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ABSTRACT 110 

Objective: Haptoglobin is a haemoglobin-scavenging protein that binds and neutralises free 111 

haemoglobin and modulates inflammation and endothelial progenitor cell function. A HP gene 112 

copy number variation (CNV) generates HP1 and HP2 allele, the single nucleotide 113 

polymorphism rs2000999 influences their levels. HP1 allele is hypothesized to improve 114 

outcome after intracerebral haemorrhage (ICH). We investigated the associations of the HP 115 

CNV genotype and rs2000999 with haematoma volume, perihaematomal oedema (PHO) 116 

volume, and functional outcome as well as mortality after ICH. 117 

Methods: We included patients with neuroimaging-proven ICH, available DNA, and six-month 118 

follow-up in an observational cohort study (CROMIS-2). We classified patients into three 119 

groups according to the HP CNV: 1-1, 2-1 or 2-2 and also dichotomized HP into HP1-120 

containing genotypes (HP1-1 and HP2-1) and HP2-2 to evaluate the HP1 allele. We measured 121 

ICH and PHO volume on CT; PHO was measured by oedema extension distance. Functional 122 

outcome was assessed by modified Rankin score (unfavourable outcome defined as mRS 3-6). 123 

Results: We included 731 patients (mean age 73.4, 43.5% female). Distribution of HP CNV 124 

genotype was: HP1-1 n=132 (18.1%); HP2-1 n=342 (46.8%); and HP2-2 n=257 (35.2%). In 125 

the multivariable model mortality comparisons between HP groups, HP2-2 as reference, were 126 

as follows: OR HP1-1 0.73, 95%CI 0.34-1.56 (p-value=0.41) and OR HP2-1 0.5, 95%CI 0.28-127 

0.89 (p-value=0.02) (overall p-value=0.06). We found no evidence of association of HP CNV 128 

or rs200999 with functional outcome, ICH volume or PHO volume.   129 

Conclusion: The HP2-1 genotype might be associated with lower 6-month mortality after ICH; 130 

this finding merits further study.  131 

  132 
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INTRODUCTION 133 

Spontaneous (non-traumatic) intracerebral haemorrhage (ICH) is the most devastating form of 134 

stroke with a mortality of about 40% at one month, and 65% at one year1-3. Patients who survive 135 

frequently remain severely disabled4. Moreover, incidence of ICH is increasing in the elderly 136 

population5-7, in part due to increasing use of oral anti-coagulation5-7.  137 

Spontaneous ICH results from bleeding into the brain parenchyma arising from the rupture of 138 

an arterial vessel, most often (>80%) a small arteriole affected by cerebral small vessel diseases 139 

(SVD). The commonest sporadic SVD that cause ICH are deep perforator arteriopathy (also 140 

termed hypertensive arteriopathy or arteriolosclerosis) and cerebral amyloid angiopathy 141 

(CAA). A minority of ICH (less than 20%) is caused by structural or macrovascular bleeding 142 

sources such as tumours, arteriovenous malformations, cavernomas or fistulas. Deep perforator 143 

arteriopathy is associated with hypertension and is a frequent cause of deep ICH; CAA is 144 

caused by amyloid beta deposition in cortical and leptomeningeal blood vessels and is a key 145 

cause of lobar ICH. 146 

Haptoglobin is an acute-phase protein which neutralizes free haemoglobin by binding it, and 147 

in doing so targets haemoglobin to the CD163 receptor for clearance8-15. Haptoglobin prevents 148 

the toxic and inflammatory effects of haemoglobin by shielding its iron-containing pocket, and 149 

preventing its breakdown into haem and iron, which consequently cause cytotoxicity and brain 150 

oedema8-15. The HP gene has a copy number variant (CNV), which leads to two co-dominant 151 

alleles: HP1 and HP2. Three different HP CNV genotypes exist: HP1-1, HP2-1 and HP2-2, 152 

and their respective protein products differ in molecular size and haemoglobin-binding 153 

capacity15-17. A previous study demonstrated some evidence that patients with the HP2 allele 154 

have a larger haematoma volume, though the underlying mechanisms remain unknown18. An 155 

increase in haematoma volume may be accompanied by more perihaematomal oedema 156 

(PHO)18 19. ICH and PHO volume have been demonstrated to influence functional outcome18 157 
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19. A previous study reported worse functional outcome for patients with HP2 allele (HP2-1 or 158 

2-2) compared to HP1-1 patients as well as some evidence for increased mortality for each 159 

HP2 allele18. The HP CNV might be associated with functional outcome after ICH through 160 

differences in haemoglobin clearance and protection from the cytotoxic and inflammatory 161 

effects of haemoglobin breakdown products. However most previous studies investigating 162 

haptoglobin in ICH are based on investigations in rodents.  163 

The single nucleotide polymorphism (SNP) rs2000999 accounts for up to 50% of variation in 164 

circulating haptoglobin levels in the blood independently of the HP CNV20. The combined use 165 

of the HP CNV and rs2000999 has been suggested as an important genetic tool to discriminate 166 

between two potential mechanisms underlying differences between HP1 and HP2 alleles: 167 

haptoglobin expression level and functional differences in haptoglobin protein products21.  168 

We performed a comprehensible multivariable study investigating the influence of the HP 169 

CNV and rs2000999 SNP on functional outcome and mortality after ICH. We also aimed to 170 

assess the influence of the HP CNV and the rs2000999 SNP on ICH volume and OED.  171 

 172 

METHODS 173 

Data collection 174 

We considered patients, of predominantly Caucasian descent, with spontaneous ICH and 175 

available blood samples recruited into the Clinical Relevance of Microbleeds in Stroke ICH 176 

study22. We defined spontaneous ICH as a non-traumatic haemorrhage into the brain 177 

parenchyma, presumed due to cerebral SVD after the exclusion of patients with an underlying 178 

structural or macrovascular cause.  179 

We collected detailed information on demographics, risk factors, medication, clinical 180 

presentation, and radiological data. A diagnosis of hypertension, hypercholesterolaemia and 181 

diabetes mellitus was present if reported by the patient, stated on medical records or if either 182 
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drug treatment or any other form of advice (including lifestyle changes) was given. Smoking 183 

was defined as current and previous use. All patients had acute brain imaging with CT. Written 184 

informed consent was obtained from all participants, or a relative or representative. We 185 

excluded patients <18 years, patients without available or adequate CT scan. Patients with a 186 

CT scan after 72 hours from symptom onset were excluded from the primary ICH and PHO 187 

volume analysis.18 23 24. We classified ICH location into lobar, deep (basal ganglia, thalamus), 188 

cerebellar and brainstem according to a validated rating scale25. Our outcomes were death and 189 

functional outcome at 6 months (measured by the modified Rankin Scale [mRS] dichotomized 190 

into favorable [mRS 0-2] or unfavorable [mRS 3-6] categories).  191 

Haptoglobin genotyping 192 

To determine the HP CNV we optimised a high-throughput qPCR genotyping assay as 193 

described previously26. The assay amplified a region in the 5` terminal of the HP gene’s first 194 

exon as an internal control (HP5`), and the breakpoint of the HP duplication (HP2). The 195 

HP2/HP5` ratio (theoretically either 0, 1, or 2) was used to determine the genotype as HP1-1, 196 

HP2-1 or HP2-2 respectively. Samples were run in triplicates; triplicates with a HP2/HP5`ratio 197 

coefficient of variation >10% were re-assayed. A second method of HP genotyping by PCR27 198 

was performed on samples with HP2/HP5’ ratio values between 0.46-077, in order to confirm 199 

the HP CNV genotype. Rs2000999 was genotyped using Kompetitive Allele Specific PCR 200 

(KASP) assay technology28 (LGC Genomics Limited, Hertfordshire, UK), call rate was 97.3%. 201 

Measurement of ICH and PHO volume 202 

We measured ICH and PHO volume as previously described via a semi-automated, threshold-203 

based approach29. PHO was measured by the oedema extension distance (OED) using a 204 

previously described formula19; the rationale behind using OED is that PHO extends a 205 

consistent mean linear distance from the border of the ICH, independently of its volume. 206 

 207 
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Statistical analysis 208 

We present categorical variables using frequency and percentages, continuous variables using 209 

mean ± standard deviation (SD). We transformed ICH and PHO volume with cube root 210 

transformation to satisfy statistical normal distribution assumptions. We conducted a post hoc 211 

sensitivity analysis comparing patients with ICH volume and OED before and after 72 hours.  212 

We assessed the distribution of the HP CNV and rs2000999 SNP in the CROMIS-2 cohort 213 

compared to ALSPAC (Avon Longitudinal Study of Parents and Children) cohort of healthy 214 

individuals, which we used as controls. ALSPAC is a general population cohort study30 31; HP 215 

genetic data and rs2000999 SNP data was available from 927 and 748 participants. The 216 

ALSPAC study website (http://www.bristol.ac.uk/alspac/researchers/our-data/) contains 217 

details of all the data available through a fully searchable data dictionary and variable search 218 

tool. Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee 219 

and the Local Research Ethics Committees. To evaluate the HP1 allele, we also assessed the 220 

HP CNV as a dichotomized variable (HP1-1 and HP2-1 versus HP2-2) according to our pre-221 

specified analysis plan.  222 

We first performed univariable analyses for each of the four outcomes separately with 223 

demographic, clinical and radiological variables of interest. We subsequently fitted 224 

multivariable logistic regression models with significant variables from the univariable 225 

analysis in addition to pre-specified variables. For the analysis of ICH and OED volume we 226 

adjusted the models with the pre-specified variables: time from event to imaging, location of 227 

ICH, systolic blood pressure (SBP), HP CNV and rs200999 SNP. For functional outcome and 228 

mortality analysis, we fitted the multivariable model with the pre-specified variables: age, sex, 229 

hypertension, oral anticoagulation (OAC), HP CNV and rs200999 SNP. Additionally, we fitted 230 

the multivariable models with variables that were statistically significant at the 20% level in 231 

the univariable analysis. 232 

http://www.bristol.ac.uk/alspac/researchers/our-data/


 

 11 

We investigated whether there were interactions between different variables. However, no 233 

interaction reached our pre-specified significant threshold for interactions of p<0.001 (chosen 234 

to guard against overfitting) and were therefore not included in the models32. 235 

Statistical analysis was performed using STATA 15 (StataCorp. 2011. Stata Statistical 236 

Software: Release 15. College Station, TX: StataCorp LP). 237 

 238 

Ethical approval 239 

The CROMIS-2 study was approved by the local Ethics Committee (reference: 10/H0716/64). 240 

 241 

RESULTS 242 

For the primary analysis of functional outcome at 6 months we included 732 patients. One 243 

DNA sample was uncallable for the HP CNV and 20 for the rs2000999 SNP. For the secondary 244 

analyses of ICH volume and PHO we included 709 patients with an available CT scan (Figure 245 

1). OED mas measured at a mean of 10 hours from ICH onset. Patients who were genotyped 246 

(n=844) were not different to those without DNA (n=250) with regard to baseline 247 

characteristics and risk factor profile (data not shown). The rs2000999 genotype frequency in 248 

CROMIS-2 was as expected when compared to ALSPAC (Supplementary Table 1). However, 249 

compared to ALSPAC, CROMIS-2 patients less often had the HP2-2 CNV. We found no 250 

systematic difference in demographics, comorbidities and ICH characteristics between those 251 

with and without available outcome variable (data not shown).  252 

 253 

Mortality  254 

Of 731 patients with available follow-up and genotype data, 112 died within 6 months (15.3%) 255 

and 318 (43.5%) were female.  256 
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The distribution of the HP CNV was 132 HP1-1 (18.1%), 342 HP2-1 (46.8%) and 257 HP2-2 257 

(35.2%). Distribution of the SNP allele was: 27 A:A (3.8%), 234 A:G (32.9%) and 451 G:G 258 

(63.3%), 20 samples were not callable (2.7%). 259 

Patients who died were older, more frequently female, more frequently on OAC, had a lower 260 

GCS on admission (GCS <8), a higher ICH and PHO volume, and intraventricular extension 261 

(IV). Results of the univariable analysis are shown in supplementary Table 2.  262 

The mortality according to HP CNV was as follows: HP1-1 18.2%; HP2-1 12.6%; HP2-2 263 

17.5%. In the multivariable model (n=608) mortality comparisons between the HP groups, 264 

with  HP2-2 as a reference group, were as follows: OR HP1-1 0.73, 95% CI 0.34-1.56 (p-265 

value=0.41) and OR HP2-1 0.5, 95% CI 0.28-0.89 (p-value=0.02) (overall p-value=0.06, Table 266 

1).   267 

  268 
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Table 1:  Factors associated with 6 month mortality after ICH in an adjusted multivariable 269 
logistic regression model 270 
 271 

  

OR 

 

95% CI 

 

P value 

 

 

Age (years) 
1.11 1.07-1.14 <0.001 

    

Female Sex 1.14 0.68-1.92 0.63 

    

Hypertension 1.01 0.57-1.76 0.99 

    

Diabetes mellitus 1.31 0.65-2.65 0.46 

    

Oral anticoagulation 1.25 0.74-2.11 0.4 

    

GCS on admission (binary)    

- GCS 3-8  4.23 1.35-13.28 0.01 

- GCS 9-15 (reference)    

    

ICH location    

- Cerebellar (reference)    

- Brainstem Empty  0.38 

- Deep  0.98 0.33-2.93  

- Lobar 0.64 0.2-2  

    

Cr ICH volume (mL) 2.03 1.48-2.8 <0.001 

    

OED (cm) 2.82 1.01-7.92 0.05 

    

IV extension 1.56 0.89-2.72 0.12 

    

HP CNV   
 

0.06 

- HP1-1 0.73 0.34-1.56  

- HP2-1 0.5 0.28-0.89  

- HP2-2 (reference)    

    

Rs2000999   0.74 

- A:A (reference)    

- A:G 0.6 0.15-2.36  

- G:G 0.58 0.15-2.28  

    

 272 
cm = centimeter; CNV = copy number variation; Cr = cube root; CT = computed 273 
tomography; GCS = Glasgow Coma Scale; HP = Haptoglobin; ICH = intracerebral 274 
haemorrhage; IV = intraventricular; ml = milliliter; OAC: oral anticoagulation; SBP: systolic 275 
blood pressure 276 
 277 
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When dichotomizing HP into HP1-1/2-1 versus HP2-2 there was evidence for association of 278 

decreased mortality with the HP1 allele compared to HP2-2 (OR 0.55, 95%CI 0.31-0.95, 279 

p=0.03, supplementary Table 3). As expected, there was also evidence for an increase in 280 

mortality with increasing age (OR 1.11, 95%CI 1.07-1.14, p<0.001), decreased GCS on 281 

admission <9 (OR 4.37, 95%CI 1.39-13.73, p=0.01), and ICH volume (OR 1.99, 95%CI 1.45-282 

2.74, p<0.001).  283 

 284 

We further investigated the association between mortality and HP CNV across tertiles of all 285 

the covariates included in the multivariable model as a post hoc analysis. Mortality differed 286 

between the HP groups for older patients (>80 years) with lower (<12.2mL) ICH volume: in 287 

this subgroup, mortality was 26% for HP1-1, 14% for HP2-1 and 42% for HP2-2. Patients died 288 

at a median of 3.8 months after ICH. There was no difference (early vs. late death) in the time 289 

of death after ICH across HP CNV or rs2000999 groups, in the overall cohort or the subgroup 290 

of >80 years and <12.2mL ICH volume (regression data not shown, supplementary Figure 1). 291 

The mortality rate was similar across the HP groups for the remaining patients: 15% for HP1-292 

1, 12% for HP2-1 and 12% for HP2-2. The association between mortality and HP CNV was 293 

confirmed across tertiles of all the other covariates. Finally, we investigated covariates not 294 

included in the multivariable model, to see whether they differed across HP genotypes, but 295 

found no bias to explain the association between mortality and HP CNV (data not shown). 296 

 297 

Functional outcome  298 

Of 731 patients, 444 (60.7%) suffered an unfavourable outcome (mRS 3-6). Dichotomized 299 

unfavourable mRS according to HP CNV was as follows: HP1-1 64.4%; HP2-1 59.7%; HP2-300 

2 60.3%.  301 
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Patients with an unfavourable outcome were older, more frequently female, on OAC, more 302 

frequently had hypertension, hypercholesterolaemia, presented with a lower GCS (GCS of 3-303 

8), had a higher ICH and PHO volume and IV extension. See supplementary Table 2 for 304 

univariable analysis.  305 

In the multivariable model (n=623) age (OR 1.04, 1.02-1.06 95%CI; p<0.001), female sex (OR 306 

2.31; 1.58-3.37; 95%CI; p<0.001) and the cube root of the ICH volume (OR 1.5; 1.22-1.85 307 

95%CI; p<0.001) were significantly associated with functional outcome (Table 2). Neither HP 308 

CNV nor rs2000999 SNP were associated with functional outcome.  309 

  310 
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Table 2: Factors associated with unfavourable outcome after ICH in an adjusted multivariable 311 
regression model 312 
 313 

  

OR 

 

95% CI 

 

P value 

 

 

Age (years) 
1.04 1.02-1.06 <0.001 

    

Female Sex 2.31 1.58-3.37 <0.001 

    

Hypertension 1.37 0.92-2.04 0.12 

    

Diabetes mellitus 1.18 0.71-1.97 0.52 

    

Oral anticoagulation 1.16 0.77-1.73 0.49 

    

Antiplatelets 1.08 0.7-1.69 0.72 

    

Hypercholesterolaemia 1.17 0.78-1.75 0.44 

    

GCS on admission (binary)    

- GCS 3-8  3.56 0.76-16.5 0.11 

- GCS 9-15 (reference)    

    

Cr ICH volume (mL) 1.5 1.22-1.85 <0.001 

    

IV extension 1.38 0.9-2.12 0.14 

    

Surgical evacuation 1.84 0.45-7.5 0.39 

    

HP CNV   0.78 

- HP1-1  1.17 0.67-2.03  

- HP2-1 0.97 0.65-1.45  

- HP2-2 (reference)    

    

Rs2000999   0.66 

- A:A (reference)    

- A:G 1.19 0.43-3.3  

- G:G 1.39 0.5-3.84  

    

 314 
 315 
CNV = copy number variant; Cr = cube root; CT = computed tomography; GCS = Glasgow 316 
Coma Scale; HP = Haptoglobin; ICH = intracerebral haemorrhage; IV = intraventricular; ml 317 
= millilitre; OAC: oral anticoagulation; SBP: systolic blood pressure 318 
 319 

 320 
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Intracerebral haemorrhage volume and oedema extension distance 321 

Of the 731 patients included in the functional analysis, 709 had a CT scan available, and of 322 

these 68 were >72 hours after symptom onset (Figure 1).  Of the remaining 641 individuals, 323 

453 (70.7%) had a scan <24h, 172 (26.8%) between 24-48h and 16 (2.5%) between 48-72h. 324 

See Figure 2 for the association of the HP CNV and SNP with OED and ICH volume.  325 

Mean ICH volume was 13.8 mL (± 18.82 SD), mean PHO volume 19.54 mL (± 20.56 SD) and 326 

mean OED 0.51 cm (±0.23 SD). Variables significantly associated with ICH volume in the 327 

univariable analysis are listed in the supplementary Table 3. 328 

In the fitted multivariable model (n=604) ICH location (overall p<0.001) and intraventricular 329 

extension (coefficient 0.53; 0.37-0.68; p<0.001) were associated with greater ICH volume 330 

(Table 3). Neither HP CNV nor the SNP rs2000999 were associated with ICH volume.  331 

  332 
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Table 3:  Factors associated with the cube root ICH volume in an adjusted multivariable 333 
regression model  334 
 335 

 Coefficient 95% CI 

 

P value 

 

    

Age (years) -0.005 -0.01-0.001 0.09 

    

Time Event to CT   0.35 

- Day 1 (reference)    

- Day 2 0.04 -0.23-0.31  

- Day 3 -0.29 -0.7-0.11  

    

ICH location   <0.001 

- Cerebellar (reference)    

- Brainstem -0.73 -1.22-0.23  

- Deep -0.13 -0.44-0.18  

- Lobar 0.79 0.47-1.1  

SBP (mmHg) 0.001 -0.002-0.002 
0.88 

 

Platelet level (x109/liter) 0.001 -0.0004-0.001 0.31 

    

Hypercholesterolaemia 0.09 -0.05-0.22 0.2 

    

IV extension 0.53 0.37-0.68 <0.001 

    

Neurosurgery 0.36 -0.06-0.78 0.1 

 

HP CNV 
  

 

 

0.66 

- HP1-1 -0.09 -0.25-0.52  

- HP2-1 -0.02 -0.17-0.13  

- HP2-2 (reference)    

    

Rs2000999   0.68 

- A:A (reference)    

- A:G 0.14 -0.25-0.52  

- G:G 0.16 -0.22-0.54  

    

 336 
CNV = copy number variation; CT = computed tomography; HP = Haptoglobin; ICH = 337 
intracerebral haemorrhage; IV= intraventricular; mmHg = millimetre mercury; SBP= systolic 338 
blood pressure 339 
 340 

 341 
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After dichotomizing the HP CNV into HP1-1/2-1 versus HP2-2 we did not observe any 342 

evidence of an association in univariable or multivariable analyses (p = 0.39 [supplementary 343 

Table 4] and p = 0.6 respectively [data not shown]). Similar results were observed when 344 

dichotomizing HP CNV into HP1-1 versus HP2-1/2-2 [supplementary Table 4]. 345 

 346 

Oedema Extension Distance  347 

Variables significantly associated with OED in the univariable analysis are listed in 348 

supplementary Table 4. For comparison of HP CNV and SNP for ICH volume and OED see 349 

Figure 2.  350 

In the multivariable linear regression model (n=623), ICH location (with lobar and deep ICH 351 

locations featuring a longer OED and with a brainstem location featuring a shorter OED, 352 

compared to the reference group of cerebellar location, overall p<0.001) and antihypertensive 353 

medication (coefficient -0.09; 95%CI -0.16-(-0.02); p=0.01) were significantly associated with 354 

OED (Table 4). Neither the univariable nor multivariable analysis showed evidence of 355 

association of HP CNV or rs2000999 SNP with OED.  356 

Similar to the ICH volume model, dichotomizing HP did not yield any evidence of association 357 

in univariable and multivariable models (data not shown).  358 

  359 
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Table 4:  Factors associated with size of oedema extension distance in an adjusted 360 
multivariable regression model  361 
 362 

  

Coefficient 

 

95% CI 

 

P value 

 

    

Female Sex 0.01 -0.02-0.05 0.44 

    

Time Event to CT   0.18 

- Day 1 (reference)    

- Day 2 0.07 -0.008-0.14  

- Day 3 0.04 -0.07-0.15  

    

ICH location   
 

<0.001 

- Cerebellar (reference)    

- Brainstem -0.08 -0.21-0.06  

- Deep 0.16 0.07-0.24  

- Lobar 0.24 0.15-0.33  

 

SBP (mmHg) 

 

0.0002 

 

-0.0003-0.001 

 

0.49 

    

OAC 0.05 -0.02-0.12 0.17 

    

Antihypertensive medication -0.09 -0.16-(-0.02) 0.01 

    

Platelet level (x109/liter) 0.0002 -0.00005-0.0004 0.11 

    

IV extension -0.03 -0.07-0.008 0.11 

HP CNV   
 

0.5 

- HP1-1  0.03 -0.02-0.09  

- HP2-1 0.01 -0.03-0.05  

- HP2-2 (reference)    

    

Rs2000999   0.93 

- A:A (reference)    

- A:G 0.01 -0.09-0.11  

- G:G 0.003 -0.1-0.1  

    

 363 
CNV = copy number variation; CT = computed tomography; HP = Haptoglobin; ICH = 364 
intracerebral haemorrhage; mmHg = millimetre mercury; OAC: oral anticoagulation; SBP: 365 
systolic blood pressure 366 
 367 

 368 

 369 



 

 21 

DISCUSSION 370 

In this large prospective, multicentre cohort study, HP was not associated with functional 371 

outcome as assessed by the mRS. The HP CNV distribution was comparable to that reported 372 

in a previous study, apart from a slightly higher proportion of HP1-1 patients and lower 373 

proportion of HP2-218. Despite the larger sample size, we could not replicate this previous 374 

study’s finding of an association of the HP2 allele with functional outcome18. 375 

 376 

However, we found evidence that mortality was lower in HP2-1 patients compared to HP2-2 377 

homozygotes; our post hoc analyses suggest that this observation is mostly driven by older 378 

patients with lower ICH volumes. No association with mortality was found for the rs2000999 379 

SNP (which is associated with haptoglobin expression level)21. This suggests that any link 380 

between the HP CNV and mortality is mediated by factors other than haptoglobin expression.  381 

 382 

While the HP CNV’s association with mortality could have been confounded by bias in a 383 

variable excluded from the model, we did not find any evidence for this. Such a factor could 384 

still remain unidentified, but a more likely explanation is that patients who died did not 385 

contribute to functional outcome analysis. We found evidence of HP2-2 missingness (of 386 

subjects of a particular genotype, in this case HP2-2), when comparing CROMIS-2 with 387 

ALSPAC cohorts, which might suggest that the HP2-2 genotype confers a mortality risk. 388 

 389 

We confirmed previous results showing evidence towards increased mortality with HP2-218, 390 

but did not observe a unidirectional dose response of HP alleles in a direction of increasing or 391 

decreasing mortality across HP genotypes (mortality: HP1-1 18.2%; HP2-1 12.6%; HP2-2 392 

17.5%). The lower mortality in HP2-1 individuals could be a chance finding. A possible but 393 

unlikely explanation is heterozygote advantage or heterosis33. At a molecular level, the HP1 394 



 

 22 

allele might protect against the deleterious effect of the HP2 allele only when the two alleles 395 

are present together in HP2-1 individuals. Both HP1 and HP2 alleles scavenge haemoglobin, 396 

with HP2 being superior34 35, and this confers a beneficial effect. However, HP2 has additional 397 

off-target effects which are deleterious, mostly pro-inflammatory36. In HP2-2 individuals, the 398 

better haemoglobin scavenging potential of HP2 versus HP1 is offset by its proinflammatory 399 

effects, so that mortality is similar in HP1-1 and HP2-2 individuals. In HP2-1 individuals, the 400 

HP1 allele may be negating the deleterious effect of HP2, so that a greater benefit is observed 401 

in HP2-1 individuals than is expected by simple co-dominance of the two alleles.  402 

 403 

We did not confirm previous findings of worse functional outcome in patients with HP2 allele, 404 

which could be due to the significantly smaller cohort size and statistical power of the previous 405 

study, with potential for a chance finding18.  406 

 407 

PHO develops over a continuous period of time in three main stages. It peaks after two weeks, 408 

however its evolution is most rapid in the first 2-3 days37. PHO is thought to be mediated by a 409 

process of toxicity and inflammation19 37. We hypothesized that by modulating neurotoxicity 410 

and inflammatory processes haptoglobin might have influenced PHO and functional 411 

outcome.38 However, we did not find any association of HP genetic variants (CNV or the 412 

rs2000999 SNP) with OED. Similarly, HP genetic variants were not associated with ICH 413 

volume, which, like haemtoma expansion, is more likely to be driven by other factors including 414 

hydrostatic pressure at the bleeding point18.  415 

 416 

Despite having a large cohort available, we could not replicate the previous study’s reported 417 

finding of an association of the HP2 allele with larger ICH volumes and IV extension 18. Since 418 

ICH volume and OED was assessed on CT scans performed within 72 hours of symptom onset, 419 
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we cannot exclude an association of HP with ICH volume or OED after this timepoint, although 420 

our exploratory analysis of scans beyond 72 hours (n=68) and found no difference in ICH 421 

volume and OED across HP genotypes (for both CNV and rs2000999 SNP) (data not shown).  422 

We found that long-term antihypertensive medication prior to ICH event is independently 423 

associated with decreased OED, even after correcting for SBP. It is possible that patients on 424 

antihypertensive medication could have reduced sympathetic activity and inflammatory 425 

response when ICH occurs39, a hypothesis that merits further study. As we did not collect 426 

follow-up scans, we cannot comment on a potential influence of SBP on haematoma growth. 427 

 428 

Our study has strengths. Our prospective, multi-centre study is the largest on HP and ICH to 429 

date, and should be generalizable to Caucasian populations. We collected detailed baseline 430 

clinical and brain imaging data and undertook multivariable regression analysis adjusting and 431 

correcting for important predictors of all four outcomes, and took exceptional care to control 432 

for covariates.  433 

 434 

However, our study also has limitations. Since we obtained informed or proxy consent, our 435 

study is biased towards ICH survivors with less severe ICH than would be included in an 436 

unselected incident ICH population. However, it is likely that any protective effect of HP is 437 

most relevant in ICH patients who survive the acute period. Additionally, CT scans at multiple 438 

timepoints were not available and therefore we could not assess the influence of HP CNV and 439 

rs200999 SNP on ICH, PHO or OED expansion over time. We also did not have data on the 440 

time interval between the ICH and CT scan. However, in a post hoc sensitivity analysis ICH 441 

volume before and after 72 hours was very similar although OED was larger in patients with 442 

first imaging after 72 hours. As PHO increases beyond 72 hours further studies are needed to 443 

assess an influence of the HP CNV and rs2000999 SNP on oedema expansion. Although we 444 
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excluded patients without blood samples available for genetic analysis, there were no 445 

systematic differences in demographics, comorbidities and ICH characteristics between those 446 

with and without genetic data available.  Finally, it would have been interesting to study plasma 447 

and cerebrospinal fluid haptoglobin levels in relation to HP genetic variants, but unfortunately 448 

these were not available.  449 

 450 

CONCLUSION 451 

We investigated the association of HP genetic variation (the HP CNV and the rs2000999 SNP) 452 

in a large cohort of 731 ICH patients. We found evidence in support of a lower mortality with 453 

the HP2-1 genotype, but not functional outcome, ICH volume or OED. While HP genotype 454 

may not matter for functional outcome, upregulating or supplementing haptoglobin may still 455 

be of benefit, as demonstrated in animal studies40, so understanding how different haptoglobin 456 

types associate with outcome is important. A future meta-analysis may be appropriate to 457 

confirm our observations, and longer follow-up may be needed in case there is an association 458 

with longer term outcome. 459 

 460 

  461 
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FIGURE LEGENDS 597 

Figure 1. Patient selection flow diagram  598 

Figure 2. A) Differences in OED in Haptoglobin genotype and SNP, B) Differences in ICH 599 

volume in Haptoglobin genotype and SNP 600 

Supplementary Figure 1. A) Time to death in days by HP CNV overall cohort, B) Time to death 601 

in days by rs2000999 overall cohort, C) Time to death in day by HP CNV subgroup >80 years 602 

<12.2mL ICH volume, D) Time to death in day by rs2000999 subgroup >80 years <12.2mL 603 

ICH volume 604 


