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Implications of Spatially Variable Costs and Habitat
Conversion Risk in Landscape-Scale Conservation
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Abstract

‘‘Strategic habitat conservation’’ refers to a process used by the U.S. Fish and Wildlife Service to develop cost-efficient
strategies for conserving wildlife populations and their habitats. Strategic habitat conservation focuses on resolving
uncertainties surrounding habitat conservation to meet specific wildlife population objectives (i.e., targets) and
developing tools to guide where conservation actions should be focused on the landscape. Although there are examples
of using optimization models to highlight where conservation should be delivered, such methods often do not explicitly
account for spatial variation in the costs of conservation actions. Furthermore, many planning approaches assume that
habitat protection is a preferred option, but they do not assess its value relative to other actions, such as restoration. We
developed a case study to assess the implications of accounting for and ignoring spatial variation in conservation costs in
optimizing conservation targets. We included assumptions about habitat loss to determine the extent to which
protection or restoration would be necessary to meet an established population target. Our case study focused on
optimal placement of grassland protection or restoration actions to influence bobolink Dolichonyx oryzivorus populations
in the tallgrass prairie ecoregion of the north central United States. Our results show that not accounting for spatially
variable costs doubled or tripled the cost of meeting the population target. Furthermore, our results suggest that one
should not assume that protecting existing habitat is always a preferred option. Rather, our results show that the balance
between protection and restoration can be influenced by a combination of desired targets, assumptions about habitat
loss, and the relative cost of the two actions. Our analysis also points out how difficult it may be to reach targets, given
the expense to meet them. We suggest that a full accounting of expected costs and benefits will help to guide
development of viable management actions and meaningful conservation plans.
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Introduction

Strategic habitat conservation is a process used by the
U.S. Fish and Wildlife Service (USFWS) to develop
strategies for conserving wildlife populations and their
habitats (USFWS 2008). This process can be thought of as
an application of adaptive management (Walters 1986;
Williams et al. 2009), in the sense that it is a cyclical
learning process for making recurrent decisions under
uncertainy. The strategic habitat conservation approach
involves 1) establishing population objectives and
apportioning them in space to guide conservation
planning and management at scales relevant to decision
makers (e.g., Adamcik et al. 2004; USFWS 2012), 2)
developing spatially explicit models that estimate where
those species occur on the landscape, and 3) developing
tools to inform conservation planning and on-the-
ground delivery. Managers then monitor the outcomes
of management actions to test critical assumptions and
address uncertainty.

Many optimization tools have been developed to
guide land managers about how to best allocate effort to
achieve objectives (e.g., Wilson et al. 2011). Similar
approaches have been applied in ways that are
consistent with the strategic habitat conservation
framework (e.g., Thogmartin et al. 2014) and have relied
on the use of readily available software tools such as
Marxan (Ball et al. 2009) or Zonation (Moilanen et al.
2005). Such tools tend to acknowledge that species
distributions and responses to management vary across
the landscape. These tools also treat the issue of cost as a
constraint, and in some cases that constraint is simply a
limit on the number of management units or the amount
of area that can be managed at any one time (e.g.,
Westphal et al. 2007; Thogmartin et al. 2014). Given that
the costs of management likely vary across the
landscape, not accounting for cost or for the variation
in cost, may affect which management actions are
selected as optimal.

This may have implications for the usefulness of
planning tools that rely only on predictions of species or
habitat distributions (e.g., Niemuth et al. 2009; Johnson
et al. 2010). Including costs in such analyses can lead to
more efficient strategies (e.g., Post van der Burg et al.
2014), but this may also depend on the range of actions
considered. For example, some analyses focus only on
the cost of protecting existing bird habitat (e.g., Walker
et al. 2013), implying that habitat protection is the best
action and may simply need to be done more efficiently.
This may not be the case if the risk of losing existing
habitat is fairly low or if restoration efforts are less
expensive in some locations. In such cases, restoring
habitat may be a more efficient option in meeting
species population objectives.

Here, we describe a case study using an optimization
approach to design a landscape in the tallgrass prairie
ecoregion of the United States that meets a grassland
bird species population objective, while accounting for
spatial variability in the cost of conservation actions.
Note that although we based the analysis in this paper
on a real population objective, we did not intend for this

analysis to provide a comprehensive guide for conserv-
ing grassland bird species. Instead, we simplified a
grassland bird conservation problem to provide insight
into the implications of including or ignoring the spatial
variation in cost efficiency of conservation actions in
achieving a population objective. We expected, based on
previous work (e.g., Post van der Burg et al. 2014), that
not including cost would affect where actions were
applied on the landscape and would lead to more
expensive conservation portfolios. In addition, we
assessed whether a conservation portfolio that meets
the objective requires more protection of existing
habitat vs. restoration of habitat. Our assumption was
that protection of existing habitat would make up a large
portion of the optimal solution but that portion would
be dependent on assumptions about the probability of
habitat conversion. Based on these analyses, we discuss
how our approach could be used to refine and expand
an assessment that will provide a comprehensive
analysis of landscape scale habitat conservation for
grassland bird species.

Methods

Study area
Our case study focused on the tallgrass prairie

ecoregion in the U.S. portion of Bird Conservation
Region 11 (BCR 11; North American Bird Conservation
Initiative 2000; Figure 1); this region includes Iowa,
Nebraska, South Dakota, North Dakota, and Minnesota.
The temperate grasslands composing much of the native
grasslands in this region are among the most threatened
and least protected habitat types in the world (Hoekstra
et al. 2005). For BCR 11, conversion of native grasslands
to agriculture tends to be due to the region’s productive
soils, combined with policy and economic drivers. These
conditions seem to have contributed to a long-term
decline in grassland bird populations (Brennan and
Kuvlesky 2005).

Case study
Our case study simulated a management scenario in

which a manager invested in grassland conservation
actions that increased or decreased a grassland bird
population. We chose to work with the bobolink
Dolichonyx oryzivorus because Partners in Flight (Rosen-
berg et al. 2016) identifies it as a species of concern and a
model is available to predict the effects of changing
grassland distributions on its abundance (Drum et al.
2015). We assumed the management objective in this
scenario was to meet a population target for bobolinks
for the smallest budget possible. Because our case study
used a grassland-dependent species, we assumed that
grassland habitat was the major limiting factor on
bobolink abundance. We assumed that there were only
two conservation actions that could be invested in:
‘‘protection’’ (i.e., purchase of land) of existing grassland
or ‘‘restoration’’ (i.e., replacement of cropland with
restored grassland and protection). We further assumed
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that each action was applied to 16.19-ha (40-acre)
management units, which closely approximated the
scale of USFWS management activities in this region
(D. Hertel, USFWS, personal communication). A manage-
ment unit of this size is often the basis of decisions for
the purchase of land or conservation easements. We
assumed that if a management unit was cropland, a
restoration and protection action could be applied; when
the management unit was grassland, only a protection
action could be applied.

Bobolink population objective and response to
management

Aside from identifying species of concern, Rosenberg
et al. (2016) also specified short- and long-term
population objectives for the bobolink. They based
these objectives on analyses of population trend data
and a desire to maintain or alter the trends. For
bobolinks, their objective is to increase the continental
population by 5–15%. For our case study, we evaluated

this range of increase within BCR 11. To predict the
impact of conservation actions on bobolink abundance,
we used a zero-inflated Poisson regression statistical
model that predicts abundance of bird pairs in response
to land cover by using a modified version of the National
Land Cover Dataset at a 0.09-ha resolution (Drum et al.
2015). Drum et al. (2015) developed a series of candidate
models for a range of grassland bird species and used a
model selection approach to select the models for
making predictions. These models contained combina-
tions of climate and land cover variables. In the case of
bobolinks, the zero-inflation portion of the model
included the following land use variables: the proportion
of seasonal wetlands within 800 m and the proportion of
trees, grasslands, and cropland within 400 m. The
abundance portion of the model included the propor-
tion of seasonal wetlands within 1,600 m; the proportion
of trees within 3,200 m; and the proportion of temporary
wetlands and undisturbed grasslands within 400 m.
Parameter estimates in the bobolink model showed that

Figure 1. Map based on the North American Bird Conservation Initiative map of the tallgrass ecoregion portion of Bird Conservation
Region 11 (North American Bird Conservation Initiative. 2000, see Supplemental Material Reference S3). The region includes Iowa,
Nebraska, South Dakota, North Dakota, and Minnesota. This map summarizes land use in terms of existing protected and
unprotected grassland (green), cropland (yellow), and other land cover types (white). We developed land cover categories from a
modified version of the 2011 National Land Cover Dataset (Drum et al. 2015). The resolution of this this map is 16.19 ha.
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abundance was positively correlated with the proportion
of grass and negatively correlated with the proportion
cropland. Drum et al. (2015) cross-validated their
bobolink abundance predictions against BBS data from
the tallgrass portion of BCR 11 and found a high
correlation between the two (R2¼ 0.86), which indicates
the model may be useful for making predictions.

We modified the land cover dataset used in Drum et
al. (2015) using multiple sources of information to
identify grassland as accurately as possible (e.g., by
incorporating spatial data from the U.S. Department of
Agriculture’s Conservation Reserve Program and from
the USFWS). We reclassified grasslands as protected
grasslands if they were under federal or state easements,
federal or state ownership, or managed by a nongov-
ernmental organization. We classified grasslands that
were not under public management as unprotected. We
then aggregated this dataset to the 16.19-ha scale, to
match the scale of primary management units described
above, by using a majority rule. The rule assigned the
land cover state to each management unit based on the
dominant land cover type in each unit. We scaled
predictions using the zero-inflated model so that they
estimated the number of birds per hectare. Because we
rescaled the land cover dataset described above, we also
had to rescale abundance predictions from the model by
multiplying predictions by 16.19.

We assumed that only unprotected grasslands could
be protected. We considered as candidates for a
combination of restoration and protection the sites that
were classified as cropland. We simulated the effect of
protection actions by removing the risk of conversion.
But because we did not know the risk of conversion, we
created 11 different scenarios in which the probability of
converting all existing unprotected grasslands ranged
between 0 and 1 in steps of 0.1. Under each scenario, we
multiplied the predicted abundance on unprotected
grasslands by the probability of conversion. This
represented expected abundance without protection.
When the protection action was applied to a given
location, we simulated the effect of protection by setting
the probability of conversion to zero. For cropland units
we simulated the effect of restoration actions by
assuming the unit was immediately converted to
grassland. Because we based our predictive model on
the effect of land use in neighboring units, each change
in a unit required updating the current prediction and
recalculating bobolink abundance in neighboring units.
We assessed these changes in terms of the local effect of
grassland restoration on the immediate neighbors
around the unit under management (i.e., units within
400 m).

Assessing the cost of conservation actions
For simplicity, we assumed that the cost of protecting

existing grassland in a management unit would be
proportional to the real estate value of cropped land in
that unit. We used land values from 2009 to 2013 for

Minnesota (University of Minnesota 2013) and Iowa
(Duffy 2013) at the county level. We assumed that
management units that fell in these counties all had the
same dollar value. We were not able to obtain land
values for the other states in our study. To estimate land
values in these states, we developed a model that
predicted county land values as a function of average
county rental rates. We developed the model using
average county rental rates over a 5-y period for counties
in Iowa and Minnesota from 2009 to 2013 (U.S.
Department of Agriculture 2015). We fit a linear model
to our known land value estimates for the two states,
with rental rates as the independent variable. We then
used the model to predict county-level land values in the
states where we had rental rate data, but not land values.
We recognize that actual protection costs may be more
or less depending on market changes, policy changes,
and special agreements with private land owners, such
as existing easements. In cropland management units,
we assumed that the cost of grassland ‘‘restoration’’ was
$2,000 per unit, plus the cost of protection (i.e., the
estimated land value); we estimated restoration costs
based on conversations with USFWS personnel.

Optimization model
We used a marginal gain heuristic optimization method

(van Teeffelen and Moilanen 2008; van Teeffelen et al.
2008) because of the dynamic aspect of the model (i.e.,
the effect of actions on neighboring units) and because
there were more than 1 million management units to
consider. Although such an approach is not guaranteed to
find a truly optimal solution, as would linear or dynamic
programming approaches (Loehle 2000), heuristic ap-
proaches have been shown to find reasonable solutions to
large, complex, or otherwise intractable numerical prob-
lems (Moilanen 2008). We applied an algorithm to
iteratively search through all possible combinations of
management units and actions and then choose the
combination that maximized an objective function. The
algorithm builds the optimal solution by iteratively adding
the next best decision to assemble the overall solution
portfolio. Because the effect of any individual action
(protection or restoration) can affect bird abundance
estimates on neighboring units, and vice versa, we ran the
models iteratively for each decision to evaluate the
potential outcome for the landscape. The algorithm keeps
selecting sites and actions until a conservation target or
budget cap is reached. For this case study, we looked at
choosing the set of units that met the population target
for bobolinks for the least cost. So, given a set of units (x),
the algorithm chooses a new unit and action (x*

kl) that
maximizes

V
�
Rðx*cÞ þ x*

kl

�
� VðRx*cÞ

costðx*
klÞ

;

where k represents the kth unit, l represents the lth action,
c represents a conversion probability, and V represents
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the value derived from applying the given action on the
unit. There are numerous ways to define value; in this
case, the value function was simply the total number of
bobolink pairs that could be expected from a set of
management actions. For our analysis, we considered 11
different conservation targets ranging from a 5% to a 15%
increase (in steps of 1%) over the estimate of the total
number of bobolinks in the tallgrass portion of BCR 11.

We developed our optimization algorithm in the Cþþ
programming language and implemented the prepro-
cessing of model predictions and making final visualiza-
tions of the solution in the R programming environment
(Code S1; Code S2; R Core Team 2017). We used the R
package Rcpp (Eddelbuettel and François 2011) for the
actual execution of the optimization algorithms. We ran
121 different scenarios: one for each unique combination
of conservation target and conversion probability. To
further assess the effect of cost, we also ran all 121
scenarios without cost in the objective function. Given
the large volume of scenarios, we executed each run of
the algorithm in parallel on the YETI high throughput
computing system maintained by the U.S. Geological
Survey.

Results

The portion of BCR 11 we used in our case study
contained 3,016,611 16.19-ha parcels. Only 1,255,231
parcels were classified as cropland or grassland (i.e., units
that could be managed). Cropland units made up 91% of
the management units and unprotected grasslands
made up the remaining 9% (Figure 1). Nonmanagement
units were classified as protected grasslands, hay,
seasonal wetlands, or trees, which were needed to apply
the bobolink abundance model. Other land cover classes
such as urban development or open water were
removed from this analysis. Our estimate of bobolink
pair abundance, using the current state of all parcels
(Figure 2), was 6.43 million pairs, a value that is close to
what Drum et al. (2015) predicted for the same region.

Our model for estimating land values suggested that
crop rental rates were positively correlated with actual
market land values (intercept: estimate ¼�788.04 [SE ¼
150.99]; slope ¼ 37.06 [SE¼ 0.83]) and served to predict
land values with reasonable accuracy (R2 ¼ 0.88). Our
predictions of land values per management unit ranged
from low (~US$27,000) in states such as Minnesota to
relatively high (.US$300,000) in states such as Iowa
(Figure 3). This spatial variation in cost drove the

Figure 2. Map based on the North American Bird Conservation Initiative map of predicted average number of bobolink Dolichonyx
oryzivorus pairs inside the tallgrass ecoregion portion of Bird Conservation Region 11 (North American Bird Conservation Initiative.
2000, see Supplemental Material Reference S3). The region includes Iowa, Nebraska, South Dakota, North Dakota, and Minnesota. We
based the predictions on land cover variables developed from the 2011 National Land Cover Dataset (Drum et al. 2015). The scale on
the right measures the number of bobolink pairs. The resolution for the map is 16.19 ha.
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optimization algorithm to select less expensive actions in
the northern part of BCR 11 (Figures 4a–d). Ignoring cost
variation drove the algorithm to select actions in the
southern and central parts of BCR 11 (Figures 4e–h) and
led to an increase in the total cost of those portfolios
(Figure 5). Increasing conservation targets also increased
the relative cost of the portfolios, because more actions
were needed to meet the target. But simply ignoring
cost seemed to have a much stronger effect on the cost
of conservation portfolios. In fact, a portfolio built
without considering cost tended to be two to three
times higher than a cost-efficient portfolio built to meet
the same conservation target.

Changes in conversion probabilities also drove chang-
es in both the selection of actions (Figure 4) and the
costs of conservation portfolios (Figure 5). For a given
level of conservation target, increasing the level of
conversion probability increased the number of actions
needed to meet the target (e.g., Figures 4a and b).
Increasing the level of conversion probability seemed to
have a larger effect on increasing conservation portfolio
cost than did increasing the conservation target level
(Figure 5). Increasing conversion probability led to an
increase in the number of protected grasslands needed
to meet the target (Figure 6). Increasing the target

tended to decrease the relative percentage of protected
grasslands in the portfolio because more restorations
were needed to meet higher targets. It also seemed that
there was a threshold in terms of when protecting
grasslands became part of the portfolio. When cost was
included in the objective function, the threshold
conversion probability was around 0.2. Without cost,
the threshold was around 0.6 (Figure 6).

Discussion

Our case study demonstrates the implications of
accounting for spatial variability in conservation costs
and the role that conversion probabilities play in
optimizing landscape decisions about whether to protect
existing habitat or restore habitat. Our results show that
ignoring spatially variable costs will produce conservation
portfolios that are two to three times more expensive
than more cost-efficient portfolios. Furthermore, our
results suggest that one should not assume that
protecting existing habitat is always a preferred option.
Rather, the balance between protection and restoration
should be determined by a combination of desired
targets, assumptions about conversion risk, and relative
cost. We have demonstrated how one can account for

Figure 3. Map based on the North American Bird Conservation Initiative map summarizing predicted average market land values by
county and per hectare for the period 2009–2013 inside the tallgrass ecoregion portion of Bird Conservation Region 11 (North
American Bird Conservation Initiative. 2000, see Supplemental Material Reference S3). The region includes Iowa, Nebraska, South
Dakota, North Dakota, and Minnesota. The scale on the right is in thousands of U.S. dollars and ranged from a minimum of $27,160
to a maximum of $386,480.
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Figure 4. Maps based on the North American Bird Conservation Initiative map of optimal conservation investments to benefit
bobolink Dolichonyx oryzivorus populations in the tallgrass ecoregion portion of Bird Conservation Region 11 (North American Bird
Conservation Initiative. 2000, see Supplemental Material Reference S3). The region includes Iowa, Nebraska, South Dakota, North
Dakota, and Minnesota. We based the initial state of these maps on the 2011 National Land Cover Dataset (Drum et al. 2015). These
investments include restoring grassland habitat (red) on cropland (yellow) or changing existing unprotected grassland habitat
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these issues and meet a specific goal or target most
efficiently by solving for the optimal combination of
habitat protection and restoration at a large spatial scale.
Such landscape planning approaches have been promot-
ed by the USFWS, as well as some landscape conservation
cooperatives (Millard et al. 2012), but technical guidance
has been limited regarding how to rigorously create large
scale plans. We suggest that optimization tools that link
conservation delivery decisions with management objec-
tives and costs are an important set of tools to guide
conservation planning over large areas.

The spatial configuration of decisions modeled in our
case study was influenced by the cost of land across BCR
11, which was also broadly correlated with the amount
of protected and unprotected grassland currently
remaining. In turn, the cost of land likely reflects the
value of that land for agricultural production. Our results
suggest that focusing on areas where land is less
productive may provide more potential for the success-
ful delivery of conservation. However, to make this
statement more meaningful, one would need to
understand the success rate of conservation actions on
less productive lands. Although we did not consider the
likelihood of management success, the distribution of
conservation effort from our model suggests that setting
goals based on administrative units (e.g., wetland
management districts) may not be as cost efficient when

considered in a broader context. That is, setting targets
for administrative units within the larger BCR may lead to
less cost-efficient outcomes if one is forced to meet
conservation targets in portions of the landscape where
costs are higher and likelihood of success is lower.

However, this also suggests that one may need to
consider landscape-scale population targets more broad-
ly in terms of agency management goals (i.e., spreading
effort among administrative units) and larger societal
goals. Targets are a useful tool for decision makers
because they are easily communicated, promote trans-
parency and accountability, and can integrate biological
assumptions about sustainability and social values
(Carwardine et al. 2009). For the bobolink, the conser-
vation targets we used were developed based on
subjective values about desired future continental
bobolink populations (Rosenberg et al. 2016). In our
case study, we focused only on this species, but certainly
conservation is a multi-objective affair that combines
biological and societal objectives. Thus, much like cost
and conversion risk, we expect that a more comprehen-
sive inclusion of additional objectives would change the
optimal solution for bobolink conservation, as well as
other grassland bird species.

For example, Klein et al. (2008) demonstrated the use
of Marxan for designing marine reserves for preserving
biological features while trying to minimize negative

Figure 5. Total cost of conservation portfolios optimized to meet bobolink Dolichonyx oryzivorus population targets in the tallgrass
ecoregion portion of Bird Conservation Region 11. The region includes Iowa, Nebraska, South Dakota, North Dakota, and Minnesota.
We based the solutions on the 2011 National Land Cover Dataset (Drum et al. 2015). The plot on the left represents the cost of an
optimal conservation portfolio under a cost-efficient objective function assuming various levels of a population target and
probability of habitat conversion. The plot on the right measures the same as the left, but under a no-cost maximizing objective
function. The scale on the far right is measured in billions of U.S. dollars.

�
(green) to protected grassland (blue). Maps a–d represent solutions developed under a cost-efficient objective function, and maps
e–h represent solutions developed under a no-cost maximizing objective function: maps a and e, 5% population target, 0.0
conversion risk; maps b and f, 5% population target, 1.0 conversion risk; maps c and g, 15% population target, 0.0 conversion risk;
and maps d and h, 15% population target, 1.0 conversion risk. The inset in the lower right corner shows the relative location of Bird
Conservation Region 11.
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effects on the commercial and recreational fishing
industry. They showed that inclusion of other stakehold-
er objectives changed the optimal solution but resulted
in a solution that met their biodiversity objectives with
less of an impact to socioeconomic objectives. They
argued that such an approach would be more accept-
able to the fishing industry, because that industry’s
concerns were included in the analysis. A more
comprehensive approach to multi-objective conserva-
tion in BCR 11 would likely include land owner values
(e.g., increasing agricultural production) because, as our
results suggest, land value plays such an important role
in driving optimal habitat conservation decisions. An
optimization approach such as the approach presented
here could then be used to assess the trade-offs between
these objectives and ultimately to find an efficient
solution that balances these values.

Such an analysis could be used to construct a solution
that is more reflective of multiple stakeholder values and
maybe more acceptable to a broader constituency.
However, this does not necessarily guarantee that the
solution would be easy to implement or be financially
feasible. In our analysis, the high cost of conservation
portfolios is driven by the fact that our function requires
meeting a target. This all-or-nothing approach may be
unrealistic. A more effective way to represent conserva-
tion objectives may be to develop functions that
measure the relative preferences of smaller changes in
objectives in a continuous way. Numerous examples of
approaches like this exist in the literature (e.g., Arponen
et al. 2005; Gregory et al. 2012) that may allow for
analyses of trade-offs under realistic budget conditions.
In addition, using such functions along with a temporally
explicit optimization framework (e.g., Moilanen and

Cabeza 2007) may allow for analyses that account for
diminishing returns in the future.

Our case study also made fairly simplistic assumptions
about conversion risk, namely, that conversion risk was
uncertain but spatially and temporally static. The reality
is that the risks to wildlife populations, especially
changes in land use and habitat conversion, are dynamic
over both space and time (Rashford et al. 2011; Lipsey et
al. 2015). In the region we chose for our analysis, much of
the landscape is already altered. So, the importance of
remaining unprotected habitat is potentially higher than
in a landscape with a higher proportion of remaining
habitat. But the relative importance of remaining habitat
is also likely influenced by the probability that it will
remain on the landscape. In fact, our results show that a
higher conversion probability drove the optimization
algorithm to choose more unprotected grassland. This
happens because a higher conversion probability reduc-
es the amount of contribution each unit provides to the
objective function, effectively increasing the marginal
gain from protecting grasslands. Depending on which
objective function one uses, the point at which
conversion probability starts to drive the algorithm to
select protection actions changes. For our case study,
this seemed to be driven by the relative costs of these
actions. Under the no-cost objective function and low
conversion probability, only restoration actions are
chosen because they produce the highest abundances.
Once the conversion probability reaches about 0.60, the
marginal gain of protection increases enough to make
protection valuable. Under the cost-effective objective
function, the lower cost of protection actions makes the
marginal gain of protection more valuable under lower
conversion probabilities. Clearly, this is because the

Figure 6. Optimal proportion of grassland protection actions in conservation portfolios optimized to meet bobolink Dolichonyx
oryzivorus population targets in the tallgrass ecoregion portion of Bird Conservation Region 11. The region includes Iowa, Nebraska,
South Dakota, North Dakota, and Minnesota. We based the solutions were based on the 2011 National Land Cover Dataset (Drum et
al. 2015). The plot on the left represents the optimal proportion under a cost-efficient objective function assuming various levels of a
population target and probability of habitat conversion. The plot on the right measures the same as the left, but under a no-cost
maximizing objective function. The scale on the far right is measured as the proportion of total actions invested in grassland
protection.
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marginal gain of protection is higher on cheaper units.
We were not able to incorporate variable estimates for
conversion risk in our model within the timeframe of this
project. However, approaches have been developed that
could be used in future development of this approach
(e.g., Stephens et al. 2008; Rashford et al. 2011). There
have been numerous approaches suggested that can
accommodate these dynamic changes and effectively
order conservation actions temporally (Nicol and Chades
2011; Lipsey et al. 2015), and some could be incorporat-
ed into the marginal gain heuristic approach that we
used in our case study (Moilanen and Cabeza 2007).

The static nature of the solution we found for bobolinks
also makes an implicit assumption that all management
units were available for conservation at any given time.
This may be unrealistic if at least some conservation is
focused on unplanned opportunities to implement certain
actions (e.g., a land owner decides to enroll in a
conservation program). Our results suggest that although
these types of opportunities should not be ignored, they
must be evaluated in the context of a larger conservation
picture to ensure efficiency. Our approach did not
evaluate the willingness of land owners to sell land for
bobolink habitat conservation, but Knight et al. (2011)
showed that ignoring the probability of this willingness
reduced the ability to meet conservation targets. Incor-
porating the likelihood of adopting a conservation
program would be an additional improvement in our
modeling approach. Efficient solutions could result from
incorporating private land conservation programs that
result in habitat but may not require the full cost of
acquisition. The relative importance of such programs
may also vary depending on how much remaining habitat
is still in the landscape. The area in our case study has
already been largely modified, but meeting conservation
objectives in other regions that have large portions of
remnant habitat may be less expensive and may require
less land be put into conservation programs.

Despite the limitations we point out, our model shows
what the optimal combination of restoration and
protection actions looks like when considered together
in a spatial context. Whether cost was included or not, the
optimal solutions for bobolink populations resulted in
clusters of connected grassland habitat, which was a
function of how the statistical model predicted species
response to landscape configurations as well as the
clustered relative costs of conservation actions. This is an
important feature to mention because some landscape
planning approaches focus on connectivity as a manage-
ment objective. This focus may be potentially misleading
since species populations likely respond to the amount
and quality of habitat, rather than connectivity per se
(Hodgson et al. 2009). In our analysis, we let the
optimization algorithm choose how connected resulting
habitat needed to be to meet an expected population
size, rather than make connectivity the objective.

In summary, our results suggest that meeting
grassland bird population targets in intensively farmed
landscapes may require large budgets and extensive
land bases, in large part because of losses of habitat
that have occurred over the past century. Furthermore,

our results show the implications of not considering the
expense of meeting targets or how to most efficiently
reach those targets. Our analysis points out how
difficult it may be to reach targets, given the cost to
meet them. This does not mean that optimizing over
large landscapes is futile, but rather that accounting for
expected costs and benefits allows planners to under-
stand the full extent of resources needed to meet
population objectives. Additional societal benefits
could be incorporated iteratively over time as a form
of adaptive management. Optimization techniques can
serve to integrate multiple objectives and develop cost-
efficient solutions for complex problems. Being able to
accommodate such complexities will likely be impor-
tant for more comprehensive conservation planning
efforts in the future.
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