomalously high sub-shelf ocean 150 

melting, grounding line retreat and accelerated mass loss of PIG will be limited and at the lower 151 

end of model estimates leading to about 3 mm sea level equivalent above the present-day 152 

imbalance (of ~0.4 mm/yr) over the next five decades6. We note, however, that sub-shelf melt 153 

rates are sensitive to decadal ocean variability 27,28, have a complex relationship with climate 154 

variability29,30, the geometry of the cavity 31 and tidal pumping close to the grounding line32. 155 

Implications for vertical land motion from GPS 156 

Our results are also important for the interpretation of vertical land motion, derived from GPS 157 

data. These data have been used to constrain geophysical models, and inverse solutions for 158 

glacial isostatic adjustment in the Amundsen Sea Embayment 33-36 and to estimate the visco-159 

elastic properties of the mantle at depth37. A low mantle viscosity, as inferred for the Amundsen 160 
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Sea Embayment, provides a stabilising influence on grounding line migration 37 and is important, 161 

therefore, to account for in model projections 38.  162 

The solid Earth deforms rapidly (elastically) to present-day changes in mass loading and slowly 163 

(viscously) to past changes. GPS data measure both components and to infer properties of the 164 

mantle, and model the viscous response, from GPS data, it is necessary to remove the elastic 165 

component due to present-day mass change. This correction is sensitive to the precise spatial 166 

distribution of the ice loading changes. It is necessary, therefore, to have detailed knowledge of 167 

the spatial pattern of dh/dt at scales of a few kilometres to estimate an accurate elastic correction 168 

37. 37.. The two GPS stations in Antarctica (INMN and TOMO) with the largest vertical land 169 

motion and largest residual, after accounting for glacial isostatic adjustment and elastic 170 

deformation, are both close to regions of localised high thinning in the Amundsen Sea 171 

Embayment. In the case of INMN (location marked by a star in figure 2), the station lies roughly 172 

equidistant between the area of peak thinning rates on the northern flank of PIG and a region 173 

further north at about 74.7° S, 99° W. Not only is the amplitude of thinning rapidly evolving 174 

during the period of the GPS observations (Extended Fig. 3) but also its spatial pattern. Not 175 

accounting for this variability will lead to erroneous estimates of the elastic component of 176 

vertical land motion, and, as a consequence, estimates of the visco-elastic properties of the lower 177 

mantle 37.    178 

Data availability 179 

The gridded swath processed CryoSat data sets are available from the University of Bristol data 180 

portal at https://doi.org/10.5523/bris.xzwd95jqfpok2hi0tkxs5r6at. CryoSat-2 data were provided 181 

by the European Space Agency and are available from https://earth.esa.int/web/guest/-/how-to-182 

access-cryosat-data-6842. ICESat-1 data, MEaSURES grounding lines and GoLIVE velocities 183 

https://doi.org/10.5523/bris.xzwd95jqfpok2hi0tkxs5r6at
https://earth.esa.int/web/guest/-/how-to-access-cryosat-data-6842
https://earth.esa.int/web/guest/-/how-to-access-cryosat-data-6842
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are available from the National Snow and Ice Data Center, Boulder, Colorado, USA. Envisat 184 

data used in this study is available from https://doi.org/10.5270/EN1-ajb696a. The EIGEN-6C4 185 

are available from (46), RACMO2.3 from 186 

https://www.projects.science.uu.nl/iceclimate/models/antarctica.php and Bedmap2 bedrock 187 

topography from https://www.bas.ac.uk/project/bedmap-2/..  188 
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 304 

Figure 1. PIG elevation, velocity and driving stress changes between 2005 and 2018. 305 

a) Elevation and bedrock topography (Bedmap2) profiles for ICESat-1 track 279 across PIG. b) 306 

elevation and c) across-track and d) along-track velocity change for the period between 2005 to 307 

2009 (black) and 2010 to 2017 (red). (e) Mean elevation change calculated using ICESat-1 308 

between 2005 to 2009 (black) and CryoSat-2 between 2010-2018 (red). (f) map of ice velocity 309 

change for the period between 2005-2009 and 2010-2017 (with white directional arrows) near 310 

the grounding line. The average change in driving stress (𝜏) at ICESat-1/ Envisat crossover 311 

points is also shown in (f) with coloured directional arrows. The change in driving stress was 312 

calculated between the periods 2005-2009 and 2010-2018 using ICESat-1and CryoSat-2 (solid 313 

outline) and between the periods 2002-2010 and 2010-2018 using Envisat and CryoSat-2 314 

(double-line outline). The mean surface elevation rate calculated from ICESat-1 data, overlain on 315 

the mean elevation rate derived from CryoSat-2 swath data at 500 m posting (g). The dotted 316 

black line is the grounding line position recorded before 2003,the solid black line is the position 317 

recorded in 2011 and the solid green (f) or grey (g) lines are the positions recorded in 2015 32. 318 

Contours are mean velocities for the period 2005-2017.  319 

Figure 2. Elevation change over PIG between 2010 and 2018. 320 

Mean surface elevation rate derived from CryoSat-2 swath data between a) 2010-2014 and b) 321 

2015-2018, gridded at 2km postings with no smoothing. The dark red lines in a) are mean 322 

velocity contours for the period 2005-2017 and in b) are 100 m, 250 m and 500 m contours of 323 

height above flotation using the assumption of hydrostatic equilibrium (i.e. floatation point after 324 

50 years for a thinning rate of 2m/y, 5 m/y and 10 m/y respectively). The dashed white line is the 325 
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floatation point after 50 years using the mean CryoSat-2 thinning rates, and the black line is a 326 

composite of the 2011 and 2015 grounding line position. The star is the location of the INMN 327 

GPS station. The thick solid black line running east to west is the flow line path for the cross-328 

section used in Fig. 3 and the dashed black box is the area shown in Fig. 1. 329 

Figure 3. Profile along a central flowline of PIG.  330 

a) Elevation and bedrock topography (Bedmap2), the blue line is the predicted ice sheet 331 

elevation needed for flotation. The vertical blue dashed lines are the intersections with the 100 332 

m, 250 m and 500 m contours of height above flotation in Fig. 2. The vertical black dashed lines 333 

are the grounding line positions recorded in 1) 2003 and 2) in 2011. b) Ice velocity change 334 

recorded calculated between 2013 and 2017 and c) mean surface elevation rate for CryoSat-2 335 

between 2010-2014 (black) and 2015-2018 (red).. 336 

 337 

 338 

Figure 4. Ice shelf thinning rates for PIG, 1994-2017. 339 

Pine Island Glacier ice shelf height change derived using ERS-1 (1991–1996), ERS-2 (1995–340 

2003), Envisat (2002–2012) and CryoSat-2 (2010–2017) from Paolo et al. 2018 27. The black 341 

line is the original time series, which has a 3 month time step. The red line is the data smoothed 342 

with a 4 year moving-window filter. 343 

 344 

  345 
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Methods 346 

 347 

CryoSat-2 Elevation 348 

We used CryoSat-2 synthetic aperture radar interferometric (SARIn) L1b baseline C data 349 

spanning between October 2010 (referred in the text as 2010) and December 2018 in this study. 350 

With these data we were able to use the necessary corrections, position/timing information along 351 

with the waveform power, coherence and phase to calculate Point Of Closest Approach (POCA) 352 

and “swath processed” heights, which are derived from the time-delayed waveform beyond the 353 

first return. The processing scheme used here closely follows Gray et al. (2013) 19. The 354 

processing first involved using a threshold re-tracker described in Helm et al 201439 to determine 355 

the POCA, and selecting swath samples with a minimum coherence and power of 0.8 and -150 356 

dB, respectively. We then calculated the range for the POCA and each swath sample, corrected 357 

for path delay due to the wet and dry troposphere and ionosphere, and changes in surface height 358 

for the solid earth and ocean loading tides. Over the ice shelves, we also corrected for inverse 359 

barometric atmospheric pressure and tidal variability using the CAT2008a tide model, which is 360 

an update to the model described in Padman et al. 40. Phase wrapping and ambiguity errors can 361 

occur in areas of high sloping terrain, and these were corrected by unwrapping the phase around 362 

a reference phase difference. The reference phase difference was created by sampling the 363 

Bedmap2 Digital Elevation Model 41 in the cross-track direction for a range of cross-track look-364 

angles through the antenna beam half width (1.992°). This was then re-sampled to the sample 365 

points and the look-angle (𝜃) was converted to phase (𝜓) using  366 

                                                                sin(𝜃 + 𝛽) = −𝜓/𝑘𝐵                                                         367 

(1) 368 
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where 𝐵 is interferometric baseline, 𝛽 is roll angle and 𝑘 is wavenumber 19. We then applied a 369 

multiple of 2𝜋 correction to match the measured phase to the reference phase. This method is 370 

reliable in areas of complex topography as it can successfully unwrap data with multiple phase 371 

discontinuities. The satellite orientation and the phase information was then used to calculate 372 

cross-track look-angles using equation (1) and was combined with the range to calculate the 373 

elevation and location of the return echo relative to the reference ellipsoid.  374 

 375 

CryoSat-2 elevation rates 376 
 377 

We calculated a linear surface elevation rate (𝑑ℎ 𝑑𝑡⁄ ) with CryoSat-2 data on a grid of 4 km 378 

posting for POCA data, and between 0.5 km and 4 km postings for swath data using                                                               379 

ℎ =  𝑎𝑜 + 𝑎1𝑥 + 𝑎2𝑦 +
𝑑ℎ

𝑑𝑡
𝑡              (2) 380 

where ℎ is elevation, 𝑎𝑜 is mean elevation and t is time. To account for variation in topography 381 

within each grid cell, we simultaneously solved for surface slopes a1 and a2, in the x and y 382 

direction, respectively. The noise observed within swath data, typically has standard deviations 383 

between ~1 m and ~3 m 42, and can also include large outliers (e.g. incorrectly geolocated return 384 

echoes) which could adversely affect the fitting process. To account for these, we used a robust 385 

method by iteratively re-weighing the least squared regression with a bi-square weighting (w) of 386 

the form 𝑤 = (1 − (𝑟 7𝑚⁄ )2)2 where 𝑟 is the residuals of the previous fit and 𝑚 is the median 387 

absolute deviation.   388 

In the fast-flowing areas, the elevation change will be affected by advecting ice. This is 389 

particularly apparent over floating ice and can be removed using a Lagrangian framework 43. 390 

However, such a framework is only valid over ice in hydrostatic equilibrium, and as our study 391 
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focused on the grounded portion of the ice shelf, this was not performed, and the resulting fast-392 

flowing areas still contain this noise. We calculated the surface elevation rate over the entire 393 

CryoSat-2 recorded from 2010-2018. We also calculated a linear elevation rate for two separate 394 

periods between 2010-2014 and 2015-2018 and for a three-year moving window weighted using 395 

a tri-cube function. For the two separate periods between 2010-2014 and 2015-2018, the increase 396 

in temporal resolution required us to use a grid of 2 km posting, while for the three-year moving 397 

window we used a grid of 4 km posting. We incorporated POCA data into the three-year moving 398 

window calculation by using the mean value between POCA and swath data. 399 

The standard error of the model fit was used to estimate the uncertainty in elevation rates 400 

(Extended Fig. 3). This measure includes any departure from the model and any measurement 401 

error, for example, from incorrectly modelled atmospheric corrections, uncertainty in the 402 

location of the measurement either from the orbit location or the geolocation of the radar echo. 403 

Errors from incorrect geolocation of the return, arising from ambiguous reflections over 404 

complex/steep topography may introduce a variable bias, and the standard error to the model fit 405 

will not adequately capture this. However, the choice of a relatively high coherence threshold 406 

ensures that the majority of these data have been removed from our analysis.  Over the entire 407 

study area, the average standard error was 0.2 m/y. While over the fast-moving areas, elevation 408 

measurements were affected by ice advection and the standard error was higher. In these regions 409 

where dv/dt>1000 m/y, the average uncertainty is 0.4 m/y. 410 

 411 

ICESat-1 elevation rates 412 
 413 
ICESat-1 laser altimeter elevation data (GLAS/ICESat L2 Global Land Surface Altimetry Data, 414 

version 34, GLA14) were pre-processed using the data pre-processing steps described in 415 
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Felikson et al. (2017) 21. Elevation rates were then calculated using the repeat-track method by 416 

first binning elevation data from all campaigns into non-overlapping grid cells of 1 km by 1 km 417 

along a reference track. Elevation change was then determined using  418 

                                                 ℎ =  𝑎𝑜 + 𝑎1𝑥 + 𝑎2𝑦 +
𝑑ℎ

𝑑𝑡
𝑡                                                         (3) 419 

where is the 𝑎1 and 𝑎2 are the slopes of the topography in the x and y direction 21.  The elevation 420 

change was measured over the ICESat-1 operation period which was between February 2003 and 421 

October 2009. The uncertainty in elevation rates were measured using the standard error of the 422 

model fit (Extended Fig. 3). Over the entire study area, the standard error was 0.1 m/y, while 423 

over the fast-moving central section of Pine Island Glacier (dv/dt>1000 m/y), the standard error 424 

was 0.2m/y. 425 

 426 

Ice velocity and grounding line location 427 

 428 
Ice velocity change over Pine Island Glacier was determined using two datasets described in 429 

Supplementary Table 1. We first used data from MEaSUREs Version 1 22,44, as this had a 430 

sufficient time span to cover both ICESat-1 and CryoSat-2 satellite epochs. The ice velocity 431 

change for these data was found by calculating the average x and y components of the ice 432 

velocity within the separate time periods 2005-2009 and 2011-2017 within each 1 km grid cell, 433 

then calculating the difference. We also used the GoLIVE velocity time series 23,45 to measure ice 434 

velocity change within the CryoSat-2 period. GoLIVE has a higher spatial and temporal 435 

resolution of 300 m and 16 days, respectively. This allowed us to calculate a linear trend for the 436 

x and y components of the velocity, which we measured over a grid of 1 km posting. 437 

Acceleration over Pine Island Glacier is shown in Extended Fig. 4. 438 
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We used the grounding line positions from MEaSUREs version 2 in this study 44. This dataset 439 

used differential satellite radar interferometry to determine the hinge-line. Over Pine Island 440 

Glacier, grounding line position was measured primarily using the ERS satellites and was 441 

recorded several times before 2003, in 2011 and 2015 32. 442 

 443 

Driving stress 444 
 445 

The driving stress (𝜏) was calculated using a force balance approach with the assumption of 446 

small surface slope (𝛼)  447 

                                                                𝜏 = 𝜌𝐼𝑔𝑍𝛼                                                                     (4) 448 

where 𝜌𝐼 is the density of ice, taken as 917 kg/m3 and Z the ice thickness. The driving stress for 449 

the ICESat-1 data was calculated by first determining the driving stress in the along-track 450 

direction for both ascending (𝜏𝑎) and descending (𝜏𝑑) tracks. We used the elevation 451 

measurements at the mid-point of the ICESat-1 operation period (i.e. September 2006) derived 452 

from the repeat-track method used in Section 1.3. A 10 km gaussian filter was applied before 453 

determining the surface slope, as this provided a representation of the driving stress for the scale 454 

of the ice thickness.  We then calculated the driving stress in the x (𝜏𝑥) and y (𝜏𝑦) directions by 455 

determining the driving stress at crossover points. This is similar to the method described by 456 

Sandwell and Smith (1997) 46 who used the vertical deflections at the satellite crossover point, to 457 

calculate marine gravity with radar altimeters. Using this methodology, we first defined the 458 

driving stress of an ascending track as  459 

                                                                𝜏𝑎 = 𝜏𝑥𝑥̇𝑎 + 𝜏𝑦𝑦̇𝑎                                                         (5) 460 

and for a descending track  461 
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                                                                𝜏𝑑 = 𝜏𝑥𝑥̇𝑑 + 𝜏𝑦𝑦̇𝑑                                                         (6) 462 

where 𝑥̇ and 𝑦̇ are the x and y components of the satellite track. Then at each crossover point, we 463 

simultaneously solved equations (5) and (6) to determine  𝜏𝑥 and 𝜏𝑦. The optimal situation is 464 

when the tracks intersect perpendicular to one another, however the ICESat-1 ascending and 465 

descending tracks in this region intersect at an angle of ~33°. This results in the driving stress 466 

being poorly resolved in the y direction for this area of study (using the polar stereographic 467 

projection system, EPSG:3031). We calculated driving stress for CryoSat-2 using the same 468 

method and elevation measurement at the mid-point of the study period (i.e. February 2014), 469 

which were sampled onto the ICESat-1 tracks. We could also calculate the driving stress for 470 

CryoSat-2 on a grid, which would enable us to fully resolve the driving stress. However, this 471 

would not allow for a direct comparison with ICESat-1. 472 

To improve coverage, we also used Envisat radar altimetry data to calculate the change in 473 

driving stress between Envisat and CryoSat-2 using the same method described above. The 474 

Envisat elevation data were processed using the along-track processing described in Flament and 475 

Remy, 2012 47 and spanned between January 2003 and November 2010. The mean elevation 476 

over that time period was used for this comparison.  477 

 478 

Height above floatation 479 

 480 

To calculate the height above floatation (ℎ𝑓), we combined CryoSat-2 swath elevations, bedrock 481 

topography from Bedmap2 41 and the EIGEN-6C4 geoid 48 to deduce ice thickness (𝑍) and 482 

elevation above mean sea level (ℎ), using the assumption of hydrostatic equilibrium 483 
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ℎ𝑓 = ℎ −
(𝑍 − 𝛿)(𝜌𝑤 − 𝜌𝐼)

𝜌𝑊
− 𝛿 484 

where 𝛿  is the air content of the firn layer obtained from a regional climate model, 485 

RACMO2.349 expressed in meters of ice equivalent. The densities of 1027 kg/m3 and 917 kg/m3 486 

were used for sea water (𝜌𝐼) and ice (𝜌𝑤) respectively. 487 

44 Rignot, E., Mouginot, J. & Scheuchl, B.    (ed National Snow and Ice Data Center 488 

Distributed Active Archive Center) (National Snow and Ice Data Center Distributed 489 

Active Archive Center, Boulder, Colorado, USA, 2016). 490 

45 Scambos, T., Fahnestock, M., Moon, T., Gardner, A. & Klinger, M.    (ed National Snow 491 

and Ice Data Center Distributed Active Archive Center) (National Snow and Ice Data 492 

Center Distributed Active Archive Center, 2016). 493 

46 Sandwell, D. T. & Smith, W. H. F. Marine gravity anomaly from Geosat and ERS 1 494 

satellite altimetry. J. Geophys. Res. 102, 10039-10054, (1997). 495 

47 Flament, T. & Remy, F. in 2012 IEEE International Geoscience and Remote Sensing 496 

Symposium  IGARSS   1848-1851 (2012). 497 

48 Förste, C. et al. EIGEN-6C4 The latest combined global gravity field model including 498 

GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse (2014). 499 

49 Van Wessem, J. et al.  Improved representation of East Antarctic surface mass balance in 500 

a regional atmospheric climate model. J. Glaciol., 60, 761-770 (2014) 501 
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Extended Fig 3 522 
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