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ABSTRACT

Decoding LDPC Codes with Probabilistic Local Maximum Likelihood Bit Flipping

by

Rejoy Roy Mathews, Master of Science

Utah State University, 2020

Major Professor: Chris Winstead, Ph.D.
Department: Electrical and Computer Engineering

Low-density parity-check (LDPC) codes are high-performance linear error correcting

codes with application to communication channels and digital storage media. LDPC codes

are decoded using graph algorithms wherein a channel sample is decoded with the aid of

information from its adjacent graph neighborhood, called the syndrome. This work studies

the conditional probability of a channel error given syndrome information at a particu-

lar iteration to formulate a new algorithm called Probabilistic Local Maximum Likelihood

Bit Flipping (PLMLBF). The PLMLBF algorithm uses a three dimensional Multi-iteration

Probability Flip Matrix (MIPFM) to quantify the frequency of errors in a noise corrupted

message frame being decoded using a specific LDPC code. The matrix is used to probabilis-

tically decode noise corrupted message frames. The motivation for this work is to provide a

theoretical framework for constructing probabilistic and noisy bit-flipping algorithms, such

as the Noisy Gradient Descent Bit Flipping (NGDBF) algorithm, which up to now have

been mainly heuristic in nature. For specific SNR values, the PLMLBF algorithm outper-

forms the deterministic multi-bit GDBF algorithm and the multi-bit NGDBF algorithm.

PLMLBF does not outperform various heuristic improvements that have been developed

for NGDBF decoders, but PLMLBF is the first probabilistic bit-flipping decoder with an

explicit construction.
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PUBLIC ABSTRACT

Decoding LDPC Codes with Probabilistic Local Maximum Likelihood Bit Flipping

Rejoy Roy Mathews

Communication channels are inherently noisy making error correction coding a major

topic of research for modern communication systems. Error correction coding is the addition

of redundancy to information transmitted over communication channels to enable detection

and recovery of erroneous information. Low-density parity-check (LDPC) codes are a class

of error correcting codes that have been effective in maintaining reliability of information

transmitted over communication channels. Multiple algorithms have been developed to

benefit from the LDPC coding scheme to improve recovery of erroneous information. This

work develops a matrix construction that stores the information error probability statistics

for a communication channel. This combined with the error correcting capability of LDPC

codes enabled the development of the Probabilistic Local Maximum Likelihood Bit Flipping

(PLMLBF) algorithm, which is the focus of this research work.
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CHAPTER 1

INTRODUCTION

Transmission of information over any communication channel is affected by the chan-

nel noise leading to information error. Error correction coding is the addition of redundant

information to a transmitted message in order to correct the errors induced by the communi-

cation channel noise. The decoding problem involves recovering near error free information

from the received information. The Shannon Capacity Limit has been known to impose a

bound on the maximum achievable performance of different error decoding systems [1] that

try to solve this decoding problem. In his paper published in 1948, Shannon demonstrated

that a proper coding scheme can transmit data on a noisy channel with a rate less than

the channel capacity with a small frequency of error. Turbo Codes, published in 1993 were

first known to achieve these limits [2]. Soon it was discovered that LDPC [3] was another

class of codes to have performance close to the achievable limits. Low-density parity-check

(LDPC) codes are linear block codes, defined by a binary sparse parity check matrix con-

taining mostly 0’s and relatively few 1’s [3] was first proposed by Robert G. Gallager in

his doctoral dissertation in 1963. Among many other uses, LDPC codes have found appli-

cations in IEEE 802.3 standards for 10GBase-T Ethernet and IEEE 802.11 standards for

Wi-Fi [4, 5].

In addition to the type of code used, decoding is impacted by the quality of the decoding

algorithm used. Most decoding algorithms have a decoding mechanism that is informed by

the rules defined by maximum a posteriori (MAP) or maximum likelihood (ML) decoding.

The MAP decoding problem involves maximizing the decoded code symbol conditioned

to a received channel sample. The belief-propagation (BP) decoding algorithm and the

approximate min-sum (MS) decoding algorithm are MAP decoding algorithms for LDPC

codes and offer the best performance over the binary additive white Gaussian noise channel

(BAWGNC) with reasonable implementation cost. However, these algorithms are complex
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to be realized on hardware because of the large number of arithmetic operations that need

to be repeated over multiple iterations [6,7]. These algorithms also need to be implemented

with a degree of parallelism to meet the high throughput requirements of modern commu-

nication systems [8, 9], further increasing hardware complexity.

The ML decoding algorithm involves finding a codeword that has the largest correlation

with the received channel message frame. A channel message frame is an n-sample vector

that is received over a communication channel. Gallager proposed a ML decoding algorithm

called the bit-flipping (BF) algorithm which flips bits in the initial hypothesis of the received

channel message frame till all the parity check equations of the LDPC parity check matrix

are satisfied. Many variants of the BF algorithm proposed by Gallager [3] are presently used

as low complexity decoding algorithms for LDPC codes. Gradient Descent Bit Flipping

(GDBF) [10], a BF decoding algorithm proposed by Wadayama et. al. considers the ML

decoding problem as an objective function for gradient descent optimization on a BAWGNC.

The GDBF algorithm however has a tendency of getting stuck in a local maxima which

does not allow convergence on a codeword. Non-convergence results in sub-optimal Bit

Error Rate (BER) performance, which is a metric to measure a decoders performance.

Sundararajan et. al. proposed the Noisy Gradient Descent Bit-Flip (NGDBF) [11] algorithm

which adds a random perturbation to the objective function in GDBF to escape the local

maxima and aid convergence. The random perturbation used in NGDBF decoding, in works

published till date is a Gaussian perturbation [11].

The objective function in GDBF and NGDBF makes use of the channel sample in-

formation, which is the value of each individual sample in the received channel message

frame. This is combined with the syndrome parameter, which is the information available

from the parity check matrix about the correctness of a channel samples decoded value.

These algorithm’s keep flipping the channel message frames initial hypothesis based on the

objective function, till the decoder converges on a codeword or till the maximum number of

decoding iterations has been reached. With the objective function as a starting point, this

research work studies the conditional probability of a channel sample error given the syn-



3

drome information to formulate the Probabilistic Local Maximum Likelihood Bit Flipping

(PLMLBF) algorithm.

Quantifying channel sample values and computed syndrome values during BF decoding

of multiple channel message frames can aid estimating error probability in a received channel

sample. In this work, multiple n-bit all ‘0’ codeword are transmitted over a communication

channel and the probability of error in the received channel sample values hard decision,

given its syndrome is estimated. The all ‘0’ codewords are modulated before transmission

over a BAWGNC. A binary ‘0’ corresponds to a ‘+1’ after modulation and binary ‘1’

corresponds to a ‘-1’ after modulation. A hard decision is the hypothesis as to whether

the received channel sample is equal to a ‘+1’ or a ‘-1’. For an all ‘+1’ codeword, a value

of ‘-1’ in the hard decision indicates a decoding error. In this work 200,000 frames of the

all ‘+1’ codeword is transmitted to develop informative error probability statistics. Error

probability is the ratio of the erroneous channel samples count to the total channel samples

count, for a specific channel sample value with a specific syndrome. The estimated error

probability is stored in a matrix, termed as the Probability Flip Matrix (PFM).

The PFM can be indexed with a specific channel sample value × decoding hypothesis

and syndrome value for a specific iteration of decoding. Similar to the GDBF algorithm,

the code symbols in the initial hypothesis that was made for all the 200,000 channel mes-

sage frames are now probabilistically flipped with the value obtained from the matrix for

that iteration of decoding. This completes one iteration of PFM computation and PFM

application for probabilistic flipping. This cycle of PFM computation and application is

repeated for T iterations generating a PFM for each iteration of decoding. Once all the

PFM’s are generated, it can then be used to decode any channel message frame transmitted

over a communication channel with the same Signal-to-noise Ratio (SNR) for T decoding

iterations.

1.1 Scope

The scope of this research includes:
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• Algorithm Development: Develop the Probabilistic Local Maximum Likelihood

Bit Flipping(PLMLBF) decoding algorithm which can probabilistically correct erro-

neous channel message samples. Development of this algorithm is based on empiri-

cally generating a Multi-iteration Probability Flip Matrix (MIPFM) that quantifies

the channel message errors given a specific syndrome.

• Heuristic Improvements: Develop certain heuristic improvements to the algo-

rithms decoding performance. In the scope of this work, some heuristics are specific

to the developed algorithm and other heuristics are incorporated from the NGDBF

algorithm.

• Develop a theoretical framework for the GDBF and NGDBF algorithms:

PLMLBF is an algorithm developed based on theoretical exploration of the parameters

that affect GFDBF and NGDBF decoding. The findings from this work can form the

statistical groundwork for the efficacy of the NGDBF and GDBF algorithms which

have relied on heuristics for BER performance improvement.

1.2 Organization

The rest of the thesis is organized as follows:

• Background: A literature review of all the research work leading up to the devel-

opment of the Gradient Descent Bit Flipping class of algorithms is presented. The

literature review is a gateway to understanding the motivation behind development

of the PLMLBF algorithm which draws from the fundamentals of the GDBF and

NGDBF decoding algorithm (Chapter 2).

• Motivation: The theoretical motive behind development of the PLMLBF algorithm

is presented in this chapter. The PLMLBF algorithm has a strong theoretical back-

ground and additional heuristics built on this background has led to BER performance

comparable to similar BF algorithms. (Chapter 3).
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• Multi Iteration Probabilistic Flipping Matrix Construction: Construction of

the Multi Iteration Probabilistic Flipping Matrix (MIPFM), a matrix used to decode

channel samples in a probabilistic manner is discussed. This matrix is constructed by

studying error occurrences in 200,000 channel message frames received over a com-

munication channel with a specific SNR value. 200,000 channel frames ensures that

the computed flipping probabilities are independent of small sample size anomalies

(Chapter 4).

• Simulation Results: The impact of varying different parameters that affect the

decoding performance are presented in the form of BER and FER performance curves.

This section also discusses about the impact of heuristics specific to the PLMLBF

algorithm and the impact of heuristics developed for the NGDBF algorithm on the

performance of the PLMLBF algorithm. (Chapter 5).

• Conclusions and Future Work: This chapter highlights some of the key research

findings and drawbacks of this work. Hardware implementation of the PLMLBF

algorithm is proposed as a future scope of work. (Chapter 6).
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Fig. 1.1: PFM’s for 2 consecutive iterations of the MIPFM. The PFM’s are constructed by
estimating probability of errors in 200,000 channel message frames received over a commu-
nication channel with an SNR of 4 dB. The frames were quantized using 8-bit quantization
and are saturated at 2.5 before decoding using the 1/2 PEGReg504x1008 LDPC code for
MIPFM construction.
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CHAPTER 2

BACKGROUND

2.1 Linear Block Codes

A linear block code C̃ can be defined as a set of vectors called codewords which are

of fixed length n and constitute a linear space. For the scope of this work we will consider

the binary field F2. For any two codewords ~c1,~c2 ∈ C̃, the sum ~c1 + ~c2 is also in C̃. The

all ‘0’ codeword also lies in C̃ and is often used as the codeword for evaluating decoder

performance. The set of codewords in C̃ are embedded in a much larger linear space F2.

On account, the odds of a bit error causing the codeword ~c1 being interpreted as another

codeword is less likely as the neighborhood of ~c1 are not necessarily codewords. Hamming

distance is a simple measure that is useful in understand distance between two codewords

~c1 and ~c2. Hamming distance is defined as the minimum number of positions in which ~c1

and ~c2 differ and is denoted as h(~c1,~c2). Hamming Codes [12] are considered as the first

class of linear block codes that was developed by Richard Hamming and has been widely

adopted in Error Correction Coding.

In linear block codes, k bits of information are coded for redundancy to obtain an n

bit codeword ~c, by multiplying the k information bits with the Generator Matrix, often

denoted as the G-matrix. The G-matrix has matrix dimensions k × n. In the codeword

~c, (n− k) are parity bits that are used to detect and correct information bit errors during

transmission. The information digits are the first k bits of the codeword.

2.2 LDPC Codes

Low-density parity-check (LDPC) codes are a class of linear block codes characterized

by sparsely populated parity check matrices with mostly 0’s and relatively few 1’s. The

parity check matrix, also called the H-matrix is used for decoding the received noisy channel
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samples. In the m×n H-matrix, the m rows represent the parity check equations that need

to be satisfied by the hypothesis vector for a received channel message frame to be counted

as a codeword and the n columns represents the individual code symbols. The H-matrix

is constructed to satisfy GHT = 0. On account, the hypothesis vector for a channel frame

when multiplied by the H-matrix will yield a ~0 only if it is a codeword generated using the

G-matrix.

LDPC codes can be represented as bipartite graphs called Tanner graphs. The two sets

of vertices of the Tanner graphs are the variable nodes and the check nodes. An edge in a

Tanner graph connects a variable node to a check node if it is a part of the parity check

equation for a corresponding check node, and so the number of edges in a Tanner graph

equals the number of 1’s in an LDPC parity check matrix [13]. An H-matrix is represented

in Eqn. 2.1 and its equivalent Tanner graph is represented in Fig. 2.1.

H =



1 1 0 0 1 0

0 0 1 1 0 1

1 0 1 0 1 0

0 1 0 1 0 1


(2.1)

2.3 Quasicyclic LDPC codes

Quasi-Cyclic (QC) LDPC codes [14] are a class of LDPC codes that are widely used

in practical applications. QC codes are characterized by a base matrix B that is of size R

× C, where R defines the rows of the base matrix and C defines the columns in the base

matrix. Each element bij of the base matrix is characterized by an integral value such that

bij ≥ −1 with i ∈ 1, 2, ...., R and j ∈ 1, 2, ...., C. The H matrix is constructed from the base

matrix B by replacing bij by a circulant matrix, obtained by right-shifting a z×z identity

matrix by bij positions. bij with values equal to -1 are replaced by an all zero matrix of size

z×z. On account the constructed H matrix will have R×z rows and C×z columns. Due

to the specific structure of QC LDPC codes, they are well suited for hardware realizations

allowing for parallelizable architecture.
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v1

v2

v3

v4

v5

v6

c1

c2

c3

c4

Fig. 2.1: Tanner Graph for H-matrix represented by Eqn. 2.1. The jth variable node is
labeled vj in Tanner Graph and the ith check node is labeled as ci in the Tanner Graph.
A 1 in the H matrix corresponding to the ith row and the jth column indicates an edge
between the ci check node and the vj variable node.

2.4 Scheduling Strategies

Understanding different scheduling strategies is important for the hardware implemen-

tation of LDPC codes. In the implementation of a BP algorithm the check nodes and

variable nodes communicate with each other by passing messages. This technique of decod-

ing is also termed as Message-Passing (MP) decoding. The conventional scheduling strategy

is the flooded scheduling [15] strategy in which, during each iteration of decoding all the

check nodes and subsequently all the variable nodes pass messages to all its neighbors. This

type of scheduling is also termed as two phase message-passing decoding with the check

nodes being processed in phase one and the variable nodes being processed in phase two.

Flooded scheduling runs into latency issues with an increase in the number of check nodes

and variable nodes.

Another scheduling strategy is the layered scheduling [16] strategy in which the parity

check matrix is divided into multiple layers L, with m/L parity check equations in each
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layer. Each time a layer is processed, the decoder updates the neighboring variable nodes

and then proceeds to the next layer. This scheme enables faster information propagation

and enables convergence in half the number of decoding iterations as the flooded scheduling

scheme, in turn decreasing decoding latency [17].

2.5 LDPC Decoder Hardware Architecture

A typical hardware architecture of an LDPC decoder consists of a set of check node

units, a set of variable node units and an interconnect network between the check nodes

units and the variable nodes units to allow for message exchange. Additionally, there can

be memory components that allow for storage of information and messages considered vital

to the decoding process. LDPC decoder architectures can be broadly classified into three

types - fully parallel, serial and partly parallel architectures. Fully parallel architectures are

best suited for flooded scheduling as it comes with a large number of check node units and

variable node units and a dense network of interconnections between the check node units

and variable node units. This dense network leads to place and route issues because of wire

congestion’s and are seldom used for any practical applications.

Serial implementations are an alternative to the fully parallel architecture with only one

check node unit and one variable node unit being reused to process all the check nodes and

variable nodes in the LDPC tanner graph. This architecture is simpler to implement and

does not have any of the problems related to wire congestion and placement and routing.

However, this architecture has the drawback of significantly less throughput which may be

too less for modern communication applications.

Partly parallel is a compromise between the fully parallel and serial architectures where

the number of check node units and the variable node units is less than the number of check

nodes and variable nodes in the tanner graph. The check node units and the variable node

units are reused to process all the check nodes and variable nodes. The memory assists

in storage of the computed message that can be used by the next set of variable nodes

and check nodes that are being processed by the variable node units and check node units.

These types of architectures are naturally suited for layered scheduling [18].
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2.6 BSC Channel Transmission

As the name implies, both the input and output of a Binary Symmetric Channel (BSC)

are binary. A bit in the n bit binary codeword that needs to be transmitted over the BSC

is defined as cn. On account of channel noise, cn is flipped with a crossover probability α

to obtain yn. The probability that yn = cn is α and the probability that yn = not(cn) is

1− α. A BSC is a common communication channel model because of its simplicity.

2.7 AWGN Channel Transmission

The n bit binary codeword to be transmitted over the BAWGNC is referred to as ~c ∈ C̃

and satisfies the condition. H~c = 0. To transmit this binary codeword over the BAWGNC, it

is converted into a bipolar codeword ĉ, defined by ĉ , (1−2c1), (1−2c2), ...., (1−2cn) : ci ∈ ~c.

When transmitting an all ‘0’ n-bit binary codeword ~c, the equivalent bipolar codeword is

characterized by an all ‘+1’ vector. Depending on the SNR, AWGN gets added to this

vector. The AWGN can be denoted as an n bit vector ẑ ∈ Rn. The channel noise power

spectral density is denoted by N0 whose definition is provided in Eqn. 2.2. R denotes the

rate of the code and SNR denotes the signal-to-noise ratio of the channel. The standard

deviation of the channel is defined as σ =
√

N0
2 .

N0 =
1

R
· 10

−SNR
10 (2.2)

For an all ‘+1’ bipolar codeword (ĉ = {+1n}), transmitted over a noisy channel each

channel sample in the channel message frame ŷ ∈ Rn, defined by ŷ = ĉ+ẑ can be represented

as a Gaussian distribution with mean ‘+1’ and standard deviation σ, N (1, σ2).

2.8 Bit Flipping Decoding

The count of columns in the H-matrix is equal to the number of symbols in the trans-

mitted codeword. On account, each individual channel sample gets mapped to a variable

node in the tanner graph for the H-matrix. For each variable node of the LDPC code, a

hard decision is made as to whether the associated channel sample is a bipolar +1 or -1.
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The vector of hard decisions for a channel frame can be referred to as the channel frame

bipolar hypothesis and is defined as x̂ where x̂ = sign(ŷ) : x̂ ∈ {+1,−1}n.The equivalent

binary hypothesis is defined as ~x = 0.5(1− x̂) : ~x ∈ Fn2 . The hard decision for each channel

sample can be referred to as the channel sample bipolar hypothesis. The term ‘hypothesis’

is used to refer to both the channel frame hypothesis and channel sample hypothesis and

the meaning depends on the context of usage.

The binary hypothesis at each variable node is broadcasted to all its neighboring check

nodes. The check nodes performs a modulo-2 sum on the binary values from its neigh-

borhood to check if its parity check equation is satisfied. It is important to note that the

bipolar equivalent of the binary modulo-2 operation is multiplication and is deployed by

this work and in the GDBF and NGDBF algorithms. The algorithms perform information

exchange between the variable nodes and check nodes in the bipolar domain without con-

version to the binary domain. The binary result of the modulo-2 sum is then broadcasted to

all the variable nodes a certain check node is connected to. Based on the information from

the neighboring check nodes, a variable node either flips the hypothesis initially taken or

retains this hypothesis. If most of the incoming message bits into a variable node (from the

connected check nodes) are different from the initial hypothesis, the hypothesis is flipped.

In the bipolar domain the variable node does a summation of all the incoming values from

the check node neighborhood. This cycle of passing information from the variable nodes

to the check nodes and from the check nodes back to the variable nodes keeps repeating

till all the parity check equations are satisfied or if a certain number of decoding iterations

has been reached. This type of decoding is called Bit Flipping decoding and is a hardware

efficient way of implementing decoding of LDPC codes.

Gallager introduced the BF algorithm for the BSC. The realm of BF decoding was

left unexplored after its initial introduction until Y. Kou et. al. introduced the Weighed

Bit-Flipping (WBF) algorithm [7], which assigns specific computed weights to the parity

check equation results. These results are then used to compute energy (En) for each symbol

being decoded which determines bit flipping. The symbol with the maximum (or minimum



13

depending on the convention) En is flipped. Zhang et. al. introduced the modified Weighed

Bit-Flipping (MWBF) [19] algorithm that adds the channel sample value scaled by an em-

pirically optimized value α to the WBF energy function. Wu et. al. introduced the Parallel

Weighed Bit-Flipping (PWBF) [20] algorithm which identifies the symbol with the maxi-

mum En (or minimum depending on the convention) within a subset of symbols associated

with each parity check. The Dynamic Weighted Bit-Flipping (DWBF) [21] proposed by

Chang et. al. and the Recursive WBF (RECWBF) [22] continued to modify the computed

weight values for decoding performance gains.

2.9 PBF

Probabilistic Bit Flipping (PBF) introduces randomness to the original Bit Flipping

decoding mechanism that was proposed. The decoding steps followed are similar to the

original Bit Flipping decoding with the exception that the bits identified for flipping are

flipped with some probability p0 < 1. This results in only a random number of the original

identified bits being flipped. The PBF technique was first proposed by Miladinovic et. al.

in 2005 [23]. This technique helped improve decoding performance when compared to the

original Bit Flipping decoding.

2.10 GDBF

Wadayama et. al. proposed a different approach to BF decoding. Based on the channel

sample vector ŷ received over a BAWGNC, the ML decoding problem is to find a codeword

in C̃b that gives maximum correlation to the channel sample vector ŷ, where C̃b is the set

of possible bipolar codewords for a specific LDPC code. This codeword is explicitly defined

in Eqn. 2.3.

xml = arg maxx̂∈C̃b

n∑
k=1

xkyk (2.3)

where x̂ is the bipolar hypothesis vector in each iteration of decoding and k specifies the

index for each individual bit in the vector x̂. The GDBF algorithm proposed by Wadayama

et. al. adds information from the parity check matrix and converts the ML decoding problem
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into a gradient descent optimization problem. [10]. Information from the neighboring check

nodes of an individual variable node are added as a penalty condition. The final inversion

function proposed by Wadayama is defined in Eqn. 2.4. Hypothesis symbols having energy

less than θ are considered for flipping. In multi-bit flipping, all the hypothesis vector

symbols having Ek less than the flipping threshold are considered for flipping and in single-

bit flipping, the hypothesis vector symbol computed based on a global function is considered

for flipping.

Ek = xkyk +
∑

i∈M(k)

si (2.4)

where si =
∏
j∈N (i) xj , for all i ∈ {1, 2, ....m} and M(k) is the check node neighborhood of

a symbol node.

2.11 PGDBF

The GDBF algorithm that was developed by Wadayama et. al. for the BAWGNC

was modified by Rasheed et. al. to be applied on the Binary Symmetric Channel (BSC)

[24]. Since the BSC does not contain any soft channel information, the inversion function

proposed by Wadayama is computed as an Exclusive-OR between the channel sample and

the binary hypothesis in addition to the syndrome information as indicated in 2.5

Ek = ~xk ⊕ ~yk +
∑

i∈M(k)

si (2.5)

The channel symbol with the highest energy value Ek is flipped. As there is no soft

channel information on the BSC there can be multiple channel symbols with Ek = max(Ek).

To avoid this problem Rasheed et. al. proposed the PGDBF which flips only the hypothesis

of those channel samples which have a randomly assigned pk less than p0 similar the PBF

algorithm. PGDBF offered the best decoding performance on the BSC compared to all the

BF based decoders.
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2.12 NGDBF

Sundararajan et. al. added perturbation noise ak, which is a Gaussian distributed

random variable with zero mean and variance σ2
n = η2σ2 to the GDBF decoding problem

and added a weighing parameter w to the information from the parity check matrix to

develop an energy function Ek for flipping bits in the hypothesis vector x̂ as defined in Eqn.

2.6 [11]. η is the AWGN channel noise scale parameter.

Ek = xkyk + w
∑

i∈M(k)

si + ak (2.6)

Similar to GDBF, in single-bit NGDBF (S-NGDBF), xk with the lowest Ek is flipped. In

the multi-bit NGDBF (M-NGDBF), a parameter θ is considered as the threshold for flipping

bits in the decision vector x̂. All the xk bits with Ek less than θ are flipped. The optimal

value of θ is obtained empirically.

NGDBF when combined with certain heuristics like output smoothing and threshold

adaptation results in performance close to MS decoding with T = 10.

2.13 Redecoding for NGDBF

Tithi et. al. proposed a redecoding scheme for the original NGDBF algorithm, which

targets redecoding the channel message frames that failed to converge on a codeword. The

perturbation noise that is added to the failed frames during redecoding is independent of the

perturbation noise that is added to the failed frames during initial decoding and therefore

increases the likelihood of successful decoding. Redecoding yields performance very close to

a benchmark Offset Min-Sum (OMS) decoder for the IEEE 802.3 standard LDPC code. [25]

. However, the proposed re-decoding for NGDBF incurs a substantial latency penalty and

is effective if the end application can accept a latency penalty at the expense of lower FER.

2.14 Trapping sets and Error Floors for NGDBF

As seen in Fig. 2.3, the BER decreases rapidly (this rapid decrease is also called the

waterfall region of the performance curve), after which it reaches a saturation region called
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Fig. 2.2: Bit Error Rate for re-decoding with the SM-NGDBF on the 1/2PEGReg504x1008
code with different phases of redecoding Φs. Performance curve for the Min-Sum algorithm
is provided for reference.

the error-floor region where the BER no longer decreases with an increase in the Signal-

to-noise ratio (SNR). This error-floor region is the result of “trapping sets” which are sub

graphs within the Tanner graph, that do not allow the decoder to converge on the correct

codeword. Trapping sets were first explored by Richardson in his work “Error floors for

LDPC codes” [26]. A related concept called “absorbing sets”, which are a sub-type of

trapping sets [27, 28], that lead to convergence on a non-codeword and usually prevents a

decoding algorithm from any further decoding. In her doctoral dissertation, Tithi studied

the effect of the dominant (8,8) absorbing set in the 802.3an 10GBASE-T LDPC code on

the performance of NGDBF decoding [29].
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Fig. 2.3: Performance curve indicating error floor while decoding with the Tanner (155,64)
code.

Fig. 2.4: The dominant (8, 8) absorbing set in the 802.3an 10GBASE-T LDPC code. The
hollow squares represent the degree-2 check nodes, the filed square represent the degree-1
check nodes and the filled circles represent the variable nodes. Degree indicates the number
of neighbors of a node.
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CHAPTER 3

MOTIVATION

Significant research has been carried out in the area of BF decoding algorithms with low

complexity LDPC hardware architectures. The NGDBF and GDBF decoding algorithms

are significantly less complex to implement on an Field Programmable Gate Array (FPGA)

or Application-specific integrated circuit (ASIC) when compared with the hardware imple-

mentation complexity of some of the other LDPC decoding algorithms including the Belief

Propagation (BP) algorithm and the approximate Min-Sum (MS) algorithm.

At the fundamental level, BF in the NGDBF or GDBF decoding algorithm involves

information about the received channel sample combined with its computed syndrome to

progress through the different decoding iterations to potentially converge on a codeword.

For the scope of this work, we can refer to the channel sample information and syndrome

as the parameters that affect decoding. Based on our understanding of Eq. 2.6, the channel

sample can be termed as yk, the bipolar decision hypothesis for a specific channel sample

is termed as xk and the syndrome parameter is termed as pk where pk =
∑

i∈M(k) si.

However, a statistically informative approach that quantifies the frequency of error

occurrence for specific values of the parameters that affect the decoding performance was

not followed while developing the GDBF and the NGDBF decoding algorithms. These

algorithms have relied on heuristics for performance improvement and presently lack a

theoretical framework. The motivation behind this work is to establish an algorithm that

has a solid theoretical framework and is backed by informative statistics whilst using the

same decoding mechanism as the GDBF and NGDBF algorithms. The outcome of this

research work is the development of the PLMLBF algorithm which probabilistically decodes

a sample channel message frame from prior estimated error statistics.

NGDBF uses perturbation noise to escape the local maxima that GDBF has a tendency

to get stuck in. In works published till date, the added perturbation noise in the NGDBF
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decoding algorithm has been normally distributed (Gaussian). The selection of the Gaus-

sian distribution has been based purely on heuristics. NGDBF could potentially benefit

from other statistical distributions used as perturbation noise. Identification of these dis-

tributions requires informative error statistics that are developed as a part of this research

work. While GDBF and NGDBF have developed a more heuristic approach to gradient

descent optimization based BF, the PLMLBF is more theoretically motivated to improve

BF performance.
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CHAPTER 4

MULTI ITERATION PROBABILISTIC FLIPPING MATRIX CONSTRUCTION

4.1 Syndrome

For a specific channel sample being decoded in a specific decoding iteration, the syn-

drome parameter is equal to the sum of all the incoming messages from the neighboring

check nodes. Positive syndrome values pi indicate agreement with the hard decision xi and

negative pi indicate that the hard decision xi may be erroneous. For a specific LDPC code,

dv and dc determine the number of edges connected to a variable node and check node

respectively. The calculated syndrome value pi in each iteration of decoding lies within

[−dv,−dv + 2, ....., dv − 2, dv].

c1
s1

x1

v1

y1

x2

v2

y2

x3

v3

y3

Fig. 4.1: sj =
∏
i∈N (j) xi where N (j) is the neighborhood of a certain check node.
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Fig. 4.2: Syndrome component pi =
∑

j∈M(i) sj where M(i) is the neighborhood of a

specific variable node. The sj value is computed as indicated in Fig. 4.1

The 1/2 PEGReg504x1008 LDPC code has been used for decoding in most of the

simulations carried out as part of this research work. For the 1/2 PEGReg504x1008 LDPC

code the value of dv is 3. On account the possible values for the syndrome parameter pi are

-3,-1,1 and 3.

• -3: If all the incoming messages into a variable node are -1, the sum of the three

incoming messages results in the syndrome parameter value being -3.

• -1: If two of the three incoming messages into a variable node are -1 and the third

incoming message has a value of +1, the sum of the three incoming messages results

in the syndrome parameter value being -1.

• +1: If two of the three incoming messages into a variable node are +1 and the third

incoming message has a value of -1, the sum of the three incoming messages results

in the syndrome parameter value being +1.
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• -3: If all the incoming messages into a variable node are +1, the sum of the three

incoming messages results in the syndrome parameter value being +3.

4.2 MIPFM Computation

The Multi-iteration Probability Flip Matrix (MIPFM) is a three dimensional matrix

that is used as a flipping probability lookup table for a specific channel sample yi with

computed syndrome pi that is being decoded in iteration `. A Probability Flip Matrix

(PFM) refers to the two dimensional matrix that is used as a flipping probability lookup

table in a specific iteration of decoding. The three indices into the MIPFM are xi×qi (xqi),

pi and `. qi is the channel sample value yi after applying Q bits of quantization. The

product of xi and qi is considered instead of yi to index into the matrix, to avoid a bias

to any specific codeword. This is in line with the inversion function for the GDBF and

NGDBF algorithms.

In this research work, the total frame count used to establish informative error statis-

tics free from small sample size anomalies is 200,000 channel message frames. Negligible

impact on the PFM probability values is observed beyond 200,000 channel message frames.

To generate the MIPFM, the below steps are followed. Alg. 1 provides an algorithmic

representation of the MIPFM computation process.

Step 1: Depending on the LDPC code used for BF decoding, 200,000 frames of an all +1

n-symbol bipolar codeword is transmitted over a noisy communication channel. F

denotes the transmission frame count. For the 1/2PEGReg504x1008 LDPC code, the

size of a bipolar codeword would be 1008 code symbols and each codeword is denoted

by ĉo where o ∈ {1, ..., F} and each code symbol in a specific frame ĉo can be addressed

as ĉo(i).

Step 2: To mimic the transmission over a noisy channel with a specific SNR value, noise vector

ẑo is superimposed on ĉo for all o ∈ {1, ..., F}. Noise samples ẑo(i) are samples from

a normal distribution with a standard deviation of σ. The value of σ is computed as

determined in Sec. 2.7. The noise added codeword frames are the channel message
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frames and are denoted as ŷo where ŷo = ĉo + ẑo for all o ∈ {1, ..., F}. Each ŷo(i) is

clipped at Ymax such that −Ymax ≤ ŷo(i) ≤ Ymax.

Step 3: Uniform quantization is applied to each sample in ŷo for all o ∈ {1, ..., F} depending

on the quantization levels expected in the PFM. For Q quantization bits, the total

number of quantization levels NQ is equal to 2Q. The quantization function Q(y) is

denoted as:

Q(y) = sign(y)

(⌊
|y|NQ

2Ymax

⌋
+

1

2

)(
2Ymax

NQ

)
(4.1)

The quantized form of ŷ is denoted as q̂.

Step 4: Define λ as the set of all possible values for q̂(i) such that row r in the PFM has λ(r)

as its xq indexing value. The possible values of q̂(i) and x̂q(i) are the same because

x̂(i) is a hypothesis and has values ∈ {+1,−1}.

Step 5: Define ω as the set of possible values for the syndrome such that column s in the PFM

has ω(s) as its syndrome indexing value.

Step 6: An initial bipolar hypothesis vector x̂o is computed based on the sign of the received

channel samples in the vector q̂o for all o ∈ {1, ..., F} .

Step 7: The value of the decoding iteration index ` is initialized to 0.

Step 8: The product of x̂o(i) and q̂o(i) is computed for all the individual channel samples

i ∈ {1, ..., n} for each channel frame o ∈ {1, ..., F}.

Step 9: Check node value ŝo(j) is computed for all the check nodes j ∈ {1, ...,m} for each

channel frame o ∈ {1, ..., F} where ŝo(j) =
∏
i∈N (j) x̂o(i).

Step 10: Syndrome component p̂o(i) is computed for all the variable nodes i ∈ {1, ..., n} for

each channel frame o ∈ {1, ..., F} where p̂o(i) =
∑

j∈M(i) ŝo(j).

Step 11: Create two dimensional matrices H` and E` of size λ×ω and initialize all the elements

of the respective matrix to 0.
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Step 12: For each r ∈ {1, ....λ} and each s ∈ {1, ....ω}, H`(r, s) is the count of the total channel

samples in all the o ∈ {1, ....F} channel message frames having an xq value equal to

λ(r) and syndrome equal to ω(s).

Step 13: For each r ∈ {1, ....λ} and each s ∈ {1, ....ω}, E`(r, s) is the count of the total channel

samples in all the o ∈ {1, ....F} channel message frames having an xq value equal to

λ(r), syndrome equal to ω(s) and x = −1.

Step 14: For each r ∈ {1, ....λ} and each s ∈ {1, ....ω}, P`(r, s) is equal to E`(r, s) divided by

H`(r, s). This matrix is termed as the PFM for iteration `.

Step 15: The hypothesis x̂o(i) for each channel sample in each individual frame is flipped with

a probability equal to P`(x̂qo(i), po(i)).

Step 16: ` is incremented by 1 and all the sequence of steps starting from Step 8 are repeated

till ` = T

Once the MIPFM is constructed, it can be used as the probability lookup table for

the PLMLBF algorithm. In each iteration of PLMLBF decoding channel samples qi, with

computed syndrome pi can be probabilistically decoded over multiple iterations by indexing

into the MIPFM using (xq, p, `).
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Algorithm 1 MIPFM Construction

. Parameter Definitions for MIPFM construction

1: for o ∈ {1, ..., F} do . F is the total frame count

2: ĉo(i)← +1 ∀ i ∈ {1, ..., n}

3: ŷo ← ĉo + ẑo . ẑ is the AWGN vector

4: q̂o ← Q(ŷo) . Q() is the Quantization function

5: x̂o ← sign(q̂o) . x̂ is the hypothesis vector

6: Initialize `← 0

7: while ` < T do

. MIPFM Construction Steps

8: for o ∈ {1, ..., F} do

9: x̂qo(i)← x̂o(i)× q̂o(i) ∀ i ∈ {1, ..., n}

10: ŝo(j)←
∏
i∈N (j) x̂o(i) ∀ j ∈ {1, ...,m} . Check node update

11: p̂o(i)←
∑

j∈M(i) ŝo(j) ∀ i ∈ {1, ..., n} . Variable node update

12: H`(r, s)← 0 ∀ r ∈ {1, ..., λ} ∀ s ∈ {1, ..., ω} . Frequency matrix definition

13: E`(r, s)← 0 ∀ r ∈ {1, ..., λ} ∀ s ∈ {1, ..., ω} . Error frequency matrix definition

14: for o ∈ {1, ..., F} do

15: Increment H`(x̂qo(i), p̂o(i)) by 1 ∀ i ∈ {1, ..., n}

16: if x̂o(i) == −1 then Increment E`(x̂qo(i), p̂o(i)) by 1 ∀ i ∈ {1, ..., n}

17: P`(r, s)← E`(r, s) / H`(r, s) ∀ r ∈ {1, ..., λ} ∀ s ∈ {1, ..., ω} . Compute PFM

. MIPFM Application (Decoding) Steps

18: for o ∈ {1, ..., F} do

19: Flip x̂o(i) with probability P`(x̂qo(i), p̂o(i)) ∀ i ∈ {1, ..., n}

20: `← `+ 1
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CHAPTER 5

SIMULATION RESULTS

MIPFM’s are constructed prior to the start of PLMLBF decoding to obtain simulation

results. The simulation results are obtained after decoding 2000 channel message frames.

The 200,000 channel message frames that are used to construct the MIPFM are independent

of the 2000 channel message frames used to obtain the simulation results. Unless otherwise

stated, the MIPFM used for decoding is constructed using the exact parameter values as the

2000 channel message frames that are being decoded to obtain the simulation results. These

parameters include Ymax, T, Q, SNR and the LDPC code used for decoding. The channel

sample saturation value is denoted as Ymax and Q is the bits of quantization applied on the

channel samples. For a BER performance plot indicating PLMLBF decoding performance

over 4 different SNR values would have 4 respective MIPFM’s constructed for each of those

SNR values.

Performance curves for the PLMLBF algorithm are obtained, primarily using the rate

1/2 PEGReg504x1008 code on the BAWGNC using binary antipodal modulation. The 1/2

PEGReg504x1008 code represents the Regular Progressive Edge Growth code. (dv, dc) for

this code is (3,6) and regular indicates that the (dv, dc) for each check node and variable

node respectively is the same throughout the code construction. Although the actual dc

has some irregularities in the code construction in MacKay’s encyclopedia, the code is

still considered as a regular code. Additional simulations were performed using the 1/2

4000.2000.4.244 code and the 0.9356 4376.282.4.9598 code to demonstrate the effectiveness

of the PLMLBF algorithm. All the three LDPC code constructions are from MacKay’s

encyclopedia [30]. Comparison results are provided for the GDBF, NGDBF, BP algorithm

with 250 iterations and for the MS algorithm with 5, 10 and 100 iterations respectively.

Unless otherwise stated, the following values are considered for each of the parameters

that are crucial to the decoding process. The channel sample values are saturated at 2.5,
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quantized using 8-bit quantization and decoded over 100 iterations (Ymax = 2.5, Q = 8 and

T = 100). The total number of frames decoded simultaneously are 2000, and the decoding

is stopped when a total of 100 frame errors are detected.

5.1 BER Performance

BER performance curves, usually have an initial waterfall region which exhibits an

improvement in BER performance with an increase in SNR followed by an error floor region,

where there is very little improvement in BER performance with an increase in SNR. Instead

of having the standard waterfall region, from Fig. 5.1 it can be observed that the PLMBF

algorithm performance curve is almost straight up to an SNR of 3.25 dB, after which it

exhibits the standard waterfall region.
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Fig. 5.1: Bit Error Rate versus Eb/N0 performance curve for the PLMLBF algorithm with

T = 100, Q = 8 and separate PFM construction for each iteration l (1 ≤ l ≤ T ) in the

MIPFM using the rate 1/2 PEGReg504x1008 LDPC code simulated over a BAWGNC with

binary antipodal modulation. Performance curves for several other algorithms are provided

for comparison.

Fig. 5.2 is useful to understand why PLMLBF decoding for SNR values below 3.25

dB is sub-optimal. In the initial iteration of the MIPFM construction, for a certain xqi

value for a channel sample qi, the probability matrix is effective only if the count of the

erroneous xqi samples in the message frames being decoded are not a significant portion

of the total xqi used to construct the MIPFM. At lower SNR’s, this condition is however

not met as observed in Fig. 5.2. The error at lower SNR’s are too high for the error

statistics to be informative. On account when the initial PFM in the MIPFM is used for

the decoding stage of MIPFM construction, a lot of non-erroneous channel samples are

flipped erroneously leading to high error flipping probabilities. As the iterations proceed,

the matrix construction does not recover from these initial erroneous flips and continues
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erroneous flipping in the later iterations of MIPFM construction. This on account leads

to poor BER performance when these MIPFM’s are used for simulations. In Fig. 5.2, it

can be observed that for an SNR of 1 dB, for a specific value of qi, the probability density

of P(−qi) (indicating error probability) is significant compared to (P(−qi)+P(qi)). For

an SNR of 4 dB, P(−qi) is a very small portion of (P(−qi)+P(qi)) leading to very little

erroneous flipping.
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Fig. 5.2: Comparison of the probability density for a bipolar +1 being transmitted over

BAWGNC of different SNR values. The plot is meant to be a representative for quantized

channel sample values for the purpose of explanation. The hypothesis xi = −1 for channel

sample values of qi < 0. This hypothesis is considered erroneous and is a potential candidate

for flipping.

From an SNR of 3.25 dB to an SNR of 4 dB, the performance curve for the PLMLBF

algorithm exhibits the waterfall curve. The PLMLBF algorithm provides performance gains
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over the M-NGDBF algorithm when implemented without heuristics at SNR values of 3.75

dB and SNR values of 4 dB and is found to be most effective when working with commu-

nication channels exhibiting an SNR close to 4 dB.

After an SNR of 4 dB, trapping sets have a significant impact on the decoding perfor-

mance. Trapping sets do not allow convergence to a code word which affects the decoding

performance. The constructed MIPFM is developed empirically and on account does not

have any additional heuristic to deal with the trapping sets. The performance curve enters

into the error floor region after an SNR of 4 dB on account of trapping sets. NGDBF adds

the perturbation noise to escape trapping sets and on account exhibits better decoding

performance for SNR’s over 4 dB.

To escape trapping set behavior, a lower SNR MIPFM is used to decode channel mes-

sage frames transmitted over a communication channel with a higher SNR. As represented

in Fig. 5.3, decoding channel message frames transmitted over a BAWGNC with an SNR of

4.25 dB and an SNR of 4.5 dB with an MIPFM constructed for an SNR of 4 dB lowers the

error floor for the 1/2PEGReg504x1008 code. The PLMLBF outperforms the M-NGDBF

algorithm (implemented without heuristics) at an SNR of 4.25 dB and matches the M-

NGDBF algorithm (implemented without heuristics) at an SNR of 4.5 dB. Decoding with

a lower SNR MIPFM provides additional probability of flipping which helps escape some

of the trapping sets and on account, provides improved BER performance.
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Fig. 5.3: PLMLBF BER performance curve indicating decoding specific SNR channel

samples with an MIPFM constructed using a different SNR for the 1/2PEGReg504x1008

LDPC code with T = 100, Q = 8.

The PLMLBF algorithm outperforms the M-GDBF in Fig. 5.4 and Fig. 5.5 indicating

comparable performance on codes with higher variable-node degree (in the case of Fig. 5.4)

and for codes with rate above 0.9 (in the case of Fig. 5.5)
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Fig. 5.4: Bit Error versus Eb/N0 performance curve for the PLMLBF algorithm with T

= 100, Q = 8 and separate PFM construction for each l (1 ≤ l ≤ T ) in the MIPFM using

the rate 1/2 4000.2000.4.244 LDPC code simulated over a BAWGNC with binary antipodal

modulation. Performance curves for several other algorithms are provided for comparison.
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Fig. 5.5: Bit Error versus Eb/N0 performance curve for the PLMLBF algorithm with T =

100, Q = 8 and separate PFM construction for each l (1 ≤ l ≤ T ) in the MIPFM using the

rate 0.9356 4376.282.4.9598 LDPC code simulated over a BAWGNC with binary antipodal

modulation. Performance curves for several other algorithms are provided for comparison.

5.2 Impact of variation of Quantization Bits (Q)

Based on the observations in Fig. 5.6 the PLMLBF algorithm is not effective for SNR’s

lower than 3.5 dB, even if the quantization bits are altered. A lower number of quantization

bits indicates a higher loss of information, while lowering the hardware complexity. For an

SNR of 3.5 dB, it is observed that having additional quantization information beyond 6 bits

of quantization does not provide any significant BER performance. Likewise, for SNR of 4

dB and SNR of 4.5 dB increasing the quantization bits beyond 4 does not provide any gain

in BER performance. For SNR of 4.5 dB, it is observed that increasing the quantization

bits beyond 4 bits actually worsens the BER performance. A possible explanation of the

same would be that at higher SNR’s, the channel sample errors are being spread across too



34

many bins in the PFM with a higher error probability accuracy in some of the bins and a

lower error accuracy in the others leading to some erroneous flipping.
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Fig. 5.6: BER performance curves indicating the impact of quantization bits (Q) on

PLMLBF decoding with T = 100 and separate PFM for each l (1 ≤ l ≤ T ) in the

MIPFM simulated over the BAWGNC with binary antipodal modulation using the 1/2PE-

GReg504x1008 LDPC code.

At an SNR of 4 dB, as the quantization bits are increased, there is an improvement

in the PLMLBF FER performance. Beyond an SNR of 4 dB, consistent with the BER

performance curves for quantization bits variation in PLMLBF, an increase in quantization

bits beyond 6 bits actually worsens the performance. 6 bit quantization provides the best

FER performance at an SNR of 4.25 dB.
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Fig. 5.7: FER performance curves indicating the impact of quantization bits (Q) on

PLMLBF decoding simulated over the BAWGNC with binary antipodal modulation using

the 1/2PEGReg504x1008 LDPC code. The MIPFM is constructed for T = 100 and separate

PFM are constructed for each l (1 ≤ l ≤ T ) in the MIPFM. Impact of quantization on the

FER performance of NGDBF is provided for reference.

5.3 Impact of variation of Decoding Iterations (T)

Similar to the findings of the previous section, for SNR values up to 3 dB, the algorithm

performs in a sub-optimal manner and changing the number of decoding iterations does not

impact BER. From Fig. 5.8, it can be observed that for an SNR of 3.5 dB, an increase in

the number of decoding iteration leads to an improvement in the decoding performance.

For an SNR of 4 dB, an increase in the number of decoding iterations beyond 125 iterations

does not yield any additional performance gains and for an SNR of 4.5 dB, an increase

in decoding iterations beyond 50 iterations does not give any significant improvement in

decoding performance.
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Fig. 5.8: PLMLBF BER performance curve simulated over a BAWGNC with antipodal

modulation using the 1/2PEGReg504x1008 LDPC code. The respective MIPFM used for

decoding is constructed using Q = 8 for T decoding iterations with separate PFM construc-

tion for each l (1 ≤ l ≤ T ).

Early stopping, introduced in the early stopping Adaptive Threshold GDBF (ES-AT-

GDBF) algorithm is a technique that significantly reduces the number of bit flipping de-

coding iterations [31]. Decoding a channel message frame is stopped before it completes the

pre-determined number of decoding iterations if all the parity check equations are satisfied.

For SNR values greater then 3.5 dB it can be observed in Fig. 5.9 that the average number

of decoding iterations required for the PLMLBF algorithm to converge onto a codeword de-

creases significantly. For SNR values greater than 4 dB, the PLMLBF curve almost aligns

with the curves for the M-GDBF and M-NGDBF algorithms.
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Fig. 5.9: Average number of convergence iterations versus Eb/N0 curve for the PLMLBF

algorithm simulated over a BAWGNC with antipodal modulation using the 1/2PE-

GReg504x1008 code and Q = 8. Average convergence iteration curves for several other

algorithms are provided for comparison.

5.4 PLMLBF decoding with redecoding

The redecoding technique proposed by Tithi et. al. for NGDBF was applied to the

PLMLBF decoding algorithm and the performance plot for the same is represented by Fig.

5.10. When probabilistically flipping the hypothesis for a channel sample a random value

from the uniformly distribution [0 to 1] is generated and compared with the probability

value from the PFM. If the probability from the PFM is greater than the random proba-

bility value, the hypothesis is flipped. Redecoding is effective for the PLMLBF algorithm,

because the uniformly distributed random values in the range of [0 to 1], that are used for

comparison with the actual flipping probabilities obtained from a PFM are independent
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in each phase of decoding. Beyond redecoding phase 5, there could be a possible increase

in the BER performance curve with additional phases of redecoding. However, software

simulations might take months to reach the target frame errors to stop decoding and re-

quires that the implementation of the PLMLBF algorithm be moved to an FPGA/ASIC

based implementation. FPGA/ASIC implementation (alternatively hardware implementa-

tion) however, is not a part of this research work. From Fig. 5.10, it can be observed that

redecoding when implemented with T = 100 provides improved performance over lower

iterations of decoding. Increasing T beyond 100, does not yield any significant performance

improvement for all the redecoding phases.
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Fig. 5.10: Impact of redecoding phases Φ on the PLMLBF decoding performance for the

1/2 PEGReg504x1008 LDPC code simulated over a BAWGNC with an SNR of 4 dB and

antipodal modulation.



39

5.5 Impact of repeated PFM in the MIPFM on PLMLBF performance

Instead of constructing a separate PFM for each iteration of decoding when construct-

ing the MIPFM, this subsection presents the findings of the impact of repeating a PFM over

multiple decoding iterations and then constructing a new PFM. The resultant MIPFM now

has repeating PFM’s for consecutive iterations before a new PFM is generated empirically

for consecutive iterations. Based on Fig. 5.11, it can be observed that using just 13 PFM’s,

gives the best performance for all SNR values. The notation [1,2,3,10:10:100] implies that

PFM 1,2,3 are used, PFM 3 is repeated for iterations 3 through 10, PFM 10 is repeated

for iterations 10 through 19, PFM 20 is repeated through iterations 20 through 29 and so

forth.

Using a lesser number of PFM’s for PLMLBF decoding provides a hardware benefit to

implement the algorithm when compared to the standard PLMLBF algorithm implemen-

tation without PFM repetition. Lesser registers would be required to store the probability

values, when PLMLBF is implemented with PFM repetition on a hardware platform.
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Fig. 5.11: BER performance curve indicating the impact of repeated PFM on the per-

formance of the PLMLBF decoding algorithm for the 1/2PEGReg504x1008 code simulated

over the BAWGNC with antipodal modulation. The data points are representative of rep-

etition for the following PFM.

6 PFM : [1,2,3,33,66,100] 7 PFM : [1,2,3,25:25:100] 8 PFM : [1,2,3,20:20:100]

13 PFM : [1,2,3,10:10:100] 23 PFM : [1,2,3,5:5:100] 28 PFM : [1,2,3,4:4:100]

52 PFM : [1,2,3,2:2:100] 100 PFM : [1:1:100]
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Fig. 5.12: PFM for consecutive iterations 10 and 11 of the MIPFM construction for the

1/2 PEGReg504x1008 LDPC code simulated over a BAWGNC with an SNR of 4 dB and

binary antipodal modulation. PFM 11 can be replaced by PFM 10 in the repeated PFM

scheme for PLMLBF decoding because of the similar flipping probability values.
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5.6 Output decision smoothing and Output decision 2 out of 3 voting

The probabilistic nature of PLMLBF may lead to erroneous flipping in a certain code

symbol. Output smoothing is a heuristic that is used to smooth out erroneous flips and

enable convergence on the correct word. For every code symbol that is being decoded in

a channel message frame, a running counter is maintained. In each decoding iteration the

counter increments for the decoded value being +1 and decrements for the decoded value

being -1. At the end of T iterations of decoding, the sign of the counters value determines

the value for a specific code symbol. In effect, the decoding decision is delayed till the last

iteration of decoding. The counter is initialized to 0 and the smoothing technique is started

only after the average number of decoding iterations required for codeword convergence

at a specific SNR have been completed. In any iteration of decoding if the early stopping

condition has been satisfied, the decoding is stopped. Smoothing when applied to PLMLBF

is denoted as SM-PLMLBF within the scope of this work. SM-PLMLBF is implemented

over 300 iterations of decoding. A 300 iteration MIPFM is created by repeating each PFM

in a 100 iteration MIPFM 3 times consecutively for decoding.

Similar to the smoothing heuristic, output 2 out of 3 voting is a heuristic that is used

to smooth out erroneous flips and enable convergence on the correct word. A channel

message sample is decoded thrice using the same PFM before voting on the decoded value

for a certain iteration. On account for a 100 PFM MIPFM, we require 300 iterations of

decoding. This heuristic is termed as VO-PLMLBF within the scope of this work.

Both SM-PLMLBF and VO-PLMLBF come within 0.25 dB of the SM-NGDBF algo-

rithm and outperforms the H-GDBF and the MS algorithm with T=5 for SNR values above

3.5 dB.
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Fig. 5.13: Bit Error Rate versus Eb/N0 performance curve for the SM-PLMLBF and

VO-PLMLBF algorithms with T = 300, Q = 8 and early stopping for the rate 1/2 PE-

GReg504x1008 LDPC code simulated over a BAWGNC with binary antipodal modulation.

Performance curves for several other algorithms are provided for comparison.

5.7 PLMLBF with NGDBF inversion function

This research work defines an explicit MIPFM construction. This section explores

the impact of populating the probabilities in the MIPFM based on the inversion function

defined in the NGDBF algorithm. For a certain quantized channel sample qk with a spe-

cific syndrome, NGDBF defines the probability of flipping the hypothesis xk as PF (xk) =

Pr(Ēk + ak < θ). The value of Ēk is fixed for a certain quantized channel sample with a

specific syndrome and is defined by xkqk +w
∑

i∈M(k) si. The Gaussian perturbation noise

ak results in the probabilistic flipping value PF (xk).

In the first iteration (initial PFM) of MIPFM construction, the probabilities are pop-

ulated based on the NGDBF flipping probabilities. In each subsequent iteration of the

MIPFM construction, the probabilities within each bin of a PFM is tuned empirically
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based on a biasing function. For a specific probability PF (x) within a certain bin, the

biasing function is defined in eq. 5.1.

PF (xh+1) =
Nh

Nh + 1
PF (xh) +

eh+1

Nh + 1
(5.1)

In each iteration of MIPFM construction as h new samples are obtained for a specific

bin within the PFM, the probability in the bin is tuned every time a new sample is obtained

for that bin. The biased sample count Nh is the sum of the sample count h and a biasing

value B. The value of B was computed empirically and found to be 10. For a specific

bin, the hypothesis xh+1 of the (h + 1)th sample being erroneous is defined as eh+1 with

e ∈ {0, 1} and 1 indicating an erroneous sample.

For each SNR, the below table specifies the value of θ and η in the NGDBF inversion

function used to construct the initial iteration of the MIPFM. These values were calculated

through an empirical search. The value of w was set as 0.75.

SNR θ η

2 -0.3 0.8

2.25 -0.3 0.85

2.5 -0.4 0.95

2.75 -0.4 1

3 -0.35 1

3.25 -0.3 0.9

3.5 -0.2 0.9

3.75 -0.3 0.9

4 -0.3 0.9

4.25 -0.45 1

4.5 -0.2 0.75

Table 5.1: NGDBF θ and η values for MIPFM construction at each SNR

The MIPFM constructed based on the NGDBF inversion function is used in PLMLBF

decoding. From Fig. 5.14 it is evident that beyond an SNR of 4 dB, the PLMLBF clearly

outperforms the M-NGDBF algorithm when used without local heuristics and comes in

close proximity to the M-NGDBF algorithm when used with the threshold adaptation local
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heuristic. Up to an SNR of 3.75 dB, the PLMLBF algorithm when used with a biased

NGDBF based MIPFM construction performs sub-optimally. Avoiding the biasing function

and using the first iteration of the MIPFM for all iterations of PLMLBF decoding will

effectively solve the sub-optimality at lower SNR’s. At lower SNR’s, using this technique

will enable PLMLBF to match the NGDBF performance curve when implemented without

any local threshold adaptation heuristic.
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Fig. 5.14: Bit Error Rate versus Eb/N0 performance curve for the PLMLBF algorithm

with T = 100, Q = 8 and the NGDBF inversion function used as the starting point for

MIPFM construction using the rate 1/2 PEGReg504x1008 LDPC code simulated over a

BAWGNC with binary antipodal modulation. Performance curves for M-NGDBF is pro-

vided for reference.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This work proposes a novel BF algorithm with an explicit construction that builds

on an error probability matrix based approach to BF decoding. The developed PLMLBF

algorithm out-performs the M-GDBF algorithm at higher SNR’s when simulated with the

1/2PEGReg504x1008 LDPC code and comes within 0.25 dB of the M-NGDBF algorithm

(with local threshold adaptation). The algorithm was tested on a variety of codes with vary-

ing code-length and code-degree to demonstrate efficacy. Unlike GDBF and NGDBF algo-

rithms which were heuristically motivated for performance gains, the proposed PLMLBF

algorithm is primarily theoretically motivated.

The smoothing with early stopping and redecoding heuristics offer significant perfor-

mance gains over the basic PLMLBF algorithm. SM-PLMLBF and VO-PLMLBF comes

within 0.25 dB of the SM-NGDBF algorithm when implemented for the 1/2PEGReg504x1008

LDPC code. Redecoding when implemented with PLMLBF gives successive BER perfor-

mance gains as the number of redecoding phases are increased. Beyond 5 redecoding phases,

the simulation might take weeks to complete and on account must be implemented on an

FPGA/ASIC.

From the simulations performed, it is observed that beyond an SNR of 4.25 dB the

basic PLMLBF algorithm has sub-optimal performance. Beyond 4.25 dB, trapping sets

have a significant impact on the decoding performance. The PLMLBF decoding algorithm

is not very effective in offsetting the impact of trapping sets. The errors based on trapping

sets form a very small proportion of the total samples and on account do not impact

the decoding probabilities significantly to enhance bit flipping. The NGDBF algorithm

adds the perturbation noise which induces the uncertainty required to reach the flipping

threshold and escape trapping sets. The PLMLBF when implemented with an NGDBF

based MIPFM construction was an attempt at resolving the PLMLBF trapping set problem
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by populating the MIPFM with NGDBF error probabilities. This technique resulted in

improved BER performance at higher SNR’s with error correction capability close to M-

NGDBF implemented with local threshold adaptation.

PLMLBF uses a global lookup table for decoding. This approach can significantly re-

duce hardware implementation complexity when compared to the NGDBF decoding algo-

rithm which uses hardware for each codeword symbol being decoding. Some of the proposed

heuristics including lowering quantization bits, repeating MIPFM’s for higher SNR values

and repeating PFM’s in a MIPFM are targeted at reducing the hardware implementation

complexity even further.

The proposed MIPFM construction mechanism which is fundamental to the PLMLBF

algorithm could be the potential gateway to develop probability matrix constructions with

more robust error probabilities. Hardware implementation of the proposed PLMLBF al-

gorithm on an FPGA/ASIC needs to be explored to enable a conclusive performance and

hardware complexity comparison with the existing state of the art decoders. A Stochas-

tic computing based hardware implementation of the proposed PLMLBF algorithm is a

foreseen research objective.
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