
	
Proceedings of the 2018 ASEE Gulf-Southwest Section Annual Conference

The University of Texas at Austin
April 4-6, 2018

A Second Language Acquisition Toolkit for
Teaching Introduction to Computing

Michael R. Gardner, Nina K. Telang

Cockrell School of Engineering, The University of Texas at Austin
301 E Dean Keeton St, Austin, TX, 78712, USA

E-mail: mgardner@utexas.edu, telang@ece.utexas.edu

Abstract
Introduction to Computing and higher-level programming
courses are common first-year engineering curricula at the
university level and are key in developing logical thought
processes in engineering students. Recent research has shown
that employing second language acquisition (SLA) techniques
to teach programming increases exam performance and student
motivation compared to more classical approaches. However,
the presentation of pedagogical techniques has been largely
limited to higher-level languages with more intuitive linguistic
analogs and has not been extended to lower-level computing
course material. In this paper we present several SLA
techniques and their analogs in a computing course setting and
the results of implementing an SLA strategy in a first-year
engineering course. Statistical analysis shows that students
taught with SLA methods completed quizzes more quickly,
enjoyed recitation more, and had a higher perceived value of
the class when compared with students taught with non-SLA
techniques.

1. Introduction
Introduction to Computing is a course offered at the University
of Texas at Austin (UT) that lays a foundation of knowledge
applicable to all engineering disciplines. The course is a
bottom-up approach to computing, beginning with number
systems, binary representation of signed and unsigned
numbers, arithmetic and logical operations, basic digital circuit
building blocks for combinational and sequential circuits. The
content then progresses through design of finite state machines,
a simple computer model, the computer instruction cycle, and
programming in an assembly language. More broadly, this
course trains students to think like engineers, adopting a new,
logical “language.”

Recent research has shown that SLA approaches to
teaching programming can improve student outcomes.[1]
However, the proposed SLA techniques have not been
extended to bottom-up courses like Introduction to Computing.

The aims of this paper are threefold: (1) to make the case
that SLA approaches can be extended to a computing course,
(2) to offer several techniques that teachers might employ in a
computing setting to enhance student engagement and
understanding, and (3) to offer a rigorous statistical analysis on
the results of implementing an SLA strategy.

2. Language and Computing Analogs
2.1 Language Skills
In classical SLA pedagogical approaches, language is split into
two categories of skills.[2], [3] Receptive skills include
listening and reading, whereas productive skills include writing
and speaking. For the language learner, each of these skills is
important for developing fluency. The learner will only be able
to function well using the target language if she can receive
language and produce language, both in written and oral forms.

Computing is similar to language in these ways. Like a
language learner, a computing student should be able to
recognize written forms of the target language (e.g.
hexadecimal representation, logical operators, state graphs,
etc.). Likewise, a computing student should become fluent in
writing/drawing concepts presented in class. Furthermore, the
computing student should also develop oral skills, able to
communicate and receive computing concepts verbally.

2.2 Language Components
Lexis is one of a few major components in SLA. Lexis
includes vocabulary (single words), collocations (e.g. bus
stop), and chunks (e.g. if you know what I mean).[4] In
computing, then, lexis can refer to fundamental ideas like data
types (e.g. ASCII, floating point), without which the meaning
cannot be conveyed. Scrivener points out that without a
complete lexis, a language learner might be left to say, “I
wonder if you could lend me your ____,” but the meaning is
lost without “calculator.”[4] Similarly, a computing student
who doesn’t have a complete lexis cannot perform required
operations (e.g. _____ OR _____).

Another major component in SLA is grammar. Grammar
enables the formation of new sentences and structures. For
example, a language learner might be taught how to conjugate
verbs to talk about the past or how we might turn an adjective
into an adverb. In the computing context, “grammar” can refer
to how we combine inputs with operators (e.g. n-input AND
gates output one value; decoders take n inputs and have 2n
outputs; etc.) to construct a system.

Of course, these analogs can be expanded as the course
develops such that assembly instructions (operations, data
movement, and control) take on “linguistic” structures of their

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/286770246?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

	
Proceedings of the 2018 ASEE Gulf-Southwest Section Annual Conference

The University of Texas at Austin
April 4-6, 2018

own, with particular “grammatical structures” and “lexical
content.”

Noticeably missing from this list of linguistic components
is phonology, how language is expressed verbally. In the
context of computing, verbal communication is a function
primarily of understanding and employing computing
terminology. Because the computing lexicon generally finds its
basis in English, a student’s “phonology” (ability to
communicate computing ideas verbally) will naturally develop
with understanding the course material.

With these established analogs between SLA and
computing, we can explore particular SLA pedagogical
techniques and how they can be effectively employed in a
computing classroom context.

3. Toolkit for Teaching Computing
In this section, we offer tools, techniques and activities that

have proven to be effective pedagogical methods in SLA
settings and hold promise as effective methodologies for
teaching computing.

3.1 Teaching Data Types: Semantic Mapping (Quiz 1)
One common SLA approach to reinforcing new vocabulary is
semantic mapping, in which the teacher offers a single word
and students build a network of related lexical items to fortify
their expanding lexicon (e.g. given festival: music, food,
people, loud, etc.).[5], [6] When reinforcing various binary
representations, a teacher can use a comparable, more
systematic technique for related lexical items.

Working in pairs, students write any four-letter ASCII
character combination on a loose piece of paper (e.g. AsEe,
Dog!, pw12). Students then pass their paper to a nearby group
such that there is one classroom loop. After that, the following
actions are performed by each pair on the new piece of paper
before passing it to the next group:

1. Convert to hexadecimal; pass to the next group.
2. Convert to binary; pass.
3. Add the first two letters to the second two letters; pass.
4. Swap the most significant bit with the least significant

bit; pass.
5. Add the first 8 bits to the last 8 bits; pass.
6. Consider as 2s complement representation. What is

largest and smallest value in the class?
At various time points in the exercise, the teacher should

check for understanding (e.g. “How many bits should you have
now?” after step 3; “What is the largest possible value
someone could have?” after step 6).

Similar to the analog SLA technique, this exercise
minimizes teacher talk time and maximizes student
engagement in the “target language.”

3.2 Teaching Logic Operations: From Restricted Exposure
to Authentic Output (Quiz 2)
When teaching logical operations (AND, OR, NOT), teachers
might be tempted to settle for a student successfully calculating
the output of an operator given any input. With an SLA

approach, however, students should move beyond recognition
to active use. This popular SLA lesson plan begins with
restricted exposure, continues with a clarification stage and
concludes with authentic output[4]—proposed here with
Boolean operators.

Students begin with a think-pair-share exercise, converting
several teacher-provided logical statements in English to
Boolean representations (e.g. If I’ve completed my homework
(h) and my favorite show (s) is not on, I will go to the gym (g).
� g = h·NOT(s)). This kind of restricted exposure should be
simplified with “high quantities of target-language items”.[4]

The teacher uses the final “share” segment of the exercise
as time for explanation (i.e. guided discovery) in which the
class works together to identify the correct answers, under the
guidance of the teacher who corrects and clarifies.

After this, students try using what they have learned in an
open-ended way. Students should develop their own logical
statements in English and then pair up with a new student. The
students take turns reading their statements as the other
converts them to Boolean representation. This final step of
moving towards authentic output allows students to use
whatever tools at their disposal in the target “language” with
the aim of reinforcing logical thought patterns necessary for
fluency in computing. Furthermore, students practice verbally
communicating using the rules of their new “language.”

3.3 Teaching Finite State Machines: Cloze (No Quiz)
When teaching finite state machines (FSMs), students often
struggle with the format of each stage of development: (1) state
graph, (2) transition table, (3) logical expressions, and (4) gate-
level circuitry. This parallelism closely resembles writing
structures wherein the author employs patterns to advance his
thesis. Language teachers have adopted the “cloze” technique
(first published by Taylor[7] in 1953 as a gap fill exercise for
assessing readability) to reinforce common patterns and
linguistic formulae.

In this FSM cloze exercise, students are given a drawing of
a state graph, transition table, logical expressions, and gate-
level circuitry. Each of these elements has strategic elements
missing with a gap in its place. As if they were completing a
Sudoku puzzle, students extend the provided data to the other
parallel structures until all the gaps are completed.

3.4 Teaching Assembly Language: Cloze (Quiz 3)
A cloze exercise can be used in a different way for moving
students from writing code in binary to writing code in the
Assembly language. For this task, students are given a piece of
paper with a grid having three columns: (1) binary, (2)
hexadecimal, and (3) assembly language. Like the cloze
technique described before, some locations in the grid are
blank or only partially completed. The task of the student is the
complete the table by making each blank match the other
instruction(s) on the same row. With this implementation
students fortify their understanding that hexadecimal is a
friendlier way of representing a binary value, and they
recognize that writing in assembly language is a particular way

	
Proceedings of the 2018 ASEE Gulf-Southwest Section Annual Conference

The University of Texas at Austin
April 4-6, 2018

of making binary values (instructions) even friendlier, or more
intuitive.

3.5 Teaching Sorting Algorithms: Total Physical Response
and Jigsaw (Quiz 4)
Understanding and implementing sorting algorithms is a
common learning objective for programming courses. To teach
several algorithms using an SLA approach, a teacher might
consider a “jigsaw” technique[8] with “total physical
response.”[9], [10]

The class is split into groups of three, and students move to
sit with their group. Half of the groups are given a written
description of the “selection sort” method, and the other half of
the groups are given a written description of “bubble sort.” In
the small groups, the three students use cards numbered 1-9 to
practice their sorting algorithm; the students physically move
the cards around on the table until they each understand the
sorting technique.

Then, the students are paired with students from other
groups and are asked to explain their sorting algorithm to their
new partner and illustrate using cards. Finally, to check for
understanding, one student who was originally given “selection
sort” volunteers to show the entire class how “bubble sort” is
implemented, and vice-versa.

3.6 Teaching Subroutines: From Restricted Exposure to
Freer Output (Quiz 5)
One common SLA lesson plan structure for emphasizing
writing takes the form of “restricted exposure” � “teach” �
“freer output.”[4] This approach typically exposes students to a
specific grammatical structure in a reading text chosen because
it uses that structure. Then, the students’ attention is brought to
that structure in the text, and the teacher elicits knowledge
about that structure based on what the students read. Next, the
teacher fills in the gaps before asking students to produce a
writing that utilizes the grammatical structure.

A similar approach may be used in introduction to
computing when teaching subroutines. Instead of a text,
students are given an LC3 assembly code and asked to describe
what it is doing. Specifically, students might be given a printed
code that uses JSR before the students are taught how it work.
Students attempt to describe what the code is doing, first
individually, then in groups—adding good, written comments
where appropriate.

Then, the instructor elicits knowledge about subroutines
based on what students can observe in the program. “How does
the JSR instruction seem to be working? What does RET do?
How might RET use registers?” The teacher then fills in the
gaps in understanding with a fuller explanation of subroutines
before the students are asked to convert a previously written
code (from a previous coding assignment) to a code that uses
subroutines. The students are free to use subroutines in
whatever way they want, but not free to create a new code for
writing a subroutine (thus, “freer,” not “free” or “authentic”).

3.7 Teaching Stacks and Interrupts: From Restricted
Exposure to Restricted Output (Quiz 6)
Another SLA lesson format is a slight modification on the
aforementioned form. Here we have “restricted exposure” �
“teach” � “restricted output.”[4]

Very similar to teaching subroutines in assembly, here
stacks and interrupts are presented via a written code
distributed to students. The code uses stacks and interrupts
before the students are presented with the details of how to
write such code (albeit after the students have been presented
with the concept of stacks). Then, the teacher elicits knowledge
about the use of stacks and interrupts from the students.
Finally, the students are asked to produce a code that “pops” a
very specific sequence of numbers. The difference here is that
students are intentionally more restricted in how they are asked
to use stacks. Opting for restricted output over freer or
authentic output is a good option if the concept being taught is
more complicated or nuanced in its authentic setting than that
for which the students are ready.

4. Methods
Introduction to Computing (BME 303) as taught in the
Department of Biomedical Engineering at UT meets two times
per week for a 75-minute lecture taught by the professor
(Telang). In addition to these lectures, each student attends one
of four recitation sections led by one teaching assistant (TA).
During recitation, course content is reviewed and new material
is presented. Two of the recitation sections were taught by a
trained TA who presented the material using standard
approaches (Group 1: Non-SLA). The other two recitation
sections were taught by a different trained TA (the first author,
Gardner) who presented the same material using SLA
techniques (Group 2: SLA). Each TA taught both a morning
and afternoon recitation so as to remove potential bias based
on meeting time.[11]

Quizzes were administered in the first the lecture following
the presentation of recitation material, and each quiz was
designed to test student understanding of the material
presented in recitation. The two groups (taught via traditional
approach vs. SLA approach) are compared by a t-test, or a
Mann-Whitney U-test in the case that a Levene’s test for
homoscedasticity (equal variances) fails to reject the null
hypothesis. The null hypothesis for the t-tests and the non-
parametric Mann-Whitney U-test are similar: the mean quiz
grades between both groups is the same.

In addition to quiz scores, the amount of time to complete
the quiz was also compared between the two groups. Because
student-specific data and variance is inaccessible, means are
reported and inferences made about the meaning. Here, it is
desirable to know if SLA techniques may prove useful in
helping students complete tasks more quickly.

A third analysis approach is comparable to that employed
by Frederick et al.[1] in which an Intrinsic Motivation
Inventory (IMI) survey evaluates student interest/enjoyment,
perceived competence, effort, felt pressure and tension, and
perceived choice.[12] Additionally, the NASA Task Load

	
Proceedings of the 2018 ASEE Gulf-Southwest Section Annual Conference

The University of Texas at Austin
April 4-6, 2018

Index (TLX) measures workload: mental demand, physical
demand, temporal demand, performance, effort, and
frustration.[13] Instead of conducting these surveys throughout
the course, they were conducted once at the end. The results
are compared using a t-test (or a Mann-Whitney U-test) to
assess the null hypothesis that there is no significant difference
between motivation or workload between the two groups.

5. Results
5.1 Checking for Bias
One potential for bias was identified as differences in student
skill level being unevenly distributed amongst the four
recitation sections. Standardized test scores such as SAT and
ACT scores, and predicted GPAs are traditionally used as
indicators of student preparation for college level coursework.
Future studies would benefit from including ways to account
for these factors.

5.2 Statistical Analysis
Altogether, three measurements were determined to be
statistically different between the two groups (non-SLA vs.
SLA). The students in recitations taught with SLA techniques
had no statistical difference on quiz scores compared with the
non-SLA sections, however, the time to complete the quizzes
was shorter on average for the SLA students for every quiz.
Interestingly, the temporal demand in the NASA TLX did not
show that students were aware of a decrease in a demand on
their time.

The IMI survey also revealed two student perceptions of
the class. Students taught with SLA techniques reported a
significantly higher level of enjoyment (p<0.01) and a higher
perceived value for the course (p<0.05) when compared to the
students taught with non-SLA techniques.

Tables 1-4 contains the complete results of the statistical
analysis.

6. Discussion
The work in using SLA approaches published by Frederick et
al. reports statistical differences in “effort” only in the end of
course survey. That is, students taught with SLA methodology
reported lower required effort when compared to those taught
with non-SLA techniques. These results differ from the results
reported here in that we found no statistical difference when
considering required effort, but instead found differences
concerning student enjoyment of recitation sections and the
perceived value of the course. Both of the differences favored
the SLA approach.

Also of interest is that the means for every exam score, for
the final grade, and for all the quizzes (except for two) are
higher for the students who sat under SLA teaching
methodology, though not with p-values low enough to indicate
statistical significance. However, the authors posit that given
more students in subsequent semesters, the differences in exam

scores between SLA and non-SLA groups would likely
become statistically significant. (t ∝	n1/2.)

Finally, the difference in time required to complete quizzes
was a surprising and interesting result. Students taught with
SLA approaches were able to complete the quiz work more
quickly, and anecdotal evidence suggests that the same held
true for exams also. Students in the recitation sections utilizing
SLA techniques seemed to finish more quickly that students in
the non-SLA classroom. This strong difference between the
groups is worth exploring more in future studies and could be
worth considering as exams are prepared for students in similar
classes taught by similar methods.

7. Summary
We have made a case for extending the application of SLA
pedagogical methods to lower-level computing coursework
and presented a toolkit for an introduction to computing class
based on common SLA techniques. Our data shows that
students taught with SLA techniques in recitation sections
perform tasks more quickly, with more enjoyment, and with a
greater appreciation for course content when compared with
students taught with more traditional approaches.

Acknowledgement
 Thank you to the students in BME 303, Fall 2017 for
helping to create a positive and energetic learning
environment. M.R.G. was supported by the NIH T32
training grant EB007507.

References
[1] C. Frederick and L. S. Ph.D., “Work in Progress:

Using Second Language Acquisition Techniques
to Teach Programming - Results from a Two-Year
Project,” in ASEE Annual Conference &
Exposition, 2017.

[2] J. Harmer, “The practice of English language
teaching,” London/New York, 1991.

[3] N. F. Davies, “Receptive Versus Productive Skills
in Foreign Language Learning,” Mod. Lang. J.,
vol. 60, no. 8, pp. 440–443, 1976.

[4] J. Scrivener, Teaching Learning. Macmillan:
London, 2014.

[5] A. J. Sökmen, “Current trends in teaching second
language vocabulary,” Readings Methodol., vol.
152, 1997.

[6] J. Aitchison, “Words in the mind: An introduction
to the mental lexicon,” Cambridge,
MasSachuSettS, 1987.

[7] W. L. Taylor, “‘Cloze Procedure’: A New Tool for
Measuring Readability,” Journal. Bull., vol. 30,
no. 4, pp. 415–433, Sep. 1953.

[8] E. Aronson, The jigsaw classroom. Sage, 1978.
[9] J. J. Asher, “The total physical response approach

to second language learning,” Mod. Lang. J., vol.
53, no. 1, pp. 3–17, 1969.

[10] J. J. Asher, “The Learning Strategy of The Total

	
Proceedings of the 2018 ASEE Gulf-Southwest Section Annual Conference

The University of Texas at Austin
April 4-6, 2018

Physical Response: A Review.,” Mod. Lang. J.,
vol. 50, no. 2, pp. 79–84, 1966.

[11] N. G. Pope, “How the Time of Day Affects
Productivity: Evidence from School Schedules,”
Rev. Econ. Stat., vol. 98, no. 1, pp. 1–11, Mar.
2015.

[12] E. McAuley, T. Duncan, and V. V Tammen,
“Psychometric properties of the Intrinsic
Motivation Inventory in a competitive sport

setting: a confirmatory factor analysis.,” Res. Q.
Exerc. Sport, vol. 60, no. 1, pp. 48–58, Mar. 1989.

[13] S. G. Hart, “Nasa-Task Load Index (NASA-TLX);
20 Years Later,” Proc. Hum. Factors Ergon. Soc.
Annu. Meet., vol. 50, no. 9, pp. 904–908, Oct.
2006.

Quizzes: Mean Scores

 score/10
Quiz

1
Quiz

2
Quiz

3
Quiz

4
Quiz

5
Quiz

6

Group 1: Non-SLA
9.43
(n=30)

8.13
(n=32)

8.33
(n=48)⁺

7.81
(n=32)

8.91
(n=32)

8.91
(n=32)

Group 2: SLA
9.83
(n=30)

9.06
(n=32)

9.67
(n=15)⁺

7.81
(n=32)

9.38
(n=32)

8.55
(n=31)

Levene’s Test
 p-value: 0.012* 0.002* 0.318 0.402 0.230 0.352

t-test p-value: - - 0.08 1.00 0.34 0.40
Mann-Whitney
U-test p-value: 0.15 0.36 - - - -

Table 1. Levene’s test was performed to check for homoscedasticity between the groups. Where variances were not the same, a Mann-
Whitney U-test was performed instead of a t-test. Results for 6 quizzes show no statistical difference between means. The mean of each
quiz, with the exception of quiz 4 and 6, is higher for group 2 (SLA). [⁺ For Quiz 3, only one of two sections was taught with the SLA
technique.]

Quizzes: Mean Time to Completion
Units: seconds Quiz 1 Quiz 2 Quiz 3 Quiz 4 Quiz 5 Quiz 6

Group 1: Non-SLA 454 338 287 585 678 532

Group 2: SLA 410 237 204 492 505 386
Difference

(SLA – Non-SLA): -44* -101* -83* -93* -173* -146*
Table 2. Mean times to qui completion show differences between the groups, though no statistical inference is made. Students taught
with SLA techniques were faster at completing quizzes on average for every quiz, with no difference in quiz score outcome (see Table
1).

	
Proceedings of the 2018 ASEE Gulf-Southwest Section Annual Conference

The University of Texas at Austin
April 4-6, 2018

End of Course Survey: Mean Intrinsic Motivation Inventory Values
 Ratings: 1-7 Enjoyment Competence Importance Pressure Value

Group 1: Non-SLA
(n=27) 3.963 3.683 5.381 2.704 4.958
Group 2: SLA
(n=32) 4.407 3.817 6.181 2.638 5.061

Levene’s Test
p-value: 0.0777 0.0177* 0.0091* 0.1089 0.0598

t-test p-value: 0.008* - - 0.776 0.015*
Mann-Whitney
U-test p-value: (0.004*) 0.194 0.660 (0.990) (0.043*)

Table 3. Results of an end of course survey measuring motivation (IMI) show a statistical difference between the reported enjoyment and
the perceived value when comparing non-SLA and SLA groups. Students under SLA teaching reported enjoying recitation more and had
a higher perceived value of the course. Levene’s test was performed to check for homoscedasticity between the groups. Where variances
were not the same, a Mann-Whitney U-test was performed instead of a t-test. Where there was homoscedasticity between the groups, a
Mann-Whitney U-test is still included for added value, though the t-test is sufficient.

End of Course Survey: Mean NASA Task Load Index Values

 Ratings: 1-7
Mental
Demand

Physical
Demand

Temporal
Demand

Performance
Demand Effort

Frustra-
tion

C
ou

rs
e

Group 1: Non-SLA
(n=27) 6.111 4.333 5.111 3.815 5.852 4.885
Group 2: SLA
(n=32) 6.143 3.524 5.048 4.333 5.810 5.000

Levene’s Test
p-value: 0.1950 0.0690 0.5389 0.1295 0.8242 0.1457

t-test p-value: 0.742 0.413 0.826 0.634 0.661 0.718
 Mann-Whitney

U-test p-value: (0.758) (0.483) (0.717) (0.530) (0.741) (0.623)

Re
ci

t-
at

io
n

Group 1: Non-SLA
(n=27) 3.704 3.333 3.444 4.593 2.889 3.370
Group 2: SLA
(n=32) 4.429 2.500 4.048 5.143 2.571 3.048

Levene’s Test
p-value 0.9621 0.4743 0.3118 0.0110* 0.6338 0.4196

t-test p-value: 0.211 0.327 0.604 - 0.575 0.252
 Mann-Whitney

U-test p-value: (0.246) (0.329) (0.623) 0.790 (0.560) (0.438)
Table 4. Results of t-tests of an end of course survey measuring workload (NASA TLX) show no statistical differences between groups
for questions focused on both recitation and the course as a whole. Levene’s test was performed to check for homoscedasticity between
the groups. Where variances were not the same, a Mann-Whitney U-test was performed instead of a t-test. Where there was
homoscedasticity between the groups, a Mann-Whitney U-test is still included for added value, though the t-test is sufficient.

