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Abstract The increasing predictive power of polygenic scores for education has led to their

promotion by some as a potential tool for genetically informed policy. How accurately polygenic

scores predict an individual pupil’s educational performance conditional on other phenotypic data

is however not well understood. Using data from a UK cohort study with data linkage to national

schooling records, we investigated how accurately polygenic scores for education predicted pupils’

test score achievement. We also assessed the performance of polygenic scores over and above

phenotypic data that are available to schools. Across our sample, there was high overlap between

the polygenic score and achievement distributions, leading to poor predictive accuracy at the

individual level. Prediction of educational outcomes from polygenic scores were inferior to those

from parental socioeconomic factors. Conditional on prior achievement, polygenic scores failed to

accurately predict later achievement. Our results suggest that while polygenic scores can be

informative for identifying group level differences, they currently have limited use for accurately

predicting individual educational performance or for personalised education.

Introduction
The increase in genetic discoveries from large-scale genomewide association studies (GWAS) has

greatly advanced scientific understanding of the way in which complex social and health outcomes

may arise. GWAS with sample sizes of over one million participants have identified hundreds of

genetic variants (single nucleotide polymorphisms, or SNPs) that associate with educational attain-

ment and other social phenotypes (Lee et al., 2018; Karlsson Linnér et al., 2019; Luciano et al.,

2018). While individual SNPs associate only very weakly with complex polygenic phenotypes in isola-

tion - typically accounting for less than 0.01% of variation - together they can explain a considerable

proportion of phenotypic variation. For example, in the most recent education GWAS, the median

per allele effect size of lead SNPs related to an additional 1.7 weeks of schooling, but polygenic

scores combining all identified SNPs explained up to 13% of the variance in years of

educational attainment (defined as completed years of education) and 9.2% of the variation in

educational achievement (defined as high school grade point average [GPA]) in out of sample pre-

diction samples (Lee et al., 2018). The combination of multiple SNPs in polygenic scores (Dud-

bridge, 2013) - measures that sum the estimated effects of all individual SNPs associated with a

phenotype - are increasingly being used as indicators of genetic propensity, and have been pro-

moted as a potential tool for genetically informed policy (Plomin, 2018; Conley and Fletcher,

2017). It has been suggested that genetic information could be used prescriptively to provide per-

sonalised medicine, education and even dating (Plomin, 2018; McCarthy and Mahajan, 2018).

Personalisation refers to the tailoring of services away from a one-size-fits-all model to a custom-

ised approach that focuses on the needs of an individual. The definition of personalised education

has been inconsistent, generally referring to either the tailoring of educational curriculums, learning

environments and teaching styles for individual students, or for groups of students within a
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classroom (Department for Education and Skills, 2004; Hartley, 2007). Throughout, we refer to

personalised education as administered at the individual level. Personalised learning was adopted in

national policy statements in England in 2004 with a focus on the needs of individual students (Gil-

bert, 2020; Department for Children, Schools and Families, 2007). However, it was not mandated

and was seen as being conceptually ambiguous, leading to inconsistency in its implementation

across schools (Maguire et al., 2013). There are currently no policies in place that rely on educa-

tional prediction, but calls are increasingly being made for genetic data to be used to personalise

education to, for example, identify pupils in need of greater educational support (Miller, 1990; Gri-

gorenko, 2007; Sabatello, 2018). Given the social complexity of educational attainment,

polygenic scores for education associate with many aspects of environment and schooling

(Abdellaoui et al., 2019; Harden et al., 2020), referred to as gene-environment correlation. Active

gene-environment correlation can be thought of as environment downstream of genotype; for exam-

ple, pupil’s selecting certain subjects based on their genotype. Passive gene-environment correlation

can be thought of as environment upstream of genotype; for example, children of highly educated

parents being more likely to inherit education associated environments as well as education associ-

ated genes (Kong et al., 2018) (also referred to as dynastic effects Davies et al., 2019;

Morris et al., 2019). That a person’s education polygenic score associates with a range of pheno-

typic differences very early in life demonstrates that it captures a very broad range of information,

not just their education.

The theoretical maximum bounds placed on the predictive ability of polygenic scores have been

discussed in detail elsewhere (see Janssens et al., 2006; Wray et al., 2010; Zhao and Zou, 2018).

Briefly, polygenic scores are more predictive when genetic factors play a larger role in a phenotype

(as measured by heritability), and in the case of binary phenotypes where prevalence in the outcome

is higher (Janssens et al., 2006; Wray et al., 2010; Zhao and Zou, 2018). For polygenic scores to

be informative for personalised education and provide actionable information to inform effective

eLife digest The way that people learn in school and other educational settings differs from

person to person for a wide range of reasons. Over the past 15 years there has been a shift in the

way that children are taught in the UK and some other countries. Education has become more

focused on the students as individuals, recognising that different people learn in different ways and

at different speeds. This has led to the idea of ‘personalised education’, a way of tailoring students’

learning to suit their individual needs and differences.

One way that individuals differ is in the genetic material they inherit from their parents. Except

for identical twins, no two people have completely identical genomes. It is now easier and cheaper

to study the genetic material of individuals than ever before. This has led to a lot of research

investigating how our DNA relates to our health, education and other aspects of life.

Some researchers and politicians are now suggesting that individuals’ genetic data should be

routinely collected by organisations so that their education or health care can be personalised.

However, it remains unclear whether this genetic personalisation would be more useful than

demographic or socioeconomic data – such as sex, age and family background – that is already

available.

To investigate whether an individual’s DNA could be used to predict how well they will perform

in school, Morris et al. combined genetic data and school test results from a group of 3,500 UK

children born in the early 1990s. This revealed that the genetic data did not predict how the children

would perform throughout their time at school as accurately as more general information about

their family background and other socioeconomic factors.

The findings of Morris et al. suggest that knowledge of students’ DNA is unlikely to help

educators who want to identify individuals who need extra help or will be at the top of the class.

More research is needed on larger groups of children from a broader range of backgrounds, but it is

unclear whether a student’s DNA will ever be useful for tailoring their education. Currently, it

appears that DNA would be less useful for personalising education than easily measured information

like test results taken in primary school, education of the child’s parents and other social data.
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policy, the scores must not only explain sufficient variation in educational achievement across a

group of pupils (defined as performance in educational tests), but they must also explain sufficient

variation over and above other readily available phenotypic data and accurately predict achievement

at the individual level. Phenotypic measures that are predictive of educational achievement such as

sex, month of birth and prior achievement (Benton et al., 2004; Solli, 2017) are readily available to

schools, while other measures such as parental education and socioeconomic position (Morris et al.,

2016; Strand, 2011) are, in principle, simple and inexpensive to collect. To date, few studies have

investigated how well polygenic scores predict individual level educational attainment or achieve-

ment conditional on observable phenotypes that are easily available to educators. Here we investi-

gate how much information pupils’ genetics may confer to knowledge of their educational test

performance over prior achievement and other phenotypic characteristics.

In this paper we combine educational and genetic data from a UK cohort, the Avon Longitudinal

Study of Parents and Children (ALSPAC), to investigate the potential value of genotypic data for pre-

dicting pupil achievement and personalising education. We answer three related questions: 1) How

predictive of realised educational achievement are polygenic scores? 2) Does polygenic prediction

outperform phenotypic prediction from family background measures available to schools? 3) What

incremental increase in predictive performance do polygenic scores offer over and above phenotypic

information?

Results

Group level polygenic score prediction
To investigate how predictive polygenic scores are of realised educational achievement, we created

two polygenic scores for education based on the results of the latest GWAS for educational attain-

ment (Lee et al., 2018). The first polygenic score used SNPs that reached genomewide significance

(p<5�10�8) and the second used all education associated SNPs. Our measure of educational

achievement was fine graded point scores from educational exams taken at ages 7 and 16, obtained

through data linkage to national school records. The all SNP polygenic score was more strongly cor-

related with educational achievement (r for age 16 = 0.37) than the genomewide significant poly-

genic score (r for age 16 = 0.19) (Table 1). Children with higher polygenic scores, on average, had

higher exam scores than those with lower polygenic scores. Correlations were similar between

achievement and parents’ years of education and achievement and highest parental socioeconomic

position. Correlations were consistently stronger for age 16 than age 7 educational achievement.

Next, we assessed the explanatory power of polygenic scores for educational achievement at age

7. We assessed this using the incremental gain in variance of educational achievement explained by

the polygenic scores over and above pupil characteristics available to schools (age, sex, Free School

Meal status, English as a Foreign Language status, Special Educational Needs status), parents’ years

Table 1. Correlation coefficients between educational achievement at ages 7 and 16 and the

genotypic and social predictors.

Educational achievement measured using fine graded point scores from educational exams at ages 7

and 16. Genotypic predictors measured using two polygenic scores (PGS) built using only genome-

wide significant SNPs (GWAS sig PGS) or all education associated SNPs (all SNP PGS) from the larg-

est GWAS of educational attainment (Lee et al., 2018). Parental educational attainment (EA) was

measured as average completed years of education. Parental socioeconomic position (SEP) was mea-

sured as highest parental score on the Cambridge Social Stratification Score scale.

Achievement age 7 Achievement 16

GWAS sig PGS 0.17 0.19

All SNP PGS 0.26 0.37

Mothers EA 0.28 0.39

Fathers EA 0.27 0.40

Parents SEP 0.30 0.40
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of education, and parent socioeconomic position (Figure 1). Both the genomewide significant and

the all SNP polygenic scores accounted for a larger proportion of variance explained (R2) in achieve-

ment than age and sex alone. Pupil characteristics outperformed polygenic scores in terms of

explanatory power, but together they explained up to 21.5% (95% CI: 18.9 to 24.1) of the variation

in age 7 achievement. Including information on the social background of pupils’ parents that is

potentially obtainable by schools further increased the explanatory power of the models up to a

maximum R2 of 26.3% (23.4 to 29.2). The incremental R2 of the polygenic scores over pupil charac-

teristics were 1.8% (-0.7 to 4.3) and 4.8 (2.1 to 7.3), suggesting that they provide some additional

predictive information over currently available or easily collectable data.

The genomewide significant and all SNP polygenic scores explained more variation of achieve-

ment in exams sat at the end of compulsory education at age 16, explaining an additional 3.4% (1.7

to 5.0) and 12.9% (10.6 to 15.3) of educational achievement over age and sex alone (Figure 2B). By

comparison, measures of parental education and socioeconomic position provided greater returns

to explanatory power than the polygenic scores when unadjusted for prior achievement, explaining

an additional 19% (16.6 to 21.4) and 21.4% (18.8 to 23.9) respectively over age and sex (Figure 2B).

As with age 7 achievement, using both genotype and social background data explained the largest

amount of variation. At this stage of education schools also hold data on pupils’ prior achievement,

and these prior achievement measures explained a large amount of variation in age 16 achievement.

For example, prior achievement at age 14 explained 65.1% (60.9 to 69.4) of the variation in age 16

achievement alongside age and sex (Figure 2A). Conditional on prior achievement data, the poly-

genic scores provide very little discernible increase in explanatory power (Figure 2B).

Figure 1. Variance in age 7 educational achievement explained by the polygenic scores. (A) Variance explained in

age 7 educational achievement by the polygenic scores while controlling for pupil characteristics and social

factors. (B) Additional variance explained by the polygenic scores over and above pupil characteristics and social

factors. Educational achievement measured using fine graded point scores from educational exams at age 7.

Polygenic scores (PGS) built using only genome-wide significant SNPs (GWAS sig PGS) or all education associated

SNPs (all SNP PGS) from the largest GWAS of educational attainment (Lee et al., 2018). Pupil characteristics

available to schools include Free School Meals (FSM), English as a Foreign language (EFL) and Special Educational

Needs (SEN) status. Parental educational attainment was measured as average years of completed education.

Parental socioeconomic position (SEP) was measured as highest parental score on the Cambridge Social

Stratification Score scale. All analyses include adjustment for the first 20 principal components of population

stratification. Parameter estimates in Supplementary files 1A and 1B.
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Individual level polygenic score prediction
We next investigated how well the polygenic scores could identify high achieving pupils, defined as

those with the highest 10% of educational test scores. Figure 3 shows the distributions of the two

polygenic scores for high achieving pupils at age 16 and all other pupils. The polygenic scores of

high achievers are, on average, higher than of other pupils, but there is near complete overlap in the

distributions between the groups. This suggests there would be a large proportion of misclassifica-

tion when trying to predict from genetic data whether a pupil will be in the top 10%. By comparison,

there is far less overlap in the distributions of prior achievement between high achievers and other

pupils (Figure 3—figure supplement 1). Figure 4 displays this misclassification of pupils; while

some are correctly predicted from their genetic data to be high achievers, a greater proportion are

erroneously predicted to be in the wrong group. This misclassification is similar for parental educa-

tion and socioeconomic position but lower for prior attainment (Figure 4—figure supplement 1). In

each case, the group of pupils predicted to be in the top 10% of achievers will on average perform

higher than other pupils in exams, but the large variability shows that many of the pupils in this

group will not ultimately be in the top 10%. High levels of misclassification from the polygenic scores

compared to prior attainment were also evident when assessing agreement with quantiled measures

of educational achievement (Supplementary file 1E).

Using polygenic scores to identify future pupil performance
To investigate the potential performance of polygenic scores for correctly identifying individual high

achieving students from all other pupils, we used Receiver Operating Characteristic (ROC) curves to

Figure 2. Variance in age 16 achievement explained by the polygenic scores. (A) Variance explained in age 16

educational achievement by the polygenic scores while controlling for pupil characteristics and social factors. (B)

Additional variance explained by the polygenic scores over and above pupil characteristics and social factors.

Educational achievement (EA) measured using fine graded point scores from educational exams at ages 7, 11, 14

and 16. Polygenic scores (PGS) built using only genome-wide significant SNPs (GWAS sig PGS) or all education

associated SNPs (all SNP PGS) from the largest GWAS of educational attainment (Lee et al., 2018). Pupil

characteristics available to schools include Free School Meals (FSM), English as a Foreign language (EFL) and

Special Educational Needs (SEN) status. Parental educational attainment was measured as average years of

completed education. Parental socioeconomic position (SEP) was measured as highest parental score on the

Cambridge Social Stratification Score scale. All analyses include adjustment for the first 20 principal components

of population stratification. Parameter estimates in Supplementary files 1C and 1D.
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calculate Area Under the Curve (AUC). ROC curves assess the sensitivity (the true positive rate, in

our case the probability that a high achieving pupil will be correctly identified as a high achiever)

and the specificity (the true negative rate, in our case the probability that that all other pupils will be

correctly identified as not being high achievers) of a classifier as its discrimination threshold is varied.

Compared to measures of parental socioeconomic position (AUCs: 0.70 for both years of education

and social class), the polygenic scores have a lower AUC and therefore poorer sensitivity and speci-

ficity to discriminate high achievers at age 7 (AUCs: 0.63 for the GWAS sig PGS; 0.68 for the All SNP

PGS) (Figure 5). The trade-off in sensitivity and specificity for each of the measures at different clas-

sification thresholds is also poor; high sensitivity comes at the cost of low specificity (and vice versa).

This means that in order to accurately identify most of the pupils who will go on to be in the top

10% of achievers, one would have to set the classification at the point where almost all students

would be identified. These results were consistent when other cut-offs were used to determine the

Figure 3. Distributions of polygenic scores between ‘high achievers’ and all other pupils. (A) Polygenic score distributions for the GWAS significant

polygenic score. (B) Polygenic score distributions for the all SNP polygenic score. High achievers defined as pupils with age 16 educational exam scores

in the top 10% of the sample. Polygenic scores (PGS) built using only genome-wide significant SNPs (GWAS sig PGS) or all education associated SNPs

(all SNP PGS) from the largest GWAS of educational attainment (Lee et al., 2018).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Distributions of prior achievement between ‘high achievers’ at age 16 and all other pupils.
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high achieving group (Figure 5—figure supplement 1), suggesting that the results do not reflect

our definition of high achievers.

At age 16, prior achievement data were available. Figure 6a shows that measures of prior

achievement provide far higher sensitivity and specificity for predicting educational achievement

than the polygenic scores (AUCs: 0.83 to 0.95 for prior achievement compared to 0.61 to 0.70 for

the polygenic scores). For example, a classification point can be set for prior achievement at age 14

with a sensitivity and specificity of around 0.85, whereas the best classification point for polygenic

scores would give a sensitivity and specificity of around 0.65. As with achievement at age 7, the

ROC curve for the All SNP polygenic score was similar to the ROC curves for parent’s years of edu-

cation and socioeconomic position (Figure 6b). To investigate the value added by polygenic scores

above phenotypic data, we calculated ROC curves for the polygenic scores on educational achieve-

ment at age 16 residualised on age, sex, prior achievement, and pupil characteristics. The results

(Figure 6c) demonstrated that after accounting for the phenotypic information already available to

schools, the polygenic scores provide almost no information to reliably identify high achievers (AUC:

0.51 and 0.56). The results were consistent had these predictions been made earlier in schooling

where later measures of prior attainment were unavailable (Figure 6—figure supplement 1; AUC’s:

0.54 to 0.61). As with achievement at age 7, these results were consistent when other cut-offs were

used to determine the high achieving group (Figure 6—figure supplement 2).

If a school headteacher or principal wanted to use polygenic scores as a selection criterion to

select the highest performing students, would they identify a group that has higher educational

attainment at age 16 than when that selection had been made on other criteria? If they selected the

students with the top 10% of polygenic scores, they would on average only sample 24% of the top

10% highest achievers at age 16, and 76% of those not in the top 10%. In contrast, if the principal or

policy maker used phenotypic measures from age 11, they would sample 51% of the top 10% high-

est achievers at age 16, and 49% of those not in the top 10%. This suggests that polygenic scores

cannot be used to identify high achieving students more accurately than available phenotypic meas-

ures. The group of pupils with the highest polygenic scores do - on average - have higher achieve-

ment, but the predictive information provided from the polygenic scores is inferior to that provided

Figure 4. Correlation between realised and genetically predicted achievement. Educational achievement

measured using fine graded point scores from educational exams at age 16. Predicted achievement at age 16

generated from a polygenic score built using all education associated SNPs (all SNP PGS) from the largest GWAS

of educational attainment (Lee et al., 2018). Solid lines separate pupils who’s exams scores were in the top 10%

at age 16 (high achievers) on the y axis and pupils who’s exam scores were predicted from genetic data to in the

top 10% on the x axis. Dotted line represents best fit.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Independent scatter plots showing correlation between realised achievement at age 16

and achievement predicted from genotypic and phenotypic variables with top 10% of predicted achievers

highlighted in green.
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by phenotypic predictors. Figure 4—figure supplement 1 demonstrates the variability in age 16

educational achievement for pupils predicted to be in the top 10% from each of the genotypic and

phenotypic predictors.

Discussion
We investigated how predictive polygenic scores for education were of realised

educational achievement and the incremental increase in explanatory and predictive power that they

offered over and above readily available phenotypic measures. Our results demonstrated that the

polygenic scores were predictive of educational achievement, accounting for 3.4% and 12.9% of

the variance (above age and sex) across our sample at age 7 and 16 respectively. This was higher

than the 9.2% reported for high school GPA in the original GWAS (Lee et al., 2018). For informative

education predictions at the individual level, the most predictive measure was prior achievement.

This reflects some current schooling practices whereby pupils are streamed into different classes

based upon ability. Conditional on prior achievement there was little incremental gain in the predic-

tive power of polygenic scores for subsequent achievement, suggesting that when prior achievement

data are available, polygenic scores are of little utility to providing accurate predictions of a child’s

future achievement. When children start school and prior achievement data are unavailable, or in

cases where pre-intervention characteristics are limited (Rietveld et al., 2013), the scores may pro-

vide a small amount of predictive power. However, parental socioeconomic position and education

were more strongly predictive of achievement than a pupil’s genome. Genetic data from individuals

therefore provided little information on their future achievement over phenotypic data that is either

available or easily obtainable by educators. This is consistent with results from the only other study

we are aware of to assess incremental variance explained over parental social characteristics, which

observed higher variance explained in years of education by parental education (18% to 21.3%) than

the polygenic score (10.6% to 12.7%) in two US samples (Lee et al., 2018).

Figure 5. ROC curve for being a high achieving student (defined as the top 10% of pupils) at age 7. High

achievers defined as pupils with age 16 educational exam scores in the top 10% of the sample. Parental

educational attainment (EA) was measured as average years of completed education. Parental socioeconomic

position (SEP) was measured as highest parental score on the Cambridge Social Stratification Score scale.

Polygenic scores (PGS) built using only genome-wide significant SNPs (GWAS sig PGS) or all education associated

SNPs (all SNP PGS) from the largest GWAS of educational attainment (Lee et al., 2018). All PGS analyses include

adjustment for the first 20 principal components of population stratification. Note that x axis displays 1-specificty.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Independent ROC curves for deciled measures of polygenic scores, parental education and

parental socioeconomic position predicting high achieving students at age 7 defined at different thresholds (e.g.

top 10%).
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The lack of genotypic predictive power that we observed over and above phenotypic data may

be because prior achievement mediates genotypic effects on educational outcomes; genetic variants

that affect educational achievement at earlier ages are likely to also affect achievement at later ages.

It has been suggested that for complex phenotypes, accurate prediction at the individual level may

require a polygenic score that explains up to 75% of the total genetic variance of the phenotype

(Wray et al., 2010). It is therefore possible that polygenic scores for education will require greater

Figure 6. ROC curves for being a high achievement student (pupils with age 16 educational exam scores in the top 10% of the sample) at age 16. (A)

Independent ROC curves for deciled measures of prior achievement and polygenic scores (PGS) predicting high educational achievement (EA) at age

16. (B) Independent ROC curves for deciled measures of parental education and socioeconomic position predicting high educational achievement (EA)

at age 16. (C) ROC curves for deciled polygenic scores predicting high educational achievement (EA) at age 16 residualised on age, sex, prior

achievement, and pupil characteristics available to schools. Parental educational attainment was measured as average years of completed education.

Parental socioeconomic position (SEP) was measured as highest parental score on the Cambridge Social Stratification Score scale. Polygenic scores

(PGS) built using only genome-wide significant SNPs (GWAS sig PGS) or all education associated SNPs (all SNP PGS) from the largest GWAS of

educational attainment (Lee et al., 2018). All PGS analyses include adjustment for the first 20 principal components of population stratification. Note

that x axis displays 1-specificty.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. ROC curves for deciled measures of polygenic scores predicting high achieving students at age 16 (pupils with age 16

educational exam scores in the top 10% of the sample) conditional on prior attainment and pupil characteristics.

Figure supplement 2. Independent ROC curves for deciled measures of prior attainment and polygenic scores predicting high achieving students at

age 16 defined at different thresholds (e.g. top 1%).
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explanatory power for accurate prediction of educational achievement in the future. Our polygenic

scores were constructed using results from a GWAS of over a million people, meaning that far larger

samples will be required. While future studies may lead to polygenic scores that explain a greater

amount of variation in education, these may still not provide useful returns to personalised interven-

tions. High incremental variance explained is a necessary pre-requisite for successful intervention,

but it is not a guarantee that an actionable intervention will have a large effect. Furthermore, to pro-

vide actionable evidence for personalisation at a given age, polygenic scores need to explain varia-

tion in educational outcomes over and above available phenotypic at that age. If most or all the

educational differences associated with the polygenic score are phenotypically expressed at a given

age, then the score is unlikely to be useful for personalisation.

At the individual level, polygenic scores and parental social background provided similar, but rel-

atively imprecise predictions of achievement within our sample. This reflects a wider issue of the dif-

ferent challenges in analysing group and individual level differences (Davey Smith, 2011): while

stochastic events will be averaged out at the group level, they are important in determining out-

comes at the individual level. There was a large amount of overlap in the polygenic score distribution

between pupils in the top 10% of achievers and all others; while pupils with a high polygenic score

are more likely to be high achievers, genetics did not determine high achievement. High academic

achievement is due to both environmental and genetic factors, including social background

(Morris et al., 2016), teacher bias (Campbell, 2015; Morris et al., 2018), the home and school envi-

ronment (Nieuwenhuis and Hooimeijer, 2016; Rasbash et al., 2010), and luck (Davey Smith,

2011). It is also possible that the quality of family and school environments may constrain or support

pupils’ ability to exploit their genetic propensity to education. For example, without the means to

attend university, it does not matter what an individual’s genotype is. In this, it is the combination of

nature, nurture and chance that is important (de Zeeuw and Boomsma, 2017; Belsky et al., 2019).

In fields such as medicine, where genetic risk can be of clinical significance for some diseases

(Lu et al., 2014), personalisation based on genotype may offer actionable intervention at the individ-

ual level. However, our results demonstrate that even for the purpose of identifying groups of pupils

who will be high achievers, polygenic scores offer limited prediction value above phenotypic data in

education. The usefulness of genetic data for educational research however lies in investigating

group level differences. This has been previously demonstrated for example in assessing the effec-

tiveness of teachers and schools (Harden et al., 2020; Morris et al., 2018); selection differences

between schools (Smith-Woolley et al., 2018; Trejo et al., 2018) social mobility over time and

space (Belsky et al., 2018), and, in a different context, for performing Mendelian randomization

studies of the effects of education on various outcomes (Tillmann et al., 2017; Sanderson et al.,

2019). Our results demonstrate that while polygenic scores are useful for investigating group differ-

ences such as these, they do not provide suitable value for routine use by teachers and schools to

predict a pupil’s future achievement. There is a wide range of non-genetic information available to

teachers as part of their day to day interactions with pupils that are used to inform and personalise

teaching. This may include knowledge of what the pupil responds well to, any stressful life events

that they have recently experienced, and their physical and mental health. To the extent that this

knowledge captures genotypic information of the pupil (through its expression in phenotype), it is

unclear what novel information genotype would offer to teachers. Finally, genetic studies are

focused heavily on samples of European ancestry (Mills and Rahal, 2019). Polygenic scores built

from these studies do not perform well when applied to other ancestry groups (Duncan et al.,

2019), meaning that their system-wide application to all pupils in an education system could lead to

systematic prediction errors and inequalities in schooling.

This study has several limitations. First, the ALSPAC cohort is not fully representative of the UK

population and as such our results may not be generalisable to all UK pupils. Other studies, such as

the Millennium Cohort Study are more representative and therefore could provide further evidence

about personalised education for the broader UK population. Second, the educational achievement

polygenic score that we use was based on a GWAS of years of education rather than exam scores.

Years of education can be considered a more social measure of education than exam performance,

and previous work has demonstrated that the educational attainment polygenic score strongly

reflects parental social position (and through this access to further or higher education) (Bates et al.,

2018). Future research could investigate this possibility by conducting a GWAS on detailed stan-

dardized exam scores on a large sample. Furthermore, it is possible that polygenic scores from a
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GWAS conducted on change in test scores throughout education may provide higher prediction

accuracy over and beyond phenotypic data if there are genetic factors associated with differences in

educational progress. Third, while the educational attainment polygenic score accounts for around

13% of the variance in years of education in our data, increases to this from future GWAS meta-anal-

yses will provide greater power. Twin studies have estimated that the heritability of educational

attainment is around 40% (Branigan et al., 2013), which limits the predictive power of genetic meas-

ures for education over some other phenotypes (Daetwyler et al., 2008). Finally, issues from con-

founding biases caused by population level phenomena such as population stratification, assortative

mating and dynastic effects (genetic nurture) (Kong et al., 2018; Morris et al., 2019; Bates et al.,

2018; Young et al., 2018) may have impacted our results. These biases can lead to social and family

differences being masked as genetic differences between individuals, inflating associations between

polygenic scores and educational achievement in between individual analyses. Family data are

required to further investigate the impact of these baises (Brumpton et al., 2019).

In conclusion, our results suggest that currently available genetic scores are unlikely to provide

more accurate predictions of how well a pupil will perform in school exams than easily measured

phenotypes. Genetic data provide little additional information on an individual’s school performance

over and above more readily available and easily collected phenotypic data, except where prior

achievement measures are unavailable. The greatest value of genetic data may lie instead for

researchers investigating the etiology of educational differences between groups of pupils, teachers

and schools and for novel sociogenomic analyses into socioeconomic inequalities in education

achievement and attainment.

Materials and methods

Study sample
Participants were children from the Avon Longitudinal Study of Parents and Children (ALSPAC)

(RRID: SCR_007260). Pregnant women resident in Avon, UK with expected dates of delivery 1 st

April 1991 to 31st December 1992 were invited to take part in the study. The initial number of preg-

nancies enrolled was 14,541. When the oldest children were approximately 7 years of age, an

attempt was made to bolster the initial sample with eligible cases who had failed to join the study

originally. This additional recruitment resulted in a total sample of 15,454 pregnancies, resulting in

14,901 children who were alive at one year of age. From this sample genetic data was available for

7988 after quality control and removal of related individuals. For full details of the cohort profile and

study design see Boyd et al. (2013) and Fraser et al. (2013). Please note that the study website

contains details of all the data that is available through a fully searchable data dictionary and variable

search tool at http://www.bristol.ac.uk/alspac/researchers/our-data/. The ALSPAC cohort is largely

representative of the UK population when compared with 1991 Census data; there is under repre-

sentation of some ethnic minorities, single parent families, and those living in rented accommodation

(Boyd et al., 2013). Ethical approval for the study was obtained from the ALSPAC Ethics and Law

Committee and the Local Research Ethics Committees. Following listwise deletion of cases with

missing data our final analytical sample was 3,453.

Genetic data
DNA of the ALSPAC children was extracted from blood, cell line and mouthwash samples, then gen-

otyped using references panels and subjected to standard quality control approaches. ALSPAC chil-

dren were genotyped using the Illumina HumanHap550 quad chip genotyping platforms by

23andme subcontracting the Wellcome Trust Sanger Institute, Cambridge, UK and the Laboratory

Corporation of America, Burlington, NC, US. The resulting raw genome-wide data were subjected to

standard quality control methods. Individuals were excluded on the basis of gender mismatches;

minimal or excessive heterozygosity; disproportionate levels of individual missingness (>3%) and

insufficient sample replication (<0.8). Population stratification was assessed by multidimensional scal-

ing analysis and compared with Hapmap II (release 22) European descent (CEU), Han Chinese, Japa-

nese and Yoruba reference populations; all individuals with non-European ancestry were removed.

SNPs with a minor allele frequency of <1%, a call rate of <95% or evidence for violations of Hardy-

Weinberg equilibrium (p<5�10�7) were removed. Cryptic relatedness was measured as proportion
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of identity by descent (IBD) >0.1. Related subjects that passed all other quality control thresholds

were retained during subsequent phasing and imputation. 9115 participants and 500,527 SNPs

passed these quality control filters. ALSPAC mothers were genotyped using the Illumina

human660W-quad array at Centre National de Génotypage (CNG) and genotypes were called with

Illumina GenomeStudio. PLINK (v1.07) was used to carry out quality control measures on an initial

set of 10,015 participants and 557,124 directly genotyped SNPs. SNPs were removed if they dis-

played more than 5% missingness or a Hardy-Weinberg equilibrium P value of less than 1.0e-06.

Additionally SNPs with a minor allele frequency of less than 1% were removed. Samples were

excluded if they displayed more than 5% missingness, had indeterminate X chromosome heterozy-

gosity or extreme autosomal heterozygosity. Samples showing evidence of population stratification

were identified by multidimensional scaling of genome-wide identity by state pairwise distances

using the four HapMap populations as a reference, and then excluded. Cryptic relatedness was

assessed using an IBD estimate of more than 0.125 which is expected to correspond to roughly

12.5% alleles shared IBD or a relatedness at the first cousin level. Related subjects that passed all

other quality control thresholds were retained during subsequent phasing and imputation. 9048 par-

ticipants and 526,688 SNPs passed these quality control filters.

We combined 477,482 SNP genotypes in common between the sample of mothers and sample

of children. We removed SNPs with genotype missingness above 1% due to poor quality (11,396

SNPs removed) and removed a further 321 participants due to potential ID mismatches. This

resulted in a dataset of 17,842 participants containing 6305 duos and 465,740 SNPs (112 were

removed during liftover and 234 were out of HWE after combination). We estimated haplotypes

using ShapeIT (v2.r644) which utilises relatedness during phasing. The phased haplotypes were then

imputed to the Haplotype Reference Consortium (HRCr1.1, 2016) panel of approximately 31,000

phased whole genomes. The HRC panel was phased using ShapeIt v2, and the imputation was per-

formed using the Michigan imputation server. This gave 8237 eligible children and 8196 eligible

mothers with available genotype data after exclusion of related subjects using cryptic relatedness

measures described previously. Principal components were generated by extracting unrelated indi-

viduals (IBS <0.05) and independent SNPs with long range LD regions removed, and then calculating

using the ‘–pca‘ command in plink1.90. Only the children’s genetic data was used in this paper.

Educational achievement
We use average fine graded point scores at four major Key Stages of education in the UK. These are

Key Stage 1 (age 7), Key Stage 2 (age 11), Key Stage 3 (age 14), and Key Stage 4 (age 16). We use

scores for performance at the end of each Key Stage and a score at entry to Key Stage 1, which rep-

resents the start of schooling. At the time the ALSPAC cohort were at school, the age 16 Key Stage

4 exams represented final compulsory schooling examinations. Scores were obtained through data

linkage to the UK National Pupil Database (NPD), which represents the most accurate record of indi-

vidual educational achievement available in the UK. We used data from the Key Stage 1 and Key

Stage 4 files. The Key Stage 4 database provides a larger sample size than Key Stage 2 and 3 data-

bases and contains data for each.

Educational attainment polygenic scores
Two educational attainment polygenic scores were generated using the software package PRSice

(Euesden et al., 2015) based upon the list of SNPs identified to associate with years of education in

the largest GWAS of education to date (Lee et al., 2018). The polygenic scores were generated

using GWAS results which had removed ALSPAC and 23andMe participants from the meta-analysis

(n=763,468), and as such are not perfectly comparable to those reported in the published meta-anal-

ysis. SNPs were weighted by their effect size in the replication cohort of the GWAS, and these sizes

were summed using allelic scoring. PRSice was used to thin SNPs according to linkage disequilibrium

through clumping, where the SNP with the smallest P-value in each 250kb window was retained and

all other SNPs in linkage disequilibrium with an r
2 of >0.1 were removed. The first polygenic score

(GWAS sig PGS) was created from the 1,271 independent SNPs that associated with years of educa-

tion at genome-wide levels of significance (p<5�10�8). The second (all SNP PGS) was created from

all genome-wide SNPs reported in the meta-analysis.
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Covariates
We selected covariates that are easily available to schools in the UK. These include the study partici-

pants sex and month of birth, and their status on three pupil characteristics that are available to

schools the NPD: eligibility for Free School Meals (FSM); Special Education Needs (SEN); and English

as a Foreign Language (EFL). FSM is a proxy for low income as only children from low income fami-

lies are eligible. We use years of parental education, coded as basic formal education (7 years), cer-

tificate of secondary education (10 years), O-levels and vocational qualifications (11 years), A-level

(13 years), and degree (16 years). For dual parent families we use the average of the two parents’

years of education, while for single parent families we use the mother’s years of education. Finally,

we use a continuous measure of socioeconomic position, the Cambridge Social Stratification Score

(CAMSIS). For dual parent families we used the highest of either parents score, while for single par-

ent families we use the mother’s score. Parental years of education and CAMSIS were measured

when the study participants were in utero.

Statistical analysis
To examine the predictive ability of polygenic scores for educational achievement we ran a series of

regression analyses of the polygenic scores on achievement each controlling for sex, month of birth,

and the first 20 principal components of inferred population structure. Principal components are

included to adjust estimates for population stratification; systematic differences in allele frequencies

between subpopulations due to ancestral differences. Predictive ability of the polygenic scores was

determined by the incremental increase in variance explained (R2) in educational achievement above

age and sex; pupil characteristics; and prior achievement. Bootstrapping with 1000 replications was

used to estimate confidence intervals for R2 values. To compare the predictive power of polygenic

scores to additional phenotypic data that schools could collect, we repeated the regression analyses

controlling for parental years of education and parental socioeconomic position. Sensitivity and

specificity were calculated using selection into the top 10% of educational achievers at age 16 from

the whole cohort as the ‘diagnosis’. Receiver Operating Characteristic (ROC) curves were used to

visually compare models and to calculate the Area Under the Curve (AUC).
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Appendix 1

Supplementary material
We split educational achievement and the polygenic scores by quintiles and deciles to assess

the level of agreement (Supplementary file 1). The agreement between the quantiled

measures of achievement at ages 7 and 16 and the polygenic scores were slightly higher than

expected. For the GWAS significant polygenic score, the Kappa statistics show that

agreement was at most only 5% higher than would be expected by random agreement

compared to perfect agreement (quintiles k = 0.05 for achievement at age 7). Agreement was

higher for the all SNP polygenic score and generally higher for age 16 than age 7

achievement. At age 16, agreement was at least twice as high for quantiles of prior

achievement than the polygenic scores when compared to random allocation. Agreement with

age 16 achievement was highest for age 14 achievement, being 46% and 28% better than

expected by chance for quintiles and deciles of achievement respectively.
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