
                          Coppola, N. (2020). Wild Galois representations: elliptic curves over a
3-adic field. Acta Arithmetica. https://doi.org/10.4064/aa190423-9-1

Peer reviewed version

Link to published version (if available):
10.4064/aa190423-9-1

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Polskiej Akademii Nauk, Instytut Matematyczny at https://www.impan.pl/en/publishing-house/journals-and-
series/acta-arithmetica/online/113657/wild-galois-representations-elliptic-curves-over-a-3-adic-field . Please refer
to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/user-guides/explore-bristol-research/ebr-terms/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/286770286?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.4064/aa190423-9-1
https://doi.org/10.4064/aa190423-9-1
https://research-information.bris.ac.uk/en/publications/wild-galois-representations(74ac1e67-72a1-46c1-a307-3667c2e3ef24).html
https://research-information.bris.ac.uk/en/publications/wild-galois-representations(74ac1e67-72a1-46c1-a307-3667c2e3ef24).html


WILD GALOIS REPRESENTATIONS: ELLIPTIC CURVES
OVER A 3-ADIC FIELD

NIRVANA COPPOLA

Abstract. Given an elliptic curve E over a local field K with residue
characteristic 3, we investigate the action of the absolute Galois group of
K in the case of potentially good reduction. The hardest case is when the
`-adic Galois representation attached to E has non-cyclic inertia image,
isomorphic to C3 o C4. In this work we describe such a representation
explicitly.

1. Introduction

Let E be an elliptic curve defined over a field K, i.e. a projective smooth
curve of genus 1, with a fixed point O. It is given by a non-singular Weier-
strass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

with coefficients ai ∈ K. We refer to [S86, III §1] for the definition of
the invariants associated to this curve, in particular we denote by ∆ its
discriminant. We denote by K a fixed algebraic closure of K, and let GK =

Gal(K/K) be the absolute Galois group of K; then any σ ∈ GK acts on
the points of the curve by sending the point P of coordinates (x, y) to
σ(P ) = (σ(x), σ(y)). In particular, for any integer m, GK acts on the group
of m-torsion points E[m] (i.e. the points of order dividing m). This induces,
for any prime `, an action on the `-adic Tate modules, which are defined as

T`(E) = lim←−
n

E[`n].

This action is called `-adic Galois representation attached to E, and
denoted ρE,`. For ` different from the characteristic of p, we have that T`(E)

is a free Z`-module of rank 2; so after considering the tensor product with an
algebraic closure Q` of Q`, we view Aut(T`(E)) as a subgroup of GL2(Q`),
and we also denote by ρE,` the representation we obtain:

ρE,` : GK → GL2(Q`).
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2 N. COPPOLA

Furthermore, we fix an embedding Q` → C, and in what follows we identify
the eigenvalues and traces of the elements of GK with the corresponding
complex numbers.

Let K be a local field of characteristic 0, complete with respect to a
discrete valuation v, with valuation ring OK , maximal ideal m and perfect
residue field k. The residue characteristic of K is the characteristic of k, and
we will always denote it by p. A typical example of this is K = Qp, with
the p-adic valuation, or any algebraic extension of it. We denote by Knr the
maximal unramified extension of K contained in K.

Recall that the inertia subgroup IK of GK is isomorphic to Gal(K/Knr)

and, if we denote by k a fixed algebraic closure of k, we have

GK/IK ∼= Gal(k/k).

This group is procyclic, generated by the Frobenius element, i.e. the
automorphism: x 7→ x|k| for all x ∈ k. Any preimage Frob of the Frobenius
in GK under the projection to Gal(k/k) is called a Frobenius element of
GK .

To study the `-adic Galois representation attached to an elliptic curve
one has to study the Frobenius and the inertia actions and see how they are
related. This representation changes substantially according to the reduc-
tion type of the curve, which can be good, multiplicative, or additive (for
the definition see [S86, VII §5]); moreover in the last case, there is a finite
extension of K where the curve acquires either good or multiplicative reduc-
tion, so we say E/K has potentially good (resp. multiplicative) reduction, as
explained in Theorem 2.1. Let p and ` be two distinct primes, and suppose
that the field K over which E is defined is a p-adic field, i.e. isomorphic to a
finite extension of Qp. Then the `-adic Galois representation attached to E
can easily be studied in the case of good and potentially multiplicative re-
duction, respectively via the Criterion of Néron-Ogg-Shafarevich (see [S86,
VII §7] and Theorem 2.3) and the theory of the Tate curve (see [S94, V §3]);
the last remaining case is that of bad additive reduction with potentially
good reduction. By the work of Kraus ([K90]) we have that the image of
inertia is isomorphic to one of the following:

C2, C3, C4, C6,

C3oC4 only when p = 3,

Q8, SL2(F3) only when p = 2,

where Cn denotes the cyclic group of order n and Q8 is the quaternion
group.



WILD GALOIS REPRESENTATIONS 3

In this work we present a result to determine the `-adic Galois represen-
tation ρE,` attached to an elliptic curve over a field of residue characteristic
3, where ` is a prime different from 3, such that the image of inertia is non-
cyclic, hence isomorphic to C3 o C4. We will use the notation of [GN] for
group names and presentations and for their character tables. In particular
we will prove the following result.

Theorem 1.1. Let E be an elliptic curve with potentially good reduction
over a 3-adic field K, with Weierstrass equation of the form y2 = f(x)

and discriminant ∆. Fix a fourth root ∆1/4 of ∆ and define F to be the
compositum of the splitting field of f over K and K(∆1/4); let F ′ be the
Galois closure of F/K.

Let χ be the unramified character of GK (i.e. trivial on inertia) such that

χ(Frob) = in
√

3n,

and let ψ be as follows. Let n = [k : F3]. If n is even, let ψ be the represen-
tation of Gal(F ′/K), which is isomorphic to C3 o C4, with character:

class 1 2 3 4A 4B 6
size 1 1 2 3 3 2
ψ 2 −2 −1 0 0 1

while if n is odd then let ψ be the representation of Gal(F ′/K), which is
isomorphic to C3 oD4, with character:

class 1 2A 2B 2C 3 4 6A 6B 6C
size 1 1 2 6 2 6 2 2 2

ψ 2 −2 0 0 −1 0 −i
√

3 i
√

3 1

where the presentation of Gal(F ′/K) and its conjugacy classes are as in
Section 3.1.

Let ` be a prime different from 3, and let ρE,` be the `-adic Galois repre-
sentation attached to E. Suppose that the image of the inertia subgroup of
GK is isomorphic to C3 o C4. Then ρ = ρE,` factors as

ρ = χ⊗ ψ.

Part of this result follows immediately from [K90, Theorem 1], [ST68,
Theorem 2] and the classification of the representations of the groups C3oC4

and C3 o D4 in [GN]. The result for the case of odd n is more subtle, as
there are two possibilities for ψ, and we will prove that only one of these
occurs, via explicit computation.

In Section 2 we present the general setting for this problem. In particular
we recall some results about the Galois representations attached to elliptic
curves with good reduction and what is already known about the potentially
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good reduction case. In Section 3 we tackle the case over 3-adic fields when
the action of inertia is non-cyclic. In Section 3.1, we fix the a presentation
for the group Gal(F ′/K). The proof is divided into two parts: in Section
3.2 we give the proof for the case of even n, and in Section 3.3 we assume
that n is odd.

2. Preliminaries

Let E be an elliptic curve over a p-adic field K. In this section we give
some general results about the study of the `-adic Galois representation
attached to E, for ` 6= p. As mentioned in the introduction, this represen-
tation varies according to the different reduction types that E can have.
There are several results about reduction types in [S86, VII §5], which can
be summarised as follows.

Theorem 2.1. • Let K ′/K be an unramified extension. Then the re-
duction types of E/K and E/K ′ are the same.
• Let K ′/K be a finite extension. If E/K has good or multiplicative
reduction over K, then E/K ′ has the same reduction type.
• There exists a finite extension K ′/K over which E has either good
or multiplicative reduction.
• The curve E has potentially good reduction if and only if its j-
invariant is integral.

So if E/K has additive reduction, then there is a finite extension over
which it acquires either good or multiplicative reduction; once it does, its
reduction type does not change after a finite extension. This suggests the
terminology potentially good (resp. multiplicative) reduction. In case of ad-
ditive reduction, using the last statement, we can check easily whether the
reduction is potentially good or not: we only need to compute the valuation
of the j-invariant.

Definition 2.2. A Galois representation is unramified if it is trivial when
restricted to the inertia subgroup.

We recall here the main content of the Criterion of Néron - Ogg - Sha-
farevich. For the full statement and the proof see [S86, VII §7 Theorem
7.1].

Theorem 2.3. Let E/K be an elliptic curve. The following are equivalent:

• E has good reduction over K;
• ρE,` is unramified for some (all) primes ` 6= p.
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So, if E/K has good reduction, the Galois representation factors through
the quotient of GK by IK , which is generated by Frobenius.

GK Aut(T`(E))

GK/IK ∼= 〈Frob〉

ρE,`

In this case the problem reduces to the study of the image of Frobenius.
As it is shown in [S98, IV §2.3], it is always diagonalisable (at least in
an algebraic closure of Q`), so it is enough to compute its eigenvalues to
uniquely determine its action.

Lemma 2.4. The characteristic polynomial of ρE,`(Frob) is independent of
` (as explained in [ST68, Theorem 2]) and given by

F (T ) = T 2 − aT + q,

where q = |k| and a = q + 1 − |Ẽ(k)|, where by Ẽ we denote the reduction
of the curve E to k.

Proof. See [S98, IV §1.3]. �

Example 2.5. Let K be a local field with residue characteristic 3 and let
k be its residue field. Let E/K be an elliptic curve such that the reduction
over k is: y2 = x3 − x. In particular, E has good reduction over K.

We want to compute the eigenvalues of ρE,`(Frob), for a prime ` 6= 3, as
elements of C.

First we assume that k = F3. Then the reduced curve Ẽ has the following
4 points over F3: {O, (0, 0), (1, 0), (2, 0)}, therefore in the notation above
a = 0, q = 3 and the roots of F (T ), hence the eigenvalues of ρE,`(Frob), are
±i
√

3.
If [k : F3] = n ≥ 1, then ρE,`(Frob) acts as the n-th power of the linear

operator described above, so its eigenvalues are (±i
√

3)n. In particular we
have:

n ≡ 0 (mod 4) +3n/2 +3n/2

n ≡ 2 (mod 4) −3n/2 −3n/2

n odd in
√

3n −in
√

3n

Now let us consider elliptic curves with additive, potentially good reduc-
tion. Our first step is to determine the image of the inertia subgroup. As a
consequence of the Criterion of Néron-Ogg-Shafarevich, if the curve E/K
has potentially good reduction then the inertia subgroup IK acts through
a finite quotient on T`(E) for some (all) ` 6= p prime. (See [S86, VII §7
Corollary 7.3].)
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Since we are only interested in the action of IK = Gal(K/Knr) and since
the reduction types of E over K and Knr are the same, we may work simply
on Knr. Suppose E has potentially good reduction (recall this is equivalent
to the j-invariant of E being integral) and let L be the minimal finite
extension of Knr over which E acquires good reduction. Then it follows
from Theorem 2.3 that for ` 6= p the Galois representation ρE,` factors
through the quotient IK/IL, which is isomorphic to Gal(L/Knr). Indeed,
the subgroup IL is normal in IK , so L/Knr is Galois. This group is also
finite, and since we chose L to be minimal, it injects into Aut(T`(E)).

Gal(K/Knr) Aut(T`(E))

Gal(L/Knr)

ρE,`

Furthermore, there is an injection of Gal(L/Knr) into Aut(ẼL), where
ẼL is the reduction of a minimal equation for E over L. For more details
see [ST68, proof of Theorem 2]. In particular, the image of inertia does not
depend on `, and we can restrict the set of possible inertia groups to

C2, C3, C4, C6,

C3oC4 only when p = 3,

Q8, SL2(F3) only when p = 2.

This list comes from the following classification of the automorphisms
of an elliptic curve defined over a field of characteristic p (see [S86, III §10
proof of Theorem 10.1 and Appendix A Proposition 1.2(c), Exercise A.1]).

j 6= 0, 1728 j = 1728 j = 0
p 6= 2, 3 C2 C4 C6

p = 3 C2 C3 o C4 C3 o C4

p = 2 C2 SL2(F3) SL2(F3)

Since these groups have all different orders, if we know the degree of
the extension L/Knr, we can uniquely determine the Galois group of this
extension, hence the structure group of the image of inertia. From this
moment on, we denote by Φ the group Gal(L/Knr). In [K90], there are
complete classification theorems that depend on the residue characteristic
being 2, 3 or higher. In this work we focus only on the case p = 3. The main
lemma to compute the extension L is the following.

Lemma 2.6. With the notations as above, we have

L = Knr(E[2],∆1/4),

where ∆1/4 is any fourth root of ∆.
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Proof. See the Corollary to [K90, Lemma 3]. �

Using this result and Tate’s Algorithm (see [S94, IV §9]), Kraus proves
the following classification theorem.

Theorem 2.7. For p = 3 we have the following classification of the possible
images of inertia:

• if E has type I∗0 , then v(∆) = 6 and Φ ∼= C2;
• if E has type III, then v(∆) = 3 and Φ ∼= C4;
• if E has type III∗, then v(∆) = 9 and Φ ∼= C4;
• if v(∆) ≡ 0 (mod 4), then Φ ∼= C3;
• if v(∆) ≡ 2 (mod 4) and E has type different from I∗0 , then Φ ∼= C6;
• if v(∆) is odd and E has type different from III and III∗, then

Φ ∼= C3 o C4.

We refer to [K90, Theorems 2 and 3] for the classification theorem in
the case p = 2. It is worth mentioning a more general result, which can be
found in [ST68, §2 Corollary 3].

Theorem 2.8. We have L = Knr(E[m]), where m is any integer with
m ≥ 3 and (p,m) = 1. The Galois group Gal(K/L) is equal to ker(ρE,`) for
any ` 6= p.

3. Curves over a 3-adic field with non-cyclic inertia action

In the following, we keep the notation and assumptions from the previous
sections. When p ≥ 5, the extension L/Knr is tamely ramified. Hence, for all
` 6= p prime, the Galois representation ρE,` can be fully described, with the
approach in [D16]. A similar approach also works when p = 3 but the image
of inertia is cyclic and tame. Here we consider the case when p = 3 and E
has image of inertia isomorphic to C3 o C4, i.e. the last case in Theorem
2.7, and we present an algorithm to describe completely the Galois action.

3.1. Setup. Let k be the residue field of K, and let n = [k : F3]. Then n
is even if and only if K contains a primitive fourth root of unity, which we
denote ζ4 (see [S95, XIV §3 Lemma 1]). The Galois representation changes
substantially in these two cases. Let us fix some notation. By Lemma 2.6,
we have that the minimal field extension L/Knr where E acquires good
reduction is generated by 2-torsion and a 4-th root of the discriminant. Let
F be the field extension of K generated by these elements. Note that since
char(K) = 0, the curve E can be written with a Weierstrass equation of the
form y2 = f(x), where f is a monic polynomial of degree 3. If α, β, γ are



8 N. COPPOLA

the roots of f in K, ∆ the discriminant of E, then F = K(α, β, γ,∆1/4), for
some choice of ∆1/4. Then the discriminant ∆f of the defining polynomial
f , which is given by

∆f = (β − α)2(γ − β)2(α− γ)2,

differs from ∆ only by a factor 16; in particular we have that
√

∆f and
therefore

√
∆ are in the field generated by 2-torsion.

Remark 3.1. The extension F/K is totally ramified of degree 12. Indeed,
since L = FKnr, L/F is unramified and L/Knr is totally ramified of degree
12, we have that F/K has a subextension which is totally ramified of degree
12. On the other hand, we have [F : K] | 12, since the extension of K gen-
erated by 2-torsion has degree dividing 6 and it contains a square root of
the discriminant, so F is at most a quadratic extension of it. Therefore the
degree is equal to 12 and the whole extension F/K is totally ramified. More-
over, as it has good reduction over L = FKnr, E acquires good reduction
over F .

However F/K is not necessarily Galois. In fact it is Galois, with Galois
group isomorphic to Φ ∼= C3 o C4, if and only if ζ4 ∈ K, i.e. if n is even.
Otherwise, its Galois closure is F (ζ4) and Gal(F (ζ4)/K) is isomorphic to
the semidirect product (C3 oC4)oC2. As follows from the classification in
[GN], this group is C3 o D4. We will now fix a presentation for the group
Gal(F (ζ4)/K) in the two cases and show that this group is isomorphic to
C3 o C4 for n even, C3 oD4 for n odd.

Suppose first that n is even. With the notation used above, we define
σ and τ to be the generators of Gal(F/K) that act on α, β, γ and ∆1/4 as
follows:

σ :α 7→ β, β 7→ γ, γ 7→ α, ∆1/4 7→ ∆1/4;

τ :α 7→ α, β 7→ γ, γ 7→ β, ∆1/4 7→ ζ4∆1/4.

Then Gal(F/K) has the following presentation

〈σ, τ ;σ3 = τ 4 = 1, τστ−1 = σ−1〉.

This group is isomorphic to C3 oC4, which is given by the presentation
in [GN], via the isomorphism from C3oC4 to Gal(F/K) defined by a 7→ στ 2

and b 7→ τ ; in fact it is easy to check that these elements satisfy a6 = 1, b2 =

a3, bab−1 = a−1.
Suppose now that n is odd, i.e. ζ4 /∈ K. Then the Galois closure of F/K

is given by F (ζ4) and the subgroup generated by the elements σ, τ is the
inertia subgroup of Gal(F (ζ4)/K). Furthermore, Gal(F (ζ4)/K) contains an
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extra unramified automorphism corresponding to the map ζ4 7→ −ζ4, which
we call φ. Therefore it is presented by the following relations:

σ3 = 1; τ 4 = 1; φ2 = 1; σφ = φσ; φτφ = τ−1; τστ−1 = σ2.

Now C3 oD4 = 〈a, b, c|a3 = b4 = c2 = 1, bab−1 = cac = a−1, cbc = b−1〉
(see [GN]). The map from C3 oD4 to Gal(F (ζ4)/K) given by a 7→ σ, b 7→ τ

and c 7→ τφ is an isomorphism.
We denote the conjugacy classes of the group obtained in the two cases

as follows (for the sake of completeness, we will use both the notation of
[GN] and the one introduced in this paper):

• if n is even, the conjugacy classes of Gal(F/K) ∼= C3 o C4 are 1 =

[e], 2 = [τ 2 = b2], 3 = [σ = ab2], 4A = [τ = b], 4B = [στ =

ab−1], 6 = [στ 2 = a];
• if n is odd, the conjugacy classes of Gal(F (ζ4)/K) ∼= C3 o D4 are

1 = [e], 2A = [τ 2 = b2], 2B = [φ = b−1c], 2C = [τφ = c], 3 = [σ =

a], 4 = [τ = b], 6A = [σφ = ab−1c], 6B = [σ2φ = a2b−1c], 6C =

[στ 2 = ab2].

We can now prove Theorem 1.1.

3.2. The case n is even.

Proof of Theorem 1.1. Let us first consider the case n even, i.e. ζ4 ∈ K.
Then, if F is as at the beginning of Section 3, we showed that F/K is Galois
with Galois group C3oC4. But then F nr/K is the compositum of the Galois
extensions F/K and Knr/K, which intersect in K since F/K is totally ram-
ified andKnr/K is unramified. So Gal(F nr/K) ∼= Gal(F/K)×Gal(Knr/K).
In particular the Frobenius element, that generates Gal(Knr/K), commutes
with every element of this group, therefore its image under ρ can be repre-
sented as a scalar matrix. We computed in Example 2.5 the eigenvalues of
the Frobenius element of F , which coincide and are equal to (−3)n/2 for ev-
ery even n. As F/K is totally ramified, the image of the Frobenius element
of K under ρ is conjugate, so it has the same eigenvalues.

Now define the following unramified character:

χ(Frob) = (−3)n/2;

χ
∣∣
IK

= 1.

Then ρ(Frob) = χ(Frob)Id and there exists a representation ψ such that
ρ = χ⊗ ψ. The representation ψ is irreducible of dimension 2, since ρ is, it
is trivial on Frobenius and coincides with ρ on inertia; therefore it factors
through C3 o C4 and, as a representation of this finite group, it is faithful.
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The group C3 oC4 has only one irreducible faithful 2-dimensional represen-
tation (see [GN]), so the Galois representation is completely described by
it. Namely the character of ψ in this case is:

class 1 2 3 4A 4B 6
size 1 1 2 3 3 2
ψ 2 −2 −1 0 0 1

as claimed. �

3.3. The case n is odd.

Lemma 3.2. Let F (ζ4) be the Galois closure of F . Then:

F (ζ4) = K(
√
β − α,

√
γ − β,

√
α− γ,

√
α− β,

√
β − γ,

√
γ − α).

Proof. Let

F ′ = K(
√
β − α,

√
γ − β,

√
α− γ,

√
α− β,

√
β − γ,

√
γ − α).

First of all, we prove that F (ζ4) ⊆ F ′. Indeed α, β, γ are clearly in F ′;√
β − α√
α− β

is a primitive fourth root of unity contained in F ′; finally one

possible choice for ∆1/4 is given by the product 2
√

(β − α)(γ − β)(α− γ),
which is in F ′. Since F ′ contains this element and a primitive fourth root
of unity, then also all the other fourth roots of ∆ (which are in F (ζ4))
are in F ′. To prove that F ′ ⊆ F (ζ4), let B = K(α, β, γ); we show that
[F ′ : B] | [F (ζ4) : B]. The extension F (ζ4)/B is of degree 4, with an
unramified subextension of degree 2 and a totally tamely ramified subex-
tension of degree 2. Therefore Gal(F (ζ4)/B) ∼= C2 × C2. The extension
F ′/B is the compositum of some quadratic extensions, so it is abelian of
exponent 2. By [S95, XIV §4 Exercise 3], we have |B×/(B×)2| = 4, hence
B×/(B×)2 ∼= C2 × C2, and by Kummer theory, the abelian extensions of B
of exponent 2 are in bijection with the subgroups of B×/(B×)2, which are
five, namely B, three quadratic extensions and the biquadratic; therefore
[F ′ : B] | 4. �

We now want to compute the action of φ on the generators of F ′; for
any choices of the square roots, we know that φ(

√
β − α) = ±

√
β − α and

similarly φ(
√
α− β) = ±

√
α− β. On the other hand, φ changes the sign of√

α− β√
β − α

for it is a primitive fourth root of unity. Therefore, we have either:

• φ(
√
β − α) =

√
β − α and φ(

√
α− β) = −

√
α− β, or

• φ(
√
β − α) = −

√
β − α and φ(

√
α− β) =

√
α− β.
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Without loss of generality the first condition holds, so
√
β − α ∈ F . Sim-

ilarly, using the relations between the generators of Gal(F ′/K), we have
that φ fixes

√
γ − β,

√
α− γ and changes sign to the other generators of F ′;

therefore F , which is the subfield of F ′ fixed by φ, satisfies

F = K(
√
β − α,

√
γ − β,

√
α− γ).

Lemma 3.3. Let OF be the ring of integers of F , with maximal ideal mF .
Then with the same notation as above, we have

σ(x)

x
≡ 1 (mod mF ),

for all x ∈ OF \ {0}.

Proof. As σ is in the wild inertia subgroup of Gal(F ′/K), which is equal to
the first ramification group by [S95, IV §2 Corollary 1 to Proposition 7], we
have σ(x) ≡ x (mod m2

F ). If x ∈ O×F (i.e. if x is a unit), then σ(x)/x ≡ 1

(mod m2
F ), hence modulo mF ; if x = π is a uniformiser of OF of F then

by [S95, IV §2 Proposition 5] we have σ(x)/x ≡ 1 (mod mF ). In general
x = πau where a is a non-negative integer and u ∈ O×F , so σ(x)/x =

(σ(π)/π)aσ(u)/u ≡ 1 (mod mF ). �

Lemma 3.4. Let E be as before. Then the reduction of some minimal model
for E/F on the residue field is

Ẽ/k : y2 = x3 − x.

Proof. First note that we can write, over F , the equation for E as follows:

y2 = (x− α)(x− β)(x− γ).

Now, operating the change of variables (well-defined over F ){
x = x′(β − α) + α
y = y′(

√
β − α)3

we obtain the new equation

(y′)2 = x′(x′ − 1)(x′ − λ),

where λ =
γ − α
β − α

. Finally, note that α − γ = σ2(β − α), and since σ

is an element of the wild inertia subgroup of Gal(F ′/K) then by Lemma

3.3,
σ2(β − α)

β − α
≡ 1 in the residue field. So the reduction in k of λ is the

same as the reduction of −σ
2(β − α)

β − α
, i.e. −1. With simplified notation, the

reduction of E in k is therefore y2 = x3 − x. �
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Proof of Theorem 1.1. In Example 2.5 we computed the eigenvalues of the
Frobenius element of F , and hence of K (as F/K is totally ramified), acting
on E, which are ±in

√
3n. In particular, since n is odd, they are complex

conjugate and the trace of Frobenius is 0.
Let χ be the following unramified character of GK :

χ(Frob) = in
√

3n;

χ∣∣IK = 1.

Then ρ(Frob) = χ(Frob)

(
1 0
0 −1

)
and ρ(Frob2) = χ(Frob)2Id. Let

F2 be the field extension of K fixed by Frob2: then it is an unramified
extension ofK of degree 2, i.e. F2 = K(ζ4). Also, in the notation used above,
F ′ = F (ζ4) = FF2. So the Galois group described before Gal(F (ζ4)/K) is
generated by σ, τ and the class of Frob modulo Frob2, which we can identify
with φ. Moreover, there exists an irreducible representation ψ of GK such
that

ρ = χ⊗ ψ;

to find it, since χ is a character, it is sufficient to consider ψ(g) =
1

χ(g)
ρ(g).

The kernel of this representation ψ is precisely Gal(K/F (ζ4)), so ψ fac-
tors through the finite group Gal(F (ζ4)/K) and it is indeed an irreducible
faithful representation of the finite group C3 oD4.

By looking at the character table of C3 oD4 (again, see [GN]) it follows
that there are precisely two irreducible faithful representations of this group
of dimension 2, and they only differ for the character of the two conjugacy
classes generated by the elements σφ and σ2φ. To uniquely determine ψ we
therefore have to compute the trace of the element ψ(σφ), and see whether
it is i

√
3 or −i

√
3.

We know from Lemma 3.4 that, over F , the equation for E is

E : y2 = (x− α)(x− β)(x− γ)

and under the change of variables

x = x′(β − α) + α;

y = y′(
√
β − α)3,

we find the minimal model

Emin : y2 = x(x− 1)(x− λ),
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that reduces to

Ẽ : y2 = x3 − x

over the residue field. Now let f(x, y) = (x′, y′) be the change of variables
above, red the reduction map: Emin(K)→ Ẽ(k) and lift : Ẽ(k)→ Emin(K)

be any section of red. Then we can compute the action of any Galois auto-
morphism g on the reduced curve Ẽ(k) via the following composition:

red ◦f ◦ g ◦ f−1 ◦ lift .

So in particular for g = σ Frob we have (recall |k| = 3n):

(x̃, ỹ)
lift−→ (x, y)

f−1

−−→
(
x(β − α) + α, y(

√
β − α)3

)
σ Frob−−−→

(
σ(x)3nσ(β − α) + β, σ(y)3n(σ(

√
β − α))3

)
f−→
(
σ(x)3nσ(β − α) + β − α

β − α
, σ(y)3n (σ(

√
β − α))3

(
√
β − α)3

)
=

(
σ(x)3n σ(β − α)

β − α
+ 1, σ(y)3n (σ(

√
β − α))3

(
√
β − α)3

)
red−→

(
x̃3n + 1, ỹ3n

)
Note that:

• the reductions of
σ(β − α)

β − α
and

σ(
√
β − α)√
β − α

are 1 by Lemma 3.3;

• Frob fixes F , therefore it acts trivially on the elements β − α and√
β − α;

• since σ is an inertia element, σ(x) ≡ x and σ(y) ≡ y in k.

Now, to compute the trace of ρ(σ Frob) we use the formula

tr(ρ(g)) = deg(g) + 1− deg(1− g);

in our case deg(g) = det ρ(σ Frob) = 3n and deg(1 − g) is the number of
points fixed by σ Frob, i.e. the number of solutions (including the point at
infinity) of  x = x3n + 1

y = y3n

y2 = x3 − x.
(3.1)

Let us first consider the case n = 1. There are no solutions over k to this
system of equations, therefore tr(ρ(σ Frob)) = 3. But then

tr(ψ(σφ)) =
1

i
√

3
3 = −i

√
3.

In general, we know that tr(ψ(σ Frob)) = εi
√

3 for some ε ∈ {±1}, and
tr(ρ(σ Frob)) = εi

√
3χ(σ Frob) = εi

√
3in
√

3n = εin+1
√

3n+1 = ε(−3)(n+1)/2.
The value of ε can be determined by solving the system of equations above,
but for a general n, it cannot be solved directly. However, the number of
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solutions is independent on the curve we use, so it is sufficient to work with
a fixed curve. Consider for example the elliptic curve over Q3

E : y2 = x3 + 9.

Since its reduction modulo 3 is y2 = x3, the valuation of the discriminant
is 7 and the j-invariant is 0, this curve has potentially good reduction, and
its Néron type is IV , so we are in the last case of Theorem 2.7. Hence the
image of inertia is isomorphic to C3 o C4.

Let us fix a basis for Q2

` (with Q` considered as embedded in C), where
the action of Frobenius is given by the matrix

ρ(Frob) =

(
i
√

3 0

0 −i
√

3

)
;

then the image of σ is either
(
ζ3 0
0 ζ−1

3

)
or its inverse, where ζ3 ∈ Q` is the

primitive third root of unit
−1 + i

√
3

2
. By the computation done for the case

n = 1, we know tr(ρ(σ Frob)) = 3 and a simple check shows that then ρ(σ) =(
ζ−1

3 0
0 ζ3

)
. Now let K be an unramified extension of Q3 of odd degree n,

so the residue field k is a degree n extension of F3 and the reduction type and
Galois representation of the curve E base-changed toK, restricted to inertia

is exactly the same as above. Then ρ(σ Frob) =

(
ζ−1

3 in
√

3n 0

0 −ζ3i
n
√

3n

)
,

with trace −(−3)(n+1)/2. Incidentally, this argument proves the following.

Lemma 3.5. The number of solutions of the system of equations (3.1) above
is 3n + (−3)(n+1)/2.

Proof. We have tr(ρ(σ Frob)) = −(−3)(n+1)/2. On the other hand, we know

tr(ρ(σ Frob)) = |k|+ 1− (1 + |{solutions to (3.1)}|) =

= 3n − |{solutions to (3.1)}|,

so the number of solutions to (3.1) is precisely 3n − tr(ρ(σ Frob)) = 3n +

(−3)(n+1)/2. �

So with the notation above we have ε = −1, and the character of ψ is
the following:

class 1 2A 2B 2C 3 4 6A 6B 6C
size 1 1 2 6 2 6 2 2 2

ψ 2 −2 0 0 −1 0 −i
√

3 i
√

3 1

as claimed. In particular, in the proof we computed the character of an
element of the class 6A. �
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Remark 3.6. Throughout this work, we have considered the Galois rep-
resentation ρ on the Tate module. It is common to consider instead the
representation ρét on the étale cohomology of the elliptic curve. The two
representations are dual to each other (see [CS86, Theorem 15.1]), so for
each g ∈ GK ,

ρét(g) = (ρ(g)−1)t.

In this case, it is a convention to consider the Geometric Frobenius Au-
tomorphism Frob−1 in place of the Arithmetic Frobenius which we used.
Therefore, the eigenvalues of ρét(Frob−1) are exactly the same as the eigen-
values of the Arithmetic Frobenius under ρ. In conclusion, ρét factors as:

ρét = χét ⊗ ψét,

where

• χét = χ−1 (therefore χét(Frob−1) = χ(Frob));
• ψét is the only irreducible representation of C3oD4 with the following
character:

class 1 2A 2B 2C 3 4 6A 6B 6C
size 1 1 2 6 2 6 2 2 2

ψét 2 −2 0 0 −1 0 i
√

3 −i
√

3 1

So ψ and ψét only differ for the trace of the conjugacy classes of σφ and
σ2φ.

A function computing the Galois representation on the étale cohomology
of an elliptic curve defined over a local field is implemented in MAGMA.
The algorithm for the case presented here has recently been improved, using
the results in Theorem 1.1.
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