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ABSTRACT 

Determination of Gas Emission Characteristics from Animal Wastes 

Using a Multiplexed Portable FTIR-Surface Chamber 

by 

Pakorn Sutitarnnontr, Doctor of Philosophy 

Utah State University, 2019 

 

Major Professor: Dr. Scott B. Jones 
Department: Biological Engineering 
 

With the trend toward larger and more concentrated production sites as well as 

population expansion encroaching on rural farming areas, gases emitted from animal 

feeding operations (AFOs) are rapidly becoming critical issues for the environment, 

public health, and long-term climate sustainability. This point to the need for cost-

efficient, reliable, and easy to maintain measurement and monitoring capabilities to 

precisely quantify emissions from livestock operations. This research describes and 

evaluates a novel measurement method based on the multiplexed portable Fourier 

Transform Infrared (FTIR) spectroscopy analyzer - surface chamber techniques for 

continuous measurements and monitoring gas emissions from manure sources. The 

measurement accuracy of the developed system was evaluated under controlled 

laboratory conditions. Statistical analysis, including ANOVA, was performed to 

determine the significance of gas flux estimates using the chamber-based estimate. The 

ANOVA tests indicated no statistically significant differences among estimated fluxes 

from each of the 12 evaluated chambers, with resulting p-values of 0.54, 0.58, and 0.80 

iii



for measurements of three different emission rates. In addition, the multi-chamber system 

measurements referenced to the gas fluxes estimated with the gradient-based method 

showed excellent accuracy with measurement biases less than 1%. 

A series of soil science measurement techniques were applied to determine a set 

of fundamental properties of as-excreted dairy cattle manure. The measured water 

retention characteristic for cattle manure was found to be similar to that of organic peat 

soil. The saturated hydraulic conductivity was estimated to be about 200 cm day-1. The 

simulation results suggested that the Richards equation can describe the hydrodynamics 

taking place in dairy manure relevant to natural drying processes. The thermal 

conductivities of the dairy manure were found between 0.52 and 0.08 W m-1 oC-1 from 

saturation to dry conditions. Change of the thermal diffusivity during the manure drying 

process was observed to be only a small range, approximately from 0.0013 (saturation) to 

0.0010 cm2 s-1 (dry). The bulk volumetric heat capacity of dairy manure at the saturation 

point was determined as approximately 3.95 MJ m-3 oC-1 and linearly decreased to 0.79 

MJ m-3 oC-1 for the dry manure sample. 

Carbon dioxide (CO2), methane (CH4), and ammonia (NH3) emissions were 

estimated and characterized using the developed gas emission measurement system. The 

measurements included four treatments; beef manure, dairy manure, beef compost, and 

dairy compost. The estimated CO2, CH4, and NH3 emissions from the surface application 

with dairy manure (452.4 ± 35.4 g m-2, 1.2 ± 0.1 g m-2, and 1,786.0 ± 206.7 g m-2, 

respectively) were the highest among other treatments. The emissions of CO2, CH4, and 

NH3 from the surface application with beef compost treatment (210.5 ± 14.4 g m-2, 0.2 ± 

0.02 g m-2, and 0.07 ± 0.01 g m-2, respectively) were the lowest. Linear correlations with 
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the strong coefficients of determination (R2) were reported between the CO2 and CH4 

emissions and temperature. Weak linear correlations (R2 = 0.39 for beef and dairy manure 

treatments and 0.24 for beef and dairy compost treatments) were observed between the 

NH3 emissions and temperature. Daily CO2 and CH4 emissions and average daily 

volumetric water content were well correlated and described by an exponential function. 

An empirical model, based on the Arrhenius equation, was verified with the emission 

measurement data confirming strong dependency of CO2 and CH4 emissions on 

temperature and moisture content of the soil surface applied with manure source 

materials. The solubility and adhesive characteristics of the NH3 molecule most likely 

affected the accuracy of the NH3 emission measurements in the study. 

 (188 pages) 
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PUBLIC ABSTRACT 

 

Determination of Gas Emission Characteristics from Animal Wastes 

Using a Multiplexed Portable FTIR-Surface Chamber 

Pakorn Sutitarnnontr 

 

Livestock production is a growing source of air pollution at regional, national, and 

global scales. Improved livestock manure management has the potential to reduce 

environmental impacts; however, there is an urgent need for cost-efficient, reliable, and 

easy to maintain measurement and monitoring capabilities to precisely quantify emissions 

from livestock manure. This research describes and evaluates a novel measurement 

method based on the multiplexed portable Fourier Transform Infrared (FTIR) 

spectroscopy analyzer - surface chamber techniques for continuous measurements and 

monitoring gas emissions from manure sources. The multiplexing system was designed 

and developed to automate the chamber network, controlling the movement of chambers 

and accurately managing chamber air flow distribution. The measurement accuracy of the 

developed system was evaluated under controlled laboratory conditions. The result of the 

statistical hypothesis testing showed that there is no statistically significant differences 

among the measurement results from each of the twelve chambers. 

While microbial activity is a key factor for formation of gaseous compounds in 

manure, the magnitude of gas exchange between manure and the atmosphere largely 

depends on manure physical characteristics. A series of soil science measurement and 

modeling techniques were applied to determine a set of fundamental physical, hydraulics, 
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and thermal properties of cattle manure to support advanced modeling of gas emissions 

from manure sources. The liquid water retention characteristic for cattle manure was 

found to be close to that of organic peat soils. The results also suggested that Richards 

equation can describe the hydrodynamics taking place in cattle manure relevant to natural 

drying processes. However, the uncertainties of the measurement results could be due to 

the complexity of shrinkage, surface crust formation, and shrinkage cracks. 

Carbon dioxide (CO2), methane (CH4), and ammonia (NH3) emissions were 

estimated and characterized in field plots using the developed gas emission measurement 

system. The measurements included four treatments; beef manure, dairy manure, beef 

compost, and dairy compost. The estimated CO2, CH4, and NH3 emissions from the 

surface application with dairy manure were the highest among other treatments, while 

those from the surface application with beef compost were the lowest. Impacts of 

temperature and water content on gaseous emissions were found to be correlated 

significantly. Overall, this dissertation provides a solid foundation upon which future 

research can build in better understanding and modeling animal waste emission processes 

that impact the environment. 
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CHAPTER 1 

INTRODUCTION 

The U.S. Environmental Protection Agency (EPA) defines animal feeding 

operations (AFOs) as agricultural productions where animals are kept and raised in 

confined situations for a total of 45 days or more in a 12-month period and feed is 

brought to the animals rather than the animals grazing or seeking feed in pastures, fields, 

or on rangeland. Concentrated animal feeding operations (CAFOs) are AFOs that meet 

the regulatory definition by the number of animals at the farm productions, which can be 

further classified as large, medium, and small CAFOs (40 CFR § 122.23). The emergence 

of livestock farms that raise animals in confined areas, qualifying them as AFOs, can 

improve the efficiency of animal production. However, large amounts of animal waste 

produced by their operations can degrade air quality. The animal feeding industry in the 

United States has dramatically changed over the last several years. The number of AFOs 

has decreased while the number of animals confined at each AFO has increased (USDA 

2007; USDA 2012). 

With the trend toward larger and more concentrated production sites as well as 

population expansion encroaching on rural farming areas, gases emitted from AFOs are 

rapidly becoming critical issues for the environment, public health, and long-term climate 

sustainability. AFOs generate several types of air emissions, including gaseous and 

particulate compound as both primary and secondary sources. Typical pollutants found in 

ambient air surrounding AFOs are ammonia (NH3), hydrogen sulfide (H2S), methane 

(CH4), and particulate matter (PM), specifically “fine” particles - particles less than 2.5 

micrometers in diameter (PM2.5). These air pollutants cause respiratory illness, lung 



inflammation, and increase vulnerability to respiratory diseases, such as asthma (National 

Association of Local Boards of Health 2010). Previous studies (Mirabelli, Wing et al. 

2005; Sigurdarson and Kline 2006) suggest that AFOs increase asthma in neighboring 

communities. Children living closer to an AFO have greater risk of asthma symptoms 

(Barrett 2006). Occupational respiratory diseases such as occupational asthma, acute and 

chronic bronchitis, and organic dust toxic syndrome can be found as high as 30% in AFO 

workers (Horrigan, Lawrence et al. 2002). 

Aside from degradation of the local-scale air quality, AFOs also emit greenhouse 

gases contributing to climate change. In addition to carbon dioxide (CO2) considered as 

the primary greenhouse gas of concern, manure also emits methane and nitrous oxide 

(N2O), which are 23 and 300 times more potent as greenhouse gases than carbon dioxide, 

respectively. Manure management is ranked the fourth largest source of nitrous oxide 

emissions and the fifth largest source of methane emissions (USEPA 2012). As the air 

emissions are perceived as problematic for the environment and public health (NRC 

2002; NRC 2003), reduction of gas emissions from farming operations is becoming a 

significant management policy. To successfully develop appropriate strategies for 

managing the gas emissions, an accurate measurement system that can be used in 

quantifying and monitoring gas emissions is a critical element.  

It has been well documented that gas emissions from animal manure strongly vary 

with time and space, resulting from changes in physical, chemical, and biological factors 

that influence gas emission processes. Several gas emission measurement techniques 

have been extensively researched and developed in the past few decades. Among these 

techniques, the most commonly applied for quantifying gaseous emissions from area 

2



sources are surface chambers (Luo and Zhou 2006). The surface chamber methods 

perform direct measurements of gaseous emissions from ground level area sources. The 

surface chamber techniques effectively isolate sample sources from external 

environmental conditions (e.g., wind speed and wind direction). The measurements are 

not strongly dependent on the meteorological conditions; therefore, they can be directly 

comparable from day-to-day and site-to-site (Eklund 1992). However, the disadvantage 

of the surface chamber techniques is that the conditions within the enclosure are 

momentarily altered from the actual surface conditions around the chamber. For this 

reason, the time that the chamber seals with the surface is limited to a few minutes for 

most applications.  

Most of the gases emitted to the atmosphere are the products of microbial 

processes that decompose the complex organic constituents in manure. While the 

microbial environment determines which gas species are generated, the magnitude of the 

gas emissions depends primarily on the physical properties of manure (Smith, Ball et al. 

2003). From a physical perspective, manure is a heterogeneous, polyphasic, disperse 

porous medium generally consisting of solid, liquid, and gaseous phases. The solid 

fraction primarily consists of fibrous material, which may include hay, grain, and silage, 

creating a complex manure matrix (Sobel 1966; Azevedo 1974; Spellman and Whiting 

2007). The liquid phase is mostly water, commonly containing dissolved solutes and 

organic matter. The gas fraction occupies the empty pores or void space. The manure 

matrix determines the geometric characteristics of the empty pores that play an important 

role in the transport of the water and gases (Hillel 1998; Jury and Horton 2004; Horn and 

Smucker 2005). 

3



1.1 Gas Emissions from Manure Sources 

Emissions of concern from AFOs typically include: (a) odors with accompanying 

non-methane volatile organic compounds (NMVOCs) and hydrogen sulfide (H2S), (b) 

particulate matter (PM), (c) ammonia (NH3), (d) oxides of nitrogen (NOx), and (e) 

greenhouse gases (GHGs) primarily consisting of carbon dioxide (CO2), methane (CH4), 

and nitrous oxide (N2O). Concerns over gases listed in Table 1-1 range from the local 

scale, dealing mostly with odors, to global warming at the regional and global scales. One 

of the major recommendations identified in the study conducted by National Research 

Council (NRC) on the air pollutant emissions from AFOs (NRC 2003) is to focus efforts 

on the measurement of those emissions of major concern. 

The major factor affecting the gas emissions from AFOs is the differences in 

operations and manure management practices among the AFOs, which depend upon the 

animal type, number of animals, climatic conditions, site locations, farm operations and 

manure handling practices. Most of the substances emitted are the products of microbial 

processes resulted from decomposing the complex organic constituents in manure. The 

biological environment during these processes is a key factor to determine the species of 

gas released. The differences in operations and manure management practices among the 

different animal species result in different microbial environments and therefore different 

emission potentials. 

There are limited on-farm emissions data from animal production facilities due to 

the difficulty and expense in conducting the measurements. Misselbrook and Webb et al. 

(2006) and Mukhtar et al. (2008) investigated NH3 emissions from dairy operations using 

chamber methods in United Kingdom and Texas, respectively. Other studies (Cassel, 
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Ashbaugh et al. 2005; Rumburg, Mount et al. 2008; Flesch, Harper et al. 2009) employed 

downwind measurements and modeling techniques to estimate NH3 emissions from dairy 

cattle housing. A few studies have determined CH4 emissions from dairy cattle with 

different measurement techniques (Kinsman, Sauer et al. 1995; Lassey, Ulyatt et al. 1997; 

Ulyatt, Lassey et al. 2002; Laubach and Kelliher 2005; Laubach and Kelliher 2005; Sun, 

Trabue et al. 2008; McGinn, Beauchemin et al. 2009). 

Sommer et al. (2000), Amon et al. (2006), and Guarino et al (2006) evaluated the 

combination of NH3, CH4, CO2, or N2O emissions from dairy cattle slurry using pilot or 

laboratory scale techniques. Hellebrand & Kalk (2001) and Hao et al. (2004) determined 

the combination of NH3, CH4, CO2, and N2O emissions from composting manure. 

Laytem et al. (2011) determined the emission of NH3, CH4, CO2, and N2O from a 

commercial dairy during multiple seasons using a photoacoustic field gas monitor. 

Emission data from most of the studies were presented for limited time periods while 

temporal variations in emissions under different manure management practices were not 

taken into consideration. 

1.2 Emission Measurement Methods and Devices 

The methods and techniques selected for measuring gas emissions depend on the 

type and characteristic of emission (i.e., point source vs. area source). The emission rate 

from a ground-level area source is commonly determined using micrometeorological or 

surface chamber techniques. Emissions of gases from area sources are expressed in terms 

of fluxes with the unit of mass per unit area per unit time. The micrometeorological 

techniques measure upwind and downwind concentrations and back-calculate of flux 

using dispersion modeling (Hu, Babcock et al. 2014). Surface chamber techniques can be 
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classified into two categories: dynamic and static methods, depending on whether air is 

allowed to circulate through the chamber. The dynamic chamber methods allow air to 

circulate between the chamber and gas analyzer unit that measures the concentration of 

target gases. These methods employ one of the current standard gas detection or 

quantification technologies, including gas chromatography, photo-acoustic-infrared 

detection, tunable diode laser (TDL), Fourier Transform Infrared (FTIR) spectroscopy, 

and infrared (IR) gas analyzer to quantify the concentration of the component of interest 

(Cleemput and Boeckx 2002) and to determine the emission rate based on the volumetric 

flow rate and surface area. Hu et al. (2014) published a review of these different current 

techniques for measuring emissions from agricultural and animal production. 

In a review of measurement methods and technologies, there have been a number 

of studies conducted using different techniques in determination of gas emissions from 

animal facilities. However, it is still unknown to date which method and technology 

provide results that are the closest to the “actual” gas emissions under the field conditions 

(Ni and Heber 2008) because a standard technique does not yet exist. Fundamental 

assumptions and limitations of each technique must be carefully considered in selecting 

the most appropriate method to fit the desired application. 

1.3 Working Principle of the Multiplexed Portable FTIR - Surface Chamber System 

The multiplexing system, typically facilitating automation of a network of 

multiple chambers and management of chamber air flows using a single gas analyzer, is 

widely used to assess the temporal and spatial variability of gaseous emissions, 

particularly for continuous monitoring of CO2 exchange between soils and atmosphere 

(Liang, Inoue et al. 2003; Liang, Fujinuma et al. 2005; Katsura, Maeda et al. 2006; 
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Hongxing, Xiaoke et al. 2007). The necessary features of the multiple chamber 

instrumentation for monitoring gas emissions from animal facilities are: (a) concurrent 

measurement capability of gaseous fluxes from multiple sources, (b) near real-time and 

accurate measurement of multiple gaseous components emitted from each source, (c) 

monitoring system for temperatures inside the chamber and emission source (e.g., soil, 

manure) for investigating the effects of temperature gradient on gas emissions, (d) 

monitoring system for relative humidity inside the chamber, (e) monitoring system for 

moisture content of emission source, (f) automated data collection, (g) integrated fail-safe 

setup for the solenoid valve manifold to prevent damage that may occur to the sampling 

pump, and (h) reliable operation and minimum maintenance. 

Major components of multiplexing system for monitoring gas emissions from 

manure sources include a primary control unit, chamber driver circuit, data acquisition 

unit, and gas stream flow control circuit. A microcontroller serves as the primary control 

and data acquisition unit. The chamber positioning is accomplished by interfacing the 

microcontroller with a custom-designed driver circuit. A solenoid valve manifold is 

designed to coordinate the gas stream direction from the measurement chambers. 

Temperature and relative humidity (RH) are monitored using a thermistor (10K ohm 

Yellow Bead Thermistor; Apogee Instruments, Logan, UT) and RH sensor chip (HIH-

4021-001; Honeywell, Minneapolis, MN) located inside the chamber. The output 

voltages from these sensors are transferred to the microcontroller through the analog-to-

digital inputs and ultimately sent to the handheld computer for processing and storing via 

a serial interface. 
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Linear regression analysis is commonly applied to determine the rate of 

increasing concentration of the target gas during chamber closure. Computation of the 

gas emission fluxes from the measured data is based on the mass balance principle 

together with the ideal gas law: 

 𝐹 =  
𝑉 ∙ 𝑃 ∙  𝑇𝑠  ∙  𝑀𝑊

𝐴 ∙  𝑃𝑠 ∙ (273.15 + 𝑇) ∙  (2.24 ∙  10−2) 
 ∙  

𝜕𝐶

𝜕𝑡
 (1) 

where F is the gaseous flux [µg m-2 s-1], V is the total system volume including the 

chamber headspace [m3], P is the ambient pressure [kPa], TS is the standard temperature 

[273.15 K], MW is the molecular weight of a gas [g mol-1], A is the surface area of the 

chamber over the emission source [m2], PS is the standard pressure [101.33 kPa], T is the 

temperature (o C), 2.24 · 10-2 is the molar volume of a gas at STP [m3 mol-1], and ∂C/∂t is 

the gradient of gas concentration changing over time derived from linear regression [ppm 

s-1 or µm3 m-3 s-1].  

1.4 Physical Properties of Manure Affecting Emissions  

In order to accurately describe and model the gas emission characteristics, the 

complex physical properties of manure affecting emissions also need to be determined. 

While microbial activity is the key factor for formation of gaseous compounds in manure, 

the magnitude of gas exchange between manure source and the atmosphere largely 

depends on manure physical characteristics. Microbial metabolism as well as population 

dynamics (e.g., composition and density) are dramatically influenced by manure 

temperature (Miller 1992). However, manure moisture content had a greater influence on 

microbial activity in the manure composting processes than does temperature (Liang, Das 

et al. 2003). This is in part due to the competing roles water plays in providing an 
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aqueous environment for microbes while at the same time controlling the rate of gas 

exchange (i.e., O2 supply). A comprehensive literature review clearly revealed that while 

the biological and chemical decomposition of cattle manure has been widely studied 

(Gerba and Smith 2005; Nennich, Harrison et al. 2005; Liu, Xu et al. 2011; Longhurst, 

Houlbrooke et al. 2012) with an abundance of reported data, little is known about 

important physical properties. 

Numerical models are required to simulate complex transformation and 

translocation processes such as with carbon and nitrogen, which involve both liquid and 

gas phases. There are a number of these models including large-scale land surface models 

(Parton, Hartman et al. 1998; Del Grosso, Parton et al. 2006; Grosso, Parton et al. 2008; 

Oleson, Niu et al. 2008) and point scale models (Simunek, Jacques et al. 2006; Toride 

and Chen 2011) that are continually being improved as more detail is made available; 

however, physical properties of manure have not been defined for use with these models. 

An accurate simulation model that can describe solute and gas transport from manure 

sources at a range of scales is mandatory for estimation of quality and quantity of manure 

leachate and gas emission characteristics. 

1.5 Research Objectives 

The specific objectives of this research are to: 

(1) develop an automated multi-gas emission measurement system, based on 

the multiplexed portable FTIR-surface chamber network for continuous 

measurements and monitoring of target gas emissions, which initially 

include CH4, CO2, NH3, NOx, and N2O, 
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(2) evaluate the determined accuracy of gaseous emission fluxes using the 

multiplexed portable FTIR and surface chamber system under controlled 

laboratory conditions, 

(3) measure and model physical, hydraulic, and thermal properties of as-

excreted dairy manure that primarily affect flow of liquid water and gas 

exchange and transport of dissolved constituents, and 

(4) quantify emissions of the target gases from different manure sources in field 

experiments using the developed system. 

The research plan proceeded in four phases reflecting the specific objectives as 

follows. The first phase involved the development of the multiplexed portable FTIR- 

surface chamber system. The multiplexed chambers were integrated with a FTIR gas 

spectroscopy analyzer (Gasmet Technologies Oy, Helsinki, Finland) capable of 

monitoring concentrations of 15 pre-programmed gases simultaneously.  

The second phase was to evaluate the multiplexed surface chamber-based gas 

measurement accuracy. This phase included evaluation of the accuracy in determination 

of emission fluxes from each chamber to ensure there was no bias in the data collection 

and analysis. A method, based on Fick’s laws of diffusion, to simulate a controllable 

diffusive gas source while it diffuses upward through a dry sand layer was developed to 

determine the base-line flux in order to compare with the flux measurement from each 

chamber. The computed fluxes were statistically analyzed with the general ANOVA 

module of the R statistical software package (R Development Core Team 2011). The 

statistical hypothesis testing for the evaluation was to verify that there was no difference 
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in emission fluxes measured from all chambers. This phase laid the groundwork for the 

fourth phase, which involves the emission measurements in the field. 

Techniques commonly applied for soil analysis were applied in the third phase of 

the research plan to examine physical, hydraulic, and thermal properties of as-excreted 

dairy cattle manure. Water potential of dairy manure was measured with the WP4-T 

Dewpoint Potentiameter (Decagon Devices, Inc., Pullman, WA) to investigate the 

structural and functional relation between the volumetric water content (θv) and water 

potential (ψw) under equilibrium conditions. The solute potential (ψs) of the manure was 

then estimated and subtracted from ψw to generate the relationship between θv and the 

matric potential (ψm), which is known as the water characteristic or water retention curve. 

The saturated hydraulic conductivity (Ks) and the unsaturated hydraulic conductivity 

function K(θv) of the dairy manure samples were determined by means of an inverse 

solution simulation technique as an alternative to direct measurement. Changes in manure 

moisture content during the drying process was numerically simulated with HYDRUS 1-

D (Šimůnek, van Genuchten et al. 2008), a software package for simulating transient 

water movement in one-dimensional variably-saturated media with a robust inverse 

modeling capability. The thermal properties, including the thermal conductivity (λ), 

thermal diffusivity (), and bulk volumetric heat capacity (C) of drying dairy manure 

were measured with the penta-needle heat pulse probes (PHPPs) to investigate and 

identify relationships between these thermal properties and θv during the drying process. 

The last phase of the research plan was to evaluate the measurement system in the 

field applications. Gas emission characteristics from different types of manure sources 

and manure management practices were evaluated under the field experiments in this 
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phase. The field experiments initially were conducted to characterize individual gas 

emission rates from manure as a function of temperature, manure water content and time. 

Evaporation rates, changes in manure water content, and temperature were also 

continuously monitored over the course of the experiments to define the degree of 

temporal variability affected by these factors. 

Four cattle manure types including dairy manure, beef manure, dairy compost, 

and beef compost, were used as the sources of gaseous emissions in the experiments. The 

dairy and beef manures are collected from Utah State University’s Caine Dairy Farm 

(Central Coordinates: 41o 39’ 22” N; 111o 53’ 57” W) and Animal Science Farm (Central 

Coordinates:  41o 40’ 6” N; 111o 53’ 17” W) in Wellsville, UT, respectively. The 

measurements were set up in a field at Greenville Research Farm in North Logan, UT 

(Central Coordinates:  41° 45’ 57” N; 111° 48’ 43” W). The elevation is about 1,355 m 

(4,445 ft.) with the prevailing winds flowing from east to west. A meteorological station, 

located within the Greenville Research Farm approximately 480 feet to the east of the 

measurement field recorded air temperature, barometric pressure, and rainfall amount 

during the experimental period. Twelve 1.70 m by 1.20 m plots was prepared for four 

manure types (or treatments), each with three replicate samples to determine the assay 

statistics. The location of each treatment is statistically independent (i.e., assigned 

randomly), using a true random number generator. Gas emissions from the manure 

sources were continuously monitored for 15 days to investigate the diurnal pattern in 

detail. The effect of manure type, water content and temperature, monitored as part of the 

in-situ instrumentation, were correlated with the gas emissions to evaluate the most 

significant factor(s) contributing to the variation in emissions. 
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The remainder of this dissertation is organized as follows: Chapter 2 introduces 

the framework for the development of an automated multi-gas emission measurement 

system, based on the multiplexed portable FTIR-surface chamber network for continuous 

measurements and monitoring of target gas emissions. Chapter 3 describes measurement 

accuracy of the measurement system under controlled laboratory conditions in 

comparison to a gradient-based technique for the reference gas flux (CH4). In Chapter 4, 

physical, hydraulic, and thermal properties of dairy manure, that primarily affect flow of 

liquid water and gas exchange and transport of dissolved constituents were evaluated. 

Chapter 5 presents the measurements of gas emissions from different manure sources in 

field experiments using the measurement system. An overall summary and conclusions is 

in Chapter 6. 

1.6 Engineering Significance 

The work of this dissertation stands apart from previous research in measuring 

gaseous emissions from AFOs due to the unique design and development of the 

multiplexed portable FTIR - surface chamber system and the potential impact the 

instrument could have on AFO gaseous emission regulations and the development of 

management strategies that minimize gaseous emissions. Reliable measurements of gas 

emissions from animal wastes generated by AFOs are often difficult and inaccurate. The 

unique design presented provides an avenue for fully automated continuous monitoring 

necessary for in situ assessment of long-term gas dynamics in animal operations at the 

farm scale. 

Typical point-scale chamber techniques have significant limitations. While 

chamber techniques are commonly employed to measure gas emissions from point 
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sources and can be versatile in some scenarios, micrometeorological methods are 

applicable for measurements from larger footprints that more realistically represent 

emissions at the farm level. However, micrometeorological methods requiring complex 

setup are cost-prohibitive and more representative when weather conditions are stable 

with uniform wind direction and speed. Because of considerable differences between 

animal varieties and spatial heterogeneity of animal urine and feces depositions, multiple 

chambers are required to accurately capture all potential emission sources and spatial 

heterogeneity. 

The multiplexed chambers integrated with the FTIR gas spectroscopy analyzer 

presented in this work addresses the limitations typically associated with the chamber 

techniques. The developed gas emission measurement system will be beneficial for 

assessment of gas emissions from manure sources. The multiplexing system, which 

facilitates automation of multiple chambers and management of chamber air flow, can be 

employed to assess the temporal and spatial variability of emissions from different 

manure sources or farming practices. Application of the developed measurement system 

can also be extended for other agricultural management or natural ecosystems. 

The resulting physical, hydraulic, and thermal properties of cattle manure that primarily 

affect the transport of liquid water and gas within the manure presented in Chapter 4 of 

this dissertation provide a solid foundation upon which future research can build in better 

modeling and understanding cattle manure processes that impact the environment. By 

characterizing the physical and hydraulic properties of cattle manure using well 

established analytical models, advanced modeling of gaseous emissions, in addition to 

water, solute and colloid transport processes can be simulated using analytical and 
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advanced numerical modeling.  The thermal properties of cattle manure are likely to be 

used for development of heat transport models to identify the optimal conditions for 

manure composting processes as well as for prediction of manure water content and the 

movement of solutes and water from manure sources in addition to microbial activity and 

gas generation. 
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Table 1-1. The National Research Council committee’s scientific evaluation of 

the importance of AFO emissions, based on pollutant class (NRC 2003) 

Species Criteria 

Pollutant 

Hazardous Air 

Pollutant 

(HAP) 

Greenhouse 

Gas 

Regulated Air 

Pollutant 

NH3 - - - X 

N2O - - X - 

NOx X - - X 

CH4 - - X - 

NMVOCs - X - X 

H2S - - - X 

PM10 X - - X 

PM2.5 X - - X 

Odor - - - X 
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CHAPTER 2 

A MULTIPLEXING SYSTEM FOR MONITORING GREENHOUSE AND 

REGULATED GAS EMISSIONS FROM MANURE SOURCES 

USING A PORTABLE FTIR GAS ANALYZER† 

Abstract: Gas emissions from animal feeding operations (AFOs) degrade air 

quality and may be threats to public health. Animal manure is a significant 

emission source, which is highly dependent on temperature and moisture content 

varying both spatially and temporally. We present the design and operational 

features of an automated multiplexing system for chamber-based monitoring of 

greenhouse and regulated gas emissions from animal manure sources using a 

Fourier Transformed Infrared (FTIR) spectroscopy analyzer. The multiplexing 

system allows users to automate the chamber network, controlling the movement 

of chambers and accurately managing chamber air flow distribution. Chamber 

positioning was achieved with two 12-volt actuators with limit switches at the end 

of each cycle. Low-power latching solenoid valves were programmed to distribute 

air streams in concert with chamber placement. The sampled air stream was 

ultimately analyzed using an FTIR spectroscopy analyzer, which is capable of 

monitoring 15 pre-programmed gases simultaneously. System design, control 

circuit and system operating algorithms as well as data collection management are 

 
† The material for this chapter was previously published as: Sutitarnnontr, P., Miller, R., Bialkowski, S., 
Tuller, M., & Jones, S. B. (2012). A multiplexing system for monitoring greenhouse and regulated gas 
emissions from manure sources using a portable FTIR gas analyzer. In ASABE Annual International 
Meeting 2012, ASABE 2012 (Vol. 4, pp. 2782-2788). American Society of Agricultural and Biological 
Engineers, St. Joseph, MI. Reprinted with permission from ASABE Paper No. 121337982 © 2012 ASABE 
Annual Meeting. 
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presented in this paper. The multiplexing system is anticipated to increase data 

collection efficiency and decrease the uncertainly associated with spatial 

variations in gas emission measurements from manure sources. 

2.1 Introduction 

Air pollutants from animal feeding operations (AFOs) cause public health and 

environmental problems, becoming critical issues for farm workers and population living 

near livestock production sites. Accurate on-farm determination of emission rates that 

reflect the site-specific conditions is essential for understanding the scale of the emissions 

and for development and implementation of regulations and policies necessary for 

mitigating the impact of AFOs on the environment. However, there are only limited on- 

farm emission data available from livestock production facilities that are useful from a 

regulatory and environmental protection standpoint due to the complexity inherent to 

measuring gaseous emissions from AFOs (Leytem et al., 2011). 

It has been well documented that gaseous emissions from animal manure strongly 

vary with time and space, resulting from changes in physical, chemical, and biological 

factors that influence gaseous emission processes. Several gas emission measurement 

techniques have been extensively researched and developed in the past few decades. 

Among these techniques, the most commonly applied for quantifying gaseous emissions 

from area sources are surface chambers (Luo and Zhou, 2006). Surface chamber methods 

perform direct measurements of gaseous emissions from ground level area sources. The 

surface chamber techniques effectively isolate sample sources from external 

environmental conditions (e.g., wind speed and wind direction). The measurements are 

not strongly dependent on the meteorological conditions; therefore, they can be directly 
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comparable from day-to-day and site-to-site (Eklund, 1992). However, the disadvantage 

of the surface chamber techniques is that the conditions within the enclosure are 

momentarily altered from the actual surface conditions around the chamber. For this 

reason the time that the chamber seals with the surface is limited to a few minutes for 

most applications. 

Surface chamber techniques can be classified into two categories: dynamic and 

static methods, depending on whether air is allowed to circulate through the chamber. 

The dynamic chamber methods allow air to circulate between the chamber and gas 

analyzer unit that measures the concentration of target gases. The closed dynamic 

chamber (CDC) method measures changes in gas concentration inside the chamber that is 

part of a closed loop system operating over a short time period (Figure 2-1). Most of the 

commercially available surface chambers for measurement of gaseous emissions from 

ground level area sources are developed using the fundamentals of the CDC method. 

Gases emitted from the source build up inside the chamber, creating a temporal gradient 

during the measurement. A gradual increase in gas concentration inside the chamber 

typically can be fitted with a linear regression equation over a time frame of a few 

minutes. 

However, the gaseous concentration gradients between the subsurface and 

chamber diminish with time due to the build-up of gases in the chamber, thereby 

resulting in an apparent reduction in gas flux as time progresses. Several non-linear 

regression models have been developed to correct the apparent reduction in gas emission 

rates from the source by increasing gas concentrations inside the chamber (Davidson et 
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al., 2002; Hutchinson and Mosier, 1981; Venterea, 2010; Venterea and Baker, 2008; 

Wagner et al., 1997). 

A network of automated surface chambers with a multiplexing system is 

commonly used to assess the temporal and spatial variability of gaseous emissions, 

particularly for continuous monitoring of CO2 exchange between soils and atmosphere 

(Hongxing et al., 2007; Katsura et al., 2006; Liang et al., 2005; Liang et al., 2003). The 

multiplexing system typically facilitates automation of multiple chambers and 

management of chamber air flow, using a single gas analyzer. Our multiplexing system 

prototype was designed based on microcontroller technology, providing flexibility for 

future system expansion. 

A Fourier Transform Infrared (FTIR) spectroscopy gas analyzer (Gasmet DX-

4030; Gasmet Technology Oy, Helsinki, Finland), capable of monitoring concentration of 

up to 15 pre-programmed gaseous components simultaneously, was used as the gas 

analyzer unit to measure concentration of the target gases. Our target gases include 

typical gaseous compounds and greenhouse gases emitted from manure, namely 

ammonia (NH3), carbon dioxide (CO2), and methane (CH4). Sample air is drawn into the 

FTIR gas analyzer by a built-in diaphragm pump with a flow rate of two liters per 

minute. The FTIR gas analyzer is operated with a handheld computer (Trimble/TDS 

Recon) via Bluetooth protocol. Gas concentration results are stored in the handheld 

computer. 

2.2 System Design Overview 

The most important features of our multiple chamber instrumentation are: (a) 

concurrent measurement capability of gaseous fluxes from multiple sources, (b) near real- 
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time and accurate measurement of multiple gaseous components emitted from each 

source, (c) monitoring system for temperatures inside the chamber and emission source 

(e.g., soil, manure) for investigating the effects of temperature gradient on gas emissions, 

(d) monitoring system for relative humidity inside the chamber, (e) equalizing pressure in 

the chamber with atmospheric pressure, particularly in windy conditions, (f) providing 

well-mixed air sample in the chamber,  (g) monitoring system for moisture content of 

emission source, (h) automated data collection, (i) integrated fail-safe setup for the 

solenoid valve manifold to prevent damage that may occur to the diaphragm pump, and 

(j) reliable operation and minimum maintenance. A diagram of the multiplexed chamber 

setup with two chambers is illustrated in Figure 2-2. Depending on multiplexer 

configuration, additional chambers can be accommodated with our design for future 

expansion. 

2.3 System Component Design and Component Specifications 

Major components of multiplexing system for monitoring gas emissions from 

manure sources include a primary control unit, chamber driver circuit, data acquisition 

unit, and gas stream flow control circuit. Figure 2-3 outlines the system architecture and 

interface between the main components. A microcontroller serves as the primary control 

and data acquisition unit. The chamber positioning is accomplished by interfacing the 

microcontroller with a custom-designed driver circuit. A solenoid valve manifold is 

designed to coordinate the gas stream direction from the measurement chambers. 

Temperature and relative humidity (RH) are monitored using a thermistor (10K ohm 

Yellow Bead Thermistor; Apogee Instruments, Logan, UT) and RH sensor chip (HIH-

4021-001; Honeywell, Minneapolis, MN) located inside the chamber. The output 
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voltages from these sensors are transferred to the microcontroller through the analog-to-

digital inputs and ultimately sent to the handheld computer for processing and storing via 

a serial interface. The main parts used in developing the multiplexing system and their 

descriptions are listed in Table 2-1. 

LICOR 8100 Series chambers were initially used as the measurement chambers 

for demonstrating our system prototype. The chambers are initially designed, developed, 

and widely used for long term measurements of carbon dioxide fluxes from soils. The 

built-in drive system used in actuating the chamber is based on Transistor-Transistor 

Logic (TTL). Two additional driver circuits were used in interfacing the microcontroller 

for this application. One of the circuits is for multiple-chamber positioning and the other 

one is for controlling the solenoid valves for gas flow stream. The multiple-chamber 

positioning driver circuit was built based on metal-oxide-semiconductor field-effect 

transistors (MOSFETs; IRFD120). The solenoid valve driver circuit was based on 

integration of MOSFETs and a decoder (MM74HC4514). The decoder was used for 

translating the signal from the microcontroller to the gate pin of the MOSFETs driving 

the solenoid valves. MOSFETs were used as switching devices in this application due to 

low power consumption and low voltage at the gate while switching. 

The Gasmet DX4030 FTIR gas analyzer samples air with a flow rate of two liters 

per minute. Using the multiplexing system in monitoring gas emissions, the solenoid 

valve manifold distributes air streams in concert with chamber placement. For each 

measurement chamber, the air flow (a) from the chamber to gas analyzer and (b) from the 

gas analyzer to chamber, in order to complete a closed path during a measurement, is 

controlled by a pair of two solenoid valves. The first valve allows air flow from the 
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chamber to gas analyzer and the second valve allows air flow from the gas analyzer to the 

chamber. When the chamber is sealed, the control unit switches the solenoid valves 

accordingly to ensure the closed path of gas stream flow is accomplished during the 

measurement. 

To prevent damage that may occur to the internal diaphragm pump, the valve 

manifold is programmed so that the solenoid valves corresponding to the chamber that 

previously measured remain opened until the valves coordinated with the chamber 

currently measuring are opened. This programming approach ensures at least one pair of 

valves remain opened at any given time. 

2.4 Data Acquisition 

Voltages that are proportional to the chamber temperatures and RH are measured 

by the thermistor and RH sensor chip located inside the chamber and sent to the handheld 

computer by the microcontroller. The moisture content, temperatures, and RH are 

ultimately computed, based on the output voltages. A C# program, installed in the 

handheld computer, computes, displays, and stores the temperature and RH data. All data 

collected during the measurement are recorded and stored in the handheld computer with 

the timestamp as the gas concentrations are being monitored by the FTIR gas analyzer. 

2.5 Laboratory Prototype Testing 

The multiplexing system prototype has been satisfactorily tested in the laboratory 

environment. We tested and verified the system function with repeated measurement 

cycles. The default measurement cycling time in using two chambers with the 

multiplexer was 12 minutes, including three minutes for each chamber measurement in 
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addition to time required for chamber repositioning. This default values can be simply 

modified to fit specific applications in emission measurement. 

2.6 Conclusion 

The multiplexing system for the CDC method offers a capability for 

simultaneously monitoring multi-gas emissions, decreasing the uncertainly associated 

with spatial variations in gas emission measurements from manure sources. With the 

multi-gas emission measurement and expandable sensor network capabilities, the 

presented system is more flexible than the commercially available ones. The system 

prototype was initially designed and developed using the advanced microcontroller 

technology. With the multiplexing system, data collection and management in gas 

emission measurement are anticipated to be much more efficient than using a single 

chamber. The system can be used to evaluate gas mitigation strategies for AFOs (e.g., use 

of manure amendments, comparing manure incorporation methods, changes in animal 

diet), as well as to investigate the factors affecting gaseous emission mechanisms from 

manure sources. Although the system prototype has been successfully tested in the 

laboratory environment, it is essential to test the system in the field condition and 

evaluate the system precision. 
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Table 2-1. List of major parts and descriptions used in developing the multiplexing 
system prototype for monitoring gas emissions from manure sources 

Part Description 
1. C8051F020 Microcontroller 

(Silicon Laboratories Inc., Austin, 
TX) 
 

Programmable control unit, used in 
control and communication with other 
devices (e.g., temperature and RH 
sensors, chamber movement signals) 
 

2. LICOR 8100-101 and 8100-104 
Chambers (LI-COR Biosciences, 
Lincoln, NE) 
 

Measurement chambers used for system 
demonstration 
 

3. Gasmet DX4030 FTIR Gas 
Analyzer (Gasmet Technology Oy, 
Helsinki, Finland) 
 

Gas analyzer unit, capable of 
monitoring concentration of up to 15 
pre-programmed gaseous components 
simultaneously 
 

4. Trimble/TDS Recon 400 64/256 
Handheld Computer (Tripod Data 
Systems, Corvallis, OR.)  
 

Data collection and analysis unit 
 

5. Solenoid Valves GL2015 (Precision 
Dynamics, Inc, CA) 
 

Major component of the valve 
manifold, used in distributing air 
streams in concert with chamber 
placement.  
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Figure 2-1. Conceptual diagram of the closed dynamic chamber (CDC) method. Air with 
a constant flow rate is circulated within a loop between chamber and gas analyzer unit 
during the measurements by a diaphragm pump. 
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Figure 2-2. Multiplexed gas and sensor measurements with the automated two-chamber 
setup 
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Figure 2-3. Top level system diagram illustrating major components and interfaces 
[a] Analog and serial data includes temperatures, relative humidity (RH), dielectric 
permittivity, and electrical conductivity (EC). [b] USB connection is used for 
downloading data from handheld computer to PC. Abbreviation: PC = Personal 
computer; C1-C12 = The numbers of the chambers in the system. 
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CHAPTER 3 

MEASUREMENT ACCURACY OF A MULTIPLEXED PORTABLE FTIR – 

SURFACE CHAMBER SYSTEM FOR ESTIMATING GAS EMISSIONS† 

Abstract: Reliable and accurate monitoring systems for greenhouse gas emissions from 

animal feeding operations (AFOs) are crucial for establishment and enforcement of gas 

emission mitigation strategies. An automated multiplexing system for chamber-based 

monitoring of greenhouse and regulated gas emissions from manure sources was 

developed to examine spatial and temporal variability of emissions associated with 

manure management practices. The measurement system uses a Fourier Transformed 

Infrared (FTIR) spectroscopy analyzer for determination of up to 15 pre-programmed gas 

fluxes. Multiple chambers provide estimates of variance for emissions from different 

management practices. The objective of this paper is to demonstrate the robustness and 

reliability of the described system for monitoring gas emissions from AFOs. Evaluation 

of system performance was based on laboratory experiments using methane gas (CH4) to 

assess the accuracy of the chamber-based measurement system. We developed a method 

to generate constant emission of methane gas using a gradient-based technique for the 

reference gas flux. Three different emission rates were simulated. Statistical analysis, 

including ANOVA, was performed to determine the significance of gas flux estimates 

using the chamber-based estimate. A p-value ≤ 0.05 was considered to be statistically 

significant. The ANOVA tests indicated no statistically significant differences among 

                                                      
† The material for this chapter was previously published as: Sutitarnnontr, P., Hu, E., Miller, R., Tuller, M., 

& Jones, S. B. (2013). Measurement accuracy of a multiplexed portable FTIR - surface chamber system for 

estimating gas emissions. In ASABE Annual International Meeting 2013, ASABE 2013 (Vol. 6, pp. 4634-

4645). American Society of Agricultural and Biological Engineers, St. Joseph, MI. Reprinted with 

permission from ASABE Paper No. 131620669 © 2013 ASABE Annual Meeting. 
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estimated fluxes from each of the 12 evaluated chambers, with resulting p-values of 0.54, 

0.58, and 0.80 for measurements of three different emission rates. In addition, the multi- 

chamber system measurements referenced to the gas fluxes estimated with the gradient-

based method showed excellent accuracy with measurement biases less than 1%. 

3.1 Introduction 

Gas emissions from animal feeding operations (AFOs) create detrimental impacts 

on air quality ranging from short-term local effects, particularly odor, to long-term large- 

scale effects such as global warming. Most emissions from AFOs are from area sources 

such as cattle feedlots, wastewater lagoons, or from agricultural fields amended with 

manure or sewage, causing complications for emission measurements. Spatial and 

temporal variations from these sources are found to be challenging for quantifying the 

amount of gases released to the atmosphere. Emissions of gases from area sources are 

commonly expressed in terms of fluxes (i.e. mass emission rates per unit area 

perpendicular to the direction of the flux). Gas emission fluxes can be measured at a 

range of scales, including small, surface layer, and mixed-layer scales (NRC, 2003). Gas 

fluxes from a ground-level area source can be determined using enclosures (flux 

chambers) or micrometeorological techniques by measuring upwind and downwind 

concentrations and back calculating fluxes with a dispersion model. 

 A number of enclosure techniques have been widely used for area flux estimates 

at small-scales. When micrometeorological techniques are inappropriate due to the 

required the required complex and expensive instrumentation, chamber-based methods 

are used to measure gaseous emissions at the farm-scale (DeSutter and Ham, 2005; 

Laguee et al., 2005; Park et al., 2010; Safley and Westerman, 1988, 1992). 
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Chambers have also been employed for measuring gas fluxes to evaluate manure 

management practices in controlled pilot-scale experiments at research facilities (Amon 

et al., 2006; Petersen et al., 2009; VanderZaag et al., 2009, 2010; Wood et al., 2012). 

Advantages of chamber-based methods include their cost effectiveness and ease of use. 

However, it is important to consider the potential impacts of discrete sampling in space 

and time associated with chambers, particularly when using the measured flux data to 

estimate total emissions over extended time periods. 

Spatial and temporal variability issues relative to chamber techniques have been 

discussed extensively for soil gas emissions (Hutchinson and Livingston, 2002; 

Livingston and Hutchinson, 1995; Rochette et al., 2005). However, few studies have 

addressed issues related to chamber-based techniques for measuring emissions from 

manure sources at AFOs (Wheeler et al., 2011). We designed, constructed, and tested a 

multiplexed automated-chamber system for determination of gaseous emissions from 

surface sources from a variety of animal waste treatment practices (Sutitarnnontr et al., 

2012). The multiplexing system, based on the closed dynamic chamber principle, 

includes state-of-the-art moisture content sensors, thermistors, and relative humidity 

sensors to monitor and examine the primary physical factors directly influencing gas 

production and transport mechanisms. 

The multiplexed chambers are integrated with a Fourier Transformed Infrared 

(FTIR) gas spectroscopy analyzer (Gasmet Technologies Oy, Helsinki, Finland) capable 

of monitoring concentrations of 15 pre-programmed gases simultaneously. The capability 

of measuring multiple gases simultaneously is particularly important for studying factors 

affecting gas production and transport processes; for example, raising the temperature 
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may increase the emission rate of one gas, while having the opposite effect (i.e. 

decreasing the emission rate) on another gas. 

The objective of this study was to evaluate the accuracy of determination of 

methane emission fluxes using the multiplexed portable FTIR and surface chamber 

system under controlled laboratory conditions (Figure 3-1). To accomplish this goal, we 

developed a method to generate controllable diffusive gas sources to be used as reference 

emission fluxes. The accuracy of measurements was evaluated using identical sources for 

each chamber, and comparing the measurement results by means of statistics. Evaluation 

procedures were refined by examining (a) measurements from each chamber at three 

different emission rates and (b) by comparing chamber-based measurements with fluxes 

estimated with a gradient-based technique. Finally, we discuss the use of the multiplexing 

system for determination of gas emissions from manure sources in AFOs. 

Laboratory testing of the chamber-system performance was carried out under 

controlled conditions where environmental parameters such as temperature, relative 

humidity, surface air velocity were controlled. This is an important step for calibration 

and validation of the chamber systems measurement capability since it is difficult to 

obtain repeatable data under field conditions. 

3.2 Theoretical Considerations 

3.2.1 Theoretical Gradient-Based Method Computations 

Gas transport through a porous medium mainly occurs by molecular diffusion 

and/or advection through the pores. In fine grained materials such as soils, gas moves 

predominantly by molecular diffusion (Glinski and Stepniewski, 1985; Hillel, 1998). For 
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steady-state conditions, the diffusive transport can be described by Fick’s law, which in 

one dimension is given as: 

 𝐽  =   −𝐷𝑠

dC

dz
  ≈    −𝐷𝑠

ΔC

Δz
 (1) 

where J is the flux of gas species [g m-2 s-1], Ds = Da(n,θ) is the gas diffusion coefficient 

[m2 s-1] in the porous medium that is dependent on the total porosity (n) and volumetric 

water content (θ), C is the mass concentration of gas [g m-3], and z is the depth [m]. For 

flux determination, the gradient (dC/dz) is estimated by discrete differences in gas 

concentration, ΔC, across distance, Δz. 

Based on the ideal gas law, the mass concentration of gas can be converted from 

the volume or molar concentration using the relation below:  

 𝐶  =     𝐶𝑝𝑝𝑚 ∙  
𝑃 ∙ 𝑀𝑊

𝑅 ∙ 𝑇
 (2) 

where C is the mass concentration of gas [g m-3], Cppm is the volume or molar 

concentration [ppm], P is the ambient pressure [atm], MW is the molecular weight of gas 

[g gmol-1], R is the ideal gas law constant [82.06 x 10-6 atm m3 gmol-1 K-1],  and T is the 

temperature in degrees Kelvin [K]. 

3.2.2 Gas Diffusion Coefficients in Porous Media 

 The fraction of air or air-filled porosity (ϕ), defined as the relative content of air in 

soils, is related to the total porosity (n) and volumetric water content (θ): 

 ∅  =   𝑛 − 𝜃 (3) 

 As ϕ determines the gas diffusion coefficient, a number of models have been 

proposed to relate the total porosity (n) and water content (θ) to the gas diffusion 
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coefficient in soils (Werner et al., 2004). Moldrup et al. (2000) developed a simple 

relationship that yielded excellent predictions of the soil-gas diffusion coefficient (Ds) as 

a function of n and θ for sieved and repacked soils: 

 𝐷𝑠   =     𝐷𝑎

(𝑛 - 𝜃)2.5

𝑛
 (4) 

where Da is the diffusion coefficient for a particular gas in free air. For methane, Da ≈ 

0.16 cm2 s-1 at 0 oC, 1 atm pressure (Thibodeaux, 1996). 

 When the soil is oven-dry (θ ≈ 0 cm3 cm-3 and ϕ = n), Eq. (4) can be simplified: 

 𝐷𝑠   =    𝐷𝑎𝑛1.5   =   𝐷𝑎∅1.5 (5) 

3.3 Materials and Methods 

3.3.1 Experimental Setup 

We developed a method to simulate a controllable diffusive gas source while it 

diffuses upward through a dry sand layer and applied this technique to determine the 

accuracy of the automated multiplexed chamber system. Figure 3-2 depicts the 

experimental setup. A PVC column (11.5-cm length, 20.32-cm diameter) was sealed with 

a PVC plate at the bottom. A 1-mm thick steel grate with a geotextile fabric filter was 

placed inside the column 3.5 cm above the bottom plate to create the headspace for gas 

diffusion. 

A certified standard 100 ppm methane gas (CH4) was used as the gas source in 

our experiment. The CH4 concentration in the headspace was dependent on the flow rate 

of the standard CH4 gas diluted with 99.999% nitrogen gas (N2), controlled by a gas 

mixing system (Series 4000, Environics Inc., Tolland, CT). Table 3-1 shows the flow 

rates of the certified 100 ppm CH4 supplied to the headspace with the measured CH4 
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concentrations exhausted from the headspace after equilibration. While the majority of 

the gas molecules travel to a fume hood through a flexible polyethylene duct hose (3-m 

length, 3.18-cm diameter), some diffuse upward through the porous medium (sand) above 

the headspace at a constant rate, producing a steady-state gas flux. The exhaust rate of the 

fume hood was maintained at 2.72 m3 min-1 (96 ft3 min-1). Wedron sand (99% quartz, 

Wedron Silica Company, Wedron, IL) was used as the porous medium through which 

CH4 would diffuse upward into the chamber. The sand was oven-dried at 105 oC for 24 

hours prior to the measurements. The dry bulk density (ρb) of the sand was determined to 

be 1.53±0.012 g cm-3, resulting in an estimated total porosity of 0.42 cm3 cm-3. 

Three experiments were setup to cover a range of gas fluxes anticipated under 

field conditions: (A) 2,000 cm3 min-1 of the standard methane gas diluted with 645 cm3 

min-1 of nitrogen gas with 2 cm sand depth, (B) 300 cm3 min-1 of the standard methane 

gas diluted with 324 cm3 min-1 of nitrogen gas with 2 cm sand depth, (C) 300 cm3 min-1 

of the standard methane gas diluted with 324 cm3 min-1 of nitrogen gas with 4 cm sand 

depth. Table 3-2 summarizes the conducted experiments and lists the gas fluxes that were 

theoretically determined with the gradient-based method (Eq. (1)). 

3.3.2 Gas Measurement Instrumentation 

 Multi-gas concentration measurement was accomplished with a Fourier transform 

infrared (FTIR) spectrometer (model DX-4030, Gasmet Technologies Oy, Helsinki, 

Finland). The instrument was designed for on-site measurements of various organic and 

inorganic gaseous compounds at low concentrations in ambient air. The detection ranges 

and detection limits for specific gases of interest are listed in Table 3-3. Results presented 

in this paper focus on methane concentrations since methane is one of the major gaseous 
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components released from manure sources in AFOs and, therefore, of primary interest for 

our affiliated studies that are based on the presented measurement platform. The Gasmet 

DX-4030 provides rapid and accurate measurements with calibration-stability for 

multiple gases. According to the Gasmet DX-4030 instruction and operating manual,, 

span calibrations are not required and the cross-references are automatically compensated 

for during automated calculation of the gas fluxes due to the FTIR technology. Fifteen 

gaseous compounds can be simultaneously analyzed and the results can be averaged, 

displayed and recorded within nine seconds. 

 Prior to the measurement, a zero calibration was performed using 99.999% 

nitrogen gas (N2) with a flow rate of 2 L min-1 to improve accuracy of very low 

concentration readings. During the measurement, an air sample is continuously drawn 

into the measurement chamber with an approximate flow rate of 2 L min-1 by an external 

diaphragm pump (model D737-23-01, Parker-Hannifin Corp., Mooresville, NC). The air 

sample is filtered through a PTFE 2-μm membrane (part 450-25-3, Savillex Corp., Eden 

Prairie, MN) to prevent solid particles from accumulating in the sample cell, which 

would deteriorate measurement quality. PTFE tubing (6-mm OD) was used for the gas 

sampling lines in the closed-loop system. 

3.3.3 Gas Emission Flux Measurements and Statistical Analyses 

 The gas flux measurements were performed in a well-controlled laboratory setting 

with an average temperature of 21.84±0.9 oC and an average barometric pressure of 0.84 

atm. Three replicate measurements were performed for each chamber to determine the 

assay statistics. Linear regression analysis was applied to determine the rate of increasing 

concentration of CH4 during chamber closure. Computation of the CH4 emission fluxes 
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from the measured data is based on the mass balance principle together with the ideal gas 

law: 

 𝐽 =  
𝑉 ∙ 𝑃 ∙  𝑇𝑠  ∙  𝑀𝑊

𝐴 ∙  𝑃𝑠 ∙ (273.15 + 𝑇) ∙  (2.24 ∙  10−2) 
 ∙  

𝜕𝐶

𝜕𝑡
 (2) 

 

where J is the flux of CH4 gas [µg m-2 s-1], P is the measured ambient pressure [atm], V is 

the total system volume including the chamber headspace [m3], TS is the standard 

temperature [273.15 K], Ps is the standard pressure [atm], S is the surface area of the 

chamber on top of the emission source [m2], T is the temperature in degree Celsius, 2.24 · 

10-2 is the molar volume of a gas [m3 mol-1], and ∂C/∂t is the gradient of gas 

concentration changing over time derived from linear regression [ppm s-1 or µm3 m-3 s-1] 

The computed fluxes were statistically analyzed with the general ANOVA  

module of the R statistical software package version 2.14.1 (R Development Core Team, 

2011). For all analyses, a p-value of 0.05 or smaller was considered significant. The 

statistical hypothesis testing for our study is summarized in Table 3-4. 

3.4 Results and Discussion 

3.4.1 Linear Regression Models for Emission Flux Estimates 

 Examples for measured CH4 concentrations and the fitted linear regression model 

are shown in Figure 3-3. The goodness-of-fit statistics from all measurements are 

summarized in Table 3-5. In general, all of the measured data fit well with the linear 

regression models. The largest variation of the statistical coefficients of determination 

(R2) was observed for Experiment C where the system was evaluated with the smallest 

CH4 flux simulation. 
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Although, the application of linear regression is appropriate for estimating CH4 

fluxes in this study, due to the well-controlled laboratory setting, care must be taken when 

the non-linear nature of gas concentrations over time in closed chambers is observed in 

field settings. Covering the emission sources with a closed chamber over a long period of 

time can disturb the natural gaseous emission fluxes by altering the concentration 

gradient between the emission source and the air inside the chamber. Using the linear 

regression for determination of the gaseous fluxes may lead to underestimation of the 

actual fluxes. Several non-linear regression models have been developed to correct the 

apparent reduction in gas emission rates from the source by increasing gas concentrations 

inside the chamber (Davidson et al., 2002; Hutchinson and Mosier, 1981; Kutzbach et al., 

2007; Venterea, 2010; Venterea and Baker, 2008; Wagner et al., 1997). 

3.4.2 Measurement Accuracy 

 A series of one-way analyses of variance (ANOVAs) were performed to examine 

the mean differences among the CH4 flux measurements with 12 chambers in three 

experiments, reflecting the measurement accuracy of the system. The means and standard 

deviations of all measurements are presented in Figure 3-4(a)-(c). All three analyses 

revealed that there were no significant differences across the chambers; F(11, 24) = 0.92, 

ns in Experiment A, F(11, 24) = 0.87, ns in Experiment B, and F(11, 24) = 0.62, ns in 

Experiment C. The largest measurement variation across chambers occurred in 

Experiment A, where the highest emission fluxes were anticipated.  

A comparison between gradient-based surface CH4 flux estimates and closed- 

chamber measurements (Figure 3-5) shows excellent agreement. The mean of the flux 

measurements (n = 36) in Experiments A, B, and C was within 0.79%, 0.47%, and 0.37% 
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of the gradient-based flux estimates, respectively. The largest bias in the mean of the 

measurements was 3.85%, observed for Chamber 11 in Experiment A (Figure 3-4(a)). 

Despite the excellent agreement between the multi-chamber measurements and the 

gradient-based estimates, it is important to note that the experiments were conducted in a 

well-controlled laboratory environment. Measuring gas fluxes under field conditions will 

potentially be more complicated because of spatially and temporary varying physical, 

chemical, and biological factors as suggested by Turcu et al. (2005), who measured CO2 

fluxes in greenhouse soil columns. 

3.5 Summary 

 The multiplexed portable FTIR-surface chamber measurement platform with fully 

automated data collection provides a potential new method for near real-time monitoring 

of multi-gas emissions from manure sources. The complex nature and multiple factors 

influencing gaseous emissions from manure sources require measurement capabilities 

that are accurate, reliable and repeatable. The multiple-surface chamber platform, 

designed and built based on the closed dynamic chamber principle, exhibits these 

characteristics, providing defensible measurement capabilities, which are crucial for 

understanding production, flux and fate of gases from biologically active porous media 

such as manure and soil. Comparisons of CH4 emission measurements from the same 

sources were used to evaluate the measurement accuracy of the system with statistical 

one-way ANOVA tests with a level of significance of 0.05. Analyses revealed that there 

were no significant differences across the twelve chambers with resulting p-values of 

0.54, 0.58, and 0.80 in Experiments A, B, and C, respectively proving the null hypothesis 

is true. The system accuracy was observed as relative percentage differences between the 
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mean of the CH4 fluxes determined by the system and the fluxes estimated using the 

gradient-based technique. Overall, the measurement biases were less than 1%. 

In addition to decreasing the uncertainties associated with spatial variations, the 

multiplexed surface chamber platform is valuable for investigating relationships between 

factors affecting gaseous emissions from biologically active porous media such as 

manure sources, leading to improvement of best management practices (BMPs) to 

minimize gaseous emissions from farm operations. The system can be employed for 

evaluation of gaseous mitigation strategies such as comparison of manure incorporation 

methods, effect of various bedding materials, and effects of animal diet as well as for 

investigating factors that cause uncertainties in gas emissions such as manure surface 

crusting. Although the multiplexing system was successfully evaluated for a single test 

gas in a controlled laboratory environment, testing under field conditions is essential and 

part of our ongoing research. 
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Table 3-1. Concentration of CH4 exhausted from the headspace shown in Figure 

3-2, corresponding to the applied flow rate of standard 100 ppm CH4 mixed with 

99.999% nitrogen gas. The concentrations were measured 15 minutes after flow 

initiation. 

CH4 flow rate (cm3 min-1)  CH4 concentration (ppm)† 

300 48.10±0.78 

2,000 75.61±0.62 

† The concentrations shown represent the mean and standard error (n = 20) 
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Table 3-2. Estimated CH4 emission fluxes 

Experiment 

Flow rate of certified 

100 ppm CH4 

(cm3 min-1) 

Sand depth 

(cm) 

Estimated CH4 

emission flux 

(μg m-2 s-1) 

A 2,000 2 8.63 

B 300 2 5.42 

C 300 4 2.69 
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Table 3-4. Statistical hypothesis test used for the measurements 

Null hypothesis (H0) Alternative hypothesis (Ha) 

There is no difference in CH4 

emission fluxes measured 

from all 12 chambers. 

The CH4 emission flux determined from 

at least one of twelve chambers differs 

from the others. 
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Table 3-5. Goodness-of-fit statistics of linear regression for the change of CH4 

concentrations over the chamber closure time 

Experiment  
Estimated CH4 flux 

(μg m-2 s-1) 

R2 Statistics 

Mean Min Max SD n 

A 8.63 0.9962 0.9915 0.9988 0.00174 36 

B 5.42 0.9942 0.9905 0.9970 0.00164 36 

C 2.69 0.9918 0.9847 0.9964 0.00262 36 

 
  

54



 
 
 
 
 
 
 
 
 

 

Figure 3-1. Multiplexed automated-chamber system with five chambers shown in open 

position. 
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Figure 3-2. Sketch of the experimental calibration unit to generate a controllable steady-

state gas flux into the surface chamber. Methane (CH4) mixed with nitrogen gas (N2) was 

continuously fed through the headspace with a constant flow rate resulting in an 

equilibrium gas concentration within the headspace. The bulkhead fitting was for ¼” 

PTFE sampling tube to determine the concentration of CH4 exhausted from the 

headspace. Methane gas diffused from the headspace into the uniform dry Wedron sand 

with at a constant rate. Fluxes of CH4 from the sand were measured during closure of the 

flux chamber. The depth of the sand layer and gas flow rate can be adjusted to produce 

the desired gas fluxes. 
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Figure 3-3. Evolution of CH4 concentrations with time inside each of the 12 chambers    

(a – l) during calibration in Experiment A. The chamber closure time for all 12 chambers 

was programmed to three minutes and the concentration data were recorded on average in 

nine-second intervals. 
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Figure 3-4. Mean of the methane flux measurements from 12 chambers: (a) Experiment 

A, (b) Experiment B, and (c) Experiment C. The error bars denote plus and minus one 

standard deviation. The blue-solid lines depict the mean of the measurements from 12 

chambers (n=36) and the red-dashed lines show the methane fluxes estimated with the 

gradient-based technique. 
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Figure 3-5. Comparison of CH4 emission fluxes measured with the closed-chamber 

technique and gradient-based estimates (n = 108). The error bars denote plus and minus 

one standard deviation and the red-dashed line represents the 1:1 comparison line. 
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CHAPTER 4 

PHYSICAL AND THERMAL CHARACTERISTICS OF DAIRY CATTLE MANURE† 

Abstract: Greenhouse and regulated gas emissions from animal waste are naturally 

mediated by moisture content and temperature. As with soils, emissions from manure 

could be readily estimated given the physical, hydraulic, and thermal properties are 

described by models and microbes and nutrients are not limiting factors. The objectives 

of this study were to measure and model physical, hydraulic, and thermal properties of 

dairy manure to support advanced modeling of gas and water fluxes in addition to solute, 

colloid and heat transport. A series of soil science measurement techniques were applied 

to determine a set of fundamental properties of as-excreted dairy cattle manure. 

Relationships between manure dielectric permittivity (Ka) and volumetric water content 

(θv) were obtained using time-domain reflectometry (TDR) and capacitance-based 

dielectric measurements. The measured water retention characteristic for cattle manure 

was found to be similar to that of organic peat soil. The unsaturated hydraulic 

conductivity function K(θv) of dairy manure was inferred from inverse numerical fitting 

of laboratory manure evaporation results. The saturated hydraulic conductivity (Ks) was 

estimated to be about 200 cm day-1. These simulation results suggest that the Richards 

equation can describe the hydrodynamics taking place in dairy manure relevant to natural 

drying processes. The thermal properties of dairy manure, including thermal 

conductivity, thermal diffusivity, and bulk volumetric heat capacity, were also 

determined using three penta-needle heat pulse probes (PHPPs). The thermal 

 
† The material for this chapter was previously published as: Sutitarnnontr P., Hu E., Tuller M., Jones S.B. 
(2014). Physical and thermal characteristics of dairy cattle manure. Journal of Environmental Quality 43: 
2115-2129. DOI: 10.2134/jeq2014.05.0212. 
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conductivities (λ) of the dairy manure were found between 0.52 and 0.08 W m-1 oC-1 from 

saturation to dry conditions. Change of the thermal diffusivity () during the manure 

drying process was observed to be only a small range, approximately from 0.0013 

(saturation) to 0.0010 cm2 s-1 (dry). The bulk volumetric heat capacity (C) of dairy 

manure at the saturation point was determined as approximately 3.95 MJ m-3 oC-1 and 

linearly decreased to 0.79 MJ m-3 oC-1 for the dry manure sample. The accuracy of the 

measurements was determined from a comparison of theoretical volumetric water 

content, estimated from the measured thermal properties with that determined by the 

capacitance-based dielectric measurement. These data represent a novel and unique 

contribution for advancing prediction and modeling capabilities of gas emissions from 

cattle manure, while the uncertainties of the results can be due to the complexity of 

shrinkage, surface crust formation, and shrinkage cracks. 

4.1 Introduction 

Livestock manure is widely applied to land in agricultural production as the 

nutrient and organic matter content of manure is beneficial for plant growth, long-term 

fertility, and soil structure in agronomic systems (Klop et al., 2012; Schröder et al., 

2013).  However, runoff and infiltration from feedlots and barnyards, land applied 

manure, and from pastures where livestock are grazing can result in transfer of nutrients, 

pathogens, pharmaceuticals and organic matter to aqueous systems including both ground 

and surface waters (Christian et al., 2003; Sharpley et al., 1998). Numerical models are 

required to simulate complex transformation and translocation processes such as with 

carbon and nitrogen, which involve both liquid and gas phases. There are a number of 

these models including large-scale land surface models (Del Grosso et al., 2006; Grosso 
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et al., 2008; Oleson et al., 2008; Parton et al., 1998) and point scale models (Simunek et 

al., 2006; Toride and Chen, 2011), which are continually being improved as more detail 

is made available, but physical properties of manure have not been defined for use with 

these models. An accurate simulation model that can describe solute transport from 

manure sources at a range of scales is mandatory for estimation of quality and quantity of 

manure leachate. 

Accurately describing fluid flow and transport mechanisms in porous media 

requires extensive knowledge and understanding of physical, chemical, and 

microbiological processes and properties. Similar to other porous media, the transport 

and fate of dissolved nutrients in manure depends on the magnitude and direction of the 

water flux (e.g., infiltration, runoff), which is primarily influenced by the hydraulic 

gradient (Hillel, 1998; Jury and Horton, 2004). While the Richards equation is widely 

applied in simulations of the fluid transport in unsaturated porous media, it requires the 

physical and hydraulic properties as the primary input parameters in the model 

development.  As the accumulation of dairy cattle manure in feedlots, storage areas or in 

pastures generates large amounts of dissolved solutes mobilized by water transport, the 

physical and hydraulic properties of cattle manure are key requirements in the model 

development to accurately describe manure leachate transport mechanisms and response 

from point to field and feedlot scales. 

From a physical perspective, manure is a heterogeneous, polyphasic, disperse 

porous medium generally consisting of solid, liquid, and gaseous phases. The solid 

fraction primarily consists of fibrous material, which may include hay, grain, and silage, 

creating a complex manure matrix (Azevedo, 1974; Sobel, 1966; Spellman and Whiting, 
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2007). The liquid phase is mostly water, commonly containing dissolved solutes and 

organic matter. The gas fraction occupies the empty pores or void space. The manure 

matrix determines the geometric characteristics of the empty pores that play an important 

role in the transport of the water and gases (Hillel, 1998; Horn and Smucker, 2005; Jury 

and Horton, 2004). 

Livestock manure is responsible for approximately 7.5% of methane (CH4) and 

4.7% of nitrous oxide (N2O) emissions in the US (United States Department of State, 

2010). While microbial activity is a key factor for formation of gaseous compounds in 

manure, the magnitude of gas exchange between manure and the atmosphere largely 

depends on manure physical characteristics. Microbial metabolism as well as population 

dynamics (e.g., composition and density) are dramatically influenced by manure 

temperature (Miller, 1992). However, manure moisture content had a greater influence on 

microbial activity in the manure composting processes than does temperature (Liang et 

al., 2003). This is in part due to the competing roles water plays in providing an aqueous 

environment for microbes while at the same time controlling the rate of gas exchange 

(i.e., O2 supply). The effects of microbial-bacterial growth on the physical and hydraulic 

characteristics of soil matrix structure in the unsaturated zone are significant (Or et al., 

2007). Microbial existence in the soil matrix was found to decrease the evaporative water 

losses due to an evaporation-retarding barrier, potentially formed by microbes (Chenu 

and Roberson, 1996; Sutherland, 2001).  

Surface crusting has been identified to have a significant impact in decreasing the 

hydraulic conductivities in infiltration and evaporation processes in soils (Assouline, 

2004; Ruan et al., 2001; Touma et al., 2011). Similar principles should apply to surface 
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crust forming processes of cattle manure, which occur at the surface through shrinkage. 

With drying, capillary forces become more negative, pulling the solid phase fibers closer 

together, effectively shrinking the pore structure and filling open pore spaces with 

microbially-generated polymeric substances that have cementation properties. Following 

crust formation, development of random shrinkage cracks is commonly observed on the 

cattle manure surface, increasing the difficulty of model predictions. The volume of the 

sample is known to have an effect on the magnitude of shrinkage cracks (Chertkov, 

2013); the larger the manure sample, the more shrinkage cracking is likely to occur . Or 

(1996) introduced a model of liquid phase sintering of glass compacts to describe wetting 

induced densification of aggregated soil that could be potentially adopted for crust 

formation in cattle manure. The model requires information on geometrical and density 

parameters of cattle manure, which could be obtained from direct measurements while 

the viscosity of saturated manure, as the unknown parameter, could be estimated using a 

curve fitting technique. However, more research is needed to evaluate and verify the 

accuracy of adopting this model to describe crust formation on manure surfaces.  

Thermal properties of dairy cattle manure also play a significant role in the drying 

process. These parameters, including the volumetric heat capacity, thermal conductivity, 

and thermal diffusivity, are used in the heat flow equation to describe the spatial and 

temporal temperature variations, allowing prediction of the movement of thermal energy 

and water (Sailor et al., 2008; Scott, 2000). Heat pulse probes have been developed to 

determine soil thermal properties with high accuracy (Ham and Benson, 2004; Heitman 

et al., 2003; Knight et al., 2012; Young et al., 2008). The measurement is based on the 

theory of radial heat dissipation from an infinite line source. Temperature rise associated 
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with a heat pulse applied to the line source is measured at an approximate distance of 6 

mm from the line source. The probes normally consist of two parallel needles; one needle 

providing the heat source and the other containing a thermistor or thermocouple for the 

temperature measurement. 

Heat pulse probes have been successfully used to determine thermal properties 

and water content, in addition to water flux density of porous media (Gao et al., 2006; 

Kamai et al., 2008). The penta-needle heat-pulse probes (PHPPs) used in this study 

employ a novel inverse fitting method for determining soil thermal properties and heat 

flux density (Sakai et al., 2011; Yang and Jones, 2009; Yang et al., 2013). 

A comprehensive literature review clearly revealed that while the biological and 

chemical decomposition of cattle manure has been widely studied (Gerba and Smith, 

2005; Liu et al., 2011; Longhurst et al., 2012; Nennich et al., 2005) with an abundance of 

reported data, little is known about important physical and thermal properties.  The 

objectives of this study were to measure and model physical, hydraulic, and thermal 

properties of as-excreted dairy manure, that primarily affect flow of liquid water and gas 

exchange and transport of dissolved constituents. As-excreted manures were selected for 

characterization because they are not contaminated with foreign materials such as 

bedding materials or flushed water; therefore, considered to be the most reliable data. 

(Spellman and Whiting, 2007). By characterizing physical, hydraulic, and thermal 

properties of dairy manure using well established analytical models, advanced modeling 

of greenhouse gas emissions, in addition to water, solute and colloid transport processes 

can be simulated using analytical and advanced numerical modeling.  

 

65



 
 

4.2 Theoretical Considerations 

Critical properties of porous media (manure) and analytical and numerical models 

used in characterizing and estimating these properties are discussed below..  

4.2.1 Physical Properties: 

Particle density of organic matter typically ranges between  0.9 to 2.0 g cm-3 

(Boyd, 1995; Boyd, 2000; Cater et al., 2007; Chen and Avnimelech, 1986).  The particle 

(solid fraction) density of dairy manure was reported within a range of 1.41 to 1.84 g cm-3 

and was largely dependent on mineral content of manure (Hafez et al., 1974).  The dry 

bulk density of organic substrates may range from 0.05 to 0.30 g cm-3 (Chen and 

Avnimelech, 1986). Due to some swelling and significant shrinkage, variations in the 

bulk density of manure and other organic materials are normally substantial when 

compared to particle density. Total porosity in most organic materials is commonly 

greater than 80% by volume (Chen and Avnimelech, 1986). 

4.2.2 Volumetric Water Content Determination of Dairy Manure: 

In this study, the water or moisture content of dairy manure (i.e., the quantity of 

water contained in a manure sample) is described in terms of volumetric water content 

(θv) that is the volume of water contained within a specified bulk volume of manure, 

which for dielectric sensor-based measurements is inherently given by the sensor output. 

A large number of techniques have been used to determine θv in porous media. Due to a 

strong correlation between the dielectric permittivity (Ka) and θv , sensors are able to 

estimate θv by measuring the apparent Ka (Davis and Chudobiak, 1975). Two different 

measurement approaches employing electromagnetic (EM) sensing of Ka were used in 

66



 
 

this study:  1) travel time analysis using time domain reflectometry (TDR) and 2) 

capacitance-based measurement using a commercial dielectric sensor (GS3, Decagon 

Device Inc., Pullman, WA). 

A function to describe the relationship between Ka and θv can be developed 

empirically (Malicki et al., 1996; Schaap et al., 1997; Topp et al., 1980) or based on a 

physical approach employing dielectric theory, which combines constituent dielectric 

constants and volume fractions of each component (i.e., solid, liquid, and gas). Additional 

details on TDR measurements are given in Jones et al. (2002) and Robinson et al. (2003). 

Schaap et al. (1997) derived an empirical relationship between Ka and θv for five different 

organic forest soils using TDR measurements. The empirical calibration equation based 

on 505 measurements is given as 

 ( ) Cav BKAθ −=  (1) 

where A = 0.133±0.002, B = 0.146±0.002, and C = 0.885±0.018. 

In addition, four potential error sources from TDR calibrations in organic forest 

soils were described  in Schaap et al. (1997). The error sources include decomposition of 

organic matter during the measurement, residual water after drying, temperature effects, 

and shrinking of the samples while drying. Among these sources, shrinkage was found to 

be the most significant factor affecting reliability of the TDR measurements. 

Nevertheless, because the corrections for θv and Ka were approximately comparable, the 

shrinkage effects on the calibration parameters were insignificant. 

4.2.3 Water, Solute, and Matric Potentials: 

The WP4-T Dewpoint Potentiameter (Decagon Devices, Inc., Pullman, WA) 

determines water potential (ψw) of porous media in the laboratory using the chilled mirror 
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dewpoint technique (Gee et al., 1992; Scanlon et al., 2002), which is based on 

fundamental thermodynamic relationships and precise measurements of temperature 

(Campbell et al., 2007).  The value of ψw measured by the WP4-T is the sum of the 

osmotic potential (or solute potential, ψs) and matric potential, ψm, of the porous medium. 

As the dewpoint method measures the sum of ψs and ψm, we estimated the contribution of 

ψs using a correlation between ψs and electrical conductivity (EC) of the sample solution, 

corrected for water content (United States Salinity Laboratory Staff, 1954), given as 

 ( ) 0.036−= )
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where ψs (v) is the water content dependent osmotic potential [MPa], ECe is the electrical 

conductivity of the saturation extract [dS m-1], θs/θv is the ratio of saturated and actual 

water contents [cm3 cm-3], and 0.036 is a conversion coefficient [MPa dS-1 m]. 

4.2.4 Water Retention Curve: 

The experimental water retention data were characterized by fitting the van 

Genuchten model (van Genuchten, 1980) to each data set using 
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where Θ is the degree of saturation, ψm is the matric potential [-cm], θs and θr are the 

saturated and residual water contents [cm3 cm-3], respectively, while α, m, and n  (m = 1 – 

1/n) are the shape parameters related to the pore-size distribution. 

4.2.5 Hydraulic Conductivity: 

Numerical analyses of transient water transport problems including infiltration, 

redistribution and evaporation have been widely used to determine hydraulic parameters 
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of soils with high accuracy (Hopmans et al., 2002; Ritter et al., 2003; Schwarzel et al., 

2006; Si and Kachanoski, 2000; Šimůnek et al., 1998). Kosugi et al. (2001) effectively 

used inverse simulations to characterize the unsaturated water flow in four types of forest 

soils, indicating the Richards equation can describe the unsaturated water flow in organic 

forest floors. 

In this study, the HYDRUS 1-D software package (Šimůnek et al., 2008) 

containing the inverse modeling capability was used to estimate the saturated hydraulic 

conductivity and unsaturated hydraulic conductivity function. An objective function, 

including deviations between measured and simulated variables (i.e., water contents) at 

different times during manure drying, was minimized. Optimization of the objective 

function was accomplished using the Levenberg-Marquardt nonlinear minimization 

(Marquardt, 1963).  The unsaturated hydraulic conductivity function was estimated from 

three evaporation experiments during dairy manure drying using the HYDRUS 1-D 

inverse modeling function.  Details of transient flow parameter optimization techniques 

are described by Hopmans et al. (2002). The van Genuchten hydraulic conductivity 

model (van Genuchten, 1980) describing unsaturated hydraulic conductivity is given by 

 ( ) 2111 m/ml

s ΘΘKK(h) −−=  (4) 

 111 −= n/n,m  (5) 

where Ks is the saturated hydraulic conductivity [cm day-1] and l is the pore-connectivity 

parameter. Schaap and Leji (2000) recommended using l = -1 for most soil textures. 

Additional information on the numerical solution of the variably saturated flow equation 

and parameter optimization is given in Simunek et al. (2009). 
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4.2.6 Thermal Properties: 

Manure is composed of solid, liquid and gaseous phases and its thermal 

conductivity (λ)  is dependent primarily on the volume fractions of these components, the 

size and arrangement of the solid particles, and the interfacial contact between the solid 

and liquid phases (Jury and Horton, 2004). Thermal diffusivity () is a parameter 

indicating the rate of change of temperature with time as the result of a thermal gradient. 

An inverse method for optimizing λ and  of a porous medium from temperature rise 

measurements was implemented in the FORTRAN program, INV-WATFLX (Yang and 

Jones, 2009; Yang et al., 2013). Based on the Newton-Gauss-Levenberg-Marquard 

method, the INV-WATFLX code simultaneously fits temperature rise emitted from a 

central heater needle as sensed by four thermistor needles surrounding the heater. The 

theory of the analytical solution and implementation of the inverse parameter 

optimization method are given in Yang and Jones (2009) and Yang et al. (2013). 

Bulk volumetric heat capacity (C) is defined as the ratio of λ over  and was 

determined by fitting of λ and  values. The bulk volumetric heat capacity of the dairy 

manure can also be estimated, based on the volume fraction and density of solid organic 

matter (som) and water (w) composing the dairy manure (the density of air is negligible 

in comparison with that of solid organic matter and water), given as 

 wwwsomsomsomm ccC  +=  (6) 

where Cm is the bulk volumetric heat capacity of manure [J m-3 oC-1], ρsom and ρw are the 

density of solid organic matter and water, respectively [kg m-3], θsom and θw are the 

volume fraction of solid organic matter and water, respectively [m3 m-3], and csom and cw 

are the specific heat capacity per unit mass or specific heat of solid organic matter and 
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water, respectively [J kg-1 oC-1]. The specific heat capacity of solid organic matter was 

estimated to be 1,925 J kg-1 oC-1 (Hillel, 1998; Jury and Horton, 2004). 

4.3 Materials and Methods 

Techniques commonly applied for soil analysis were applied in this study to 

examine physical, hydraulic, and thermal properties of as-excreted dairy cattle manure. 

First, the relationship between θv and Ka was determined with TDR and the capacitance-

based GS3 moisture sensor. Secondly, water potential of dairy manure was measured 

with the WP4-T Dewpoint Potentiameter to investigate the structural and functional 

relation between θv and ψw under equilibrium conditions. The ψs of the manure was then 

estimated and subtracted from ψw to generate the relationship between θv and ψm, which 

is known as the water characteristic or water retention curve. Third, Ks and the 

unsaturated hydraulic conductivity function K(θv) of the dairy manure samples was 

determined by means of an inverse solution simulation techniques as an alternative to 

direct measurement. Changes in manure moisture content during the drying process were 

numerically simulated with HYDRUS 1-D, a software package for simulating transient 

water movement in one-dimensional variably-saturated media with a robust inverse 

modeling capability. Lastly, the thermal properties λ, , and C of drying dairy manure 

were measured with PHPPs to investigate and identify relationships between these 

thermal properties and θv during the drying process. 

4.3.1 Study Farm and Manure Sampling: 

Dairy manure samples used in this study were collected from the Utah State 

University Caine Dairy Teaching and Research Center in Wellsville, UT (central 
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coordinates: 41o 39’ 22” lat; 111o 53’ 57” long). The milking cows were young, early 

lactation Holsteins with an average bodyweight of 771 kg and a growth rate of 0.45 kg d-1 

(1.00 lb d-1). In a feedlot barn, the milking cows were fed a total mixed ration with an 

approximate crude protein content of 17% and a dry matter intake (DMI) of 27.67 kg 

cow-1 d-1 (61.0 lb cow-1 d-1). The average milk production for the herd was 40.82 kg cow-

1 d-1. The manure samples were collected as excreted and mixed together in containers. 

Composite samples were then placed in one-gallon plastic heavy-duty zip lock bags 

approximately half full, squeezed to remove excess air, sealed and delivered to the lab 

directly (Peters et al., 2003). 

4.3.2 TDR and GS3 Sensor Calibration in Dairy Manure: 

The relationship between θv and Ka of manure was characterized at an ambient 

temperature of about 22 oC. The TDR sensing system included a TDR cable tester 

(1502B Metallic Cable Tester, Tektronix Inc., Beaverton, OR) connected via a coaxial 

multiplexer (SDMX50SP, Campbell Scientific Inc., Logan, UT) to three custom three-rod 

probes with 0.08-m long, 3.20-mm diameter rods and 12.0-mm rod spacing. The 

waveforms measured with the Tektronix TDR were captured and interpreted for travel 

time with WinTDR waveform analysis software (Or et al., 2004) on a personal computer. 

Three GS3 moisture sensors were connected to a data logger (CR1000, Campbell 

Scientific Inc., Logan, UT) and a personal computer for monitoring Ka. In addition to Ka, 

the output from the GS3 sensor included the sample temperature and electrical 

conductivity (EC). 

Three manure samples were prepared for testing with the TDR system and three 

samples were prepared for testing with the GS3 sensor arrangement. The manure samples 
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were manually packed under gravity into 1,240 cm3 polyvinyl chloride (PVC) rings of 

20.32 cm (8 in.) diameter and 3.81 cm (1.5 in.) height. They were carefully prepared with 

no external compaction applied to maintain in-situ conditions as much as possible.  For 

both the TDR probes and the GS3 sensors, positioning at the center of the rings while 

packing the manure samples ensured that the fringing fields associated with each 

measurement was contained within the manure sample volume (Robinson et al., 2003; 

Vaz et al., 2013). Each sample was left to dry at room temperature over a period of 30 

days.  For the TDR system, sample masses were continuously recorded with a high 

resolution balance (GX-6100, A&D Engineering Inc., San Jose, CA) to determine the 

water content on dry weight basis. For the GS3 sensor setup, the sample masses were 

continuously monitored using 10 kg pre-calibrated load cells (ESP-10, Transducer 

Techniques Inc., Temecula, CA) connected to the Campbell Scientific CR1000 data 

logger, which interfaced with a personal computer. Care was taken during packing to 

ensure that there was no air gap between the sensor needles and the manure samples. At 

the beginning and end of the experiment, the lengths, widths, and volumes of the manure 

and its subsequent shrunken state were estimated using the sand displacement method 

(Boelter, 1962). Ultimately, the equation used by Schaap et al. (1997) for the organic 

forest soils was fitted to the data measured by both TDR system and GS3 sensor to 

establish general calibration equations for manure. 

The final θv and bulk densities were determined by drying the manure samples at 

70 oC for 48 hours to dry while minimizing oxidation of organic material (Peters et al., 

2003; Schaap et al., 1997). The oven-dry bulk density of the dairy manure samples was 

determined to be 0.15±0.012 g cm-3.  Hafez et al.(1974) reported air-dry bulk density of 
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dairy manure of 0.23 g cm-3, somewhat greater than the oven-dried density measured in 

this study, which is not surprising given their air-dry weight likely had more residual 

water resulting in overestimation of the dry bulk density. The particle density of dairy 

feces was previously reported as 1.44 g cm-3 by Sobel (1966). Hafez et al. (1974) 

reported the particle density of dairy manure and beef cattle manure as 1.43 and 1.44 g 

cm-3, respectively. Using the particle density of 1.44 g cm-3, the solid phase volume of 

dairy manure samples can be estimated as approximately 0.104.  

4.3.3 Manure Water Retention Curve: 

The chilled mirror WP4-T dewpoint potentiameter with an accuracy of ±0.1 MPa 

from 0 to -10 MPa and ±1% from -10 to -300 MPa was used in this study to measure ψw 

in laboratory manure specimens. Prior to every measurement, the WP4-T was turned on 

for 30 minutes as a recommended warm-up period and calibrated with a verification 

standard, 0.5 mol kg-1 potassium chloride (KCl) salt solution, at 25 oC. Two 

measurements were read to ensure that both readings were within the range of -2.22 ± 

0.10 MPa according to the recommended calibration and verification procedures 

(Decagon Device Inc., 2007). 

Triplicate mixed cattle manure samples were measured to generate the water 

retention curve for as-excreted dairy cattle manure. In each trial, the suite of water 

potential measurements included six sub-samples prepared from mixed cattle manure 

samples. The manure sample were equilibrated at a constant room temperature (≈ 22°C) 

in a sample holder at various potentials for different amounts of time by allowing the 

water to evaporate from as-excreted conditions until the samples were completely air-dry. 

The sample holder cup was 1.1-cm in height and 4-cm in diameter, being filled half-full 
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with the bottom of the cup entirely covered with the manure samples. The samples were 

weighed and then placed into the WP4-T and the water potential was measured and 

recorded. For each water potential reading, three replicates were recorded. The samples 

were then removed from the WP4-T sample chamber and immediately covered with the 

sample holder lid preventing evaporation of water. At the end of each trial, the samples 

were immediately oven dried (70 °C for 24 h) for determination of θv. 

We paired ψm with the measured θv to obtain the water retention curve. A nonlinear 

regression algorithm (Marquardt, 1963) was performed to estimate the model parameters 

from the measurement data. 

4.3.4 Estimated Ks and K(θv) of Dairy Manure using HYDRUS 1-D  

The van Genuchten-Mualem model (Mualem, 1976; van Genuchten, 1980) was 

applied in the HYDRUS 1-D inverse solution simulations. The hydraulic properties, 

including θr, θs, α and n in the water retention function, obtained from the laboratory 

measurement, were used as the model input parameters, while Ks was assigned as the 

unknown parameter. Daily evaporation data and changes in volumetric water content, 

monitored from three evaporation experiments of dairy manure drying in a constant room 

temperature (≈ 22 oC), previously conducted to develop the GS3 sensor calibration 

equation, were used in establishment of the inverse solution simulations. The monitored 

daily evaporation rates (Figure 4-1) were used as time variable boundary conditions. The 

measured θv, obtained from the GS3 moisture sensors, were input into the simulation as 

the observed parameter to which the objective function in HYDRUS 1-D fits the 

unknown Ks and K(θv) in order to identify the optimal value of these unknowns. 
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4.3.5 Thermal Properties of Dairy Manure: 

Three major thermal properties were investigated during the drying process of 

manure using PHPPs. The PHPP includes a central heater needle surrounded by an 

orthogonal arrangement of four thermistor needles (Figure 4-2). Based on the Gauss-

Newton-Levenberg-Marquardt method, the thermal properties were determined using an 

analytical solution that simultaneously fits time series of temperature measurements from 

each of the four thermistor needles. Additional discussions on the PHPP and the inverse 

fitting method for determination of the thermal properties are given in Sakai et al.(2011), 

Yang and Jones (2009), and Yang et al. (2013). 

The PHPPs simultaneously determined thermal properties of dairy cattle manure, 

namely, thermal conductivity (λ), thermal diffusivity (), and volumetric heat capacity 

(C) during the laboratory drying process. The PHPP consists of one 2.1-mm (OD) line-

source heater needle and four 1.27-mm (OD) parallel thermistor needles with a physical 

center to center spacing of 6.5 mm (Figure 4-2). The two pairs of thermistor needles are 

orthogonally arranged equidistant from the heater needle. The precision and stability of 

the temperature measurements of the PHPPs are essential for determination of the 

thermal properties of the manure samples. To evaluate the precision of the thermistors 

used in the PHPPs, the PHPPs measured temperatures in an insulated container filled 

with saturated sand with 5-second interval reading for 10 minutes. The resulting 

temperatures were consistent, with less than 0.001oC fluctuation. 

Dairy manure samples were prepared in triplicate for monitoring the thermal 

properties using the PHPPs. Each sample was prepared in similar procedures to those 

described in the TDR and GS3 sensor calibrations. The PHPP was inserted at the middle 
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height of the PVC ring, prior to filling the ring with the manure sample. A Decagon 

Devices GS3 water content sensor was buried in the sample at the same depth. After the 

PVC ring was fully filled with the manure sample, the sample then was left to dry in a 

greenhouse with temperature controls.  Attention was given to packing the manure 

around the sensor to avoid air gaps between the PHPP needles and between the needles of 

the GS3 sensors. The PHPP and GS3 sensor were connected to and communicated with a 

data logger (Model CR1000, Campbell Scientific, Inc., Logan, UT) via SDI-12 

communications. The PHPP includes an onboard microcontroller, which is programmed 

to control the heat source needle to generate a heat pulse of 8 seconds and the thermistor 

needles to measure temperature for a period of 60 seconds. Initial temperature was 

measured immediately prior to applying the heat input. The microcontroller processes 

onboard optimization of λ and  values using the measurements of the temperature rise 

with additional computations performed on the data logger (Sakai et al., 2011; Yang and 

Jones, 2009; Yang et al., 2013). 

4.3.6 Statistical Analyses: 

The measured  data presented in this study were statistically analyzed with the 

general statistical analysis module of the R statistical software package version 2.14.1(R 

Development Core Team, 2011). For all analyses, a p-value of 0.05 or smaller was 

considered significant. 
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4.4 Results and Discussions 

4.4.1 GS3 Sensor Volume of Influence: 

Determination of zone or volume of influence for EM sensors (i.e., the volume 

generating most of the medium response) is essential to better understand the response of 

a medium to the sensor output. The approximate volume of influence for the GS3 sensor 

was determined according to the method described in Druyts et al. (2010) and Jones et al. 

(2005). In brief, the volume of influence for the GS3 sensor was estimated by observing 

Ka output from the sensor with a variety of probe orientations measured through a range 

of immersion depths in water i.e., in air, partially submerged in water, and completely 

submerged in water. Due to the strong contrast between the permittivity of water (Ka ≈ 

80) and air (Ka ≈ 1), the layer of influence was estimated by initially placing the sensor in 

the air at a height above the water and gradually submerging the sensor into the water 

until Ka of 80 was reached at a specific depth of water. Ten independent replicate 

measurements were recorded for each depth and sensor position arrangement to 

determine the assay statistics. 

The volume or zone of influence of the GS3 sensor was estimated in both axial 

(vertically along the sensor, y-axis in Figure 4-3) and radial (perpendicular to the sensor, 

x-axis and z-axis in Figure 4-3) components. In normal applications of soil moisture 

measurements, the axial sensibility establishes the sensor’s depth resolution, and the 

radial sensitivity determines the susceptibility to lateral heterogeneities (Dean et al., 

1987). The range and shape of the primary volume of influence predominantly depend on 

the sensor’s physical geometry (Starr and Paltineanu, 2002). We found the axial zone of 

influence of the GS3 sensor to be 6.50 cm, originated at the inside face of the sensor, and 
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the radial zone of influence to be primarily within 6.30 cm, centered at the middle prong 

(Figure 4-3). The volume of influence was then approximated as 400 cm3, 33% greater 

than specified by the manufacturer. Apparent ranges of sensitivity of the dielectric 

permittivity (Ka) and EC determined with the sensor were similar, due to the linear 

relationship between these two parameters, programmed in the sensor microprocessor 

(Decagon Device Inc., 2012). The results suggest the significance of the proper sensor 

installation to ensure intimate contact between the dairy manure sample and sensor, and 

the importance in obtaining gravimetric samples within the sensor’s zone of primary 

influence for the sensor calibrations. It is critical to calibrate the sensor in the same 

installation mode it is anticipated it will be used. For example, if the sensor will be 

inserted into the sample surface with the head left above the sample surface, the 

calibration must be performed similarly. On the other hand, if the sensors are to be buried 

completely in the sample, as in this study, the calibration should be performed similarly. 

The reason for this lies in the sensitivity of the GS3 to dielectric of the surrounding 

medium that extends above/behind the sensor head as seen in Figure 4-3.  

4.4.2 Cattle Manure Dielectric - Moisture Content Relationships: 

The GS3 sensors and TDRs were calibrated in dairy manure to establish a generic 

calibration equation identifying the correlation between Ka measured with the sensors and 

θv. All manure samples showed considerable shrinkage both in depth and diameter; 

however, no air gaps between the sensor needles and manure samples were found, 

confirming the validity of the measurements. Figure 4-4 presents all measurements 

performed by both GS3 sensors and TDRs, each with three replicate samples. Overall, the 

Ka outputs among three dairy manure samples for each measurement technique were 
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highly consistent. The deviation of the measurement between the GS3 sensor and TDR is 

anticipated owing to the different measurement frequencies (i.e., order of magnitude 

difference (Kelleners et al., 2005)) as illustrated in Figure 4-4. This deviation grows with 

increasing θv, which likely results from the high EC of the dairy manure (≈ 4.50 dS/m) 

which increases with θv. The TDR signal can become completely attenuated as the highly 

saline manure samples approach saturation (Jones et al., 2002; Mojid et al., 2003). 

Table 4-1 lists the parameters fitted to the measurements and their estimation 

accuracy, based on the mathematical expression used by Schaap et al. (1997) for organic 

forest soils. In general, the fitting parameters in this study indicate reliable water content 

estimates with high coefficients of determination (R2) values from both TDR and GS3 

sensor measurements. It is worth noting that the calibration methods were performed in a 

constant room temperature (≈ 22oC), whereas under field conditions diurnal fluctuations 

in temperature and associated changes in EC in addition to variable near-surface water 

content are common, as observed with many methods of measuring soil water (Jones et 

al., 2005; Or and Wraith, 1999; Starr and Paltineanu, 1998; Wraith and Or, 1999). 

Techniques for correcting EC and temperature sensitivity on capacitance measurements 

have been reported in several studies (Cobos and Campbell, 2007; Fares et al., 2009; 

Kelleners et al., 2004; Saito et al., 2013). 

4.4.3 Dairy Manure Water Retention: 

Figure 4-5(a) illustrates the water retention curve of dairy cattle manure measured 

with the WP4-T dew point potentiameter. The osmotic potential of the saturation extracts 

of 18 replicates samples estimated using Eq. (2), were -1,380 cm with a standard 

deviation of -54 cm, indicating low variability among sample replicates. The potential ψs 
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contributes substantially to ψw of the dairy manure samples; therefore, it was necessary to 

account for its contribution to the measured water potential and remove its effect, 

yielding only the matric potential used in developing the water retention curves. Due to 

the high porosity of dairy manure, θs of the manure samples was much greater than that 

of mineral soils, which is in agreement with that of other organic materials. Figure 4-5(b) 

shows the water retention curve of dairy manure in comparison with Sphagnum peat 

(high bog peat) and reed peat (fen peat) materials (Paivanen, 1973). The relationship 

between θv and ψm in organic matter depends on degree of decomposition and botanical 

composition of residues (Jan et al., 2002). 

The accuracy of the water retention curve in the low matric potential range is 

limited due to the relatively high ψs of the manure samples near saturation together with 

diminishing measurement resolution of the WP4-T dewpoint potentiameter near 

saturation (i.e., 0.01MPa). Measurements near saturation that may be made by using 

other techniques can determine matric potential in this range (e.g., hanging water column, 

pressure plate, Tempe Cell, tensiometer). Estimated van Genuchten model parameters 

derived from the optimization algorithm compared with the previous studies that 

investigated those for peat soils are listed in Table 4-2. Schwarzel et al. (2006) applied 

inverse parameter estimations to determine the hydraulic properties of peat soils of 

humified organic peat soils on the surface layer (<15 cm) and Da Silva et al. (1993) 

reported the hydraulic properties of organic peat soils in drying process. The parameters 

reported in these two studies are nearly the same range of those for the dairy manure 

samples found in this study. However, Naasz et al. (2005) reported the hydraulic 

parameters θs, α, and n for drying organic peat soils in a different range. The parameters α 
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and n, which are different from other studies, likely resulted from different pedogenetic 

processes of  the soil samples and  parameter fitting criteria (Schwarzel et al., 2006). 

Because the shape of the water retention curve is dependent on the medium 

structure, especially in the low matric potential range, it is interesting that the effect of 

the manure’s surface crust formation and shrinkage can potentially change the water 

retention characteristic by reduction of the total porosity, particularly the volume of the 

large pores. Consequently, the manure θs and the initial decrease rate of water content are 

diminished. Some of the original large pores are forced into becoming intermediate-size 

pores due to the shrinkage, creating more intermediate-size pores than the initial 

condition. While the intermediate-size pores are anticipated to increase, the micro pores 

remain unaffected, making the water retention curve for manure’s surface crust in the 

high matric potential range unchanged from the original shape. Further investigation is 

needed to better understand and characterize manure’s surface crust and its dynamic 

properties. 

4.4.4 Ks and K(θv) of Dairy Manure: 

The inverse simulation with HYDRUS-1D provided estimates for Ks and K(θv)  of 

dairy manure. The inverse solution yielded good agreement in θv when compared 

between the simulated and measured values as illustrated in Figure 4-6(a) and (b). Table 

4-3 summarizes the estimation of dairy manure Ks using the HYDRUS-1D inverse 

solution simulation. Figure 4-6 (c) illustrates the relationship between θv and K(θv)  for 

dairy manure, based on the van Genuchten-Mualem model (van Genuchten, 1980). 

The hydraulic conductivity function, derived by optimizing changes of θv from three 

dairy manure samples in the evaporation experiment, effectively characterized the 
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vertical transient water flow in dairy manure. The results support the validity of applying 

the Richards equation to characterize the unsaturated water flow in dairy manure, similar 

to organic forest (Kosugi et al., 2001) and organic peat soils (Da Silva et al., 1993; Naasz 

et al., 2005; Schwarzel et al., 2006). On the other hand, Ingram et al. (1974) and Rycroft 

et al. (1975a; 1975b) observed the “non-Darcian” behavior of organic peat soils, where 

Darcy’s law is not valid in organic peat soils with a high degree of decomposition in 

addition to issues of hydrophobicity, which complicate things further. The values of Ks 

for organic peat soils were reported over a wide range. Schwarzel et al. (2006) estimated 

Ks of organic peat soils in the surface layer to be 33.50 cm day-1. Naasz et al. (2005) 

reported the value of Ks of drying organic peat as 3,326.4 cm day-1. Nagare et al. (2013) 

measured Ks of organic peat in a laboratory using split-container and wax method and 

found Ks in a range between 2,100 and 31,400 cm day-1. 

It should be noted that the estimated Ks represents the “effective” saturated 

hydraulic conductivity of the dairy manure samples. This is complicated by the additional 

substances in the manure that increase liquid viscosity and form strong bonds upon 

drying. As-excreted dairy manure is prone to variable surface crust formation and 

therefore likely has a variation in Ks with drying. Similar to soil crusts, the crust layer of 

dairy manure contains higher bulk density and lower porosity than the underlying manure 

due to a higher shrinkage rate together with sodium and total salt contents of manure, 

which consequently may result in a surface saturated hydraulic conductivity several 

orders of magnitude less than in the underlying manure (Miller and Radcliffe, 1992). 

Another uncertainty that was not considered in the inverse solution simulation for the 

evaporation experiment is potential changes in pore space geometry due to clogging of 

83



 
 

pores by gas bubbles and other by-products of organic matter decomposition through 

anaerobic microbiological processes in manure samples. Prediction of manure surface 

crust characteristic with associated changes in pore spaces from gas bubbles is difficult 

because of the random factors in formation and development processes. Further 

investigations are warranted to more accurately characterize manure surface crust and 

pore space dynamics in drying and wetting dairy manure. 

4.4.5 Thermal Properties: 

Figure 4-7(a) – (c) illustrates fitted values of λ and  in addition to computed 

values of C as a function of θv. Table 4-4 shows the parametric expressions, fitted 

parameters, and R2 for the relationships between the thermal properties and θv. Generally, 

λ and C decreased linearly with decreasing θv (Figure 4-7(a) and (b)), while  decreased 

slowly at the beginning of the drying process, then decreased rapidly once θv was below 

0.30 m3   m-3 (Figure 4-7(c)). 

The values of the dairy manure λ were found to be between 0.52 and 0.08 W m-1 

oC-1 from saturation to dry conditions, consistent with the values reported in previous 

studies (Table 4-5). The correlation between λ and θv, illustrated in Figure 4-7(a), 

supports the strong linear relationships of the two parameters, reported in previous 

studies (Ahn et al., 2009; Chandrakanthi et al., 2005; Nayyeri et al., 2009; Opoku et al., 

2006). In addition to θv, Nayyeri et al. (2009) demonstrated the first order linear model of 

the temperature effect on thermal properties of dairy cattle manure. 

The value of the dairy manure C at the saturation point was determined as 

approximately 3.95 MJ m-3 oC-1, close to that of water (4.18 MJ m-3 oC-1). This is due to 

the high porosity of dairy manure (≈ 0.90). Similar to the relationship between λ and θv, 
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there is a strong linear relationship between C and θv. The bulk volumetric heat capacity 

of manure was determined based on the measured λ and . The small change of  during 

the entire manure drying process (approximately within 0.0003 cm2 s-1) did not 

significantly modify the regression form between λ and θv. As a result, the regression 

form identifying the relation between C and θv was identical to the expression for λ and 

θv. These results were in agreement with previous thermal property determinations, 

indicating the linear regression between C and θv (Ahn et al., 2009; Nayyeri et al., 2009; 

Opoku et al., 2006; Yang et al., 2002). 

While λ and θv are strongly linearly correlated, the relation between  and θv was 

well approximated with the “plateau” curve expression as depicted in Figure 4-7(c). The 

parametric expressions, including parameters, are listed in Table 4-4. The change of  

during the manure drying process covers only a small range, approximately from 0.0013 

(saturation) to 0.0010 cm2 s-1 (dry).  Perhaps it is because of this narrow range that 

previous studies have failed to identify a specific relationship between  and θv, where 

these include ascending, descending, and mixed trends (Bristow, 1998; Iwabuchi et al., 

1999; Labance et al., 2006; Opoku et al., 2006). 

The accuracy of the PHPPs in estimating the thermal properties was assessed 

through a comparison of θv derived from Eq. (6) with θv measured by the GS3 sensors. 

The specific heat capacity of solid organic matter was taken as 1,925 J kg-1 oC-1 (Hillel, 

1998; Jury and Horton, 2004) and the dry bulk density was 0.15 g cm-3 (90% porosity). 

The regression relationship (Figure 4-8) suggests strong agreement between θv estimates 

derived from the GS3 sensors and those obtained with the PHPP method (R2 = 0.944 and 

RMSE = 0.0524 cm3 cm-3). As illustrated in Figure 4-8, the regression equation indicates 
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a slight bias towards greater overestimation of θv by the PHPP method at lower water 

content. However, hypothesis tests show that the difference of θv obtained by both 

methods was found to be insignificant (p-value = 0.362). This well-correlated 

relationship verifies the accuracy of the thermal properties determined by the PHPPs and 

the dry bulk density of dairy manure presented in this study. 

4.5 Summary and Conclusions 

This study focused on the fundamental physical, hydraulic, and thermal properties 

of dairy manure that primarily affect the transport of liquid water and gas within the 

manure.  Numerical modeling of transient water flow in cattle manure requires an 

accurate estimation of a number of physical and hydraulic parameters, including the 

water retention characteristic, Ks, and K(θv). Measurement techniques commonly applied 

in soil science were applied to determine physical properties of as-excreted dairy manure, 

including the empirical relationship between Ka and θv. The uncertainties of the 

measurements were anticipated from the shrinkage phenomenon during the drying 

process. The liquid water retention characteristic for cattle manure, determined based on 

volumetric measurements and the chilled-mirror dewpoint technique, was found to be 

similar to that of organic peat soils. Inverse analysis of K(θv), using the developed water 

retention characteristic and laboratory evaporation experiment, yielded reasonable results, 

demonstrating strong support for the hypothesis that the Richards equation can describe 

hydrodynamic processes taking place in dairy manure relevant to natural drying 

processes. The effects of surface crust formation and shrinkage, which are likely to occur 

variably upon drying, potentially modify the water retention and hydraulic conductivity 

functions due to high moisture content and high porosity of as-excreted manure. Further 
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work is needed to characterize the manure’s surface crust formation to more completely 

understand key processes (e.g., gas emissions, nutrient leaching) impacting the 

environment and leading to a more sustainable system. 

The thermal properties of λ, , and C were determined during the course of 

manure drying using PHPPs. Thermal properties of λ and C exhibited strong linear 

correlation with decreasing θv. Although  also decreased with decreasing θv, it showed a 

more complex regression form. The accuracy and agreement of the thermal properties 

determined was assessed. The results suggested a reliable prediction of θv using the 

PHPPs, indicating well-estimated physical and thermal properties of dairy manure. The 

resulting thermal properties of dairy manure are likely to be used for development of heat 

transport models to identify the optimal conditions for manure composting processes as 

well as for prediction of manure water content and the movement of solutes and water 

from manure sources, in addition to microbial activity and gas generation. Overall, the 

results presented here provide a solid foundation upon which future research can build in 

better modeling and understanding dairy cow manure processes that impact the 

environment. 
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Table 4-1. Parametric expression and accuracy of the parameters fitted to the measured data to 
determine the relationship between dielectric permittivity (Ka) and volumetric water content (θv) 
 

Measurement Technique 
Coefficients C

av )BK(A   θ −=   
n 

RMSE 

(cm3 cm-3) R2 

A B C 

GS3 - Dairy manure 0.136 0.150 1.061 2579 0.0125 0.982 

TDR - Dairy manure 0.121 0.130 0.990 135 0.0120 0.987 

GS3 (Decagon Device Inc., 
2012) - Non-mineral soils† 0.118 0.117 1.000 - - - 

TDR (Schaap et al., 1997) - 
Organic forest soils 0.133 0.146 0.885 505 - 0.963 

† potting soils, perlite, and peat moss at salinities ranging from 0 to greater than 4 dS/m. 

 

99



 
   

Ta
bl

e 
4-

2.
 M

od
el

 p
ar

am
et

er
s o

bt
ai

ne
d 

fr
om

 fi
tti

ng
 th

e 
va

n 
G

en
uc

ht
en

 p
ar

am
et

ric
 e

xp
re

ss
io

n 
to

 th
e 

m
ea

su
re

m
en

t d
at

a 
co

m
pa

re
d 

w
ith

 th
e 

pr
ev

io
us

 st
ud

ie
s t

ha
t i

nv
es

tig
at

ed
 th

os
e 

fo
r p

ea
t s

oi
ls

 
 A

ut
ho

rs
 

M
ed

iu
m

 
va

n 
G

en
uc

ht
en

 m
od

el
 p

ar
am

et
er

s 

θ
r 

(c
m

3  c
m

-3
) 

θ
s 

(c
m

3  c
m

-3
) 

α
 

(c
m

-1
) 

n
 

m
† 

R
2
 

Th
is

 st
ud

y‡
 

C
at

tle
 M

an
ur

e 
0.

08
69

 
0.

89
5 

0.
02

7 
1.

39
1 

0.
28

1 
0.

99
7 

Sc
hw

ar
ze

l e
t a

l. 
(2

00
6)

 
Pe

at
 

0 
0.

88
0 

0.
02

6 
1.

19
0 

0.
16

0 
0.

98
 

N
aa

sz
 e

t a
l.(

20
05

) 
Pe

at
 

0.
33

90
 

0.
87

5 
0.

00
68

 
10

.3
0 

0.
18

0 
0.

99
 

D
a 

Si
lv

a 
et

 a
l. 

(1
99

3)
 

Pe
at

 
0 

0.
90

1 
0.

02
64

 
1.

39
0 

0.
28

1 
0.

99
 

† 
m

 =
 1

 –
 1

/n
, e

xc
ep

t t
he

 st
ud

y 
by

 N
aa

sz
 e

t a
l.(

20
05

) t
ha

t m
 w

as
 fi

tte
d 

to
 th

e 
m

ea
su

re
m

en
t d

at
a 

as
 a

 m
od

el
 p

ar
am

et
er

 
‡ 

N
um

be
r o

f r
ep

lic
at

es
 =

 3
 w

ith
 th

e 
to

ta
l n

um
be

r o
f m

ea
su

re
m

en
ts

 (N
) =

 2
10

 
 

100



 
 

 

Table 4-3. Statistical summary of non-linear regression analysis from estimation of 
the saturated hydraulic conductivity (Ks) with the HYDRUS-1D inverse solution 
simulation 

Parameter Value (cm day-1) 

Ks 190 

Number of observed θv (N) 90 

Standard error coefficient (SE) 56.88 

Lower 95% confidence limit 81.173 

Upper 95% confidence limit 307.20 
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Table 4-4. Parametric expressions and parameters describing the thermal conductivity (λ), thermal 
diffusivity (), and volumetric heat capacity (C) as a function of the volumetric water content (θv). 

Thermal 
property Unit  Expression 

Parameter 
R2 

a b c 

λ W m-1 oC-1  λ = a·θv + b 0.5427 0.0509 - 0.991 

 cm2 s-1 c
b
a

+
+


=

v

v




  0.0012 0.0276 0.00014 0.957 

C MJ m-3 oC-1  C = a·θv + b 3.8772 0.5671 - 0.990 
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Table 4-5. Summary of thermal properties of dairy and beef cattle manure reported in previous 
studies. 

Medium type 

Thermal properties 

Observation ranges Authors λ 

[W m-1 oC-1] 
 

[cm2 s-1] 
C 

[MJ m-3 oC-1] 

Beef cattle manure 0.22 – 0.03 0.00150 – 
0.00142 – Wet weight basis 

between 100% and 0% Houkom et al.(1974) 

Beef cattle manure 0.63±0.059 – 
0.064±0.003 1.515 – 0.849 – TS† between 2.8% and 

95% at 20 oC Chen (1983) 

Dairy manure 0.64 – 0.54 – – TS between 0% and 8% Achkari-Begdouri 
and Goodrich (1992) 

Mixture of fresh dairy 
feces and cedar sawdust 0.202 – 0.05 0.00155‡ – θv between 0.44 and 0 Iwabuchi et al.(1999) 

Dairy manure 0.55 – 0.08 0.001125 – 
0.001250 – Wet weight basis 80% 

and 20% at 40 oC Nayyeri et al. (2009) 

Beef manure compost 0.39 – 0.05 0.0010 – 0.0008 3.82 – 0.59 From saturation to dry 
conditions Ahn et al. (2009) 

† TS = Percentage of total solid (wet weight basis) 
‡ Mean value, reported as independent of θv 
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Figure 4-1. (a) Mean daily evaporation rate (left axis) and cumulative evaporation (right axis) 
monitored during the evaporation experiments of three dairy manure samples at room temperatures. 
(b) Daily average of hourly room temperatures. (c) 30-day average of room temperatures recorded on 
the hour. All error bars denote plus and minus one standard deviation from triplicate sample 
measurements. 
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Figure 4-2. (a) End view of the penta-needle heat pulse probe (PHPP) depicting the 
location of the heater needle and four thermistors (P1, P2, P3, and P4). (b) The actual PHPP 
used for determination of the thermal properties of the dairy manure samples. Prior to the 
measurements, the electrical components were coated with water resistant epoxy resin. 

105



 
 

 

 

  

                       

Figure 4-3. The GS3 sensor and its estimated zone of influence. The dimensions shown on the left 
are the mean values (in centimeter) from ten replicated independent measurements. The variations 
of the measurements from ten replicate measurements are shown on the right. 
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Figure 4-4. Measured water contents (θv) versus dielectric permittivity (Ka) 
determined with GS3 sensors (fitted to solid line) and TDR probes (fitted to 
dashed line). The Schaap et al. (1996) curve for TDR-measured organic forest 
soils is also shown for reference. 
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Figure 4-5. (a) Measured water retention curve of as-excreted cow manure determined by 
the WP4-T dewpoint potentiameter. The solid line illustrates the van Genuchten hydraulic 
model with the fitted parameters. The dashed lines show 95% confidence interval of the 
curve fitting. (b) Water retention curve of dairy manure (dashed line) in comparison with 
Sphagnum and reed peats in different degrees of decomposition (Paivanen, 1973). 
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Figure 4-6. (a) Simulated θv fitted to the measurements during the evaporation experiments. 
The error bars denote plus and minus one standard deviation. (b) Comparison between the 
measured and simulated θv. The RMSE and R2 value of the model simulation relative to the 
measured θv is 0.020 cm3 cm-3 and 0.9884, respectively (c) Unsaturated hydraulic 
conductivity for dairy manure as a function of θv, based on the van Genuchten-Mualem 
model. 
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Figure 4-7. Changes in (a) thermal conductivity (λ), (b) bulk volumetric heat capacity (C), and 
(c) thermal diffusivity () with θv of dairy manure samples. The solid lines show the 
parametric expressions with the parameters indicated in Table 4-4. 
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Figure 4-8. Theoretical θv estimated from the heat capacity (Cm) using the PHPPs 
compared with θv measured with the GS3 sensors. 

 

 

 

111



 
 

CHAPTER 5 

CARBON DIOXIDE, METHANE, AND AMMONIA EMISSIONS FROM 

SURFACE APPLICATION OF CATTLE MANURE  

Abstract: Gaseous emissions from surface application with manure source materials (i.e., 

manure, compost) are part of the major contribution of greenhouse gas (GHG) and air 

pollution emissions in agricultural production.  Carbon dioxide (CO2), methane (CH4), 

and ammonia (NH3) emissions were estimated and characterized using the automated 

surface chamber measurement method during the ambient drying process of manure and 

compost for 15 days after surface application. The measurements included four 

treatments; beef manure, dairy manure, beef compost, and dairy compost. The estimated 

CO2, CH4, and NH3 emissions from the surface application with dairy manure (452.4 ± 

35.4 g m-2, 1.2 ± 0.1 g m-2, and 1,786.0 ± 206.7 g m-2, respectively) were the highest 

among other treatments. The emissions of CO2, CH4, and NH3 from the surface 

application with beef compost treatment (210.5 ± 14.4 g m-2, 0.2 ± 0.02 g m-2, and 0.07 ± 

0.01 g m-2, respectively) were the lowest. Linear correlations with the strong coefficients 

of determination (R2) were reported between the CO2 and CH4 emissions and 

temperature. Weak linear correlations (R2 = 0.39 for beef and dairy manure treatments 

and 0.24 for beef and dairy compost treatments) were observed between the NH3 

emissions and temperature. Daily CO2 and CH4 emissions and average daily volumetric 

water content were well correlated and described by an exponential function. The 

solubility of NH3 most likely affected the accuracy of the NH3 emission measurements in 

the study. An empirical model, based on the Arrhenius equation, was verified with the 

emission measurement data confirming strong dependency of CO2 and CH4 emissions on 
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temperature and moisture content of the soil surface applied with manure source 

materials. 

5.1 Introduction 

Cattle manure is widely applied to land in agricultural production by land surface 

spreading or surface application as the nutrient and organic matter content of manure is 

beneficial for plant growth, long-term fertility, and soil structure in agronomic systems 

(Klop et al., 2012; Schröder et al., 2013). Livestock manure is responsible for 

approximately 7.5% of methane (CH4) in the US (United States Department of State, 

2010). Carbon dioxide (CO2) is considered as a primary loss of carbon via gaseous 

emissions due to organic matter decomposition and soil respiration (Hao et al., 2004). In 

addition to contribution to the greenhouse effect, rates of CO2 emission indicate 

biological activity and the rate at which the decomposition processes are occurring. 

Manure spread on the surface and not worked into the soil may lose most of the volatile 

nitrogen compounds as ammonia (NH3) gas to the atmosphere. This lost nitrogen is not 

available for plant growth, and has been identified as a possible air quality contaminant 

contributing to acid rain. Ammonia emitted to the atmosphere, is primarily converted to 

ammonium sulfate (NH4)2SO4 and ammonium nitrate (NH4)NO3 aerosols, which 

contribute to formation of particulate matter with an aerodynamic diameter less than 2.5 

µm or PM2.5. 

Several methods and techniques have been developed to estimate and characterize 

gaseous emissions from agricultural soils, manure, and other porous media generated by 

animal feeding operations (AFOs). Hu et al. (2014) provided a comprehensive review on 

the techniques commonly used to measure on-farm emissions from livestock systems. 
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One of the techniques most widely used for estimating gas emissions from agricultural 

and AFOs are chamber methods. The chamber method is more useful for treatment 

comparison and more suitable for mitigation studies (Rochette and Eriksen-Hamel, 

2008). The major disadvantage of chamber methods are the artificial, constrained 

environment created by the chamber, which can alter the surrounding environmental 

conditions for natural gas production (Parkin et al., 2012; Rochette and Eriksen-Hamel, 

2008). 

There are limited on-farm emissions data, particularly from surface applications. 

Most of the studies reported gaseous emissions from open lots, manure stockpiles, 

wastewater ponds, and composting areas (Borhan et al., 2011; Ding et al., 2016a; Ding et 

al., 2016b; Hao et al., 2004; Khan et al., 1997; Leytem et al., 2011; Leytem et al., 2013; 

Misselbrook et al., 2001; Mukhtar et al., 2008; Pereira et al., 2012; Pereira et al., 2011). 

In addition, the reported emissions data are found to be varied due to differences in 

measurement technique, farm operation, measurement location, manure management 

practice, and cattle diet. Diurnal and seasonal variations also play important roles in 

gaseous emissions. 

Temperature and moisture content were repeatedly reported as the major factors 

that impact microbial activity and gas diffusion processes driving emissions from 

farmyard manure and manure compost (Dewes, 1996; González-Avalos and Ruiz-Suárez, 

2001; Hu et al., 2018; Mazzetto et al., 2014).  The objectives of this study were to 

estimate and describe CO2, CH4, and NH3 emissions from surface application with beef 

manure, dairy manure, beef compost, and dairy compost by using an automated surface 
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chamber measurement method and to assess impacts of diurnal temperature and soil 

surface moisture content on the emissions.  

5.2 Materials and Methods 

5.2.1 Manure Samples and Field Setup 

Four cattle manure treatments, including i) dairy manure, ii) beef manure, iii) 

dairy compost, and iv) beef compost, were used as targeted sources of gaseous emissions. 

The dairy and beef manure samples were collected from Utah State University’s Caine 

Dairy Farm (Central Coordinates: 41o 39’ 22” N; 111o 53’ 57” W) and Animal Science 

Farm (Central Coordinates:  41o 40’ 6” N; 111o 53’ 17” W) in Wellsville, UT, 

respectively. Both dairy and beef manures were collected from the manure storage area, 

where manures were openly piled up. Solid manure with bedding materials (i.e., straw) 

scraped and collected from the confinement facilities was directly transferred to the 

storage area prior to land application or transporting to off-site manure management 

facilities. There were approximately 100 cattle fed in the beef cattle facilities (open 

feedlots) within the Animal Science Farm. Similar to the Caine Dairy Farm operation, 

solid manure, collected for removal from the feedlots by scraping using tractor-mounted 

blades, was moved daily by tractors to stockpiles in the manure storage area. Manure 

compost samples were obtained from, 1) local dairy compost produced from fresh dairy 

manure mixed with straw from the Caine Dairy Farm utilizing the turned windrow 

method (USDA, 2010) and 2) local commercial beef compost (Miller Companies LC, 

Hyrum, UT) produced from steer manure mixed with straw. 

Gas emission measurements from these samples were made in a field at the 

Greenville Research Farm in North Logan, UT (Central Coordinates:  41° 45’ 57” N; 
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111° 48’ 43” W). The elevation is about 1,355 m (4,445 ft.). A meteorological station 

was located within Greenville Research Farm, approximately 480 feet to the northeast of 

the measurement field, which recorded air temperature, barometric pressure, solar 

radiation, precipitation, wind speed and direction during the experimental period. The 

background soil was a highly calcareous Millville silt loam. The field was cleared and 

irrigated to field capacity (i.e., volumetric water content at approximately 0.24 cm3 cm-3) 

prior to the commencement of measurements. Twelve 1.70 m by 1.20 m plots were 

prepared for the four manure types, each with three replicate samples to determine the 

assay statistics. The location of each manure type (Figure 5-1) was statistically 

independent (i.e., assigned randomly), using a true random number generator 

(Eddelbuettel, 2006).  The application rates for dairy and beef manure were 12 kg m-2 or 

55 tons per acre (Midwest Plan Service, 1985) and those for dairy and beef compost were 

approximately 6 kg m-2 or 27.5 tons per acre as directed by the compost producers. 

5.2.2 Field Measurements  

Gas emission measurements of CO2, CH4, and NH3 from each treatment were 

monitored continuously between August 9 and August 27, 2013. A multiplexing system 

based on the closed dynamic chamber principle was integrated with a Fourier 

Transformed Infrared (FTIR) gas spectroscopy analyzer (DX-4030, Gasmet Technologies 

Oy, Helsinki, Finland). The system was capable of monitoring concentrations of 15 pre-

programmed gases simultaneously (Sutitarnnontr et al., 2012; Sutitarnnontr et al., 2013). 

The theoretical detection limits of the gases of concern in this study were 10 ppm CO2, 

0.11 ppm CH4, and 0.13 ppm NH3, respectively. Nitrous oxide (N2O) was initially one of 

the target gas emissions in this study. However, N2O concentration data did not generate 
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detectable slopes in the measurements due to a substantial number of concentrations 

below the detection limit of 0.02 ppm N2O. Therefore, N2O emission data are not 

presented in this study. 

The cross-interference effects (i.e., cross-sensitivity to gases other than the target 

gas of interest) were automatically compensated for by the FTIR gas analyzer during 

automated calculation of the gas concentrations. A zero-concentration calibration was 

performed daily using 99.999% nitrogen gas (N2) with an approximate flow rate of 1.8 L 

min-1 to improve accuracy of very low concentration readings. During the measurement, 

the air sample from the measurement chamber was continuously drawn into the gas 

analyzer with an approximate flow rate of 2.0 L min-1 by an external diaphragm pump 

(model D737-23-01, Parker-Hannifin Corp., Mooresville, NC). The air sample was 

filtered through a PTFE 2-µm membrane (part 450-25-3, Savillex Corp., Eden Prairie, 

MN) to prevent solid particles from accumulating in the sample cell in the gas analysis 

unit, which would deteriorate measurement quality. PTFE tubing (6-mm OD) was used 

for the gas sampling lines in the closed-loop system. 

The program control allowed each chamber 5 minutes of time, 3 minutes where 

the chamber was closed over the sample and measuring, and 2 minutes to allow the 

chamber to move into and out of position and for the system to be thoroughly flushed out 

prior to the next measurement. A 10-cm long 6-mm OD PTFE tubing was utilized as a 

vent tube to permit pressure equilibration between the closed surface cover and its 

surroundings (Hutchinson and Mosier, 1981; Hutchinson and Livingston, 2001). There 

were, however, anticipated increases in the chamber air temperatures relative to ambient 

as the presence of the chambers induced steady, less turbulent wind flows over the 
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surfaces in comparison to ambient conditions, which may have altered the surface energy 

balance. Temperatures inside and outside the chamber during the measurements were 

monitored with thermistor temperature sensors (ST-100, Apogee Instruments, Inc., 

Logan, UT) to investigate the significance of the difference in the temperatures inside and 

outside the chambers. In addition, relative humidity (RH) inside the chamber was 

monitored with a humidity sensor (HIH-4021-001; Honeywell, Minneapolis, MN). A 

small fan (Top Motor DF122510BL, Dynatron Corp., Union City, CA) was housed in the 

chamber to mix air in the chamber headspace. Hutchinson and Livingston (2001) and 

Christiansen et al. (2011) reported gaseous fluxes could be significantly underestimated, 

if the chamber headspace was not constantly mixed during a chamber enclosure as the 

mixing homogenized the gas concentration inside the chamber. However, the turbulence 

caused by the mixing fan may alter the wind profile at the emitting surface, disturbing the 

gas exchange between emitting surface and atmosphere, and may result in an 

overestimation of gaseous flux. 

In this study, the water or moisture content of the surface soil is described in 

terms of volumetric water content (θv), which for dielectric sensor-based measurements is 

inherently given by the sensor output. Due to a strong correlation between the dielectric 

permittivity (Ka) and θv, sensors are able to estimate θv by measuring the apparent Ka 

(Davis and Chudobiak, 1975). A commercial capacitance-based dielectric sensor (GS3, 

Decagon Device Inc., Pullman, WA) was utilized for monitoring the water contents in 

each sample during the experiment. The output range of Ka was from 1 (air) to 80 

(water). The calibration equation provided by the sensor manufacturer for estimation of 

θv is given as: 

118



 
 

 ( ) Cav BKAθ −=  (1) 

where A = 0.118, B = 0.117, and C = 1.000. The sensor accuracy was stated as better than 

± 5% volumetric water content at salinities below 4 dS/m. 

 In addition to Ka, the output from the GS3 sensor included the sample temperature 

and electrical conductivity (EC). The EC measurement was calibrated from the sensor 

manufacurer to be accurate within ±10% from 0 to 10 dS/m. 

5.2.3 Gas Flux Emission Calculations 

The surface chamber techniques employ the rate of gas concentration increase 

with time within the measurement chamber to determine the rate at which each target gas 

diffuses from the manure into the ambient air. The equation used for the calculation of 

gaseous flux with correction for temperature and pressure is given as: 

 𝐹 =  
𝑉 ∙ 𝑃 ∙  𝑇𝑠  ∙  𝑀𝑊

𝐴 ∙  𝑃𝑠 ∙ (273.15 + 𝑇) ∙  (2.24 ∙  10−2) 
 ∙  

𝜕𝐶

𝜕𝑡
 (2) 

where F is the gaseous flux [µg m-2 s-1], V is the total system volume including the 

chamber headspace [m3], P is the ambient pressure [kPa], TS is the standard temperature 

[273.15 K], MW is the molecular weight of a gas [g mol-1], A is the surface area of the 

chamber over the emission source [m2], PS is the standard pressure [101.33 kPa], T is the 

temperature (o C), 2.24 · 10-2 is the molar volume of a gas at STP [m3 mol-1], and ∂C/∂t is 

the gradient of gas concentration changing over time derived from linear regression [ppm 

s-1 or µm3 m-3 s-1]. The gas concentration gradients with insignificant correlation (i.e., R2 

is less than 0.80) were removed from the data set presented in this study. 
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5.2.4  Statistical Analyses 

Continuous hourly emission data were examined to characterize natural flux 

variations. The measurement data presented in this study were statistically analyzed with 

the general statistical analysis module of the R statistical software package version 

2.14.1. 

5.3 Results and Discussion 

5.3.1 Environmental Conditions 

Background air temperature (T), relative humidity (RH), wind speed, and solar 

radiation during field measurements are shown in Table 5-1. Figure 5-2 shows the hourly 

air T, RH variation, and wind rose. No precipitation was recorded during measurements. 

The average high and low air temperature was 30.6 and 14.6 oC, respectively. The 

prevailing wind blew from the northeast and east directions with an average wind speed 

of 1.94 m s-1. This represents the typical weather in August for the region. 

5.3.2 Gas Emissions from the Surface Application 

The emissions of CO2 from the surface application are presented in Figure 5-3. 

There was a strong diurnal trend in emissions of CO2 from the surface application with 

lower emissions during late evening, at night, and early morning and then increasing 

throughout the day, with maximum rates in the mid to late afternoon. This strong diurnal 

pattern of CO2 emissions was found to be associated with temperature (Ding et al., 

2016b; Flessa et al., 2002; Hu et al., 2018; Leytem et al., 2011; Leytem et al., 2013). The 

CO2 emissions gradually decreased over the measurement period of 15 days to what are 

typical of background emissions due to soil respiration. Generally, the CO2 emissions 
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from the surface application with dairy manure were slightly higher than those with beef 

manure as shown in Figure 5-3(a) and Figure 5-3(b). The CO2 emissions from the surface 

application with the manure sources were approximately two fold higher than those with 

the compost. The estimated average CO2, CH4, and NH3 emissions from all treatments 

are summarized in Table 5-2. 

Figure 5-3(b) and 5-3(d) show the daily and cumulative CO2 emissions during the 

15-day measurement period. After the surface application, the daily emissions of CO2 

gradually decreased until they ceased. The estimated CO2 emissions from the beef and 

dairy manure surface application were slightly higher than the average CO2 emissions 

from ground level brick-paved open feedlot emissions (15.6 ± 7.4 g m-2 d-1) reported by 

Ding et al. (2016b) employing closed chamber measurements. This is most likely due to 

the contribution of CO2 from background soil respiration. Pereira et al. (2011) also 

reported gaseous emissions can be affected by the floor type. Emissions of CO2, CH4, and 

NH3 were reported to be significantly greater from the solid floor relative to the slatted 

floor. Similar to manure sources, CO2 emissions from composts were observed with the 

strong diurnal trend accompanied by a lower magnitude and shorter emissions duration. 

Pattey et al. (2005) reported similar trends in CO2 emissions from beef and dairy 

composts. The decrease in CO2 emissions over time indicate biological activity and the 

rate at which the microbe-based decomposition processes are occurring. 

The emissions of CH4 from the surface application (Figure 5-4) also show a clear 

diurnal variation and were closely correlated with CO2 emissions, similar to the study by 

Amon et al. (2001). Previous studies (Leytem et al.,2011; Leytem et al., 2013) showed 

little CH4 generation from fresh manure. The dairy manure surface application generated 
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the highest CH4 emissions; while, those with beef compost were lowest with 

approximately 83 percent lower emissions than dairy manure. Ding et al. (2016b) and 

Borhan et al. (2011) reported CH4 emissions from the ground level of an open feedlot of 

51.8 ± 24.1 mg m-2 d-1 and 9.6 mg m-2 d-1, respectively. CH4 emissions from feed yards 

were reported within a range of between 4.9 mg m-2 d-1 and 16.71 mg m-2 d-1 by 

Misselbrook et al. (2001). The estimated CH4 emissions reported in the literature are in 

the same range as those found in this study. 

Figure 5-5 shows the surface application emissions of NH3. Similar to the CO2 

and CH4 emissions, the dairy manure surface application generated the highest NH3 

emissions, while the NH3 emissions from the beef compost surface application were the 

lowest among four treatments. However, the NH3 emissions were found to decrease faster 

than the CO2 and CH4 emissions, which could be caused by the solubility and adhesive 

characteristics of the NH3 molecule. Stickiness of NH3 molecules to the tubing wall 

accumulated over time during the measurements was speculated to be the primary cause 

for the rapid decrease of NH3 emissions. A considerable uncertainty of NH3 emission 

measurements due to the sticky nature of the NH3 molecules were reported in several 

previous studies (Osada et al., 2011; Yokelson et al., 2003; Zhu et al., 2012). The 

measurement issues, especially for low NH3 concentration levels, included slower 

response time and higher detection limits. 

Pereira et al. (2011) reported the cumulative emissions of NH3 within a range of 

between 2.14 g m-2 and 5.23 g m-2 during the first 72 hours following excreta deposition 

on concrete floors, which are lower than those observed in this study. Variations in CO2 , 

CH4, and NH3 emissions could be due to differences in diet such as forage type, forage 
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quality, and dry matter intake (DMI), measurement systems, measurement times and 

locations, ground types, seasons, and manure management systems (Leytem et al., 2011; 

Leytem et al., 2013; Pereira et al., 2011). 

5.3.3 Surface Soil Moisture Content 

Figure 5-6 shows changes in the volumetric water contents (θv) in soil surfaces for 

each treatment during the measurements. The initial θv for dairy manure treatment 

(approximately 33%) was the highest among all treatments. The saturated water content 

(θs) of as-excreted cow manure was reported in a range between 85 m3 m-3 and 90 m3 m-3 

(Sutitarnnontr et al., 2014). After 15 days of drying, θv decreased approximately from 

0.30 m3 m-3 to 0.10 m3 m-3. The variations of the measurements are most likely due to the 

temperature influence on the soil moisture sensors (Jones et al., 2005; Mead et al., 1996; 

Or and Wraith, 1999; Paltineanu and Starr, 1997; Starr and Paltineanu, 1998; Wraith and 

Or, 1999). Techniques for correcting temperature sensitivity on capacitance 

measurements have been reported in several studies (Campbell, 2001; Chanzy et al., 

2012; Cobos and Campbell, 2007; Kelleners et al., 2004; Robinson et al., 1998). 

Table 5-3 lists the parameters fitted to our measurements and their estimation 

accuracy, based on the quadratic function given as 

𝜃𝑣 = 𝐴𝑡2 + 𝐵𝑡 + 𝐶 (3) 

where θv is the volumetric water content [m3 m-3], t is time after application [hr], and A , 

B , and C are quadratic coefficients. 

 In general, our fitting parameters indicate reliable water content estimates based 

on the time after application with high R2 values in all treatments. Drying rates of soil 

surface (Figure 5-7) could be estimated from the derivative of Equation (3), written, 
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𝜕𝜃𝑣

𝜕𝑡
= 2𝐴𝑡 + 𝐵 (4) 

where 𝜕𝜃𝑣/𝜕𝑡 is the drying rate [m3 m-3 hr-1], 2A and B are linear equation coefficients. 

Table 5-4 lists the linear equations and their coefficients representing the drying rates of 

surface soils.  

5.3.4 Impact of Temperature on CO2, CH4, and NH3 Emissions 

Temperature is one key parameter that explains variations in trace gas emissions 

from soils (Oertel et al., 2016). The percentages of hourly CO2, CH4, and NH3 emissions 

and temperatures were used to assess the impacts of diurnal temperature. Figure 5-8 

illustrates linear correlations between the percentages of hourly CO2, CH4, and NH3 

emissions and temperatures. CO2 and CH4 emissions shown in Figures 5-8(a) through 5-

8(d) were found to have strong correlation with the diurnal temperature. NH3 emissions 

depicted in Figures 5-8(e) and 5-8(f) indicate weak linear correlation with the diurnal 

temperature, which most likely could be caused by the solubility and sticky nature of 

NH3 molecules. 

Table 5-5 reports the linear coefficients and their coefficients of determination 

(R2). Hu et al. (2018) demonstrated effects of temperature and moisture on CO2 and CH4 

emissions from drying dairy cow manure based on the Arrhenius equation. Methane 

emissions from the surface applications of manure shown in Figure 5-8(c) show the 

strongest linear correlation, while NH3 emissions from the surface applications of 

compost depicted in Figure 5-8(f) show the weakest linear correlation with the 

temperature. Ding et al. (2016a) investigated effects of temperatures on CO2 and CH4 

emissions from the scale model of open dairy feedlots and found CO2 and CH4 emissions 
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highly dependent on air temperature, which is in agreement with other studies (Husted, 

1994; Pereira et al., 2012; Pereira et al., 2011). 

5.3.5 Impact of Water Content on CO2, CH4, and NH3 emissions 

Water content is the most important soil parameter for soil gas emissions as it 

controls microbial activity and all related processes (Oertel et al., 2016). Daily CO2, CH4, 

and NH3 emissions and average daily water content (θvd) were used in assessing the 

impacts of water contents on the emission. The daily emissions and θvd were selected to 

eliminate the diurnal variability of instantaneous emissions and are therefore more 

generalizable. The relationships between daily CO2 and CH4 emissions and θvd (Figure 5-

9) were found to fit well with the exponential function given as 

𝐹𝑑 = 𝐴 ∙ 𝑒𝐵(𝜃𝑣𝑑) + 𝐶  (5) 

where Fd is the daily emissions [g m-2 d-1], θvd is the average daily volumetric water 

content [m3 m-3], and  A , B , and C are exponential function coefficients. 

 Table 5-6 lists the parameters of the exponential function fitted to the 

measurements and their estimation accuracy. Figures 5-9(a) and 5-9(b) suggest that CO2 

emissions due to the background soil respiration can be estimated to be 10 g m-2 d-1. Hu 

et al. (2018) reported the parabolic relationship between the moisture content and gas 

emission fluxes from drying dairy cow manure. The peak emissions were observed after 

approximately 5 days of drying. This delayed peak emission most likely resulted from the 

initial near saturated condition (low gas transport) followed by crust formation on the 

manure surface in the first few days suppressing gaseous emissions. 
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5.3.6 Impacts of Temperature and Water Content on CO2, CH4, and NH3 Emissions 

Effects of temperature and moisture content on gaseous emissions were well 

described by Hu et al. (2018). The combined temperature and moisture content dependent 

gas emission relationship, which was derived from the Arrhenius equation, may be 

expressed as 

𝐹 = 𝐴 ∙ 𝑒
[− 

𝐵 ∙ 𝜃𝑣
2

 + 𝐶 ∙ 𝜃𝑣 +𝐷

𝑅 ∙ (273.15+𝑇)
]
  (6) 

where F is the gaseous emissions [g m-2 d-1], θv is the volumetric water content [m3 m-3], 

R is the gas constant (8.314 J·mol-1·K-1), T is the temperature in Celcius degrees,  A , B , 

C, and D are model fitting parameters. Figures 5-10, 5-11, and 5-12 depict CO2, CH4, and 

NH3 emissions, respectively, as a function of time and temperature. Table 5-7 lists the 

model parameters fitted to the emission measurements and their estimation accuracy. 

Overall the empirical model confirmed the strong-dependency of gaseous 

emissions on temperature and moisture content, particularly for CO2 and CH4 emissions. 

Lower correlations were noted for NH3 emissions most likely due to the solubility and 

stikiness of NH3 molecules reflecting a considerable uncertainty. 

5.4. Summary and Conclusions 

The new protocol, based on hourly, gradient-based and automated surface chamber 

measurements, was developed for assessment of regulated pollutant and greenhouse gas 

emissions from agricultural and natural systems. The new system was tested to 

investigate CO2, CH4, and NH3 emissions from cattle manure surface applications, 

including beef manure, dairy manure, beef compost, and dairy compost. The estimated 

CO2, CH4, and NH3 emissions from the surface application with dairy manure (452.4 ± 
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35.4 g m-2, 1.2 ± 0.1 g m-2, and 1,786.0 ± 206.7 g m-2, respectively) were the highest 

among other treatments. The emissions of CO2, CH4, and NH3 from the surface 

application with beef compost treatment (210.5 ± 14.4 g m-2, 0.2 ± 0.02 g m-2, and 0.07 ± 

0.01 g m-2, respectively) were the lowest. Emissions of CO2 and CH4 were highly 

dependent on the air temperature. Linear correlations with strong R2, particularly for CH4 

emissions, were observed between the percentages of hourly CO2 and CH4 emissions and 

temperature. Daily CO2, CH4, and NH3 emissions were well correlated with average daily 

θv and well described using an exponential function. 

Further assessments are warranted to understand the magnitude and variation of 

emissions due to seasonal cycles. A more accurate model, which takes into account 

physical, chemical, and biological factors, is necessary to estimate and describe regulated 

pollutant and greenhouse gas emissions. 
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Figure 5-1: Experimental design illustrating four manure treatments with three replicates 
each (Not to scale). 
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Figure 5-2: Background temperature, relative humidity (RH), wind speed, and wind 
direction during measurements. 
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Figure 5-7: Drying rates of soil surface vs. time for beef manure, beef compost, dairy 

compost, and dairy manure applications. The black solid line represents the mean from 

all treatments with shaded standard deviation.  
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Figure 5-8: (a), (c), and (e) Percentage of hourly CO2, CH4, and NH3 emissions vs. 
temperature from the surface application with beef and dairy manure. (b), (d), and (f) 
Percentage of hourly CO2, CH4, and NH3 emissions vs. temperature from the surface 
application with beef and dairy compost. All figures show 95% confidence interval and 
95% prediction interval from the trend line. 
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Figure 5-9: (a), (c), and (e) Daily CO2, CH4, and NH3 emissions from the surface 
application with beef and dairy manure vs. average daily water content. (b), (d), and (f) 
Daily CO2, CH4, and NH3 emissions from the surface application with beef and dairy 
compost vs. average daily water content. The solid line is the fitted curve with the 
exponential function. The dashed lines show 95% confidence interval of the curve fitting.
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

The research presented in this dissertation was to develop an automated multi-gas 

emission measurement system, based on the multiplexed portable FTIR-surface chamber 

network for continuous measurements and monitoring of target gas emissions. Chamber-

based techniques have been widely used for area flux estimates at small-scales, when 

micrometeorological techniques are inappropriate. The surface chamber techniques 

effectively isolate sample sources from external environmental conditions (e.g., wind 

speed and wind direction). The measurements are not strongly dependent on the weather 

conditions; therefore, they can be directly comparable from day-to-day and site-to-site or 

for treatment comparison. The framework in development of an automated multi-gas 

emission measurement system, based on the multiplexed portable FTIR-surface chamber 

network, is introduced in Chapter 2. 

Chapter 3 presents the evaluation of the precision and accuracy of the surface 

chamber system in controlled laboratory conditions. Comparisons of methane emission 

measurements were used to evaluate the measurement accuracy of the system with 

statistical one-way ANOVA tests with a level of significance of 0.05. Analyses revealed 

that there were no significant differences across the twelve chambers with resulting p-

values of 0.54, 0.58, and 0.80 in three different experiments. The system accuracy was 

observed as relative percentage differences between the mean of the methane fluxes 

determined by the system and the fluxes estimated using the gradient-based technique. 

Overall, the measurement biases were less than 1%. 
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The fundamental physical, hydraulic, and thermal properties of dairy manure that 

primarily affect the transport of liquid water and gas within the manure are discussed in 

Chapter 4. Numerical modeling of transient water flow in cattle manure requires an 

accurate estimation of a number of physical and hydraulic parameters, including the 

water retention characteristic, saturated hydraulic conductivity (Ks), and unsaturated 

hydraulic conductivity function (K(θv)). Measurement techniques commonly applied in 

soil science were applied to determine physical properties of as-excreted dairy manure, 

including the empirical relationship between manure dielectric permittivity (Ka) and 

volumetric water content (θv). The uncertainties of the measurements were anticipated 

from the shrinkage phenomenon during the drying process. The liquid water retention 

characteristic for cattle manure, determined based on volumetric measurements and the 

chilled-mirror dewpoint technique, was found to be similar to that of organic peat soils. 

Inverse analysis of K(θv), using the developed water retention characteristic and 

laboratory evaporation experiment, yielded reasonable results, showing strong support for 

the hypothesis that the Richards equation can describe hydrodynamic processes taking 

place in dairy manure relevant to natural drying processes. The effects of surface crust 

formation and shrinkage, which are likely to occur variably upon drying, potentially 

modify the water retention and hydraulic conductivity functions due to high moisture 

content and high porosity of as-excreted manure. 

The physical and hydraulic properties of cattle manure are key requirements in the 

model development to accurately describe manure leachate transport mechanisms and 

response from point- to field- and feedlot-scales. From a physical perspective, manure is 

a heterogeneous, polyphasic, disperse porous medium generally consisting of solid, 
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liquid, and gaseous phases. The solid fraction primarily consists of fibrous organic 

material, which may include hay, grain, and silage, creating a complex manure matrix. 

The liquid phase is mostly water, commonly containing dissolved solutes and organic 

matter. The gas fraction occupies the empty pores or void space. The manure matrix 

determines the geometric characteristics of the empty pores that play an important role in 

the transport of the water and gases.  

The thermal properties of thermal conductivity (λ), thermal diffusivity (), and 

bulk volumetric heat capacity (C) were determined during the course of manure drying, 

using three penta-needle heat pulse probes (PHPPs). Thermal properties of λ and C 

exhibited strong linear correlation with decreasing θv. Although  also decreased with 

decreasing θv, it showed a more complex regression form. The accuracy and agreement of 

the thermal properties determined was assessed. The results suggested a reliable 

prediction of θv using the PHPPs, indicating well-characterized physical and thermal 

properties of dairy manure. 

By characterizing physical, hydraulic, and thermal properties of dairy manure 

using well established analytical models, advanced modeling of greenhouse gas 

emissions, in addition to water, solute and colloid transport processes can be simulated 

using analytical and advanced numerical modeling. The resulting thermal properties of 

dairy manure reported in this chapter are likely to be used for development of heat 

transport models to identify the optimal conditions for manure composting processes as 

well as for prediction of manure water content and the movement of solutes and water 

from manure sources in addition to microbial activity and gas generation. Overall, the 

results presented in Chapter 4 provide a solid foundation upon which future research can 
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build in better modeling and understanding dairy cow manure processes that impact the 

environment. 

Finally, the developed multi-gas emission measurement system was tested to 

determine and monitor CO2, CH4 and NH3 emissions from cattle manure surface 

applications, including beef manure, dairy manure, beef compost, and dairy compost 

from field plots at Greenville Research Farm. The estimated CO2, CH4, and NH3 

emissions from the surface application with dairy manure (452.4 ± 35.4 g m-2, 1.2 ± 0.1 g 

m-2, and 1,786.0 ± 206.7 g m-2, respectively) were the highest among other treatments. 

The emissions of CO2, CH4, and NH3 from the surface application with beef compost 

treatment (210.5 ± 14.4 g m-2, 0.2 ± 0.02 g m-2, and 0.07 ± 0.01 g m-2, respectively) were 

the lowest. CO2 and CH4 emissions presented in this study were found to be highly 

dependent on the air temperature and moisture content agreeing with previous studies. 

Linear correlations with strong coefficient of determination (R2), particularly for CH4 

emissions, were observed between the percentages of hourly CO2 and CH4 emissions and 

temperature. Daily CO2 and CH4 emissions were found to be well correlated with average 

daily θv and well described using an exponential function. An empirical model, based on 

the Arrhenius equation, was verified with the emission measurement data confirming 

strong dependency of CO2 and CH4 emissions on temperature and moisture content of the 

soil surface applied with manure source materials. The solubility of NH3 most likely 

affected the accuracy of the NH3 emission measurements in the study. 
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CHAPTER 7 

RECOMMENDATIONS 

This dissertation demonstrates the development of the gas emission measurement 

system and quantification of gas emissions from surface application with different 

manure types using the measurement system. The results of the current research show the 

performance of the measurement system and correlations between gas emissions and the 

air temperature and surface soil moisture content. While the goals of the research were 

achieved, a number of issues exist which warrant further investigation and extend beyond 

the scope of this dissertation. 

The design of the measurement chamber could be improved to minimize the 

artificial, constrained environment created by the chamber, which can alter the boundary 

conditions (i.e., inhibition) for natural gas emissions. The inside and outside conditions 

including the concentration gradients driving diffusion, barometric pressure, temperature 

and moisture of the surface soil inside and outside the chamber must be as identical as 

possible to provide accurate measurements. It is important to consider the effect of the 

presence of the chamber on gaseous concentration gradients within the measurement 

environment, leading to errors in gaseous flux estimates. The measurement times should 

be limited to three minutes in order to maintain chamber gas concentration changes as 

small as possible, and minimize this effect. Additionally, the measurement chamber 

should be designed and developed to equalize pressure in the chamber with atmospheric 

pressure, particularly in windy conditions. The location and position of the chamber 

during the measurement are other factors to be considered for further investigation as 
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they could alter the moisture of the surface soil and temperature inside the chamber from 

the surrounding area. 

Physical, hydraulic, and thermal properties of cattle manure reported in Chapter 4 

represent a novel and unique contribution for advancing prediction and modeling 

capabilities of gas emissions from manure sources, while the uncertainties of the results 

can be due to the complexity of shrinkage, surface crust formation, and shrinkage cracks. 

The effects of surface crust formation and shrinkage, which are likely to occur variably 

upon drying, potentially modify the water retention and hydraulic conductivity functions 

due to high moisture content and high porosity of as-excreted manure. Further work is 

needed to characterize the manure’s surface crust formation to more completely 

understand key processes (e.g., gas emissions, nutrient leaching) impacting the 

environment and leading to a more sustainable system. The magnitude and variation of 

gaseous emissions due to seasonal cycles should also be further investigated for complete 

mitigation strategies.  A more accurate model, which takes into account physical, 

chemical, and biological factors, is necessary to estimate and describe gas emissions. 

The measurement system presented in this work, based on the multiplexed 

portable FTIR-surface chamber network, is particularly well suited for fully automated 

continuous monitoring necessary for in-situ assessment of long-term gas emissions from 

manure sources. The multiplexing system, which facilitates automation of multiple 

chambers and management of chamber air flow, can be employed to assess the temporal 

and spatial variability of emissions from different manure sources or farming practices. 

The measurement technique will be advantageous for treatment comparison and 

mitigation strategies, which tend to be comparative in nature. Application of the 
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developed measurement system can also be extended for other agricultural management 

or natural ecosystems. 
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