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Abstract

Carbonates are prevalent in many modern and ancient lacustrine settings, but reconstruc-
tions of past lake levels or environments from such materials have been hindered by poor
chronology. Uranium-thorium (U-Th) dating has the potential to fill a gap in current
geochronological tools for such archives, but past attempts have been confounded by poor
understanding of the complex makeup of lacustrine carbonates, leading to misguided con-
clusions on both the utility of certain geochronological tools as well as the age of these
deposits. This thesis showcases strategies for the successful application of U-Th geochronol-
ogy to two types of lacustrine carbonates: lake bottom sediments and tufa deposits. Chap-
ter 2 presents a systematic approach to U-Th dating carbonate-rich lake sediments using
the ICDP sediment core from Lake Junín, Peru. Chapters 3–5 seek to demonstrate the
descriptive power of combining precise U-Th dates on tufas and other carbonates with
geologic observations of their depositional context at all scales—from the outcrop to the
microscale. Here, the tufas originate from a transect of closed-basin lakes in the central
Andes of northern Chile. With improved sample selection and leveraging of the incontro-
vertible constraints of stratigraphy and coevality, we are able to test the validity of U-Th
data. Combining quality-controlled geochronological constraints with careful characteri-
zation of different carbonate facies can yield new insight on the character of lake level
changes. These case studies offer frameworks for interpreting scattered geochronologic
data of any size or system. By embracing the noise in our data, we now have a richer
understanding of the controls on uranium in these deposits. Of all the lessons learned,
we hold the following as most important: for the determination of the age of lacustrine
carbonates, geologic context—in the form of sedimentological observations, additional geo-
chemical data, and paleoecological descriptions—is of equal importance to the numerical
accuracy and precision of geochronological measurements.
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Chapter 1

Introduction

Geology, at its core, is a discipline of science concerned with the reconstruction of events
and processes throughout the history of time. As such, geochronology is of unparalleled im-
portance to the field, providing constraints on past rates of change of fundamental processes
on Earth (e.g., evolution, tectonics, climate change) and testing hypotheses of causal rela-
tionships of critical events in Earth history (e.g., mass extinctions). Before the discovery
of radioactivity (Becquerel, 1896), geologists told time the old fashioned way: by making
careful qualitative observations of rocks. It began with the principles of superposition and
cross-cutting relationships (Avicenna, 1027; Steno, 1669), followed by the principle of faunal
successions (Smith, 1816), which enabled early geologists to correlate strata from around
the world to formulate a geologic timescale of Earth history. This relative timescale was
then put in absolute terms starting with the first application of uranium decay series in the
measurement of geologic age by Arthur Holmes in his paper, “The Association of Lead with
Uranium in Rock-Minerals and Its Application to the Measurement of Geological Time”
(Holmes, 1911).

Since then, our understanding of isotopes and our ability to measure them have im-
proved, and over the past few decades, the increased sophistication of mass spectromet-
ric techniques has led to the proliferation of geochronological measurements of increasing
precision. However, in the excitement of generating and advancing such quantitative mea-
surements, the application of the aforementioned principles of stratigraphy to form relative
constraints on sequences was relegated and at times considered lesser than the numerical
information generated from isotopic analyses. Research efforts were mainly focused on
decreasing analytical uncertainties and increasing numerical accuracy on measurements.
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Today, mass spectrometry for uranium series isotopes is at a level of technological
advancement such that the amount of material needed for an analysis is of a scale on par
with the sub-centimeter cross cutting and stratigraphic relationships commonly observed in
lacustrine sediments and shorezone deposits. These incontrovertible constraints can now
be leveraged as equally powerful information to assess the accuracy of geochronological
data. Furthermore, the precision of individual analyses is now high enough such that
the scatter of dates itself can represent geologically meaningful information rather than
problems related to the analytical measurement (“dispersion” or “geologic scatter”).

This thesis aims to recombine the age-old axioms underpinning the field of geology
with modern day uranium-thorium (U-Th) dating techniques for the determination of the
age of lacustrine carbonates. These materials are historically considered to be non-ideal
for this geochronological tool and thus often not worth the investment of time, resources,
and personnel. We apply U-Th dating to two types of lacustrine carbonate deposits: lake
sediments and tufas.

Chapter 2 presents a systematic approach to U-Th dating carbonate-rich sediments
from the ∼100-m-long drill core from Lake Junín, Peru. Deep sediment cores from long-
lived lake basins are fundamental records of paleoenvironmental history, but the power
of these reconstructions has often been limited by poor age control. U-Th dating has the
potential to fill a gap in current geochronological tools available for such sediment archives.
The U-Th dating results from the sediment core form the foundation of an age-depth model
spanning ∼700 kyrs. High uranium concentrations (0.3–4 ppm) of these sediments allow
us to date smaller quantities of material, giving us the opportunity to improve sample
selection by avoiding detrital contamination, the greatest limiting factor to the success of
previous U-Th dating efforts in other lake basins. The dates from 174 analyses on 55 bulk
carbonate samples revealed significant scatter that could not be resolved with traditional
isochrons, suggesting that at least some of the sediments have not remained closed systems.
To understand the source of noise in the geochronological data, we first apply threshold
criteria that screen samples by their U/Th ratio, reproducibility, and δ234Uinitial value. We
then compare these results with facies types, trace element concentrations, carbonate and
total organic carbon content, color reflectance, mineralogy, and ostracode shell color to
investigate the causes of open system behavior.

We find that the greatest impediment to U-Th dating of these sediments is not detrital
contamination, but rather post-depositional remobilization of uranium. After examining U-
Th data in these contexts, we identify samples that have likely experienced the least amount
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of alteration, and use dates from those samples as constraints for the age-depth model.
Our work has several lessons for future attempts to U-Th date lake sediments, namely
that geologic context is equally important as the accuracy and precision of analytical
measurements when determining the age of sample materials. In addition, we caution
that significant geologic scatter may remain undetected if not for labor intensive tests of
reproducibility achieved through replication. As a result of this work, the deep sediment
core from Lake Junín is the only continuous record in the tropical Andes spanning multiple
glacial cycles that is constrained entirely by independent radiometric dates. As such, this
record is uniquely poised to offer new insights on past climate and environmental changes
in the tropical Andes, complementing and testing the long but tuned sediment records
from Sabana de Bogotá to the north (∼5◦S; Groot et al., 2011) and Lake Titicaca to the
south (∼16◦S; Fritz et al., 2004, 2007).

Chapters 3–5 focus on U-Th dating of tufas and other lacustrine shorezone deposits. In
arid regions worldwide, extensive build-ups of porous carbonate rock called “tufa” are un-
mistakable evidence for past landscape occupation by pluvial lakes. These tufas frequently
exhibit a rich diversity of architectural structure, morphology, composition, and texture,
but leveraging these characteristics to reconstruct the conditions and processes responsible
for this diversity is often limited by uncertainties in the timing and rate of tufa formation.
Conversely, past attempts at dating tufas have been confounded by poor understanding of
the complex makeup of these deposits, leading to misguided conclusions on both the utility
of certain geochronological tools for tufas as well as their age.

Chapters 3–5 present data from late Pleistocene lake basins in the central Andes for
insight. We demonstrate the descriptive power of combining (1) precise U-Th dates on
tufas and other lake carbonates with (2) geologic observations of their depositional con-
text at all scales—from the outcrop to the microscale. These analyses inform one another:
taking advantage of our ability to U-Th date small (<10 mg) amounts of powder, we use
petrography to improve sample selection, and then test data for internal consistency by
applying physical stratigraphic and coevality constraints. From this, we observe that U-
Th dates on dense (non-porous) or crystalline materials more often yield data that pass
these tests. We also document open system behavior in deposits that would nominally
pass traditional geochemical criteria for valid U-Th dates. Pairing quality-controlled U-Th
dates with outcrop and petrographic observations, we present more nuanced insights on
the timing and variability of past lake levels associated with tufa formation. Dates calcu-
lated from measurements are only as good as the interpretation of the geologic materials
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utilized—only then should geochronological data be used to infer the timing or duration of
a specific process or event. By combining the geologic context of lacustrine sediments and
tufas with U-Th geochronological constraints, our interpretations are more closely aligned
with that which is the truth.
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Chapter 2

U-Th dating of lake sediments:
Lessons from the 700 kyr sediment
record of Lake Junín, Peru

2.1 Introduction

Since the founding of the International Continental Scientific Drilling Program (ICDP) in
1996 (Colman, 1996), scientific teams have recovered dozens of deep lake sediment cores
from nearly every continent in the world. Due to their continuity, resolution, and wide ge-
ographic distribution, these sediment records have provided important long-term perspec-
tives on Earth’s terrestrial environmental history. As the spatial and temporal coverage of
such records expand, the next step is to combine these records with complementary studies
from marine and ice cores to address longstanding questions about the linkages and causal
relationships among terrestrial, marine, and atmospheric phenomena. Here, the challenge
lies in comparing the timing, rate, and duration of past land surface and ecosystem changes
to those of past events identified elsewhere in the oceans, atmosphere, and other continen-
tal regions. Thus, the extent to which tests for leads and lags in the climate system are
useful is limited not by the quality of environmental proxy interpretation, but rather by
the quality of the temporal constraints.

While ice and marine cores are often amenable to layer counting or anchoring to globally
synchronous reference timescales (e.g., oxygen isotope “chronostratigraphy” in marine sed-
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iments, methane gas concentrations in ice cores), determining a reliable age-depth model
for long lacustrine sediment sequences is generally more problematic. Because lake basins
occupy a broad range of environments, each drilling location often contains a site-specific
accumulation of terrigenous and biogenic sediment as well as a unique post-depositional
alteration history influenced by non-climatic processes like tectonics and volcanism. Thus,
aligning such records to external reference timescales (colloquially known as “tuning”) re-
quires a thorough investigation of how global climate events and more proximal geologic
processes affect local paleoenvironmental proxy variability. Proving such relationships con-
vincingly can be a formidable undertaking, but in the absence of other data, tuning is often
the only means available to establish time constraints. As a result, such records are lim-
ited in their ability to address climatic questions that are dependent on the relative timing
of events (e.g., Prokopenko et al., 2006; Nowaczyk et al., 2013; Stockhecke et al., 2014;
Francke et al., 2016).

Therefore, when possible, absolute chronological data from radiometric and paleomag-
netic dating techniques are highly desirable and generally serve as first-order constraints
on age-depth models of sediment cores. The success and utility of such methods is depen-
dent on factors such as the availability and quality of datable materials, the time range
of the method, and the adherence to assumptions underpinning each technique within a
given sediment sequence. When these factors align, the resulting independent chronolo-
gies allow for compelling investigations of forcing relationships (e.g., the radiocarbon- and
tephra-based chronologies of Laguna Potrok Aike in Patagonia [Kliem et al., 2013] and
Lake Petén Itzá in Guatemala [Kutterolf et al., 2016]). However, problems commonly arise
when suitable dating materials are absent or the true age of the sediments is outside the
applicable temporal range of a method: for instance, datable tephras are rare in most
environments and the radiocarbon method is generally limited to the last 50 ka.

Currently, there exists a gap in comprehensively tested high-precision geochronological
tools in the time interval between 50 and 780 ka, beyond the limit of radiocarbon dating and
up to the most recent geomagnetic reversal (Brunhes–Matuyama), after which paleomag-
netic reversal stratigraphy can be applied. Here, methods like uranium-thorium (U-Th),
cosmogenic exposure, and optically stimulated luminescence (OSL) dating have potential
(e.g., Roberts et al., 2018). However, these systems have mostly been underexplored in
their broad application to lake sediments or have not been refined since improvements in
instrumentation have opened new doors for sample selectivity. Ideally, data from multiple
complementary chronological tools with different operating assumptions can be used to
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cross-validate one another (e.g., Colman et al., 2006; Shanahan et al., 2013), and in the
process, reveal information about the nature of uncertainties and biases specific to each
technique.

To this end, we present our efforts to U-Th date the carbonate-rich sediments from the
deep drill core extracted in 2015 from Lake Junín, Peru. Our strategy for sample selection,
tests for internal consistency that leverage stratigraphic coevality constraints, and use of
other corresponding sedimentological, geochemical, and paleoecological data to inform our
interpretations of the U-Th data can serve as a framework for future attempts to apply U-
Th dating techniques to long cores. Our results also indicate that future work to establish
or refine U-Th-based lake sediment chronologies must include deliberate tests that probe
for possible open system behavior or excess “geologic scatter”—unresolved errors that
can affect the accuracy and precision of dates due to unknown geologic complexities not
accounted for in typical uncertainty calculations and corrections (Ludwig and Paces, 2002).
Without a methodical exploration of U-Th data in context of other geologic information,
age-depth models that contain single, standalone U-Th analyses that, at face value, seem
like valid ages, may in fact hide the existence of geologic scatter and therefore be inaccurate.

The organization of this paper is as follows: We first provide a basic overview of the
principles behind U-Th dating and review previous efforts to apply U-Th geochronology
to lake sediments (Section 2.2). After describing the relevant background of Lake Junín
(Section 2.2.3) and our methods for core sampling, U-Th geochemistry, and isotopic mea-
surement (Section 5.2), we then present the results of 174 U-Th analyses from 55 unique
samples (Section 5.3). Of these, only 72 analyses from 18 samples are used in the final
chronology for the core. We explain our screening procedure for evaluating the validity of
each U-Th date (Section 2.5), and then interpret our analyses alongside other sedimento-
logical, geochemical, and paleoecological data to show that uranium remobilization, not
detrital contamination, is the most likely cause for discrepancies in our data (Section 2.6).
We then simulate the impact of detrital contamination and uranium remobilization on the
isotopic evolution of our samples to further support this conclusion (Section 2.7). Using
the U-Th age constraints that pass our criteria and radiocarbon dates from Woods et al.
(2019), we then describe the construction of the age-depth model for the Lake Junín sed-
iment record (Section 2.8). We end with a discussion on the uncertainties in U-Th age
estimates learned from this study and propose considerations for future U-Th dating of
lake sediments (Section 2.9).

Because terminology is important, hereafter, we distinguish between the terms date
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and age, adopting the convention followed by other geochronologists (e.g., Schoene et al.,
2013; Dutton et al., 2017): a date is a number calculated from a decay equation and
isotopic measurements, whereas an age is an interpretation of a date in the context of
other information and represents a geologically meaningful time.

2.2 Background

Thus far, the application of U-Th dating in continental paleoclimate archives has been most
visible and transformative in unrecrystallized corals and dense carbonate precipitates like
cave stalagmites and groundwater vein calcites (e.g., Winograd et al., 1992; Cheng et al.,
2000; Wang et al., 2001). In comparison, U-Th dating of lake sediments has historically
been less straightforward. To place the challenges of our work in this context, in this
section, we briefly describe the basic principles of U-Th dating, the geologic processes in
lake sediments that can compromise the underlying assumptions of this dating system, and
the strategies used by other studies to overcome or account for these issues.

2.2.1 Basic principles of U-Th dating

There are several “uranium-series disequilibrium” dating methods that make use of the
decay chains of various actinide nuclides (e.g., 238U, 235U; see Bourdon et al., 2003). Unlike
other notable radiometric chronometers such as uranium-lead or potassium-argon, which
compare the concentrations of a parent nuclide to that of its stable daughter product,
uranium-series disequilibrium dating schemes instead compare the activity—the number
of disintegrations per unit time per unit mass of a material—of a parent nuclide to those
of their series of unstable daughter products. These methods estimate time by measuring
the degree to which different daughter isotopes along a decay chain are out of secular
equilibrium, a steady state in which the activity of both the parent and daughter nuclides
are equal (i.e., the number of daughter nuclides forming is equal to the number of daughter
nuclides decaying). Because the half-lives of the parent isotopes are much longer than that
of all intermediate daughter products in these decay chains, a material containing the
parent isotope that has remained unperturbed for several million years will have reached
secular equilibrium (i.e., the activity ratio of the parent nuclide to its daughter product
will be equal to 1).

Disturbances to this equilibrium caused by various natural geochemical processes form
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the basis of uranium-series disequilibrium dating. For example, because of differences in
the solubility of uranium and thorium complexes in natural waters of near-surface and
surface environments, the highly soluble parent uranium is separated from its effectively
insoluble daughter product thorium in a marine or lacustrine carbonate deposit. Once this
separation occurs, the system will follow the laws of radioactivity, restoring equilibrium
between the parent and daughter nuclides at a rate determined by their respective decay
constants. Thus, the timing of carbonate formation is determined by measuring the extent
to which daughter product growth has restored the system to secular equilibrium (i.e.,
the extent to which the activity ratio of the parent nuclide and its daughter product has
returned to unity). Using measurements of relevant activity ratios, a date can then be
calculated from decay equations and constants.

Of the many uranium-series dating techniques available, in this paper, we use the more
widely applied 230Th-234U-238U disequilibrium dating method, for which “U-Th dating”
commonly serves as shorthand (Fig. 2-1). U-Th dating has been most widely applied in car-
bonate minerals: not only are they nearly ubiquitous in most continental waters, but they
also contain relatively higher amounts of uranium and are less prone to post-depositional
alteration than other lacustrine precipitates, like halite. As previously mentioned, the
conditions that increase the solubility and mobility of uranium tend also to decrease the
solubility and mobility of thorium. In oxic environments, uranium generally assumes its
highest oxidation state (U6+) in the form of the highly soluble uranyl ion (UO2+

2 ) which
easily forms stable complexes with carbonate ions (CO2−

3 ), further enhancing its solubil-
ity. UO2+

2 is then adsorbed onto or structurally incorporated into carbonate mineral host
phases (Langmuir, 1978; Reeder et al., 2000, 2001; Kelly et al., 2003, 2006). In contrast,
thorium is generally very insoluble and immobile in most aqueous environments where
pH > 3, with some exceptions (Chabaux et al., 2003). The solubility of both uranium
and thorium increase significantly when forming complexes with organic ligands like humic
and fulvic acids (Langmuir and Herman, 1980; Halbach et al., 1980; Murphy et al., 1999;
Lenhart et al., 2000). Thus, in most conditions, except for those that are highly reducing
or organic-rich, fluids are enriched in uranium and depleted in thorium, and this extreme
fractionation is preserved when calcium carbonate forms from such waters.

Two equations take advantage of this behavior to form the backbone of U-Th dating.
The first is the 230Th age equation:
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Figure 2-1: The basic principles of U-Th dating. [A] Schematic of the portion of the 238U decay chain
that is relevant for U-Th dating. The half-lives and type of particle emitted during radioactive decay (an
α or β particle) of each isotope are shown. Ultimately, the decay chain ends with the stable 206Pb. [B]
and [C] Panels illustrating the evolution of 230Th/238U activity and measured δ234U (δ234Um)—the two
ratios used for the calculation of U-Th dates—after initial fractionation. The three thick red-shaded lines
represent different pathways towards secular equilibrium based on the value of δ234Uinitial (see legend in
bottom of Panel B). Values shown are within the range of values observed in the Lake Junín sediments, but
are otherwise arbitrary and selected purely for demonstration. Panel C plots the same curves in Panel B
but in 230Th/238U activity-δ234Um space to show the graphical solution to the age equations. Hollow circles
mark the initial isotopic composition of the sample. Straight gray lines represent solutions to the 230Th
age equation (Eq. 2.1, lines labeled in kyrs with black text) and curved gray contours represent solutions
to the δ234U equation (Eq. 2.2, some curves labeled with their δ234Uinitial in gray). The plot of data in
230Th/238U activity-δ234Um space originates from Edwards (1988). [D] Schematic of uranium and thorium
sources in lake sediments. Black circles represent uranium in 230Th/238U disequilibrium whereas white
circles represent uranium in secular equilibrium. To simplify, the detrital carbonate and aluminosilicate
constituents represent bedrock-derived material of old age (>2 Ma). The placement of circles and triangles
within or around boxes represents how uranium and thorium are associated with each host: bound within
the crystal lattice or adsorbed to the substrate surface. The box furthest to the right represents the
low-oxygen porewater uranium sink, where uranium changes from a soluble to insoluble valence state and
accumulates authigenically. 28
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where square brackets around ratios indicate activity ratios; λ symbols are decay con-
stants; and t is the date (Bateman, 1910; Broecker, 1963; see Edwards, 1988 and Ivanovich
and Harmon, 1992 for derivation). The 234U/238U activity is more commonly expressed
using delta (δ) notation, representing the deviation in parts per thousand (permil; h) of
234U/238U from secular equilibrium: δ234U = ([234U/238U]−1) × 1000. From this equation,
it is clear that measuring three key isotopes—238U, 234U, and 230Th—allows us to uniquely
solve for t (Fig. 2-1A).

The term in Eq. 2.1 involving δ234U exists to account for the enrichment of 234U over
238U commonly observed in natural waters (Thurber, 1962). This disequilibrium is caused
by the preferential leaching of 234U during water-rock interactions due to its displacement
inside the crystal lattice of the host mineral by the alpha recoil of its parent 234Th (Kigoshi,
1971; Kronfeld, 1974; Fleischer, 1982; Chabaux et al., 2008). After solving for t using
Eq. 2.1, we can use a second equation to determine the starting value of δ234U at the time
of fractionation (δ234Uinitial):

δ234Um =
(
δ234Uinitial

)
e−λ234t (2.2)

where the subscript m represents the present measured value. Thus, these two equations
allow us to solve for two unknowns with the measurement of two isotopic ratios.

Fig. 2-1B shows the expected isotopic evolution of 230Th/238U activity and δ234Uinitial

over time, provided the system remains closed. Fig. 2-1C shows the graphical solution to
Eqs. 2.1 and 2.2: straight, sub-vertical lines represent solutions to the 230Th age equation
and curved lines emanating from the y-axis are solutions to the δ234U equation. From this
figure, two observations about this dating system can be made: (1) for a given analytical
error, as the true age of the sample increases, so too does the error in the age estimate
due to the increasing closeness of the age isolines; and (2) although both 230Th/238U and
234U/238U have not yet returned to their secular equilibrium values even after 1 Myrs,
the age isolines eventually are so closely spaced that current analytical abilities cannot
distinguish between a sample of a finite age and a sample of infinite age. This characteristic
and current mass spectrometry techniques dictate the practical limit of U-Th dating at
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∼700 kyrs (Stirling et al., 2000; Edwards et al., 2003; Cheng et al., 2016; Fig. 2-1A).

2.2.2 Previous work on U-Th dating of lake sediments

With all radiometric chronometers, a date is only interpretable as a meaningful age if the
system meets the following criteria for closed-system behavior: (1) all decay products were
absent at the time of formation, or can be corrected for if present; and (2) there was no
gain or loss of any radionuclides after formation other than by radioactive decay. For U-
Th dating of lake sediments, the most common obstacle is the lack of material that fulfill
these criteria. Even carbonate-rich sediments remain difficult to date, as the carbonates
often contain non-ideal constituents or have experienced post-depositional alteration due
to various weathering, transport, and mixing processes common in lake basins (Fig. 2-1D).

Despite the challenge, geochronologists have devised ways to circumvent these issues.
Table 2.1 is a list of lake sediment studies in which U-Th dating was applied, each with
varying degrees of success. We distinguish between studies working with evaporites and
carbonates, as these are the two most common materials used. Success has been limited
primarily by the incorporation of detrital materials that introduce initial 230Th, which
increases uncertainties and, if not fully corrected for, potential inaccuracies. Detrital con-
tamination is usually even more problematic for non-carbonate evaporites like gypsum or
halite because these materials typically have very low amounts of uranium derived from
precipitating waters. The most common detrital materials found in carbonates and evap-
orites are clay minerals (aluminosilicates and bulk limestone; Fig. 2-1D). Attempts to
chemically separate detritus from bulk sediment have been made, but selective acid leaches
meant to isolate endogenic material from the detrital component were found to also differ-
entially fractionate the uranium and thorium isotopes in unpredictable ways (Bischoff and
Fitzpatrick, 1991; Luo and Ku, 1991), making sequential acid leaching techniques for age
determination ineffective in all but the most controlled experimental cases (Ku and Liang,
1984; Schwarcz and Latham, 1989).

Thus, most U-Th dating applications of lake sediments have applied corrections for
detrital contamination by processing a series of coeval samples through total sample disso-
lution and then using “isochron” techniques. Here, the long-lived isotope 232Th (Fig. 2-1A)
acts as a tracer of contamination: assuming that the endogenic material contains no 232Th
or initial 230Th, any 232Th detected is attributed to the detrital component, and the accom-
panying amount of detrital 230Th is assumed to occur at a particular proportion relative
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to 232Th – an initial 230Th/232Th ratio.

For this reason, a sample with a higher measured 230Th/232Th or 238U/232Th ratio
(more 238U leads to more abundant 230Th) is considered more “clean,” while a sample
with a lower measured 230Th/232Th or 238U/232Th ratio is considered “dirty” (colloquial
terms used in the literature; e.g., Schwarcz and Latham, 1989; Przybylowicz et al., 1991;
Stein and Goldstein, 2006). By plotting the isotope ratios of several analyzed portions
of a single sample with varying amounts of detritus, an isochron line fit through those
analyses can pinpoint the isotope ratios of the endogenic material, and thus provide a date.
This approach is considered more rigorous than leaching methods, but is only applicable
when there is a single, homogenized source of detritus with a consistent 230Th/232Th ratio
forming one end member of the sample mixtures. Most studies listed in Table 2.1 apply
this isochron method, but the process is labor intensive because at least three analyses
are required for a date, and many more for one that is statistically rigorous (Powell et al.,
2002).

In some cases where the measured 230Th/232Th ratio of sample material is sufficiently
high, single-sample dates are possible by applying an initial 230Th/232Th correction that
generously accounts for the full range of possible detrital 230Th/232Th ratios. The 230Th
age equation modified to correct for initial 230Th is as follows:

{[
230Th
238U

]
−
[

232Th
238U

] [
230Th
232Th

]
i

(
e−λ230t

)}
− 1 =

− e−λ230t +

([
234U
238U

]
− 1

)(
λ230

λ230 − λ234

)(
1− e−(λ230−λ234)t

)
(2.3)

where i refers to the initial value at the time of fractionation (Edwards et al., 1987).
For impure carbonates, this detrital correction is usually the largest contributor to the
uncertainty of the final date, having greatest effect on samples with low uranium or low
230Th/232Th ratios. The impact of this correction decreases with the age of the sample:
with time, radiogenic 230Th builds up and any initial 230Th decays away, making the
proportion of radiogenic 230Th to initial 230Th more favorable. Single-sample dating has
thus far only been successful in more recent studies where carbonates with high uranium
concentrations (>3 ppm) are available and inductively-coupled plasma mass spectrometers
allow for smaller amounts of material to be processed, making it easier to avoid detritus
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when sampling (e.g., Balch et al., 2005; Fritz et al., 2007; see Table 2.1).
Thus, the presence of initial 230Th in sample materials has viable workarounds. How-

ever, less directly addressed is the issue of possible post-depositional gain or loss of uranium.
In addition to clays, other sediment constituents like organic matter and Fe-Mn hydroxides
serve as sources of uranium separate from endogenic materials; here, uranium is adsorbed
to the mineral and solid surfaces of these impurities (Ames et al., 1983a,b,c; Porcelli et al.,
1997; Ku et al., 1998; Schmeide et al., 2000; Chappaz et al., 2010; Fig. 2-8D). In theory,
utilizing these other uranium sources for dating can be satisfactory if the uranium has
remained immobile since their initial incorporation, as they are initially without 230Th
and would accumulate radiogenic 230Th with time. Indeed, uranium associated with or-
ganic matter and clays enclosed in evaporites has been beneficial to the dateability of such
low-uranium deposits (e.g., Ku et al., 1998). However, adsorbed uranium is far more sus-
ceptible to post-depositional remobilization than uranium bound within the crystal lattice
of carbonates (Alam and Cheng, 2014). Furthermore, organic matter and clays can also
adsorb additional uranium introduced to the materials via fluid flow, for instance when
low-oxygen porewaters render uranium insoluble and cause it to accumulate authigenically
(Fig. 2-1D; Yliruokanen, 1980; Bone et al., 2017).

Due to this capacity for organic matter to uptake uranium, there have been some
attempts to date peats in highly organic-rich sediments that exhibit high uranium concen-
trations of 1–100 ppm (Van Der Wijk et al., 1986; Rowe et al., 1997; Geyh and Mu, 2005;
Frechen et al., 2007), but open system behavior is commonly evidenced by age reversals
or anomalous uranium isotope values in these materials. The sediment sequence at Lake
Junín is interspersed with thick peat and organic-rich mud layers throughout its length,
signaling that the lake has likely experienced considerable changes in lake level and redox
conditions. In the following section, we provide further details about these sediments.

2.2.3 Background on the lake sediments from Lake Junín

Lake Junín (11.0◦S, 76.2◦W, 4100 m a.s.l.; Fig. 2-2) was targeted as a site for deep drilling
because of its potential to yield the first continuous, absolutely dated record in the trop-
ical Andes that spanned multiple glacial-interglacial cycles. Located on the high plateau
between the eastern and western cordilleras of the central Peruvian Andes, this relatively
shallow (<15 m) lake is the largest water body located entirely within Peru, occupying an
area of ∼300 km2 fringed by marshlands and dense sedge mats (Wright, 1983). Bedrock
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Figure 2-2: [A] Map of Lake Junín and its drainage basin, and the location of the three ICDP
drill sites (yellow circles), the nine Livingstone core locations taken along a transect across the
lake (black circles), and the 1996 piston core (white square; Seltzer et al., 2000). The composite
splice for Lake Junín is composed of cores from Site 1 and two transect cores from the center of
the basin (Hatfield et al., 2019). [B] More recently deposited carbonate silt found among the sedge
mats fringing the lake margins. The carbonate silt is subaerially exposed during the dry season
(June-July-August) when lake levels drop ∼1–2 m. For scale, small white specks in the shallow
water are Chilean flamingos (∼1 m). Photograph taken by Charles Casey from the western shore,
facing approximately northwest across the lake.

consists primarily of Paleozoic-Mesozoic marine carbonates, with some exposure of pre-
Cambrian crystalline silicate rocks along the eastern cordillera (Cobbing et al., 1981). The
lake owes its origin to >250-ka-aged coalescing glacial outwash fans that dam the northern
and southern ends of the lake, respectively (Hansen et al., 1984). Moraine mapping and
cosmogenic exposure ages from boulders on moraine crests indicate that the lake was not
overridden by glaciers or ice at any time in the last 1 million years (Smith et al., 2005a,
2005b), making it one of the few studied lakes in the Andes that predates the maximum
extent of glaciation.

Previously extracted short (∼20–25 m) cores spanning the last ∼50 kyrs revealed that
the lake sediments consist of alternating packages of fine-grained glaciogenic silt and endo-
genic carbonate silt deposited at a high rate (0.2–1.0 mm yr−1; Hansen et al., 1984; Seltzer
et al., 2000). The carbonate silts are interpreted to have formed similar to the way such
silts form in present day, in which springs and streams supersaturated in calcite enter the
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fringing wetlands along the western side of the lake and precipitate carbonate on rooted
macrophytes (Flusche et al., 2005; Rodbell et al., 2012). Based on the modern carbonate
production processes observed, it was hypothesized that a longer core would contain more
carbonate-rich sections, coinciding with warm interglacial and interstadial periods when
retreating piedmont glaciers allowed for the formation of marginal wetlands that isolated
the basin center from detrital sediment input (Rodbell et al., 2012).

Proving such a temporal link between carbonate deposition, periods of reduced ice
cover, and past warm intervals in a longer core would rest on the reliability of the age-depth
model. Thus, we conducted a pilot study to determine if U-Th dating could be applied to
bulk samples of the carbonate silts. Success would demonstrate than an independent U-Th-
based chronology could support a long sediment record from this site, providing motivation
for deep drilling. Sample material came from the 1996 piston core taken by G.O. Seltzer and
D.T. Rodbell from the shallow western margin of the lake (Fig. 2-2A). The results from
this initial test were encouraging: most of the U-Th analyses attempted on carbonates
from the upper 10 m of the core were consistent with the chronology produced by 14C ages
(Fig. 2-3). The three outliers may have been influenced by open system behavior of mollusc
shell fragments, which have been previously shown to post-depositionally uptake uranium
(Blanchard et al., 1967; Kaufman et al., 1971; McLaren and Rowe, 1996). The preliminary
results also revealed that Lake Junín carbonates have high uranium concentrations (0.3–2
ppm) and low detrital content, with ratios of radiogenic 230Th to initial 230Th that are 10
times greater than sediments from Lake Titicaca (Fritz et al., 2007) and the Great Salt
Lake (Balch et al., 2005).

Following project approval, the uppermost ∼100 m of sediment was drilled and cored
in eleven holes across three sites in August 2015. This paper focuses only on sediments
recovered from Site 1, the deepest core extracted from the approximate depocenter of the
lake. We work primarily from the PLJ-1 splice, which is comprised of core sections from
four of the five holes at Site 1 and core sections from two Livingstone transect cores close
to the lake depocenter (Fig. 2-2). More specifics regarding the coring operation and the
subsequent generation of the PLJ-1 splice are described in Hatfield et al. (2019); hereafter,
all references to depth in the Lake Junín core refer to the core composite depth below lake
floor (CCLF). For complete information on the radiocarbon dates constraining the first
∼50 kyrs of the record, we refer the reader to Woods et al. (2019).

Here we briefly describe the stratigraphy of the PLJ-1 splice; a full description will be
detailed in subsequent publications elsewhere. Broadly, the prediction that a long core
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Figure 2-3: Comparison of radiocarbon (gray squares) and U-Th (blue circles) dates from the
1996 core and the PLJ-1 splice. Radiocarbon data are from Seltzer et al. (2000) for the 1996 core
and Woods et al. (2019) for the PLJ-1 splice. Note that most U-Th data shown represent a mean
of multiple analyses; see Table 2.3 for details. Circled in red are outlier U-Th analyses from the
1996 core that contained abundant mollusc shell fragments, and thus may have been affected by
post-depositional uptake of uranium, biasing dates to be younger than the true age. Based on
the PLJ-1 data, the inferred sedimentation rate (not normalized by dry bulk density) at the lake
depocenter over the last 25 kyrs is ∼0.3 m kyr−1, which is ∼50–60% slower than that of the 1996
core located on the western lake margin (Fig. 2-2).

from Lake Junín would also contain alternating packages of carbonate and glaciogenic
sediment was correct: ∼10 m thick packages of cream-colored carbonate silt alternate
with ∼10–15 m thick intervals of dark gray, fine-grained carbonate-rich glaciogenic silt
throughout the length of the core until ∼85 m, where a thick package of carbonate-rich
sand occurs (Fig. 2-4A). The mean grain size of this bed was incompatible with the drilling
tools during core extraction, preventing deeper core recovery. Peat and organic-rich mud
layers of ∼1- to 50-cm thickness punctuate both the carbonate and glaciogenic silt intervals
and contain abundant microfossils that suggest that the peats represent times of wetland
encroachment towards the lake center during lake level lowstands (Woods et al., 2019).
Despite this interpretation, there is no stratigraphic evidence of any depositional hiatus
or unconformity throughout the core, suggesting that the drill site has been submerged,
however shallow in depth, for the duration of the record (Rodbell, Abbott, et al., in prep.).
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2.3 Methods

2.3.1 Core sampling for U-Th dating

Within the U-Th geochronology community, there is a common expectation that samples
with the following characteristics, regardless of substrate type (speleothems, sediments,
tufas, et cetera), have greater potential for success: light in color (considered an indicator
of sample purity), non-porous, homogeneous (either as thin laminae or thicker intervals),
and free of shell fragments and other detritus. We took advantage of the opportunity
provided by modern mass spectrometry to process smaller amounts of material by making
a deliberate effort to limit the amount of detritus included during the initial sampling
stage.

Core splitting and sampling took place at the National Lacustrine Core Facility (Lac-
Core) at the University of Minnesota, Twin Cities, in February 2016. After cores were
split lengthwise and the centers were extracted with a plastic “U-channel” for paleomag-
netic work, sampling for U-Th dating was given first priority on all cores. This order of
operations ensured that the most ideal carbonates would be reserved for dating and not be
under-utilized for other measurements where less ideal materials would suffice.

Cores were visually assessed for material that fulfilled the criteria described above.
Once a carbonate section was identified, we used utility blades, knives from a fruit and
vegetable carving set, and tweezers to cut and extract thin wafers of sediment ∼0.2–0.5 cm
in thickness (Fig. 2-5). In sections of core containing finely laminated carbonate sequences,
we took care to isolate individual laminae, only sampling the cleanest parts and scraping
away undesirable material when necessary. In addition, when possible, we sampled layers
that appeared to have more detritus immediately adjacent to these cleaner laminae with
the intention of using this material for possible isochron work. We examined smear slides
during sampling in order to petrographically verify that samples identified by eye as being
relatively detritus-free were as such, and made real-time adjustments in sampling strategy
based on results. Fig. 2-4C shows the depths from which U-Th samples were taken and their
relation to stratigraphic units. Sedimentary lithologies were defined following protocols by
Schnurrenberger et al. (2003), including smear slide observations.

During sampling, we also documented the macro-scale sedimentological characteristics
associated with each sample. After observing a variety of carbonate-rich sequences, we
divided them into four lithological facies categories:
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Figure 2-5: [A] The core sampling process for U-Th dating. Surgical straight edges and blades
from a fruit carving knife set were used to cut out thin (∼0.2–0.3 cm) wafers of sediment, which
were then extracted with tweezers. [B] One sample consists of a single wafer of sediment extracted
as shown in Panel A. Replicate analyses are made on separate sections of the sediment wafer: rather
than homogenizing the wafer into a powder and dating the powder multiple times, we date different
sections of the sample in order to assess sample reproducibility.

• Cream-colored massive carbonates (CMC): cream-colored, massive, medium to thick
(∼10–50 cm) bedded carbonate silts found in close association with gray, massive,
banded or mottled silt, with some thin (∼1–2 cm thick) peat or organic-rich mud
layers (Fig. 2-6)

• Red-green alternating (RGA): red and green laminated sets of carbonate silts that
alternate in color every ∼5–20 cm, with some organic-rich peat laminae (Fig. 2-6)

• Cream-colored carbonates with peat beds (CP1, CP2): Cream-colored, faintly
banded carbonate silt interbedded with peat layers, with some associated with thick
(∼30–50 cm) overlying peat beds that were laterally continuous across multiple holes
at Site 1 (CP1), and others associated with thin (∼3–5 cm), laterally discontinuous
peat beds (CP2) (Fig. 2-7)

Each sample extracted for U-Th dating was subsequently categorized into one of these four
facies.
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Figure 2-6: Core scanning images and U-Th sample locations of four selected cores that feature the CMC and
RGA facies. The approximate corresponding CCLF is noted in the black rectangular box at the top left of each
core image. The column of gray and white boxes appended to the left of each core image is a ruler representing
alternating blocks of ten centimeters, mimicking the actual ruler used during scanning at LacCore’s facilities. Small
rectangles plotted on top of the core image represent sample locations and are labeled by sample ID and color-coded
by threshold criteria result (see Section 2.5 and Fig. 2-8). The columns to the right of each core image represent the
facies that is given to a sample collected in that depth interval; for example, for the third core image, samples C6,
C10, and C11 are categorized as CMC, while C13 is categorized as RGA. Core scanning images were made using a
Geotek MSCL-CIS at the National Lacustrine Core Facility (LacCore).
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Figure 2-7: Core scanning images and U-Th sample locations of four cores that feature the CP
facies, which is subdivided into CP1 and CP2 to differentiate between samples that are associated
with thick (>10 cm) and laterally continuous peat layers (CP1) and those that are not (CP2). Note
that the third and fourth images are of cores from the same CCLF but from different holes at Site
1, shown here to demonstrate the lateral discontinuity of some peat and carbonate beds. Holes at
Site 1 were spaced approximately ∼20 m apart. Small rectangles plotted on top of the core image
represent sample locations and are labeled by sample ID and color-coded by threshold criteria result
(see Section 2.5 and Fig. 2-8). See caption in Fig. 2-6 for explanation of other symbology used in
the figure.
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2.3.2 Sample preparation and chemistry for U-Th dating

After core sampling, sediment wafers were frozen and then placed in a vacuum freeze drier
to remove moisture from all material. Most samples retained their original wafer shape
after this process. A small portion of each sample was then gently disaggregated for micro-
scale sedimentological characterization under a picking microscope. We made qualitative
observations on the following: color; hardness of bulk sediment (friable or compacted);
and the relative abundance of mollusc shell fragments, ostracode valves, organic fibers
(peat fragments, grasses, seed pods), sponge spicules, siliciclastic grains, or other mineral
precipitates. For subsequent U-Th analyses, we manually removed mollusc shell pieces from
the sample before dissolution, or avoided processing samples containing abundant mollusc
shell fragments that could not be reliably removed. Otherwise, all analyses discussed are
measurements on bulk samples containing all other aforementioned constituents.

Because U-Th column elusions are time and resource intensive, a small set of samples
from different facies were screened for their uranium and thorium concentrations to deter-
mine which facies would most likely yield material viable for dating. Powders of ∼2 mg
were dissolved in dilute HNO3, and analyses of uranium and thorium concentration were
performed on a VG PQ2+ quadrupole ICP-MS and an Agilent 7900 ICP-MS at MIT. Sam-
ples with higher U/Th ratios were then identified as materials worth further processing as
they are more likely to yield “clean” samples with high 230Th/232Th ratios (Section 2.2.2).

Replicate analyses were then processed through U-Th column elusions in batches of
5 to 15. When possible, we analyzed at least three replicates from each sample horizon.
Here, we purposefully apportion different aliquots of the original sediment wafer for each
replicate analysis in order to test the reproducibility of dates from stratigraphically coherent
material (Fig. 2-5B). Note that this is an important difference from repeated analyses of
a homogenized powder, which would only provide a measure of internal lab errors or the
quality of sample homogenization. Our original intention in processing samples this way
was not only to test for reproducibility, but also to build isochrons, for which it is necessary
to analyze subsamples that span a range of detrital contamination levels.

After sample selection and preparation, sample dissolution was performed in a clean
laboratory at MIT. Samples of 5–60 mg were dissolved in HNO3 and spiked with a 229Th-
233U-236U tracer in Teflon beakers cleaned via a boiling-washing procedure with concen-
trated HNO3, HCl, and aqua regia. Next, following methods described by Edwards et al.
(1987) and Shen et al. (2002), uranium and thorium were co-precipitated with ∼4–8 mg of
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Fe oxyhydroxides and then separated using BioRad AG1-X8 anion exchange resin (100–200
mesh, 0.5 mL column volume). The isotopic compositions of the resulting uranium and tho-
rium fractions were then measured on a Nu Plasma II-ES multi-collector ICP-MS at MIT.
We introduced sample solutions through a CETAC Aridus II desolvating nebulizer system
coupled to a PFA nebulizer with a 100 µL/min uptake capillary. Each uranium sample
analysis was bracketed by a 5 ng/g solution of the CRM-112a standard (New Brunswick
Laboratories). Each thorium sample analysis was bracketed by an in-house 229Th-230Th-
232Th standard in order to monitor mass bias and variable SEM yield. 2% HNO3 solution
blanks also bracketed each sample and standard analysis to determine the background
signal. See Section 2.10.1 for details of U-Th measurements on materials from the 1996
core.

2.3.3 Estimating the initial 230Th correction

As discussed in Section 5.3, the correction for initial 230Th has a greater impact on impure
sample materials, and so it follows that we must carefully consider this correction for
the lake sediments at Lake Junín. Ten samples processed from the 1996 core yielded
indeterminate (‘infinite’) dates, in which a unique solution for the 230Th age equation could
not be found after iteration. These samples all had 232Th concentrations that were 20–200
times greater than other samples from the 1996 core that yielded calculable dates (2–7
ppm, compared to 0.04–0.1 ppm), forming a statistically distinct population. Similarly,
these samples also had 238U/232Th ratios that were ∼50 times lower than that of other
samples (0.3–0.6 ppm). These results suggest that the samples yielding indeterminate ages
had high amounts of detrital contamination that contributed a significant amount of initial
230Th at secular equilibrium with 238U, thereby causing apparent infinite dates.

Assuming that the detrital component of the indeterminate samples of the 1996 core is
representative of the isotopic composition of detrital material found in all sediments of the
PLJ-1 splice, we calculated the average 230Th/232Th ratio of the indeterminate samples
and used this ratio for the initial 230Th correction in our calculations. This estimate has
the effect of counting radiogenic 230Th accumulated in these samples as detrital, but the
depths of these samples suggest that their true age is no older than 30 kyrs and thus we
do not expect an appreciable proportion of the 230Th to be radiogenic.

The average 230Th/232Th atomic ratio of the indeterminate samples from the 1996 core
is 7.9 ± 0.9 ×10−6. Our starting assumption is that this ratio is invariant through time, but
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it is entirely possible—if not expected—that the isotopic composition of detritus is variable
due to changes in clastic transport or source regions. To account for these unknowns and
other unknown unknowns, we apply an uncertainty of 50% to this average and use an initial
230Th/232Th atomic ratio of 8.0 ± 4.0 ×10−6 for U-Th data from the PLJ-1 splice.

2.3.4 Calculating weighted means and uncertainties of samples with repli-
cate analyses

As previously mentioned, we attempted to analyze at least 3–5 replicates for each sample
as a test of the reproducibility of unequivocally coeval material. We calculate a date for
each individual replicate analysis using Eq. 2.1 and the initial 230Th/232Th ratio stated
above. We then use these dates to calculate an error-weighted mean (x̄) and uncertainty
(σx̄) of all replicate analyses in a sample, in which weights are equal to the inverse of the
variance of each date:

x̄ =

∑N xi/σ
2
i∑N 1/σ2
i

, σx̄ =

√
1∑N 1/σ2

i

(2.4)

where N is the number of replicate analyses in the sample; xi is the individual date of each
replicate; and σ2

i is the variance of the individual dates of each replicate.
We then calculate the degree of agreement between replicate analyses to estimate an

uncertainty that is appropriate for the observed scatter between dates. To do this, we
calculate the Mean Square of Weighted Deviates (MSWD), a measure of the ratio of the
observed scatter around the mean to the expected degree of scatter given the analytical
uncertainties of each data point (McIntyre et al., 1966; Wendt and Carl, 1991). The value
is essentially the chi-squared statistic (goodness of fit) divided by the number of degrees of
freedom (f=N−1), or the “reduced” chi-squared:

MSWD =
1

f

N∑ (xi − x̄)2

σ2
i

(2.5)

The value of the MSWD tells us if the calculated uncertainties for each date are over-
or underestimated based on the observed scatter in data. A value of ∼1 indicates that
the observed scatter is equal to the predicted scatter; values less than 1 indicate that the
observed scatter is less than is predicted by the uncertainties; and values greater than 1
indicate that the observed scatter is more than the predicted scatter. Samples with an
MSWD much greater than 1 are considered to have excess “geologic scatter,” suggesting
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possible biases in the calculated dates, perhaps due to a violation of the assumptions
underpinning the system (e.g., open system behavior). Thus, for any sample with an
MSWD > 1, we expand the uncertainties of the replicate analyses by a factor of

√
MSWD

and then recalculate the weighted means with these larger uncertainties using Eq. 2.4.
The IsoplotR program by Vermeesch (2018) also includes this strategy as one option of
treating data with excess geologic scatter (referred to as “overdispersion”). While the
presence of excess scatter is non-ideal and raises concerns about the validity and practical
use of such dates, the data still represent geologically meaningful information and thus
should not necessarily be rejected outright without further consideration (and we will do
much considering, starting in Section 2.5).

Using the MSWD as a black-and-white parameter to evaluate the validity of dates is
generally discouraged, since the highest permissible MSWD is dependent on N (Wendt
and Carl, 1991) and is often subject to interpretation (Powell et al., 2002; Ludwig, 2003).
Thus, we calculate the probability of the observed scatter occurring given the uncertainties
for each replicate analysis (a “probability of fit”) by computing the chi-square cumulative
distribution for MSWD×f (the chi-squared statistic) about f degrees of freedom (York,
1968).

Some samples only have 1–2 replicates; these were cases in which early replicate analyses
yielded unfavorable results (i.e., low 238U/232Th ratios) and were thus not further repeated
in the interest of time and resources. For the remainder of this paper, our discussion of U-
Th dates will refer to the weighted means and uncertainties (MSWD-adjusted) of samples
rather than the individual dates of replicate analyses, unless otherwise noted.

2.3.5 Other corresponding data

We use other sedimentological, geochemical, paleoecological, and physical data to interpret
and understand our U-Th data. We provide a list of these datasets in Table 2.2 and their
intended use. More information regarding these methods of measurement can be found
in the Supplementary Materials (Section 2.10.2) and other publications currently being
prepared elsewhere.
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Dataset Brief Methods Purpose

Elemental
concentrations

sample dissolution,
ICP-MS

Determine if there exists any relationship between
U-Th data and concentrations of Ca and trace el-
ements Mg, Sr, Al, Ti, P, V, Mn, and Fe. Mea-
surements are made on same sample material used
for U-Th dating.

Total inorganic
and organic
carbon

coulometry Determine if there exists a relationship between
U-Th data and carbon content. Only measure-
ments made within 1 cm of the U-Th sample are
paired with U-Th data.

Color reflectance spectrophotometry
on automated core
logger

Determine if there exists a relationship between
U-Th data and any spectral reflectance wave-
length band. Only measurements made within
2.5 mm of the U-Th sample are paired with U-Th
data.

Mineralogy X-ray diffraction Determine the mineral composition of the carbon-
ate phases, and if there are discernible differences
between endogenic and detrital carbonate.

Ostracode
assemblages

picking and iden-
tification following
Pérez et al. (2010)
and Karanovic
(2012)

Determine if there exists a relationship between
U-Th data and ostracode color, taphonomy (num-
ber of broken vs. intact valves; adults vs. juve-
niles), or ecology (benthic vs. swimmer species,
ornamentation).

Table 2.2: Other datasets used in this study for comparison with U-Th data.

2.4 Results

In total, we generated 174 U-Th dates from 55 bulk samples from the PLJ-1 splice. Uranium
and thorium geochemical data as well as the number of replicates produced for each sample
(N = 3–8) can be found in Table 2.3. Samples originate from each of the five high (>70%)
CaCO3 intervals that occurred every ∼10–15 m in the core (Fig. 2-4C). All U-Th dates
from the uppermost 5 m are broadly consistent with radiocarbon dates from terrestrial
macrofossils and charcoal in the same depth interval (Fig. 2-3; Woods et al., 2019). A
sample from ∼6.5 m yielded an indeterminate date and had a 230Th/232Th atomic ratio of
7.7 ± 0.2 ×10−6, consistent with our estimate of the detrital 230Th/232Th ratio applied in
corrections. Sample 238U concentrations are variable and are generally 0.2–4.0 ppm (mean
= 1.5±1.2 ppm, 1-σ); 232Th concentrations are also variable, ranging 0.02–2.4 ppm (mean
= 0.6±0.5 ppm, 1-σ).
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For the deepest part of the core, the oldest U-Th dates suggest that the record is
no older than ∼800 ka. This observation is consistent with the absence of evidence of
the Brunhes-Matuyama magnetic reversal (aged ∼780 ka) in the paleomagnetic secular
variation record (Hatfield et al., in prep.). However, the scatter of dates throughout the
entirety of the core is, at first glance, alarming: at ∼20–25 m, the first high-CaCO3 section
beyond the interval covered by radiocarbon, U-Th dates already span a range of ∼200 kyrs
(Fig. 2-8). The spread of dates increases with depth, reaching ∼300 kyrs at the bottom
of the record. As is, the scatter of data is too great to build any practical age-depth
model, even after applying outlier analysis. Furthermore, all attempts to reduce scatter
by building isochrons from replicate analyses and adjacent dirty-clean sample pairs failed
(high MSWD and low probability-of-fit; Section 2.10.3).

Here, we arrive at the main crux of this paper. The scatter of data and the failure
to build isochrons is clear evidence that at least some of the dated materials have not
remained closed systems or do not otherwise satisfy the operating assumptions of U-Th
dating. Despite this noise, is there a way to objectively assess the quality of each U-Th
date, and subsequently curate the dataset without biases (avoid “cherry-picking”)? In
the following sections, we detail our approach to this question. At times, we will refer to
specific U-Th samples by their sample name, which consists of an alphabetical letter A–P
followed by a number 1–16 (Table 2.4).

2.5 Curation of U-Th data using threshold criteria

Noisy U-Th geochronological datasets are nothing new; in attempts to find clarity in un-
certain data, a common practice is to apply some screening criteria based on uranium
and thorium concentrations. For example, some studies dating corals and carbonate slope
sediments have rejected dates that exceed a certain thorium concentration or do not meet
a minimum uranium concentration because such dates tend to have larger corrections and
errors (Robinson et al., 2002; Henderson et al., 2006; Skrivanek et al., 2018). However,
picking the values for these thresholds can be subjective to an extent, especially if there is
no clear separation between distinct populations within the data.

As a start towards better understanding the scatter in our data, we consider applying
similar thresholds, first by examining the 238U/232Th ratio and the probability of fit of all
dates for a given sample to a single weighted mean (Fig. 2-8A and B). 238U/232Th ratios
ranged between <1 and 30 and probabilities of fit essentially spanned the full domain of
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possible values, from 0% to 99%. Between 20 and 60 m, we notice that the samples with the
oldest dates all have 238U/232Th ratios that are <1, including those yielding indeterminate
dates (Fig. 2-8A). One possible explanation for this observation is that these samples have
initial 230Th that has not been accounted for with our initial correction, which would bias
dates to be older than the true age. The effect of this bias would be greatest in samples
with low radiogenic 230Th due to low uranium concentrations. (Note that we later discuss
another explanation for these data in Section 2.7).

Regarding the probability of fit, deciding how low of a probability is acceptable is
somewhat arbitrary; there is no broad consensus within the geochronology community on
how best to treat such data, especially in circumstances in which the total number of
subsamples is low (Ludwig, 2012), as is our case. However, most geochronologists would
likely agree that samples with a probability of fit less than 1% (especially those much closer
to 0%) exhibit an amount of excess scatter that is beyond recovery of practical information
about the true age of the sample.

Thus, in the interest of not using too strong of a hand in curating the U-Th data to
begin, we apply two conservative threshold criteria: the 238U/232Th ratio must be >1 and
the probability of fit >1% (Fig. 2-8A and B). Of the 55 samples, 17 fail the 238U/232Th
criterion and 22 fail the reproducibility criterion. Of the 17 samples that fail the 238U/232Th
criterion, eight had more than one replicate analysis, and of those eight, five also fail the
reproducibility criterion. In Fig. 2-8D, we show which criterion each sample fails; for the
purposes of simplifying ensuing explorations into the dataset, the five samples that fail
both aforementioned criterion are categorized as having failed the 238U/232Th criterion.

Next, we consider another screening approach adopted for U-Th dating of marine sam-
ples that involves δ234Uinitial. Because the residence time of uranium in the ocean is very
long (∼400 kyrs; Ku et al., 1977), the δ234U of seawater is thought to have remained rela-
tively constant for at least the last 400 kyrs (Henderson, 2002; Henderson and Anderson,
2003). Thus, assuming that marine samples reliably preserve the δ234U values of the waters
in which they formed, dates from marine samples with δ234U values that deviate signifi-
cantly from modern values are considered potentially inaccurate due to diagenesis (Bard
et al., 1991; Hamelin et al., 1991; Gallup et al., 1994). In contrast, the δ234U of surface
waters is very diverse and has been found to be sensitive to basin lithology, basin-specific
weathering mechanics, riverine and groundwater inputs, and climate (e.g., Sarin et al.,
1990; Kronfeld and Vogel, 1991; Plater et al., 1992; Kronfeld et al., 2004; Robinson et al.,
2004; Durand et al., 2005; Grzymko et al., 2007; Chabaux et al., 2008). Although few
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Figure 2-8: Step-by-step application of thresholding criteria: [A] 238U/232Th, [B] reproducibility,
and [C] δ234U of initial endogenic carbonate (δ234Uiec). [D] shows the data that pass and fail the
three aforementioned criteria. Note that each point represents the weighted mean and standard
deviation of multiple replicate analyses (see Table 2.3). In Panels A–C, blue/red colors represent
values that are more/less ideal for U-Th dating. Values of thresholds are indicated by a red asterisk
(*) in each legend. Samples that do not satisfy criteria and were thus subsequently eliminated
are colored in dark red. Samples plotted along the uppermost dashed line labeled ‘Ind.’ refer to
analyses that yielded incalculable U-Th dates or were infinite (indeterminate). In Panel B, analyses
plotted in light gray are those with only one replicate analysis. Panel C only includes data that
pass the 238U/232Th and reproducibility thresholds. Shaded gray areas represent the distribution
of δ234Uiec values observed in the Holocene, including data from the 1996 core. For Panel D, note
that some samples failed both criteria for 238U/232Th and reproducibility; in these instances, the
samples were categorized as having failed the 238U/232Th criteria. All error bars in each panel are
2-σ range. Depth refers to the composite core depth below lake floor (CCLF).
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studies examine the long-term history of internal δ234U variability in lakes and other sur-
face waters (e.g., Kiro et al., 2018), the range of internal δ234U variability observed in the
aforementioned river and groundwater studies suggests that the internal δ234U of lake wa-
ters should not vary significantly without dramatic changes in drainage basin organization.
Since the lithology of a lake basin is invariant over the timescales relevant to this study,
variability in δ234U is driven by changes in hydrology. McGee et al. (2012) documented
a 300h change in the δ234U of lacustrine cave carbonates during the last deglaciation in
Lake Bonneville (Utah, USA), which experienced a ∼2× change in precipitation.

Thus, we apply a third threshold criterion using the δ234U of the initial endogenic
carbonate (δ234Uiec) of each sample, which we calculate by correcting δ234Uinitial values
for detrital uranium (see Section 2.10.4 for relevant equations). The average δ234Uiec of
all samples that yield dates verified by radiocarbon data (including data from the 1996
core) is 2800±300h. If we compare this average to the δ234Uiec values of the remaining
21 samples, we observe that three samples at ∼70–75 m have values that fall well below
the average, even outside the range defined by three standard deviations from the mean
(Fig. 2-8C). Because the magnitude of these differences is large, we suggest that these
values are unlikely to reflect real changes in the δ234U of the lake waters, and thus suspect
the validity of these dates. Therefore, we mark these three samples as having failed the
δ234Uiec criterion (Fig. 2-8D).

While the remaining 18 dates form a visually pleasing line (Fig. 2-8D), this observation
alone does not intrinsically prove that these remaining dates are accurate. However, the
samples generally abide by the rules of stratigraphic order, which is behavior consistent
with closed-system dates. Furthermore, the results of applying the threshold criteria may
vaguely follow our theoretical expectations for normally distributed scatter about the mean.
That is to say: if you were to ask someone to draw a line through the middle of the original
scatter of points, the 18 samples that remain would not stray far from it.

2.6 Understanding the scatter

Having classified the U-Th data into categories that describe the main flaw of each nom-
inally failed sample (Fig. 2-8D), we now explore the underlying causes for poor sample
behavior and determine if the application of threshold criteria is justified. Essentially, we
ask: Is there other evidence that supports our assertion that the threshold criteria failing
samples have not remained closed systems? What is special about the 18 passing samples
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such that they exhibit fewer symptoms of open system behavior?

2.6.1 Detrital contamination

The first and most obvious hypothesis for poorly behaving dates is detrital contamination
that is unaccounted for with the initial 230Th/232Th correction. As stated in Section 2.2.2,
impure sample substrates have been the main obstacle in previous U-Th dating efforts in
lake sediments, and there is no evidence to suggest that Lake Junín would be an exception.
If detrital contamination does indeed play a large role in the scatter of our U-Th data, we
can make certain predictions for how other sedimentological and geochemical data would
respond. For example, we would expect that samples with lower CaCO3 content would
comprise the eliminated dates, especially those that failed the 238U/232Th criterion. We
are able to test this hypothesis directly using co-located measurements of CaCO3 content
(weight %) as well as optical lightness from color reflectance spectra (Table 2.2 and Section
2.10.2). Optical lightness, defined here as the sum of spectra in the visible band of the
electromagnetic spectrum (400–700 nm), has been shown to be a reasonable proxy for
carbonate content in marine sediments (e.g., Nagao and Nakashima, 1992; Mix et al.,
1995; Balsam et al., 1999). Data for the PLJ-1 splice also shows that CaCO3 content
>50% appears to scale with optical lightness (see gray circles in Fig. 2-9A). Because color
reflectance data were measured on a finer and more regular sampling interval than carbon
data, there are more optical lightness data that correspond to U-Th samples than CaCO3

content measurements (N = 46 versus 29; Fig. 2-9).
From Fig. 2-9, we notice that all but one of our U-Th samples have >50% CaCO3

content, with most passing dates having >70% CaCO3 content. However, many data that
failed threshold criteria occupy the same range in CaCO3 content as passing data. Con-
trary to expectations, each of the five samples with the highest CaCO3 content failed the
threshold criteria (Fig. 2-9B). Likewise, the five samples with the highest optical lightness
also failed (not the same five samples; Fig. 2-9C). Sample C10 is the most extreme case
in this comparison, and as a visual check, we can see its sampling location in Fig. 2-6
and verify its optical lightness value relative to other samples. Again, there is no clear
pattern between passing and failing U-Th dates and optical lightness; samples appear to
exhibit the entire range of optical lightness values observed in the core. If anything, one
could argue that the samples failing the 238U/232Th criterion tend to have higher optical
lightness values compared to passing samples, behaving opposite to our predictions. The
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Figure 2-9: Cross-plot [A] and histograms of calcium carbonate content [B] and optical lightness
[C], showing the distribution of these values for U-Th samples of each threshold criteria result. In
Panel A, there are 29 colored circles which represent the U-Th samples that have both a corre-
sponding CaCO3 analysis (within 1 cm of the sample location) and a color reflectance measurement
(within 2.5 mm of the sample location). Since color reflectance data were measured on a finer and
more regular sampling interval than carbon data, there are more U-Th samples for which there is
a corresponding color reflectance measurement (N = 46); thus, there are data plotted in the Panel
C histogram that are not shown in Panels A and B. Empty circles with gray outlines represent
other pairs of CaCO3 and brightness data throughout the core and are only included if these data
correspond to the exact same core depth. Note that this figure does not include any data from the
upper 6 m of the core.

results are similar when we compare our data with grayscale or luminance (also known as
L*), another “lightness” parameter using the CIE L*a*b* color description system.

Based on these results, we speculate that a high proportion of bedrock carbonate in
the detrital component could explain the high CaCO3 content of failed samples; even
the darkest gray silt sections in the core with high magnetic susceptibility had 20–50%
CaCO3 content. The uranium from this detrital carbonate would be at secular equilibrium
(Fig. 2-1D) and would adversely impact our We compare the mineralogy of local carbonate
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bedrock to core sediments to see if mineralogical differences between these carbonates
could be used to detect detrital contamination (Section 2.10.2). Unfortunately, the results
show that there is no discernible difference between the carbonate bedrock and carbonate-
bearing lake sediments, even when comparing different grain size groupings. All bedrock
samples were dominated by low-Mg calcite, except one sample, which revealed the presence
of dolomite. Low-Mg calcite was the dominant carbonate phase in all carbonate-bearing
samples from the core, with no evidence of dolomite.

Despite this, elemental ICPMS concentration data support the prediction for detri-
tal contamination in failed samples, in particular, those failing the 238U/232Th criterion.
Fig. 2-10A is a biplot of the orthonormal principal component coefficients for Ca, Mg, Sr,
Fe, Mn, Al, Ti, V, and P and the principal component scores for each sample. Here, the
first principal component (PC1) has positive coefficients for elements that are markers for
aluminosilicates (Fe, Mn, Al, and Ti) and explains ∼44.5% of the variance in concentration
data. Samples failing the 238U/232Th criterion generally have positive PC1 scores, indi-
cating that those samples tend to have relatively higher concentrations of these elements.
Elemental concentration data from a sample of the dark gray carbonate silt also exhibits
higher concentrations of these elements (sample E2; Fig. 2-6, core at 35 m). As most sam-
ples that failed the 238U/232Th criterion are of the CMC facies (Fig. 2-10B), these data are
consistent with our visual observations of this facies, in which the lighter-colored carbon-
ates visually appear to have semi-gradational boundaries with the surrounding dark gray
glaciogenic silts, suggesting that these samples likely contain some fraction of this material.
In addition, the sample with the highest PC1 score, D11, comes from a boundary between
cream-colored carbonate and dark gray carbonate silt (Fig. 2-6).

Despite the clear relationship between high PC1 scores and 238U/232Th criterion failing
samples, samples with low PC1 scores are not ubiquitously well-behaved, indicating that
another factor is influencing our data. Interpreting the meaning of the second principal
component (PC2) and the scores for other samples is less clear. PC2 distinguishes among
samples that have high values for Mg, Sr, and Ca. Total organic carbon data suggest that
samples with negative PC2 scores have higher organic carbon content, but there are not
enough available corresponding carbon data to be convincing. Furthermore, there is no
other distinguishable separation of U-Th data by threshold criteria result in the biplot.
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Figure 2-10: [A] Biplot of the orthonormal principal component coefficients for Ca, Mg, Sr, Fe,
Mn, Al, Ti, V, and P concentrations (dashed blue lines, labeled by element) and the principal
component scores for N = 48 samples (circles, color-coded by the threshold criteria result). Light
gray labels are corresponding sample IDs of samples that are featured in other figures; we encourage
the reader to follow these labels in order to connect these plots with others. [B] Bar chart showing,
for each facies, the relative proportion of samples that are each of the four threshold criteria results.
CMC is cream-colored massive carbonate silt (Fig. 2-6); and CP1 and CP2 are cream-colored
carbonate silts interbedded with peat layers; and RGA is red-green alternating varigated carbonate
silt (Fig. 2-7). See Section 5.2 for further details. The bar colors follow the legend of Panel A.
Numbers within each bar represent the actual number of samples; for example, of the 18 samples
categorized as the CMC facies (top row), 1 passed, 3 failed the reproducibility criterion, and 14
failed the 238U/232Th criterion. [C] Bar chart showing the relative proportion of samples that are
compacted (light) versus friable (dark) for samples of each threshold criteria result. Note that we
qualitatively assessed sediment hardness for only 21 samples. As with Panel B, numbers within
each bar represent the actual number of samples. Note that Panels B and C do not include U-Th
samples from the upper 6 m of the core.

2.6.2 Open system uranium remobilization

While the data comparisons presented thus far broadly confirm that samples with higher
CaCO3 content are more likely to yield well-behaved U-Th dates, there remain some in-
consistencies with predictions for detrital contamination, mainly that the samples with
the highest CaCO3 content and optical lightness fail the threshold criteria, especially the
238U/232Th criterion. Regarding the other sample data, there were no patterns distin-
guishing passing samples from samples failing the reproducibility and δ234Uiec criteria in
Figs. 2-9 and 2-10A. This information leads us to consider the next probable cause for
poor sample behavior: the remobilization of uranium after initial carbonate formation.
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Using a qualitative assessment of sample hardness, we notice that passing samples were
generally more compacted and dense, whereas failing samples were more friable and soft,
especially those failing the 238U/232Th criterion (Fig. 2-10C). This observation fits our in-
tuitive expectation that samples with less porosity would be more impervious to diagenesis
or secondary deposition of uranium from porewater fluid flow (Fig. 2-1D).

We now refer back to the facies to which each sample is assigned for further insight.
From Fig. 2-10B, it is clear that facies alone does not dictate how each U-Th sample be-
haves. Instead, there are some broad tendencies: most CMC samples failed the 238U/232Th
criterion; most RGA samples failed the reproducibility criterion; and most of the passing
samples originate from the CP facies (CP1 and CP2). In considering the reasons behind
these patterns, we compare both facies and threshold criteria results with uranium concen-
tration, total organic carbon (TOC), and a*, the red-green color reflectance of sediment,
where +a* values are more red and -a* values are more green (Fig. 2-11). The red or
green color of sediments has long been used as a qualitative indicator of in situ redox
conditions, in which red colors signify oxidizing conditions and green-gray colors suggest
reducing conditions, owing to the strong chromophores associated with ferric and ferrous
iron (Tomlinson, 1916; Lyle, 1983).

Panels A–F in Fig. 2-11 (top half) compare the mean a* of all measurements within
5 cm of the U-Th sample to the mean point-to-point difference in a* across the same
interval (a measure of the ‘volatility’ of a* around each sample). For example, having
a mean difference of 2 units/cm in a* means that the a* value changes, on average, by
a magnitude of 2 along every cm within the 10 cm range surrounding the U-Th sample.
Such a value would indicate significant volatility in red-green color, given that the total
range of mean a* observed in U-Th samples is ∼3. From these panels, we notice that the
CP samples are more red and occupy a relatively narrow range of mean a* values, whereas
the CMC samples tend to be less red and exhibit less volatility in red-green color (Fig. 2-
11D, F), especially those failing the 238U/232Th criterion (Fig. 2-11C, E). These results are
consistent with our qualitative observations of the CMC facies, in which the lighter colored
carbonate occurs in ∼10–50 cm thick beds that are relatively uniform in color (Fig. 2-6).

Previous studies on sediments have interpreted changes in red-green color intensity
as changes in the input of red iron-bearing materials (e.g., Giosan et al., 2002; Helmke
et al., 2002; Ji et al., 2005), but because these iron-bearing minerals are highly sensitive
to variations in redox environment, reductive diagenesis can subsequently alter sediment
color to be more green (Lyle, 1983; König et al., 1999; König et al., 2000). Thus, here we
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Figure 2-11: Cross-plots and box-and-whisker plots comparing the red-green color reflectance (a*;
from the L*a*b* color space), total organic carbon (TOC) content, and 238U concentration of
U-Th samples and showing their relationship to threshold criteria result and facies. In all box-and-
whisker plots, the thick central black line represents the median; the top and bottom edges of the
box represent the 25th and 75th percentiles, respectively; the whiskers extend to the most extreme
points not considered outliers; and the outliers are plotted as ‘+’ symbols. A point is considered an
outlier if it has a value >1.5x the interquartile range away from the 25th or 75th percentiles. The
top half of the figure compares the mean a* of all measurements within 5 cm of the U-Th sample to
the mean point-to-point difference in a* across the same interval. Note that there are some samples
for which there is a 238U concentration measurement but no corresponding TOC; thus, Panels K–L
include data not shown in the cross-plots of Panels G–H. The bottom half of the figure compares
TOC and 238U concentration of each U-Th sample. Note that this figure does not include any data
from the upper 5 m of the core.
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propose that the difference in a* values between the CP and CMC samples is a reflection of
diagenesis: the CP samples, being more red, have not been as altered by interactions with
post-depositional reducing pore fluids and thus better preserve primary isotopic information
to produce passing U-Th dates. In contrast, the CMC samples, which may have originally
appeared more red like the CP samples, have been altered and as a result, have changed a
more green color.

Consistent with this hypothesis is the observation that the CMC and 238U/232Th thresh-
old failing samples generally have much lower 238U concentrations and TOC compared to
other samples (Fig. 2-11G–L). Consider the following scenario: a package of endogenic
carbonate containing organic matter is deposited and submerged under oxygenated con-
ditions. After burial, oxygenated porewaters then interact with the organic matter and
begin to degrade it, removing from the sediments any uranium associated with the organic
matter (Section 2.2.2; Fig. 2-1D). This degradation of organic matter may decrease the
local pH of pore fluids such that it begins to alter the endogenic carbonate, leaching ura-
nium originally bound within the crystal lattice. At some later point, the pore fluids are
no longer recycled, and eventually all oxygen is depleted. The now reducing fluids then
begin to reduce the surrounding sediment, shifting its color from red to more green. Any
uranium that was removed from the carbonate into the pore fluid has now precipitated as
authigenic uranium under these reducing conditions, but is no longer lattice-bound and
is thus susceptible to further remobilization (Section 2.2.2; Fig. 2-1D). By the time we
extract the core and measure the isotopic composition of these sediments, they are green
(Fig. 2-11A–F), easy to physically disaggregate (Fig. 2-10C), and have low organic matter
content and uranium concentrations (Fig. 2-11G–L).

If uranium loss has occurred from the CMC facies, preferential loss of 234U may be
expected, such that replicate analyses produce an inverse relationship between δ234Uinitial

and 238U concentration (e.g., Robinson et al., 2006). Indeed, such a relationship is observed
for some CMC samples (Fig. 2-16). Furthermore, this proposed mechanism is compatible
with the interpretations by Woods et al. (2019) for Lake Junín sediments of the last 50
ka, in which peat layers represent abrupt, ∼25–500 year periods of drought and lake low
stands. Dramatic lake level changes would alter water table gradients and change ground-
water discharge rates through littoral sediments. Thus, for the CMC facies, while detrital
contamination is apparent given the elemental concentration data (Fig. 2-10), the initial
230Th correction might have compensated to yield an accurate yet imprecise date, were it
not for uranium loss.
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As for why the CP facies seems not as affected by such pore fluids: we hypothesize
that the thick peat beds associated with this facies act as a reductive barrier to the vertical
movement of such oxygenated porewaters. This explanation is further bolstered by the
observation that samples bounded on top by a thick (>10 cm) peat layer that is laterally
continuous across multiple holes at the site (i.e., the CP1 facies) yielded more passing dates
with higher 238U/232Th and probability of fit (Fig. 2-10B and 2-7). The cream-colored car-
bonates of the CP1 facies also exhibit faint horizontal banding, possibly representing the
preservation of primary fabric. In contrast, samples from the CP2 facies yielded compar-
atively less ideal U-Th data (Fig. 2-10B). Sedimentologically, the carbonates of the CP2
facies tend to be darker in color and more massive rather than banded in texture. Fig. 2-7
features two depth-equivalent core sections from different holes which were classified as the
CP2 facies. Examining images of these two core sections, it is clear that the uppermost
layer of peat is not laterally continuous. Samples E12 and F4 are the only two samples
of this facies that pass the threshold criteria, and are arguably the most tenuous of the
passing dates: E12 has a 238U/232Th ratio of 1.02 and F4 has a probability of fit only
slightly above 1%, both borderline values.

Thus far, we have multiple lines of evidence that point towards uranium loss as an
explanation for the broad behavior of CMC samples, and the basis for that theory can
explain the acceptable behavior of the CP samples. As for the RGA samples, these sedi-
ments tend to exhibit higher a* volatility (Fig. 2-11D, F), as one would expect for samples
of a facies defined by alternating beds of red and green laminae (Fig. 2-6). Contrary to
the CMC samples, the red-green color of the RGA facies seems to be controlled by sed-
iment composition, given that the laminae are well-defined and the boundaries between
color changes are very distinct. The sediment color of RGA facies dulled noticeably a few
hours after initial core cutting and exposure, suggesting that iron-bearing minerals again
strongly influence color. To explain the general lack of reproducibility of U-Th data from
RGA samples (Fig. 2-10C), we speculate that the green layers containing ferrous iron may
be reactive enough to remobilize Fe-Mn hydroxides that complex with uranium (Chappaz
et al., 2010), leading to open system behavior that manifests as poor reproducibility.

2.6.3 Ostracode and mollusc shells

As a demonstration of the utility of paleoecological data for U-Th data interpretation, we
compare our U-Th sample data to measures of ostracode color and mollusc shell abundance.
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During sample processing, we noticed that the color of ostracode shells often varied from
sample to sample, ranging from translucent to dark gray or black. Because modern pristine
ostracode shells are generally transparent and exhibit only trace pigmentation (Smith and
Delorme, 2010), fossil ostracode shells with dark discoloration or coatings are generally
thought to be altered and are thus avoided for geochemical analyses as a good practice
(Holmes and Chivas, 2002). Many studies have made note of dark coatings on ostracode
shells (e.g., Palacios-Fest et al., 2005; Wrozyna et al., 2012; Mackay et al., 2013), but there
are few systematic studies that attempt to explain the origin and controls on ostracode
discoloration or coatings (e.g., Ainsworth et al., 1990; Schwalb et al., 1995; Holmes, 1998).

The results of our comparison with ostracode shell color are broadly consistent with
our hypothesis that the CMC facies has been altered by reductive diagenesis. Fig. 2-12
compares the threshold criteria result and facies with ostracode color, which we classified
on a 7-point scale from translucent to black. Most CMC samples (5 out of 7) and all
samples failing the 238U/232Th criteria had a higher proportion of darker shells. Sample
B5, the only CMC sample that passed threshold criteria, has no ostracode shells with
a color > 2. All other samples with different threshold criteria results and facies had
ostracode assemblages comprised mainly of light-colored shells, with some exceptions.

Aside from color, there were no conclusive relationships between U-Th data and taphon-
omy (number of broken versus intact shells; adults versus juvenile counts) or ecology (ben-
thic versus swimmer species; ornamentation). However, we noticed that most of the darker
shells (color > 2) belonged to Darwinulidae, a family of benthic ostracodes that are consid-
ered an indicator of groundwater discharge. Schwalb et al. (1995) observed dark coatings
on Darwinula stevensoni valves in Holocene sediments of Williams Lake (Minnesota, USA)
and determined via wavelength- and energy-dispersive (WD/ED) spectrometry that the
coatings were made of iron sulfide. They proposed that the coatings formed during periods
of increased groundwater discharge, in which groundwater supplied additional Fe to the
lake while reactive organic matter and sulfate led to reducing conditions that promoted
iron sulfide formation. This mechanism is analogous to the one we propose to explain the
behavior of U-Th data from the CMC facies. Future investigations should analyze the
composition of the surface coatings with either WD/ED spectrometry or scanning electron
microscope energy-dispersive X-ray (SEM-EDX) analysis.

Regarding mollusc shells, as discussed in Section 2.2.3, extensive attempts to U-Th date
mollusc shells for paleo-sea level reconstructions have shown that this material does not
remain a closed system after burial. We confirm that mollusc shells yield dates that are
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Figure 2-12: Relationship between ostracode color and U-Th data. Top row of microscope images
of ostracode valves illustrate the coloration scale and are arranged from lightest to darkest on a
scale of 1 to 7. The bar charts show the relationship between ostracode shell color, threshold criteria
result, and facies for 21 samples. Each row in the chart represents ostracode count data from one
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the ostracode shell color. Numbers within bars indicate the actual number of valves of each color.
From the microscope images (left to right): (1) Translucent (LV, Cyprididae, sample B5); (2)
White (RV, Limnocytheridae, sample D14); (3) Partly light gray (RV, Darwinulidae, sample D14);
(4) Light gray (RV, Limnocytheridae, sample C6); (5) Partly dark gray (RV, Darwinulidae, sample
C6); (6) Dark gray (RV, Darwinulidae, sample C6); (7) Black (LV, Limnocytheridae, sample L7).
LV: Left valve external view, RV: Right valve external view.
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biased young in sample F14 (∼8200 ka), in which an analysis comprised purely of mollusc
shell fragments yielded an age ∼3000 yrs younger that the surrounding bulk sediment
(Table 2.4). Although we visually screened for and manually removed identifiable mollusc
shell fragments from samples before processing, it is possible that smaller unidentified
fragments remained; if differential amounts of mollusc shell fragments were included in
replicate analyses, poorly reproducing U-Th data might be an expected result. There is
some qualitative indication that the RGA facies is more abundant in mollusc shell fragments
than other facies, but the results are not conclusive.

2.7 Modeling the effects of detrital contamination and ura-
nium remobilization

We have examined various sedimentological and geochemical data to evaluate a few hy-
potheses for poorly behaved U-Th data. In this section, we simulate the uranium and
thorium isotopic evolution of samples with various compositions and uranium loss/gain
pathways, and compare these model results with the actual measured isotopic composition
of our samples (Figs. 2-13 and 2-14). Based on these results, we posit that the balance
of evidence from both modeling and the previous data comparisons (Section 2.6) favors
uranium remobilization as the main explanation for the observed scatter, rather than sub-
stantial detrital contamination.

To model the effects of detrital contamination, we calculate the impact of mixing varying
amounts of detrital material with pure endogenic carbonate. We also test the effects
of varying the composition of the detrital material, changing the relative proportions of
marine limestone and aluminosilicate. We assume that all detrital material is isotopically
homogeneous and at secular equilibrium, in which [230Th/238U] and [234U/238U] are both
equal to 1. The uranium and thorium concentrations of the detrital components are set to
represent average values for marine limestone and the upper continental crust (Rudnick and
Gao, 2003): U conc. = 2 ppm and Th conc. = 1 ppm for marine limestone, and U conc. =
2.7 ppm and Th conc. = 10.5 ppm for the aluminosilicate material. Our measurement
of the uranium and thorium concentration of a dark gray silt sample that has ∼30%
CaCO3 content (sample E2; Fig. 2-6) suggests that using these values to simulate the
detritus entering Lake Junín is not unrealistic. Although organic matter is a non-negligible
constituent of our samples (1–16%; Fig. 2-11) and is likely a meaningful uranium source
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(Fig. 2-1D), we chose to exclude TOC in our model as a necessary simplification for this
exercise. As such, the modeling results should be treated as proofs of concept, rather than
a serious attempt to precisely quantify the manner by which each deviating U-Th date
occurs.

We focus on modeling two groups of data: samples from ∼20–23 m and samples from
∼70–75 m. Taking the passing U-Th dates within these groups at face value, these depth
ranges correspond to samples with nominally true ages of ∼75 and ∼550 ka, respectively.
The scatter of threshold criteria failing data at ∼20–23 m all originate from the CMC facies
and are generally biased older relative to the passing dates, whereas the data at ∼70–75
mostly consists of the RGA facies and are biased younger (Fig. 2-15B).

2.7.1 Modeling results for ∼75 ka-aged samples

Fig. 2-13A compares our U-Th data from the first group (circles) to our simulations of
isotopically evolving samples (colored lines) in 230Th/238U activity-δ234U space. All models
of samples are evolved for 75 kyrs. To orient the reader: the measured isotopic composition
of the two passing samples in this depth range, K16 and L1, are marked by the pair of
gray circles located adjacent to the pair of blue circles (see legend). The horizontal offset
between the colored and gray circles represents the effect of the initial 230Th correction, the
magnitude of which is controlled by the 238U/232Th ratio (Eq. 2.3). The gray shaded region
delineates the age range prescribed by the age-depth model (to be shown and discussed
in Section 2.8); for our purposes here, we treat this range as the “true” age range of all
samples shown. Thus, any colored circles that do not fall within the gray shaded region
are samples that yielded apparent dates that are inconsistent with the true age of these
sediments (see straight lines labeled by date). The goal of the subsequent exercises is to
explore what pathways of isotopic evolution can explain the isotopic composition of these
outlying data.

We first approximate the starting isotopic composition of a representative endogenic
carbonate by reverse engineering the isotopic composition of the passing samples. K16 and
L1 have an average uranium concentration of 2.6 ppm, carbonate content of ∼60%, and
TOC of ∼10%. These values indicate that non-carbonate detrital material accounts for
∼30% of the sample composition. If we set the detrital end member to be made entirely
of aluminosilicate material, we find that a sample consisting of the following material can
roughly match the end isotopic composition of K16 and L1 after evolving for 75 kyrs:
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Figure 2-13: Possible pathways of uranium-thorium isotopic evolution that may explain the outly-
ing data at ∼20–23 m. [A] Plot comparing U-Th data (circles; see legend) with possible pathways
(colored lines) in δ234U–230Th/238U activity space, following Fig. 2-1C. Corrected U-Th ratios
(color-coded by threshold criteria result) are each paired with their corresponding uncorrected ra-
tios (gray circles with dashed outlines). The gray triangular wedges represent the expected age
range of samples from this depth range based on the age-depth model, where the dark gray area
is the range of model means (red line in Fig. 2-15A) and the light gray area is the maximum and
minimum of the uncertainty range (shaded gray area in Fig. 2-15A). Colored lines represent the
isotopic evolution of sample material of mixed composition and uranium loss histories over 75 kyrs
(see list of pathways and pathway key for symbology). The simulated samples are mixtures of two
isotopically homogeneous end-members: pure endogenic carbonate and detrital material made of
30% limestone and 70% aluminosilicate material. The starting composition of the pure endogenic
carbonate is 2.8 ppm 238U and 2700h for δ234Uinitial. These calculations assume that the endogenic
carbonate contains no initial 230Th and that uranium loss occurs with no fractionation between
234U and 238U. [B] and [C] Change in the isotopic evolution as the proportion of detrital material
increases (red lines). [D] and [E] Change in 230Th/238U activity after uranium loss. δ234U is not
shown because its evolution is no different from that without uranium loss (compare dashed yellow
line with red line of same starting composition in Panel C). [D] and [E] 238U and 232Th concentra-
tions of U-Th samples in this depth range. K16 and L1 are of the CP1 facies; all other U-Th data
featured are of the CMC facies (see Fig. 2-15B).
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20–30% detrital material and 70–80% endogenic carbonate with a starting composition
of δ234Uinitial = 2700h and uranium concentration = 2.8 ppm (Fig. 2-13A, colored lines
labeled 20% and 30%; see legend). The blue pathway represents the isotopic evolution of a
pure endogenic carbonate of this composition over the same amount of time, 75 kyrs: with
no 232Th, its initial 230Th/238U activity is zero and its final isotopic composition matches
its true age. Adding detrital material to this pure endogenic carbonate increases the initial
230Th/238U activity and decreases the initial δ234U of the sample (red pathways in Fig. 2-
13B–C), causing the sample to yield an older apparent date after 75 kyrs (red pathways in
Fig. 2-13A). Note that we tested the sensitivity of these simulations to the composition of
the detrital material by varying the proportion of marine limestone, and found that this
detail has a small impact compared to that of the total proportion of detrital material.

From the red pathways in Fig. 2-13A, it is clear that no amount of detrital material is
able to explain the samples with high measured 230Th/238U activities, given the compo-
sition of the end members being mixed. Furthermore, the 232Th concentrations of these
samples place an inexact but actionable upper bound on how much detrital material is
reasonable (Fig. 2-13G); for example, a 30% contribution of detrital material that is 50%
limestone already produces a sample with 232Th concentrations of ∼1.7 ppm. Thus, we
invoke uranium loss to explain these data: yellow, pink, and green pathways in Fig. 2-13A
illustrate the impact of continuous, late, and early uranium loss on the sample isotope
composition (see legend and Fig. 2-13D–E). These samples are also the same low uranium
CMC samples failing the 238U/232Th criterion described earlier. We cannot infer which of
these uranium loss scenarios is most likely at work from isotopic measurements alone, but
our hypothesis for the CMC samples described in Section 2.6.2 would favor early loss. In
addition, the magnitude of uranium loss required to approach the isotopic composition of
the outlying samples is similar to the difference in uranium concentration between passing
and failing samples (Fig. 2-13F).

Note that these modeled uranium loss pathways are simplified to assume that loss
occurs with no fractionation between 234U and 238U, but preferential leaching of 234U is
more likely closer to reality (Section 2.5).

2.7.2 Modeling results for ∼550 ka-aged samples

Fig. 2-14 features the U-Th samples from ∼70–75 m. At this age, the close spacing of the
age isolines in this regime causes the area defining the “true” age range of these samples
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to occupy a much narrower area in 230Th/238U activity-δ234U space (shaded gray area
in Fig. 2-14B). Here, we start with a pure endogenic carbonate with a composition of
δ234Uinitial = 2700h and 238U = 1.8 ppm, values selected via the same reverse engineering
steps described in Section 2.7.1, but using the passing samples in this depth interval.
Detrital contamination has much less impact on the accuracy of the dates at this age, as
demonstrated by the fact that all the modeled pathways of samples with varied percentages
of detrital material still ultimately end in the region defining the true age of the sediments
(gray shaded region in Fig. 2-14B; see Section 2.2.2 for explanation). In order to produce
samples with isotopic compositions that bias dates to be younger, we simulate the impacts
of uranium gain.

Similar to detrital contamination, early uranium loss (or gain) has no effect on the
final sample date at this age. Thus, in Fig. 2-14B, we only illustrate the impacts of late
or continuous uranium gain (green and yellow pathways). In contrast to the pathways
observed for ∼75 ka-aged sediments, here very small percent gains in uranium can have
measurable impacts. For example, a 1% gain at 540 kyr can cause the sample date to be
∼100 kyrs younger (green pathway in Fig. 2-14B). Thus, the sensitivity of the apparent
dates to small alterations in uranium in this regime, in combination with narrowly spaced
age isolines, is likely the cause for the large spread of dates at this depth, as well as the poor
reproducibility of replicate analyses (Fig. 2-8D). Because early uranium gain cannot explain
the young bias of these samples, the hypothesis for post-depositional uranium uptake by
gastropod shells seems less convincing; gains would have to be continuous and gradual,
and it is unclear from where the continuous supply of uranium would come.

Note that although Figs. 2-13–2-14 do not explore compound gain or loss pathways,
such scenarios are not outside the realm of possibility.

2.8 Conclusions: the age-depth model for the PLJ-1 splice

Through the use of threshold criteria that evaluate samples on the basis of their 238U/232Th
ratio, reproducibility, and δ234Uiec, we have conducted a methodical curation of the U-Th
data that is justified by comparisons to other sedimentological, geochemical, and paleoe-
cological datasets, as well as modeling of the isotopic evolution of simulated samples. As a
result, we deem 18 of the 55 sample dates as satisfactory for use as age constraints. These
passing samples generally come from sediments of the CP facies, which we hypothesize
have experienced relatively less uranium remobilization because of the thick overlying peat
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beds that act as reductive barriers to post-depositional fluid flow.
Fig. 2-15A shows the age-depth model for the PLJ-1 splice using these U-Th ages and

radiocarbon data. The model was generated using the R-based Bayesian age-depth mod-
eling software program called Bacon (v2.3; Blaauw and Christen, 2011). On average, the
95% confidence range of this model is ∼30 kyrs. Trachsel and Telford (2017) tested Bacon
and other age-depth modeling routines (CLAM, OxCal, BChron) on a varved sediment
sequence and found that they all produced mean age-depth models close to the truth, but
each program has its own advantages and disadvantages. In the case of Bacon, the ap-
plication of an accumulation rate prior forces sedimentation rates to be more smooth and
linear than is possibly justified. Thus, while the alternating packages of carbonate and
glaciogenic silt in the core hint at variability in sedimentation rates, this information is not
utilized in the generation of the age-depth model. See Section 2.10.5 for details regarding
the parameters and priors used for the model run.

Fig. 2-15A also compares the radiometric age-depth model to geomagnetic relative
paleointensity (RPI) tie points made between the PLJ-1 normalized remanence record and
well-dated RPI stacks (Hatfield, in prep.). Broadly, these data are consistent with age-
depth model and provide further support for its validity. See Section 2.10.6 for details on
the determination of the RPI tie points.

2.9 Considerations for future U-Th dating of lake sediments

When it comes to U-Th dating of lake sediments, there are no “silver bullets” or easy
answers: no singular facies, carbonate content threshold, color, or any other sedimentolog-
ical or geochemical data could predict the viability of a U-Th date with certainty in these
sediments. In fact, samples that would conventionally be considered ideal were some of the
most poorly behaved samples. One wonders what the outcomes might have been if only
the nominally choicest samples had been processed, and the dateability of the entire core
assessed from those results. Such decision making processes are the norm when less time
and fewer resources are available.

Our concern for overlooked but dateable sediments in other records also extends in
the opposite direction: other studies may be overly reliant on single-analysis U-Th dates
that seem credible but have not been reproduced or tested with stratigraphic coevality
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constraints. The most glaring example of this can be demonstrated through the results
from sample L7, which had the highest uranium concentration (7 ppm, 2 times higher than
the next highest) and highest 230Th/232Th ratio out of all samples (Table 2.3). Because
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of this, individual analyses were rather precise, with 400–700 year uncertainties (2-σ) on
∼100 ka dates. On their own, these dates would be considered excellent, but only after
replication is it revealed that none of the precise dates overlap with one another at the
2-σ level. Although a labor intensive strategy, there is no substitute for replication and
reproducibility in assessing the quality of U-Th geochronological data.

Furthermore, while the threshold criteria ultimately decided which data would form
the foundation of the age-depth model, it was the placement of geochronological data in
context of other sedimentological and geochemical information that provided justification
for these thresholds. These data comparisons also provide practical insights on what other
characteristics to consider for future U-Th dating attempts on lake sediments: for instance,
the aforementioned L7 sample contained some of the darkest ostracode shells categorized
(see image of ostracode shell with color = 7 in Fig. 2-12).

Embracing the noise in our data has led to a richer understanding of the controls on
uranium in these lake sediments. As our ability to resolve this noise increases as the ana-
lytical precision of measurements improves, subtle differences in the noise will become in-
terpretable as information on paleoenvironmental processes themselves. This work demon-
strates the beginnings of what is possible on this front. Although >150 analyses went into
this work, we hope that this number does not intimidate those seeking to apply U-Th
dating to their own lake sediment samples. Rather, we seek to showcase strategies for
interpreting scattered geochronologic data of any size and encourage similar efforts where
better geochronological control would have the most impact. As more high resolution
datasets become paired with drill cores by default (e.g., scanning XRF, color reflectance,
magnetic susceptibility), there will be more opportunities to use such additional data to
test underlying working assumptions for geochronologic tools.

Of all the lessons learned, we hold the following as most important: for the deter-
mination of the age of lake sediments, geologic context—in the form of sedimentological
observations, geochemical data, and paleoecological descriptions—is of equal importance
to the numerical accuracy and precision of geochronological measurements.
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2.10 Supplementary Materials

2.10.1 Methods of U-Th measurements on materials from 1996 piston
core

U-Th measurements on materials from the 1996 core were performed at the University of
Minnesota. For the first set of samples, processed in approximately 1999, mollusc shell
fragments were removed prior to chemical processing. For the second set processed in
2011, mollusc shell fragments were not comprehensively removed. Sample preparation
was identical to the procedures described in Section 2.3.2. Samples for the first set were
analyzed on a Finnigan Element I using methods described in Shen et al. (2002). Samples
for the second set were analyzed using a ThermoScientific Neptune multi-collector ICP-MS
in peak-jumping mode using methods described in Shen et al. (2012) and Cheng et al.
(2013a).

2.10.2 Methods of other datasets used to interpret U-Th data

Elemental concentration data. We measured 55 sediment samples for elemental con-
centrations of Ca, Mg, Sr, Al, Ti, P, V, Mn, and Fe. Samples of ∼1–2 mg in weight were
dissolved and diluted in 3% HNO3 and then measured on an Agilent 7900 ICP-MS at
the MIT Center for Environmental and Health Sciences. Sample analyses were bracketed
by a multi-element standard. Two measurements each were also made on two certified
multi-element reference standards, PACS-2 and BCR-2. Data were corrected for blank
intensities. Uncertainties for each element were determined by calculating the average per-
cent difference between recommended values and measured values in PACS-2 and BCR-2,
and then applying the larger percent difference on measured sample values. For example,
the average percent difference between measured and recommended values in Mg (wt %)
was 6% for PACS-2 and 2% for BCR-2; thus, all Mg measurements for samples were as-
signed an uncertainty of 6% of the measured Mg value. Of the 55 samples analyzed, 48
corresponded to U-Th analyses.

Total Inorganic Carbon/Total Organic Carbon. We measured weight percentage
total carbon (TC) and weight percentage total inorganic carbon (TIC) by coulometry. For
the measurement of TC, we combusted samples at 1000◦C using a UIC 5200 automated
furnace, and analyzed the resultant CO2 by coulometry using a UIC 5014 coulometer.
Similarly, we measured TIC by acidifying samples with 10% H3PO4 using an Automate
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acidification module and measured the resultant CO2 by coulometry. We calculated weight
percentage total organic carbon (TOC) from TOC = TC–TIC; weight percentage TIC was
converted to percent calcite based on stoichiometry.

Color reflectance spectrophotometry. Color reflectance data were measured using
a Geotek multi-sensor automated core logger (MSCL-XYZ) on split core sections at Lac-
Core. To calculate sediment optical lightness, we took the sum total of light in the visible
region of the electromagnetic spectrum, between 400 and 700 nm, following Balsam et al.
(1999).

Mineralogy. In order to characterize the carbonate mineralogy of the drill core and to
discern possible mineralogical differences between endogenic and detrital CaCO3, 25 sam-
ples were selected from intervals with variable CaCO3 abundance (0–85%) from throughout
the core. In addition, 6 samples of carbonate bedrock from within the Junín drainage basin
on both the eastern and western sides of the lake were also analyzed. All samples were
pretreated with 35% H2O2 and 1M NaOH to remove organic matter and biogenic silica,
respectively. Samples were then disaggregated with a solution of NaO3P combined with
ultrasonication, and then washed through 53 and 25 µm sieves to isolate fractions >53
µm, 25–53 µm, and, <25 µm. These fractions were then scanned on a Phillips PW 1840
diffractometer at 45 kW and 35 mA. Each subsample was scanned twice, wide scans were
conducted at 0.6° (2Θ) per minute from 4.0–70° (2Θ) whereas narrow, more focused, scans
were performed at 0.3° per minute from 28.0–31.0°.

Ostracode assemblage analysis. A total of 22 sediment samples corresponding to
U-Th analyses were selected for ostracode analysis. One 0.25-g aliquot per sample was
removed for most ostracode analyses. Prior to sieving, samples were gently disaggregated
with three freeze/thaw cycles, since sediments were densely compacted. Then, samples
were wet-sieved using a 63 µm sieve. Ostracodes were extracted with fine brushes, identi-
fied and enumerated with respect to numbers per 0.25 g dry sediment. Analysis was done
using a Leica M80 stereo-microscope. Adult and juvenile intact and broken valves were
differentiated. Broken valves were counted if >50% was encountered and when identifi-
cation was still possible. Fossil ostracodes were identified down to family level following
procedures described in Pérez et al. (2010) and Karanovic (2012).

Additionally, we made a brief sediment description that included information of other
fauna, vegetation and minerals found in the observed sediment samples.

We calculated different ratios to facilitate taphonomy interpretations and for a better
understanding of processes such as remineralization and reworking in samples. The bro-
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ken:intact (B:I) ratio was calculated for each sample to identify samples with relatively
high numbers of broken shells. Similarly the adult:juvenile (A:I) ratio was used to iden-
tify samples with a high number of adult valves, that could indicate transportation of the
lighter juvenile valves to deeper waters. The nektobenthic:benthic (NB:B) was calculated
to evaluate shifts in the relative abundance of bottom-swimming versus bottom-dwelling
individuals.

Shell coloration was taken into account as well when enumerating ostracode shells. We
were able to distinguish 7 different shell colorations: 1. Translucent, 2. White, 3. Partly light
grey, 4. Completely light grey, 5. Partly dark grey, 6. Completely dark grey, 7. Completely
black. Additionally, we used a Scanning Electron Microscope (SEM) TM3000 Hitachi
with BSE Detector II for taking pictures of uncoated specimens to facilitate ostracode
identification and to detect elements of ostracode shells using EDX analysis. All ostracode
analyses were conducted at the Institut für Geosysteme und Bioindikation (IGeo) of TU-
Braunschweig.

Comparison of other data to U-Th data. All comparisons between different
datasets were carried out with MATLAB scripts written by CYC.

2.10.3 Failure to build isochrons

As mentioned in Section 5.3, determining dates from isochron plots failed (high MSWD
and low probabilities of fit). We used the Isoplot program by Ludwig (2012) to generate
isochron plots of various replicate analyses from bulk sample material, as well as analyses
from adjacent clean-dirty sample pairs. The failure to build isochrons is further evidence of
the existence of open system behavior occurring in these sediments. Figs. 2-18–2-28 show
the results of our isochron building attempts.

2.10.4 Calculation of δ234Uiec

We assume that the detrital component has activity ratios essentially at secular equilibrium:
[234U/238U]det = 1.0±0.5 and [232Th/238U]det = 1.2±0.6, following those used by Dutton
et al. (2017). First, we calculate the fraction of uranium that is detrital in each sample
(fdet):

fdet = [232Th]samp × 1

[232Th/238U]det
× [238U]samp
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where brackets indicate activities, samp refers to the sample data, det refers to the detrital
component. We then convert the initial [234U/238U] of the sample to δ234Uiec with the
following formula:

δ234Uiec =

(
[234U/238U]init

samp − [234U/238U]det × fdet

1− fdet
− 1

)
× 1000

We propagate the uncertainties of the original measured [238U]samp, [232U]samp, and detrital
activity ratios for the uncertainty of δ234Uiec.

2.10.5 Parameters and priors used for Bacon age-depth model

We used the following parameters and priors for our Bacon age-depth model: thickness
= 50 cm; acc.mean = 80 yr/cm; acc.shape = 2.0; mem.strength = 15; and mem.mean =
0.8. The age-depth model was generated by executing the following command:

Bacon(core = "PLJ_dates_d234U_50", acc.mean = 80, acc.shape = 2, mem.mean
= 0.8, mem.strength = 15, thick = 50, ssize = 10000, burnin = 2000, suggest
= FALSE, depths.file = TRUE, yr.max = 800000, MaxYr=781000, d.max = 8800);

The Baconvergence test was run and yielded a Gelman and Rubin Reduction Factor of
1.031463, which fell below the 1.05 safety threshold and indicates robust mixing of Markov
Chain Monte Carlo iterations.

Trachsel and Telford (2017) tested Bacon and showed that the thickness parameter
(the segment length) had an unpredictable effect on the size of the error envelope. They
also found that the impact of different values for thickness was dependent on acc.shape,
the accumulation shape prior. As Blaauw and Christen (2011) did not explicitly make
any recommendations for how to choose an appropriate value for thickness, Trachsel and
Telford (2017) suggested that the length be shorter than the mean distance between dated
intervals and to choose a value that allowed for faster model convergence.

As can be seen from Fig. 2-15, the chronological constraints of the PLJ-1 splice are not
equally spaced. The average distance between radiocarbon data in the upper 20 m of the
core is 24 cm; when considering all radiometric data (radiocarbon and U-Th), the average
spacing is 72 cm.

Thus, we carried out a comparison of age-depth models generated using different lengths
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for the thickness parameter, keeping the accumulation shape prior constant. Fig. 2-17
shows that while the difference in the mean of the age-depth models does not vary by more
than 8 kyr at any point in the record, there are 5–30 kyr differences in the width of the
error envelope.

Unfortunately, there is no rule of thumb or other external information that can help us
determine which length for the thickness parameter is most appropriate. At this point,
the decisions for how to generate the age-depth model are, regrettably, more of an art.
Thus, we collectively settled on using 50 cm as the length for the thickness parameter,
for no other reason other than it seeming “reasonable.” We encourage others to use the
chronological constraints generated in this study and others at Lake Junín to create better
age-depth models with improved estimates of uncertainties.

2.10.6 Determination of relative paleointensity tie points

As paleomagnetic reconstructions perform best within intervals of high lithic flux (glacial
periods in Lake Junín), the U-Th ages in Fig. 2-15A were first used to seat the paleomag-
netic record during the carbonate-dominated interglacial sediments. Following interglacial
anchoring, the Lake Junín normalized remanence record was compared to a regional RPI
stack from the North Atlantic (Xuan et al., 2016) and the global paleointensity inversion
PADM2M of Ziegler et al. (2011). The generally good agreement between these records
and the Lake Junín normalized intensity record allowed additional tie points to be identi-
fied that improved the correlation between the PLJ-1 record and the two well-dated RPI
targets. A somewhat arbitrary 10 ka uncertainty (2-σ) was prescribed to account for alias-
ing during the tuning process and the chronological uncertainty of the target stacks (see
Hatfield et al., in preparation for further details). In general, the RPI picks center within
the 2-σ error envelope of the PLJ-1 Bacon-derived age model, however, picks falling off
the mean age-depth model likely infer variations in sedimentation rate between glacial-
interglacial sediments (see Woods et al., 2019, for examples within the radiocarbon era)
that might be expected in heterogeneous sedimentary environments but are not captured
in the interglacial-only U-Th age-depth model (see Hatfield et al., in prep).
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Figure 2-16: Comparison of uranium concentration and δ234Uiec for three samples of the CMC
facies: C10 (top), C13 (middle), and L7 (bottom). Samples C10 and C13 show some evidence of
the inverse relationship between uranium concentration and 234Uiec, as would be predicted if there
was preferential loss of 234U (Robinson et al., 2006). However, L7—the sample with the highest
mean uranium concentrations out of any sample analyzed—shows a trend that is more consistent
with the expectations of preferential 234U gain. All errors are at the 2-σ level.
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Figure 2-17: Comparison of the size of the 95% confidence range and mean of Bacon age-depth
models run with varying lengths of the thickness parameter. Middle and bottom plots compare
the age-depth models to the results of the model where thickness = 30 cm. The top plot shows
the size of the 95% confidence range for the age-depth model where thickness = 30 cm.

86



Figure 2-18: Isochron plot of analyses from sample M15.
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Figure 2-19: Isochron plot of analyses from sample L7.
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Figure 2-20: Isochron plot of analyses from sample L1.
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Figure 2-21: Isochron plot of analyses from sample K16.
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Figure 2-22: Isochron plot of analyses from samples J5 and J6.
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Figure 2-23: Isochron plot of analyses from sample H7.
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Figure 2-24: Isochron plot of analyses from sample H6.
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Figure 2-25: Isochron plot of analyses from samples G13 and G14.
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Figure 2-26: Isochron plot of analyses from samples G7 and G8.
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Figure 2-27: Isochron plot of analyses from samples G6.
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Figure 2-28: Isochron plot of analyses from samples F15.
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Figure 2-29: Isochron plot of analyses from samples F9.
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Chapter 3

U-Th dating of tufas from Agua
Caliente I, Laguna de Tara and
Salar de Loyoques, northern Chile

3.1 Introduction

The South American summer monsoon (SASM) is the main source of precipitation for
much of South America, impacting globally significant ecosystems ranging in diversity
between the world’s largest tropical rainforest in the Amazon basin to the world’s driest
desert in the Atacama (Nogués-Paegle et al., 2002; Jones et al., 2012). Future SASM
changes are of particular concern in the Central Andes, where anomalous decreases in
streamflow and water availability over the past three decades have rendered both human
and ecological communities highly vulnerable to future anticipated climate change (Messerli
et al., 1997; Aravena et al., 1999; Vicuña et al., 2012; Magrin et al., 2014; Morales et al.,
2015). Despite societal significance, there is substantial uncertainty and poor agreement in
climate model projections of future precipitation patterns over South America (Marengo
et al., 2012; Rowell, 2012; Knutti and Sedláček, 2013; Shepherd, 2014). The short and
sparse instrumental record and disagreement among reanalysis products make even more
recent changes in the magnitude and spatial extent of SASM ambiguous (Grimm, 2011;
Silva and Kousky, 2012).

To improve forecasts of future hydrological change in monsoonal regions, we must

99



examine natural archives that record changes in precipitation during Earth’s varied climatic
past. Reconstructions of monsoon responses to past forcings and boundary conditions have
been produced from compilations of pollen and lake level data (Qin et al., 1998; Kohfeld and
Harrison, 2000; Yu et al., 2001; Bartlein et al., 2011) and used for data-based tests of climate
model performance. Such proxy-model comparisons have revealed that models consistently
underestimate past monsoon variations, but proxy data representation is heavily skewed
towards the low- to mid-latitude regions of the Northern Hemisphere (Joussaume et al.,
1999; Coe and Harrison, 2002; Braconnot et al., 2007, 2012; Roehrig et al., 2013; Perez-
Sanz et al., 2014). Coverage in South America in both pollen and lake level compilations
is much more sparse, making it impossible to determine whether models are adequately
representing the magnitude and spatial extent of the SASM under past climate conditions
(Figure 3-10) (Qin et al., 1998; Kohfeld and Harrison, 2000).

Furthermore, amongst the paleoclimate data that do exist in South America, there is lit-
tle consensus on how precipitation responded to climate perturbations over the Pleistocene.
In the Bolivian Altiplano of the Central Andes, sediment core records from the Titicaca-
Uyuni basin suggest that lake levels mainly follow insolation and glacial-interglacial varia-
tions, with the wettest conditions occurring during austral summer insolation maxima and
glacial periods (?). However, studies on preserved paleoshoreline deposits from the same
basin suggest that North Atlantic cooling events are the primary drivers of wet conditions
rather than insolation changes (Placzek et al., 2006b, 2013; Blard et al., 2011).

In this paper, we present new U-Th dating constraints on lake level variations from three
small (<40 km2), high-altitude closed-basin paleolakes on the Altiplano-Puna plateau of
the Central Andes (23◦S, 67◦W; 4200–4300 meters above sea level). Because this area
experiences a strong seasonal cycle, receiving 50 to 90% of its annual precipitation amount
during austral summer (December-January-February, DJF; Nishizawa and Tanaka, 1983;
Gandu and Silva Dias, 1998; Garreaud et al., 2003; Vuille and Keimig, 2004; Wade, 2014),
the Altiplano-Puna region is ideally suited to represent a pure response to changes in
the SASM (Figure 3-1A). In each of these basins, evidence for previous intervals of much
wetter conditions is evident in spectacularly preserved paleoshorelines, which even a casual
observer can identify via satellite imagery. Many of these paleoshorelines are encrusted
with carbonate “tufa” deposits, which are essentially fossilized calcareous remains of algal
reefs. Because modern analogues of tufa-forming organisms grow within the photic zone,
the location of these tufa deposits approximates the elevation of past lake levels. Earlier
radiocarbon (14C) dating efforts to find the ages of these deposits have been limited due to
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a lack of terrestrial organic matter and large uncertainties in the reservoir effect in these
lake basins. Thankfully, due to high U concentrations and low detrital Th content, we
are able to apply U-Th dating techniques to these materials. By U-Th dating these tufas
and other lacustrine carbonates, we can pair an age to a quantitative constraint for the
magnitude of lake area expansion calculated from differential GPS (dGPS) measurements
of the elevations of shoreline features.

These data are the first results from a planned north-south transect of six lake basins
spanning the subtropics of the Central Andes (20-33◦S; Figure 3-1B) aimed at filling a key
geographical gap between existing lake level chronologies in the tropics and mid-latitudes,
as well as providing valuable constraints on past spatial variations in SASM extent. The
paper is organized as follows: In Section 3.2, we summarize current knowledge on the mod-
ern climate of the Altiplano-Puna plateau. In Section 3.3, we describe previous work that
demonstrates past linkages between local summer insolation and North Atlantic cooling
events to hydrological changes in South America and the Central Andes. We discuss the
setting of the lake basins in our study in Section 3.4 and describe our methods for U-Th
dating and mapping ancient shorelines in Section 3.5. The results and implications of
our findings are discussed in Sections 3.5–3.7. Finally, we outline the future direction of
this research (for instance, a water balance model to provide quantitative constraints on
precipitation and evaporation changes) and other possible avenues in Section 3.8.

3.2 Modern climate of the Altiplano-Puna plateau

The Altiplano and Puna plateaus of the Central Andes are arid to semi-arid internally-
drained basins situated between cordilleras to the east and west. Together, they form the
second highest continental plateau in the world (average elevation 3700 m), stretching for
1800 km and varying between 350 and 400 km in width (Isaks, 1988; Allmendinger et al.,
1997; Kay and Coira, 2009). Mean annual temperatures from the few available weather
stations on the plateau average to 9◦C after elevational differences are normalized (Blard
et al., 2011). Based on modern δ18O of rainfall data from the IAEA-GNIP database,
average δ18O values of precipitation on the plateau are -12.1 ± 6.1h VSMOW (-41.7 ±
-24.0 VPDB; IAEA/WMO, 2015). Despite the overall aridity of the region (<200 mm yr−1

precipitation in the south and ∼1000 mm yr−1 in the north; Garreaud et al., 2003; Vuille
and Keimig, 2004), the plateau is the main source of water for the neighboring hyper-arid
Atacama Desert resting at the base of the western flank of the Andes. Evaporation rates
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decrease while precipitation rates increase from west to east across the Andes such that open
water bodies are generally only observed at elevations greater than 4000 masl (Magaritz
et al., 1989; Vuille and Baumgartner, 1993; Aravena et al., 1999). This observed west-to-
east gradient in rainfall across the Central Andes and within the plateau is consistent with
an eastern continental moisture source (Garreaud et al., 2003). Moist, cool air from the
Pacific ocean rarely reaches the plateau due to coastal topography and a thermal inversion
layer over the subtropical southeast Pacific caused by large-scale subsidence (Rutllant and
Ulriksen, 1979).

As mentioned earlier, rainfall over the Altiplano-Puna plateau is highly seasonal and
heavily influenced by the behavior of the SASM. Similar to other classic monsoon systems
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Figure 3-1: [A] Austral summer (DJF) precipitation in South America. The box shows
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(e.g., the Indian summer monsoon), large-scale upper tropospheric circulation of the SASM
is driven by seasonally-varying differential sensible heating of land and ocean that then
triggers moist atmospheric processes which redistribute energy via latent heat transfer
(Zhou and Lau, 1998; Vera et al., 2006; Marengo et al., 2012). Throughout most of the year,
dry air from the subtropical Pacific is brought over the plateau by prevailing subtropical
westerly winds, resulting in very low precipitation rates. During austral winter, the SASM
is at its weakest, and South America receives most of its rainfall north of the equator in line
with the location of the local Intertropical Convergence Zone (ITCZ), centered at ∼5◦N.
While the local ITCZ is north of the equator, the interior of the continent undergoes its
dry season.

During austral summer at the peak of the SASM, a southward shift of the ITCZ
strengthens the easterly trade winds that advect moisture from the tropical Atlantic
ocean onto the continent, causing heavy convective precipitation in the southern Ama-
zon basin and northern Argentina (Figure 3-1A). These summertime convective thunder-
storms involving cumulonimbus clouds (Houze, 1997) release latent heat (condensational
heating) over the Amazon basin that causes the formation of the Bolivian High, an upper-
troposphere high-pressure cell (Lenters and Cook, 1997; Garreaud et al., 2003; Garreaud
et al., 2009). This warm upper-level anti-cyclonic circulation cell channels mid- and upper-
level easterly winds over the Central Andes, which provide the moist continental lowland
air necessary for the generation of deep convection on the plateau (Garreaud et al., 2003;
Vuille and Keimig, 2004; Falvey and Garreaud, 2005). Deep, moist convection is then
triggered by destabilization of the local lower troposphere via solar-driven sensible heat-
ing of the plateau surface (Garreaud, 1999; Vuille, 1999), releasing moisture and latent
heat as afternoon and early evening rainfall (Fuenzalida and Rutllant, 1987; Garreaud and
Wallace, 1997).

The Bolivian High is also associated with the formation of a low-pressure system cen-
tered over the Gran Chaco region of Argentina (Chaco Low, ∼25◦; Seluchi et al., 2003),
which steers low-level (below ∼1500 m altitude) easterly winds flowing over the Amazon
southwards along the eastern slope of the Andes, funneling moisture from the Amazon
basin into the subtropics (Saulo et al., 2000; Marengo, 2004; Garreaud et al., 2009). En-
hanced specific humidity in the lower troposphere of these subtropical continental lowlands
appears correlative with wet conditions in the southern part of the Altiplano-Puna plateau,
but a causal link between these two conditions, and why the neighboring lowlands do not
matter for conditions on the northern Altiplano-Puna plateau, is unclear (Garreaud et al.,
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2003; Vuille and Keimig, 2004).
While interannual and decadal-scale fluctuations in precipitation over the Amazon

basin are well-studied, such variations are <15% of the region’s annual mean rainfall
amount (Garreaud et al., 2009). In contrast, year-to-year precipitation variations over
the Altiplano-Puna plateau are very strong, alternating between severe drought and very
wet summer conditions (e.g., 11 mm to 277 mm in consecutive rainy seasons; Garreaud
and Aceituno, 2001; Garreaud et al., 2003). Interannual and decadal-scale precipitation
on the plateau shows strong connections with Pacific sea surface temperature (SST) pat-
terns, with a warm eastern equatorial Pacific (El Niño-like conditions) corresponding to
drier conditions (e.g., Lenters and Cook, 1997; Vuille, 1999; Vuille et al., 2000; Garreaud
et al., 2003). During El Niño years, the anomalously warm eastern equatorial Pacific Ocean
causes a warming of the troposphere above, causing large-scale, upper-level zonal flow to
take on a more westerly direction. This strengthening of westerly winds across the Central
Andes transports dry air from the western slopes of the Andes, thus bringing about a dry
spell (Garreaud and Aceituno, 2001; Garreaud et al., 2003; Vuille and Keimig, 2004). An
opposite response occurs during most La Niña episodes: anomalously cool eastern Pacific
SSTs cool the tropical troposphere and decrease meridional temperature gradients, result-
ing in a poleward shift of weakened westerly winds over the Central Andes, allowing greater
westward penetration of moist air.

Interestingly, there is no evidence for a tropical Atlantic influence on austral summer
rainfall in the Altiplano-Puna plateau on modern interannual timescales (Vuille et al.,
2000). However, given the short and often incomplete instrumental record in the Central
Andes, it is possible that Atlantic teleconnections may only play a role in Central Andes
precipitation on longer timescales.

3.3 Previous Work on Past Changes in the SASM

Records of millennial climate variations from South America are comparatively scarce,
but those that do exist show clear climatic shifts contemporaneous with Greenland during
the last glaciation (e.g., Lowell et al., 1995; Arz et al., 1998; Behling et al., 2000; Lamy
et al., 2000; Peterson et al., 2000; Peterson and Haug, 2006). Oxygen isotope records from
various speleothems in South America (e.g., Cruz et al., 2005, 2007; Wang et al., 2004,
2006, and 2007; Mosblech et al., 2012; Cheng et al., 2013b; Stríkis et al., 2015) suggest
that SASM precipitation was influenced by not only changes in local summer insolation, but
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also abrupt millenial-scale North Atlantic cooling events (e.g., Bard et al., 2000) which had
a significant impact on the interhemispheric temperature difference (Shakun et al., 2012).
These anomalously cool North Atlantic events are called Heinrich events, and are associated
with marine deposition of iceberg-derived coarse-grained sediments. The South American
speleothem records suggest that periods of SASM intensification coincide with Heinrich
events by showing more negative δ18O values during these periods, which is interpreted to
indicate increased rainout upstream. Although these δ18O speleothem records are robust
and possess excellent temporal resolution and precision in ages, the magnitude and spatial
pattern of these precipitation changes cannot be gleaned from such proxies.

Lake records from the Central Andes have already proven to be a powerful and necessary
complement to these South American speleothem records. The shoreline-based records
from the Titicaca-Uyuni lake basin in Bolivia suggest that lake levels were primarily driven
by Heinrich events (Placzek et al., 2006b, 2013; Blard et al., 2011), and corresponding
hydrologic modeling suggests that a ∼2–3 factor increase in precipitation relative to present
rates was necessary to maintain the lake at its highstand, called the Tauca phase, during
Heinrich Event 1 (H1; ∼18–14.6 ka). Increased Central Andes rainfall associated with
H1 is also observed in paleowetland deposits showing elevated groundwater tables (Quade
et al., 2008), fluvial terraces and pack-rat middens showing increased stream discharge
(Latorre et al., 2006; Nester et al., 2007; Gayo et al., 2012), and glacial moraines showing
substantial ice cover expansion (Smith and Delorme, 2010). In a sediment record from
Laguna Miscanti (Figure 3-1B) spanning the last ∼22 ka (Grosjean et al., 2001), two
periods of higher lake levels during the last deglaciation are inferred from aquatic pollen
assemblages and sediment lithology. Unfortunately, large 14C reservoir effects for aquatic
organic materials of 2200–4000 years greatly limited the chronology of this record.

In this study, we aim to not only lay the foundation for quantifying past precipitation
changes, but also test the two contradictory interpretations of the Titicaca-Uyuni lake
system. The past extent of lake stages prior to >25 ka in this system is disputed due
to complex basin geometry and uncertainty over past sill elevations (Placzek et al., 2013;
?). By examining these pluvial events in smaller, simpler paleolake basins, we can assess
how consistent our reconstructed lake level histories are with each interpretation of the
Titicaca-Uyuni lake level record.
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3.4 Study Area

Our study area focuses on three neighboring lake basins in northern Chile, located south
of Salar de Uyuni (Figure 3-1B): Agua Caliente I (23.13◦S, 67.41◦W), Salar de Loyoques
(23.25◦S, 67.29◦W), and Laguna de Tara (23.04◦S, 67.28◦W) (Figure 3-2). The landscape
is dominated by large volumes (>10,000 km3) of primarily silicic ignimbrites extruded
between 10–1 Ma (Quade et al., 2015). Mean annual temperatures of 0◦C and annual
precipitation rates of 150–180 mm/yr make this area a very cold and dry place (Dirección
General de Aguas, 1987). At present, freshwater springs breaching the surface a few tens
of meters above the modern lake or salar feed these lakes; surface flow of water is confined
to such spring discharges. Agua Caliente I is also fed by thermal springs in the southwest
part of the basin, as is implied by its namesake. An inactive stream channel located at
the foot of converging alluvial fans from opposite sides appears to link the Agua Caliente
I basin with Salar de Loyoques, but no such surficial linkages exist with Laguna de Tara,
its neighbor to the north.

3.5 Materials and Methods

3.5.1 Field sampling and shoreline mapping

In order to obtain constraints on past lake water elevations, we identified, sampled, and
recorded the present-day elevation of sequences of tufa formations and lacustrine carbonate
deposits that provide information on paleowater depths. When combined with paleoshore-
line observations and geochronologic tools such as 14C and U-Th dating, this strategy is
successful in reconstructing lake level histories in both large and small lake basins (e.g.,
Oviatt et al., 1994; Benson, 1994, 1995; Placzek et al., 2006b). When sampling, we focused
primarily on deposits associated with shoreline features, but we also sampled material from
road cut and stream channel exposures. When the entire thickness of a unit could not be
sampled, we took samples from the top (outer part) and bottom (inner part) of deposits to
capture the entire duration of lake episodes. Our sampling approach also took advantage of
several cross-cutting relationships and disconformities to find the relative timing of distinct
depositional events.

We collected precise location and elevation data of shoreline features and samples using
a Trimble Geo 7x handheld device, a high-accuracy Global Navigation Satellite System
(GNSS) receiver. After post-processing with proprietary software, we are able to achieve
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horizontal and vertical location measurements of submeter accuracy (Section 3.9.1 and
Figure 3-12). For shoreline features, we measured the elevations of the crests of gravel
barriers, the base of incised alluvial fan scarps, and the tops and bottoms of abrasional
platforms, following methods described by Chen & Maloof (in revision). We also drove
through the stream channel connecting the Agua Caliente I and Salar de Loyoques basins,
taking regular dGPS elevation measurements of the channel bottom (thalweg) to estimate
the potential overflow (sill) elevation.

The locations and elevations of the highest shoreline features in each basin were then
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Figure 3-2: Annotated satellite imagery of the three lake basins examined in our study.
Dashed lines serve as a guide to the reader to identify the modern extent of lakes and salars
within each lake basin.
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used for paleolake area calculations, which were determined with geographic information
systems (GIS), satellite imagery, and a digital elevation map (DEM) (Section 3.9.2).

3.5.2 U-Th dating of shoreline tufas and other lacustrine deposits

Tufa and other lake carbonate samples were slabbed along the axis of primary growth or
deposition and cleaned with ultrapure water prior to sampling. Using a vertical milling
machine with a tungsten carbide-tipped drill bit, we drilled carbonate powders weighing
2–10 mg from these slabbed surfaces, targeting areas with primary textures and the least
amount of siliciclastic detritus and post-depositional chemical or physical alteration. For
Bolivian Altiplano lake carbonates, Placzek et al. (2006a) found that white-colored car-
bonates tended to have lower initial Th content compared to material with faint pink or
orange coloration; thus, we also preferentially sampled white-colored material.

Preparation of these aliquots for U-Th dating was then performed in a clean laboratory
at MIT. Aliquots were dissolved in HNO3 and spiked with a 229Th-233U-236U tracer in
Teflon beakers cleaned via a boiling-washing procedure with concentrated HNO3 and HCl.
Next, following methods described by Edwards et al. (1987) and Shen et al. (2002), U
and Th were co-precipitated with ∼4 mg of Fe oxyhydroxides and then separated using
BioRad AG1-X8 anion exchange resin (100-200 mesh, 0.5 mL column volume). The isotopic
compositions of the resulting U and Th fractions were then measured on either a Thermo
Scientific Neptune Plus multi-collector ICP-MS at Brown University or a Nu Plasma II-ES
multi-collector ICP-MS at MIT. At both locations, we introduced sample solutions through
a CETAC Aridus II desolvating nebulizer system coupled to a PFA nebulizer with an 100
µL/min uptake capillary. Each U sample analysis was bracketed by a 5 ng/g solution of
the CRM-112a standard (New Brunswick Laboratories). Each Th sample analysis was
bracketed by an in-house 229Th-230Th-232Th standard in order to monitor mass bias and
variable SEM yield. 2% HNO3 solution blanks also bracketed each sample and standard
analysis to determine the background signal. One sample set of chemistry was analyzed at
MIT in peak-jumping mode on the ion counter following methods by Shen et al. (2002).
See Steponaitis et al. (2015) for more details on the mass spectrometry procedure used at
Brown University.

Total procedural blanks were included with each batch of 5–10 samples and were on
average 0.2 ± 0.2 fg 230Th, 1.2 ± 2.0 fg 234U, 1.8 ± 0.9 pg 232Th, and 8.7 ± 8.2 pg 238U.
These averages do not include anomalous blanks, which had high values of 4.8 fg 230Th,
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11 fg 234U, 47 pg 232Th, and 107 pg 238U. However, even with such large blanks, the
magnitude of the blank correction for ages we trust in our study was at most 5%. Data
with 230Th/232Th ratios >100 ppm (atomic ratio) and <5% blank correction were deemed
acceptable. Replication is necessary and planned for samples where blank corrections were
higher than 5%. After making blank, background, tail, mass bias, and yield corrections,
we calculated U-Th ages using the 238U half-life measured by Jaffey et al. (1971) and the
230Th and 234U half-lives determined by Cheng et al. (2013a). All ages were calculated
with an estimate of the detrital 230Th/232Th atomic ratio, (4.4 ± 2.2) × 10−6.

In the initial project stages prior to any U-Th dating of material, we pre-screened
samples to determine which sample materials would be most viable for U-Th dating. In
lacustrine settings, the initial 230Th/232Th is often high (e.g., Haase-Schramm et al., 2004;
Israelson et al., 1997), causing samples with even modest concentrations of 232Th to have
large age corrections. Thus, samples with low 232Th concentration are considered more
favorable for U-Th dating. Sample powders of ∼2 mg were dissolved in dilute HNO3, and
analyses of 238U and 232Th concentration were performed on a VG PQ2+ quadrupole ICP-
MS at MIT. A 238U/232Th ratio of 100 was our threshold for acceptable material for U-Th
dating.

3.5.3 Determination of mineralogy and stable isotope composition of car-
bonates

For mineralogical determination, powders weighing 1–3 mg were drilled from the same sam-
ple locations used for U-Th dating and non-destructively analyzed using attenuated total
reflectance Fourier transform infrared (ATR-FTIR) spectroscopy on a Perkin Elmer Spec-
trumOne at Harvard University. Some of these same powders were used to determine the
stable isotope composition of samples. The δ13C and δ18O of carbonates were measured
at the University of Arizona (UofA) and at the Woods Hole Oceanographic Institution
(WHOI). At UofA, measurements were performed on a KIEL-III automated carbonate
preparation device coupled to a Finnigan MAT 252 gas-ratio mass spectrometer. Pow-
dered samples of ∼0.1–0.2 mg were dissolved in dehydrated phosphoric acid at 70◦C. The
2-σ uncertainty of isotope ratio measurements, based on repeated measurements of car-
bonate standards NBS-18 and NBS-19, is ± 0.22h for δ18O values and ± 0.16h for δ13C
values. At WHOI, stable isotope measurements were made on a Thermo Scientific MAT
253 mass spectrometer. Powdered samples of 3.5–5.5 mg were introduced into a custom-
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made, automated acid reaction and gas purification line built for carbonate clumped isotope
analysis (see Supplementary Materials in Thornalley et al. 2015 for method details). We
repeatedly analyzed NBS-19 carbonate standards to determine the precision of the isotope
ratio measurements, which is ± 0.26h for δ18O values and ± 0.12h for δ13C values at
2-σ uncertainty. Each reported measurement is an average of 3-4 replicate analyses of a
particular sample; thus, the measurements made at WHOI may be more representative of
the average δ18O and δ13C value of each drilled location in a sample.

As a preliminary step towards investigating the microfacies of these lacustrine carbonate
deposits, one large format (40 mm × 60 mm) thin section was prepared at Spectrum
Petrographics (Vancouver, WA) and examined with an Olympus BX51 light polarizing
microscope.

3.6 Results

Field work and sample collection occurred in 2009, 2010, and 2015. In Agua Caliente I,
samples span an elevational range of 0 to ∼25 m above the modern salar. In Salar de
Loyoques, the elevational range of samples is 0 to ∼70 m above the modern salar. In
Laguna de Tara, samples are 10–30 m above the modern salar. See Table 3.1 for the
elevation of the modern salar or lake in each basin.

3.6.1 Observed tufa varieties and other lacustrine carbonates

Of the three lake basins in this study, Agua Caliente I contained the most unique types of
calcareous tufa and lacustrine carbonate. Figure 3-3 is a schematic representation of the
elevational relationship between paleoshoreline features, different tufa varieties, and other

Lake Modern Highest Shoreline Modern Ancient Factor
Basin Salar/Lake Elev. Above Area Area Increase
Name Elev. (m) Modern (m) (km2) (km2)

Agua Caliente I† 4219 34 6.6 26.9 4
Salar de Loyoques‡ 4182 70 10.7 201 19
Laguna de Tara 4322 30 36 179 5

Table 3.1: Table of modern and ancient lake areas for each basin. ∗Ancient area calculations are
for lake highstands. †Calculation of the ancient lake highstand is based on the assumption that
Agua Caliente I did not overflow into Salar de Loyoques. The present-day elevation of the sill is
below that of the highest paleoshoreline in Agua Caliente I. ‡The modern day lake area of Salar de
Loyoques includes the modern day lake area of Agua Caliente I.
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lake carbonate deposits in Agua Caliente I. We now describe the morphology and character
of each type of deposit observed in the field.

Encrusting floret tufa.—By volume, this porous, whitish-beige-colored tufa va-
riety is the most abundant lacustrine carbonate observed, covering many surfaces ∼5–28
m above the modern lake throughout the basin (∼4223 and 4246 m elevation; Figure 3-
4A). These deposits vary in thickness from 3 to 20 cm and appear thickest on smooth,
hard substrates such as boulders on hills made of exposed volcanic bedrock (Figure 3-4B).
Frequently, multiple sequentially-formed encrustations separated by disconformities can be
found on large boulders, with cumulative thicknesses of up to 50 cm. Neighboring boulders
are often cemented together by this deposit.

Where coating boulders thickly, the encrustations can vary laterally in thickness by
several centimeters, forming broad, mound-like, domal buildups that tend to be thickest
towards the boulder tops. In cross-section, the tufa has the appearance of closely-packed
“floret”-like growths of uniform thickness radiating away from their nucleation surface (Fig-
ure 3-4C). Preservation of this growth structure varies basin wide and between sequentially-
deposited encrustations on a singular boulder.

The boulder encrustations are primarily found in the northern and eastern parts of the
basin where small bedrock hills are located. Interestingly, the deposits are most thickly
developed on the lakeward side of these hills, even when elevation data indicates that the
landward side of hills must also have been in contact with lake waters. In the southern part
of the basin where there are no such hillsides and the bathymetric slope is much shallower,
the encrusting floret tufa assumes a thinner, more flat-lying, tabular shape with more
uniformity in lateral thickness (Figure 3-4D). These tufa also tend to be more porous and
weathered, incorporating a larger amount of detrital sediment. These differences in porosity
and morphology within a single tufa variety may reflect different wave energy environments,
in which the more tabular-shaped tufas indicate higher-energy wave conditions (James and
Bourque, 1992), possibly due to larger fetch and a shallower wave run-up slope.

Although lateral discontinuities are present, the floret tufas do not exhibit any lami-
nations in their internal structure in any location. A thin section taken along the growth
axis of an encrusting floret tufa shows dark microbial peloids (microcrystalline carbon-
ate grains) forming radially-oriented branching structures that are surrounded by micrite
(microcrystalline calcium carbonate) containing tiny growth-oriented filaments and dark
lenticular tube-like cyanobacterial-algal microfossils (Figure 4-2D). Trapped detrital mate-
rials consisting of skeletal ostracod (benthic micro-crustaceans encased in a calcitic bivalved
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Figure 3-4: Photographs of encrusting floret tufa and caliche observed in Agua Caliente I. [A]
Photo looking northeast from a tufa-encrusted bedrock hillside in the northern part of the basin.
By volume, most tufa in this basin is of the floret variety. [B] The floret tufa drapes over all
hillside surfaces, including boulders. [C] A close-up, cross-sectional view of a thick deposit of floret
tufa coating a basalt boulder, showing a faint radial fabric. [D] The morphological expression of
the floret tufa in the southern part of the basin, where the slope is more gently inclined and no
basalt boulders are present. Here, the floret tufa geometry appears more tabular. [E] An abrasion
platform carved into a hillside of exposed volcanic bedrock in the northern part of the basin. The
platform is ∼33 m in length, measuring from the top of the platform (4247.2 ± 0.8 m) to the
bottom (4245.9 ± 0.8 m). Here, exposed caliche is observed at the base of the platform. [F] A
close-up photo of the caliche observed at the location shown in Panel E. The carbonate crust only
penetrates a few centimeters before reaching sand. Red pen is 15.5 cm in length.
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shell) fragments and possibly carbonate fecal pellets are also observed in intact primary
pore spaces (Figure 4-2E).

Caliche.—A matrix-supported conglomerate can be found as a calcified crust in de-
pressions between boulders of volcanic bedrock in flat or gently-sloping areas at the base
of abrasion platforms (Figure 3-4E) and at the tops of bedrock hills at ∼4242-4246 m el-
evation. The carbonate matrix binding poorly sorted, sub-rounded volcaniclastic pebbles
and sand is fine-grained and patchy in color, from white to light brown (Figure 3-4F). The
carbonate is also concretionary, forming coatings around grains and clasts. Accumulations
of volcaniclastic sand and silt often cover the crust, which seems to be only a few centime-
ters thick. We hypothesize that these deposits are caliches (i.e., a soil carbonate formed by
meteoric waters) based on these observations; however, stable isotope analysis is needed
to confirm its origin.

Cone tufas.—Reef-like colonies of cone-shaped tufas that are ∼10–20 cm in height and
diameter are found along a narrow range of elevations (∼4229–4234 m) in the basin. These
cone tufas have a fan-like internal growth fabric of concentric bands linked by radially-
oriented structures stemming from a narrow, mat-type holdfast. In some places, we find
cones on top of floret tufa buildups, growing from holdfasts embedded in the uppermost
layer of the floret tufa encrustation (Figure 3-5A). Cone spacing is irregular: some groups of
cones appear to grow from holdfasts directly adjacent to one another to form an aggregate
cone composed of 4+ smaller individual entities, whereas other cones are distributed more
evenly across the substrate such that only their wide tops make contact. A gently undulated
surface results from numerous cone tufas joining at their tops. Large gaps between cones
have often been infiltrated with platey carbonate mud deposits.

In other locations, cone tufas are found on sandy substrate and do not form prominent
reef-like colonies. This observation may reflect preservation issues rather than real differ-
ences in the megastructure of the cone tufas. We also observe that the aspect ratio of cones
is variable. For instance, in the southernmost part of the basin where the bathymetric slope
is more shallow, the cones tend to be shorter and wider (bowl-shaped). Like the tabular-
shaped floret tufas, shorter and wider cones may also be indicate that the southern part of
the basin was host to a higher-energy wave environment (James and Bourque, 1992). Due
to their external geometry, these cone tufas may also indicate that water roughness was
lower than the roughness of the preceding wave environment in encrusting floret tufa.

Conical tufas with clear biological textures are also described in the Uyuni basin of the
Bolivian Altiplano (Rouchy et al., 1996) and the Miocene Ries Crater lake in Germany
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Figure 3-5: (Figure on previous page.) [A] Photo of cone-shaped tufas on top of two
distinct deposits of encrusting floret tufa. [B] Top-down view of a cone tufa, showing
concentric growth structure. [C] Lighter-colored carbonate mud flakes stand out against
darker volcaniclastic material, tracing a contour line of elevation. [D] The two flakes to
the right of the hammer have been flipped over, showing that some undersides of mud
flakes exhibit wiggly, possibly microbial textures. [E] Nodular forms of carbonate mud.
[F] Layers of platey carbonate in association with encrusting floret tufa. [G] A continuous
layer of carbonate mud capping floret tufa. Dashed circle highlights a few overturned pieces
showing that the floret tufa is directly underneath. [H] A closer view of the carbonate-
capped floret tufas, which look like mushrooms.

(Riding, 1979; Arp, 1995), but their external morphology and size differ from the cones
observed in our study area. Regardless, we interpret the cones to also be of algal origin
due to their structure.

Platey carbonate mud flakes and nodules.—Broken plates of lighter-colored
lithified carbonate marl stand out against the darker backdrop of volcaniclastic materi-
als, and are often found tracing continuous elevational contour lines between 4218 and
4231 m elevation (Figure 3-5C). Sometimes, the undersides of these flakes exhibit a wiggly
embossment, possibly of microbial origin (Figure 3-5D). In other locations, the lithified
carbonate mud is more nodular in form (Figure 3-5E). It is unclear what conditions cause
one morphology to form over the other, but the carbonate nodules often contain dendritic
manganese oxide stains and tend not to incorporate much detrital material compared to
the platey flakes, suggesting that the nodule morphology may be a result of carbonate
replacement, rather than lithification, of muds and lake sediment. However, the nodu-
lar carbonates are rich with ostracod remains <1 mm in size, and may even be entirely
ostracod-supported, suggesting that primary material in these carbonates still exists, even
if they have been diagenetically altered.

Platey carbonates are also observed in association with other tufa varieties at elevations
up to 4242 m (Figures 3-5F). Clear sedimentological cross-cutting relationships indicate
that most, if not all, platey carbonates found in these areas were deposited at a time during
or after the formation of encrusting floret and cone tufas. This temporal relationship
is perhaps best demonstrated by the mushroom-like carbonates consisting of floret tufa
capped by lithified carbonate mud (Figure 3-5G & H). When slabbed to expose a cross-
sectional surface, these samples show that the carbonate capping material fills gaps between
floret growths. Although this particular field relationship is apparent, we note that these
platey carbonate flakes and nodules are diachronous, with some deposits likely forming
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more recently than others, especially those at lower elevations closer to the modern lake.
We also found platey carbonate nodules in Salar de Loyoques.
Transformed ikaite.—Aggregates of elongate prismatic crystal blades of calcium

carbonate are found at many elevations in Agua Caliente I, from 4216 to 4242 m. Based on
their crystal habit, these deposits are interpreted as being pseudomorphs of the metastable
mineral ikaite, CaCO3·6H2O (Swainson and Hammond, 2001). Modern naturally-occurring
ikaites are found mainly in marine environments (e.g., Buchardt et al., 1997, 2001) and
less commonly in continental lacustrine and spring settings (e.g., Bischoff et al., 1993b;
Oehlerich et al., 2013), but they are always observed in strict association with near-freezing
water temperatures. When waters are warmed to temperatures above ∼4◦C, ikaite crystals
rapidly decompose to calcite plus water within minutes to hours (Suess et al., 1982; Jansen
et al., 1987), producing a fragile, highly porous crystal mesh due to ∼70% volume loss
during transformation (Shearman and Smith, 1985; Larsen, 1994). Thus, early diagenetic
precipitation of a carbonate cement is needed to preserve the original ikaite crystal habit
(Selleck et al., 2007). Transformed ikaites similar in morphology and setting to those
observed in our study area include the thinolites described in the Lahontan and Mono
Lake basins in the western United States, where they are interpreted to have formed at
or below the sediment-water interface (Dunn, 1953; Shearman et al., 1989; Council and
Bennett, 1993; Bischoff et al., 1993b, 1993a). Thus, the elevation of a transformed ikaite
represents a minimum constraint on the elevation of lake level at the time of its formation.

In Agua Caliente I, transformed ikaites manifest as aggregates of irregularly arranged
0.5- to 10-cm-long pyramidal crystals and are generally found filling spaces that may have
been eroded hollows within the floret tufa (Figure 3-6A & B). Carbonate-cemented detrital
grains fill many gaps between individual prisms. In many instances, transformed ikaites are
also found growing on top of and below deposits of platey carbonate. Thus, it is apparent
that ikaite formation occurred during or after the deposition of the floret tufas and platey
carbonates in these areas. However, like the platey carbonate mud flakes and nodules,
the formation of the transformed ikaites in this basin is not necessarily synchronous. We
also found one occurrence of a friable and highly porous transformed ikaite thinly buried
beneath sediment at 4216 m elevation in the modern salar.

Transformed ikaites were also found at Salar de Loyoques and Laguna de Tara. In
Salar de Loyoques, the pyramidal crystals tend to be better preserved and larger in diam-
eter, exhibiting square prismatic morphology in some instances (Figure 3-6C). Although
weathered on the outside, the insides of these transformed ikaites are very white and
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Figure 3-6: Photographical field context of the ikaite pseudomorphs observed in Agua
Caliente I (A, B), Salar de Loyoques (C), and Laguna de Tara (D).

micro-crystalline. Interestingly, some transformed ikaites contain abundant ostracod re-
mains. We also observe small, <2-mm-sized transformed ikaites embedded in carbonate
nodules with sigmoidal crystal habit, exhibiting both square-prismatic and pyramidal faces.
In Laguna de Tara, transformed ikaite is best preserved between crevices on the undersides
of exposed bedrock overhangs (Figure 3-6D). Here, a secondary carbonate cement obscures
the characteristic prismatic crystal habit of ikaite (Figure 3-8A). A slabbed surface reveals
that the transformed ikaite crystals are white in color with few detrital grains, whereas
the carbonate cement is pink and full sand-sized detrital material. The pink color of the
cement likely comes from the pink-colored ignimbrite unit in which the Laguna de Tara
basin sits. Transformed ikaites were the only variety of lacustrine carbonate collected from
Laguna de Tara.

Honey calcite cement.—The origin of this carbonate phase, observed only in Agua
Caliente I of the three basins in this study, is perhaps the most unique of all the encountered
varieties of lacustrine carbonate in our study area. The honey calcite is named so because
of its golden cloudy-translucent color. We describe it in more detail in Chapter 4.
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3.6.2 U-Th dating of tufas and other lacustrine deposits

Our preliminary U-Th age dataset consists of 47 ages of carbonate deposits from Agua
Caliente I (35 out of 47), Salar de Loyoques (6 out of 47), and Laguna de Tara (7 out of
47) (Table 3.2 & 3.3). Spectra from ATR-FTIR spectroscopy indicate that all lacustrine
carbonates examined thus far from Agua Caliente I and Laguna de Tara are composed of
calcite; mineralogical analyses have not yet been run for samples from Salar de Loyoques.
High U concentrations ranging between 1 and 22 µg/g (average 7.1 ± 5.6 µg/g) and high
230Th/232Th ratios between 60 and 50,000 ppm (atomic ratio; average 3,100 ± 7,900 ppm)
allow us to date deposits in our study area at high precision, with 2-σ uncertainties <200
years at 10–20 ka and <1000 years at 115 ka. These U concentrations are >2 times
greater than the U concentrations of lacustrine carbonates from paleolakes in the Bolivian
Altiplano (Placzek et al., 2006a).

Of these data, the most robust ages come from the honey calcite cement in Agua
Caliente I (Figure 3-7A–E). We refer the reader to Chapter 4 for more details.

Unfortunately, we are not able to reliably reproduce an age for the encrusted floret tufa
due to the pervasive infiltration of the honey calcite cement (Figure 4-2F). We obtained 15
U-Th ages from various spots on slabbed specimens of encrusting floret tufa that differ in
their proportions of honey calcite and tufa. Although we do not know the exact fractional
contribution of each phase in the sample powders, we can guess at their relative proportions
through a qualitative assessment of the color of the drilled location. The sample that best
isolates the floret tufa phase yields a U-Th age of 23,415 ± 64 yr BP with a high U
concentration of ∼15 µg/g (Figure 3-7D; 4233.5 ± 0.8 m elevation). All other sample
powders are mixtures with greater proportions of the honey calcite cement and yield ages
that fall between this age and the 15.2–15.6 kyr BP age of the isolated honey calcite
cements. Based on this data, the ∼23.5 kyr BP age for the encrusted floret tufa at this
elevation should be considered a minimum age.

We also obtained U-Th ages from a carbonate nodule capping a floret tufa, a trans-
formed ikaite, and pristine white carbonate within caliche from Agua Caliente I. However,
such ages have not been reliably replicated yet due to possible sample heterogeneities or
a low 230Th/232Th ratio (∼150 ppm atomic). The carbonate nodule has the highest U
concentration for any sample measured thus far in Agua Caliente I, at ∼20 µg/g. Two
preliminary ages from the caliche suggest that it is a more recently formed deposit (mid-
to late-Holocene).
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Figure 3-7: [A] Aerial imagery of Agua Caliente I and Laguna Loyoques, showing location of carbonate
samples collected in January of 2015 and an approximate outline for the lake highstands, based on imagery
and field observations. Numbered sites indicate locations of samples featured in Panels B-G. [B] Field
photo of tufa-encrusted basalt boulders at Site #1. White box indicates the location of sample featured
in Panel D. [C] Field photo of road cut exposing lacustrine carbonate material at Site #2. White boxes
indicate location of sample featured in Panel E. [D] Cross-section of slabbed hand sample of tufa collected
at location featured in Panel B, showing two phases of carbonate growth/deposition and their respective
U-Th ages. [E] Hand sample of lacustrine carbonate (calcite) material and associated U-Th ages. [F] Field
photo of platey carbonate found at Site #3. White box is [G], which is a cross-sectional view of the sample
with its U-Th age. [H] Aerial imagery of gravel barriers at Site #4. White box indicates location of [J],
which shows an outcrop of carbonate-cemented beach rock. White box indicates sampling location for [K],
where carbonate cements were U-Th dated. The isochron method for calculating U-Th ages will need to
be applied for the beach gravel cements in [K].
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Figure 3-8: [A] Transformed ikaites from Laguna de Tara, showing that the prismatic
crystal habits are obscured by a secondary cement. The remaining panels show U-Th ages
from various spots on slabbed transformed ikaites. The transformed ikaite crystals are
white, whereas the carbonate cements are pink due to incorporation of pink ignimbritic
detrital material. Each sample shown was collected from different elevations: [B] 4334 m,
[C] 4349 m, and [D] 4352 m. Note that elevations were measured with a Garmin GPS,
not the Trimble Geo 7x. The elevation of the modern lake is ∼4322 m according to Google
Earth.

In Laguna de Tara, all U-Th ages are from three samples of transformed ikaite spanning
an elevational range of ∼20 m (4334–4352 m elevation). Of all the tufa varieties in this
study, these samples have the lowest 230Th/232Th ratios (60 to 550 ppm, atomic ratio).
The 230Th/232Th ratios of the pink cements were consistently 25–50% lower than adjacent
carbonate cements, consistent with the observation that these cements incorporate a signif-
icant amount of pink ignimbritic detrital material. For the two samples lowest in elevation,
the U-Th ages fall within the range of 15 and 16 kyr BP for both the transformed ikaite
crystals and the surrounding cements (Figure 3-8B, C). The highest sample yields an age
of around ∼10.0–10.3 kyr BP for the transformed ikaite and ∼15.2 kyr BP for the cement
(Figure 3-8D).
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With the available geochronological data, it is unclear if the cement and transformed
ikaites in the highest two samples formed simultaneously, or if the cement arrived shortly
after ikaite formation. If their formation was coincident, it may suggest that carbonate
replacement of the original ikaite occurred while the crystals were still below the sediment-
water interface. The replicated ∼10.0–10.2 kyr BP age for the transformed ikaite at lower
elevation suggests that there are multiple stages of ikaite formation in this basin. The U-Th
age for the cement in this sample is closely aligned with the age of the cements for the other
two samples, suggesting that cement formation may have occurred simultaneously over the
20-m elevational range covered by these samples. More replication of ages is needed to
determine the precise sequence of carbonate deposition in Laguna de Tara.

In Salar de Loyoques, we obtained U-Th ages from transformed ikaites (Figure 3-6C),
platey carbonate nodules (Figure 3-7F & G), and carbonate cements from beach gravels
(Figure 3-7H–K). The transformed ikaites are very clean, with high 230Th/232Th ratios
(>10,000 ppm atomic). Similar to the carbonate nodule in Agua Caliente I, the carbonate
nodule dated in Salar de Loyoques has a high U concentration of∼22 µg/g. Our preliminary
U-Th ages fall between 110 and 140 kyrs BP, but these data have not yet been reliably
replicated. More work is needed to determine if age discrepancies within samples are due
to true sample heterogeneities, incorrect assumptions for the initial detrital Th correction,
or problems with procedural blanks or cross contamination in chemistry. The age from the
beach gravel cement will be of particular interest, given that it was sampled from a gravel
barrier located ∼70 m above the modern salar. Furthermore, the beach gravel cement is
one of the few lacustrine carbonate samples in our study that is directly associated with
a paleoshoreline feature, making its age a robust indicator of the timing of lake expansion
in this basin. We anticipate using the isochron method for obtaining a U-Th age of the
beach gravel cement material due to its low 230Th/232Th ratio.

We briefly describe differences in the δ234Uinitial values of lake carbonates between the
basins in Section 3.9.3.

3.6.3 Stable isotope composition of deposits

Table 3.4 lists the stable isotope compositions of samples from Agua Caliente I and Laguna
de Tara. In Agua Caliente I, the δ13C and δ18O of encrusting floret tufas, transformed
ikaites, and the honey calcite cement fall within a narrow range of values: +0 to +3h
(VPDB) for δ13C and +1.0 to +2.5h (VPDB) for δ18O (Figure 3-11). The platey carbonate
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nodules are the only samples that yield negative δ13C values (-3 to -1h, VPDB). The stable
isotope composition of material that sampled both the honey calcite and encrusted floret
tufa phases generally fall within a ‘mixing line’ between two end member compositions,
with some nuances. The transformed ikaites from Laguna de Tara occupy an even narrower
range of values: +2.5 to +3.5h (VPDB) for δ13C and +0.6 to +1.1h (VPDB) for δ18O.
We do not yet have information on the stable isotope composition of the carbonate in the
caliche or cone tufas from Agua Caliente I, nor for any samples from Salar de Loyoques.

Based on the negative δ18O values for modern precipitation (IAEA/WMO, 2015) and
nearby groundwater (Rissmann et al., 2015), the positive δ18O values of the carbonates
analyzed thus far are an indication of lacustrine origins.

3.6.4 Paleoshoreline features and magnitude of lake area changes

We refer the reader to Section 3.9.4 for details regarding the paleoshorelines features ex-
amined in our study. In each basin, the elevations of the highest of these paleoshorelines
were used for paleolake area calculation. Table 3.1 lists our estimates for modern lake and
paleolake areas for our three lake basins (see Figure 3-14 for area outlines on a map). Agua
Caliente I and Laguna de Tara experienced ∼4–5 factor increases in lake area associated
with 30–35 m elevational increases in lake level. The expansion observed in Salar de Loy-
oques was much greater: Based on the elevation of the highest gravel barrier identified in
the southern part of this basin via satellite imagery, Salar de Loyoques increased in area by
a factor of ∼19 relative to present, rising 70 m and merging with the Agua Caliente I lake
basin. Of further note: Paleoshoreline evidence of this large paleolake in Salar de Loyoques
only exists on the eastern margin of the basin. The contour of elevation representing this
lake overlaps alluvial fans showing no evidence of lake incision all along the southern and
western parts of the lake (Figure 3-14). Thus, accumulation of these alluvial fans must
have occurred after the lake in Salar de Loyoques regressed to lower elevations.

3.7 Discussion

3.7.1 Relative temporal constraints on lake carbonate and paleoshoreline
formation in Agua Caliente I

As of yet, there are not enough U-Th age constraints to determine the exact sequence of
carbonate and paleoshoreline formation in Agua Caliente I. However, some relative con-
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straints can be made purely from field observations. For example, at least two generations
of encrusting floret tufa must be older than the cone tufas (Figure 3-5A), and the honey
calcite, which is likely synchronous throughout the basin, must be younger than both of
these tufa varieties (Figures 4-2 & 4-1). Our U-Th ages confirm this relative relationship
between the honey calcite and the floret tufa (Section 3.6.2). All ikaites observed thus
far formed after the encrusting floret tufas (Figure 3-6A & B), and the nodular carbonate
caps are clearly younger than their floret tufa counterparts (Figure 3-5G & H). However,
it is clear that not all ikaites in the basin are the same age: The honey calcite cement
can be found in association with some transformed ikaite formations and not others. Like-
wise, the various carbonate mud flakes and nodules throughout the basin are most likely
diachronous.

In relation to various paleoshorelines, reworked floret tufas with carbonate caps were
found on top of a gravel barrier in the northeast part of the basin (Section 3.9.4). When
linking paleoshoreline features with specific tufa or carbonate deposits, we must remember
that the abrasional platforms and alluvial fan incisions represent the cumulative occupation
of a lake at that elevation; the lake could have risen to the elevation of those features
multiple times in the past. The gravel barriers most likely represent regressive or fluctuating
lake levels, since constructional transgressive features are rarely preserved due to reworking
of sediments upon inundation. One observation of interest is that the cone-shaped tufas
occupy the same elevational range as the lower sets of gravel barriers and the lower alluvial
fan incision with residual salt deposits (Figure 3-3 & Section 3.9.4). It is possible that
these features are synchronous.

Only further careful U-Th dating of samples with clear stratigraphical relationships
and additional field observations will clarify the temporal relationship of carbonate and
shoreline features in this lake basin.

3.7.2 U-Th ages of tufa and carbonate deposits and their implications
for past lake level changes

Due to the ambiguous temporal relationships between deposits as described above and the
lack of independent age constraints on paleoshoreline landforms, linking the U-Th ages of
tufa and carbonate deposits to a paleolake area is challenging. Although the encrusting
floret and cone-shaped tufas are likely of algal origin, the absolute water depth of tufa
formation is uncertain given that it is extremely difficult, if not impossible, to identify a

124



modern analogue of the species of algae responsible for forming the tufa. The elevational
range of the encrusting floret tufa is also quite large at ∼20 m, and it is unclear if each
generation of floret growth covered part or the whole of this range (Figure 3-3). Although
potentially useful as a paleosalinity indicator, species identification of the ostacod shells
found in floret tufa pore spaces (Figure 4-2G & H) and within carbonate nodules may
not be helpful for interpreting paleowater depths, given that a single species can be found
in a wide range of depths in both lacustrine and marine settings (e.g., Benson, 1984; De
Deckker, 2002).

There is also evidence for lake level fluctuations that are not captured by a shoreline
carbonate deposit. For instance, reworked pebble-sized pieces of tufa with the honey
calcite cement were found at the base of the alluvial fan incision in the southeast (Section
3.9.4 and Figure 3-13D), indicating that water levels must have risen to that elevation at
some point after ∼15 ka, a period from which we have yet to find material. We must
recognize that carbonate and tufa formation represent a discontinuous record and are not
only dependent on lake levels, but also influenced by factors such as the concentration
of calcium and carbonate in lake waters and groundwater inputs; salinity; mean annual
and seasonal temperatures; biological productivity and nutrient supply; and other lake
chemistry characteristics (Gierlowski-Kordesch, 2010).

Consider the observation that biologically-mediated tufas are not conspicuously forming
in Agua Caliente I today, even though a lake clearly exists in the basin. At least two condi-
tions are necessary for tufa development: (1) the existence of an algal or bacterial mat, and
(2) sufficient concentrations of calcium and carbonate ions to allow for microbially-induced
precipitation of carbonate during photosynthesis (Golubic, 1973), as well as trapping of
clastic carbonate particles. It is possible that tufa formation in this basin occurs only when
the waters from the hot springs in the southwest, where the only obvious signs of modern
microbial activity occur, mix with the waters from the freshwater springs in the north. In
Pyramid Lake, Nevada, similar mixing zones between nutrient-rich thermal spring waters
and alkaline lakes are prime areas of microbialite formation (Arp et al., 1999). Presently,
the waters from the hot springs and the spring-fed lake are separated into two sub-basins.
Although we have no water chemistry data to test our hypothesis, it is possible that the
spring-fed lake and thermal spring waters possess the condition that is lacking in the other
water body that is necessary for tufa development. Thus, when these two water bodies
combine, tufas may be able to form. This hypothesis is consistent with the fact that no
tufas of clear biological origin have been found thus far in Salar de Loyoques and Laguna
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de Tara, basins for which we have not yet found any evidence for past or present hot spring
activity. However, we know that calcium carbonate concentrations in the lake must have
been high enough in the past for ikaite and carbonate nodule formation. These observa-
tions support the idea that the hot springs in Agua Caliente I is unique, long-lived, and
critical for tufa formation. If the hot springs were to shut off, higher lake levels may not
necessarily induce tufa formation. Other confounding factors such as salinity and temper-
ature could prevent tufa formation even if the thermal spring and lake waters are able to
mix.

We must also consider that the role of the presently inactive stream channel and sill
elevation remains unclear, given that we have not found deposits in Agua Caliente I that
date to >100 ka, nor material in Salar de Loyoques with ages from the last 30 ka. There is
strong evidence showing that the sill elevation between these two basins has changed over
the last 200 ka: According to satellite imagery, accumulation of alluvial fans has occurred
since the regression of the large >100 ka lake in Salar de Loyoques (Section 3.6.4 and
Figure 3-14). The stream channel incision at the foot of these younger, converging alluvial
fans is the most recent change to the sill elevation. At its present elevation of 4240.5 ±
1.1 m (Figure 3-3 & Section 3.9.4), the sill is lower than some encrusting tufa deposits in
Agua Caliente I. Observations and elevational measurements of the stream channel base
indicate that channel incision occurred via flow into the Salar de Loyoques basin (Section
3.9.4); however, our current body of evidence is not sufficient to prove that a higher lake
in the Agua Caliente I basin overflowed into Salar de Loyoques to create this channel,
and we do not know to what elevation Salar de Loyoques would have filled from such an
overflow. Thus our estimate of the highstand lake area for Agua Caliente I, which assumes
no overflow, is a minimum estimate of lake expansion.

Despite these uncertainties, we are still able to make reasonable assumptions on lake
level changes in each basin. The carbonate cements from the beach gravels in Salar de
Loyoques are perhaps the only dateable material that is in direct association with a pale-
oshoreline feature; thus, we are certain that the lake that existed at some point before 100
ka represents a large lake ∼19 times the size of the water bodies currently occupying the
Salar de Loyoques and Agua Caliente I basins. Both the tufa formations and transformed
ikaites provide a minimum bound on former lake levels, with ikaites growing at or directly
beneath the sediment-water interface and algal reefs forming at or below the water surface.

In Laguna de Tara, U-Th ages for the transformed ikaite crystals and surrounding
cements align with H1 and the earliest Holocene, shortly after the Younger Dryas (YD;
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Figure 3-9D). During both of these periods, Laguna de Tara expanded to at least 5 times
its modern area. In Agua Caliente I, the honey calcite cement also yields U-Th ages
that coincide with H1. Although the nature of this phase is complex, our present working
hypothesis is that the honey calcite is a “spray-zone” deposit precipitating from lake waters
that intermittently spray over the tufa formations, beach sands, and gravels via wave action
(Section 4). Although the exact water level represented by these deposits is unclear, the
area of the H1 lake in Agua Caliente I must have been at least 1.5–2 times the area of the
modern lake, based on the elevation of the lowest occurrence of the honey calcite cement.
The ∼23.5 ka minimum age from the best isolated encrusting floret tufa material may
indicate the presence of a higher lake during H2 and may be related to the uppermost
paleoshoreline features observed in Agua Caliente I, but more U-Th age replication is
necessary before drawing these conclusions.

Although the expansion observed in Salar de Loyoques is impressive, we note that we
must calculate the ratio between the lake area and corresponding drainage basin area for
each lake before making comparisons. This ratio normalizes lake systems by their size and
is directly proportional to total annual precipitation (Hudson and Quade, 2013).

3.7.3 Comparison with shoreline and sediment core records from the
Titicaca-Uyuni and Miscanti lake basins

The H1 and possible H2 lake level increases in the Agua Caliente I and Laguna de Tara
basins coincide with the Tauca highstand and Sajsi lake stage in the Titicaca-Uyuni basin,
which is recorded in both lake sediment records (Baker et al., 2001) and shoreline studies
(Placzek et al., 2006b, 2013; Blard et al., 2011; Figure 3-9C). The ∼10.0–10.3 kyr BP age of
transformed ikaite crystals in the highest sample from Laguna de Tara suggest that the lake
was also larger shortly after the YD. No robust U-Th ages from Agua Caliente I dating
to around the YD are available, though some preliminary U-Th dating of transformed
ikaite from Agua Caliente I may have formed at this age. Our preliminary data further
support the finding that the highest lake levels on the Altiplano-Puna plateau coincided
with Heinrich events, not maxima in local summer insolation. It is of great interest to
determine if the lake highstand in Salar de Loyoques coincided with H11 or with one of
the two highest maxima in summer insolation over the last 200 ka. It is possible that the
dominance of influence by Heinrich events in the last 100 ka is due to the modulating effect
of eccentricity on the amplitude of precessional insolation changes, which has been small
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over this interval of time.
We present these conclusions tentatively, for there are several caveats to acknowledge.

As discussed previously, the tufa formations and other shoreline deposits may not neces-
sarily capture every lake level fluctuation that occurs in a basin. The growth of algal or
microbial mats and subsequent preservation of such organisms as tufa formations may only
occur under a limited set of conditions involving temperature, salinity, dissolved inorganic
carbon and calcium ion concentrations, et cetera. Such caveats and uncertainties provide
motivation for further work combining shoreline studies with continuous records from lake
sediment cores.

Assuming that these Central Andes lakes are truly only responding to Heinrich Events,
contrasting records at lower elevations which are affected by both precessional insolation
cycles and these millenial-scalecold events, then the following question arises: Why? One
possibility is that the Central Andes may only be sensitive to the most extreme southward
displacements of the ITCZ, given that it is located at the modern day southern edge of
SASM. Indeed, Heinrich Events and other cold North Atlantic events that dramatically
increase the interhemispheric temperature gradient are associated with the largest shifts
in ITCZ position (Donohoe et al., 2013; McGee et al., 2014). A second possibility is that
these lake level changes are responses to changes in Southern Hemisphere westerly jet
dynamics. Chiang et al. (2014) suggest that North Atlantic cooling may cause weakened
and more zonally symmetric Southern Hemisphere subtropical westerly winds, which also
move poleward. This weakening and poleward shift of the subtropical westerly finds then
allows for more convection and advection of moisture onto the Altiplano-Puna plateau.

3.8 Conclusions

Our preliminary U-Th data and shoreline mapping suggests that lake levels in Agua
Caliente I and Laguna de Tara were significantly higher than present levels during H1.
Agua Caliente I may have also been higher during H2, but further replication of U-Th ages
is needed. In Salar de Loyoques, we have evidence for a large lake that incorporated the
Agua Caliente I lake basin existing at some time before 100 kyrs ago. Further U-Th dat-
ing will determine if this lake corresponds to local summer insolation highs or H11. With
increases in lake level coinciding with H1, we have extended the known region of SASM
influence southwards from the Titicaca-Uyuni lake system.

We have yet to take full advantage of the numerous observed field relationships between
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different tufa varieties in Agua Caliente I. Applying U-Th dating to carbonates with clear
stratigraphical relationships will allow us to develop a more nuanced picture of lake level
changes in these basins. After better understanding these field relationships and their
implication for past lake levels, as well as further replicating U-Th ages, the next step will be
to develop basin-specific water balance models to determine the magnitude of precipitation
and evaporation changes that would be necessary to create such large lakes. We plan to
follow and adapt the methods described in other papers for GIS watershed analysis (Hudson
and Quade, 2013) and the water balance model (Blard et al., 2009; Placzek et al., 2013).
Such a model will need to pay special attention to the impacts of groundwater flow into and
out of the basins. Temperature constraints necessary to determine evaporation rates will be
gleaned from studies on local glaciers and possibly pollen records, as well as experimental
clumped isotope analyses on the lake carbonates in our study. Such quantitative constraints
on past rainfall will be useful for proxy-model comparisons of general circulation models
that are currently used for future projections of precipitation under a warming climate.
Although there remain many unknowns, we feel confident that applying the these same
methods to a series of 6 lakes along a north-south transect in northern Chile will ultimately
allow us to create a spatio-temporal map of water balance changes over the late Pleistocene.

There are also several potential avenues for geomorphology-inclined research pertaining
to the paleoshorelines and alluvial fans in these basins, which we describe in Section 3.9.5.
We also plan to conduct radiocarbon (14C) analyses on lake carbonate materials from Agua
Caliente I and Laguna de Tara to constrain the reservoir effect in these basins, which will
be useful for any future work on lake sediment cores.

Acknowledgements
We thank Rick Kayser at MIT and Soumen Mallick at Brown University for their help

with mass spectrometry; Ashling Neary for running the ATR-FTIR carbonate mineralogy
measurements; Elena Steponaitis, Irit Tal, and Ben Hardt for lab chemistry assistance;
and Tim Grove and Ben Mandler for petrographic scope assistance. Weifu Guo assisted
C.Y.C. in making the stable isotope measurements at WHOI. Discussions with Kristin
Bergmann, Adam Hudson, and Elena Steponaitis on tufa microfacies interpretation were
insightful. We also thank Kim Huppert, Roger Fu, Justin Stroup, Francisco (Pancho)
Gonzales, Héctor Orellana, and Marty Pepper for field assistance. Claudio Latorre and
Blas Valero Garces both provided crucial advice on conducting field work in Chile. This
work was supported by the NSF Graduate Research Fellowship, MIT Ida Green Fellowship,

130



MIT EAPS Grayce B. Kerr Fellowship, MIT EAPS Callahan-Dee Fellowship, MIT EAPS
Student Research Fund, MIT International Science and Technology Initiatives (MISTI),
WHOI Ocean Ventures Fund, and the Comer Science and Education Foundation.

131



Ta
bl
e
3.
2:

Lo
ca
tio

ns
an

d
de

sc
rip

tio
ns

of
tu
fa

an
d
ot
he

r
la
cu

st
rin

e
ca
rb
on

at
e
sa
m
pl
es

fr
om

A
gu

a
C
al
ie
nt
e
I,
Sa

la
r
de

Lo
yo

qu
es
,a

nd
La

gu
na

de
Ta

ra
.

Sa
m

pl
e

N
am

e
is
th
e
or
ig
in
al

na
m
e
of

th
e
sa
m
pl
e
an

d
is
re
fe
rr
ed

to
in

th
e
te
xt

of
th
e
pa

pe
r.

C
or
re
sp
on

di
ng

ID
nu

m
be

rs
ar
e
re
fe
re
nc

ed
in

fig
ur
es
.
R
ep

or
te
d
co
or
di
na

te
s
an

d
el
ev
at
io
ns

of
sa
m
pl
es

fr
om

A
gu

a
C
al
ie
nt
e
Ia

nd
Sa

la
r
de

Lo
yo

qu
es

w
er
e
m
ea
su
re
d
us
in
g
th
e
Tr

im
bl
e
G
EO

7x
de

vi
ce
.
C
oo

rd
in
at
es

an
d
el
ev
at
io
ns

of
sa
m
pl
es

fr
om

La
gu

na
de

Ta
ra

w
er
e
m
ea
su
re
d
us
in
g
a
le
ss

pr
ec
ise

G
ar
m
in

G
PS

de
vi
ce
.
M
in
er
al
og

y
w
as

de
te
rm

in
ed

us
in
g
AT

R
-F
T
IR

sp
ec
tr
os
co
py
.
Em

pt
y
sp
ac
es

in
di
ca
te

th
at

a
m
ea
su
re
m
en
t
ha

s
no

t
ye
t
be

en
m
ad

e
fo
r
th
at

at
tr
ib
ut
e
on

th
at

sa
m
pl
e.

Sa
m

pl
e

N
am

e
ID

La
ti

tu
de

Lo
ng

it
ud

e
dG

P
S

V
er

t.
M

in
er

al
og

y
D

es
cr

ip
ti

on
N

o.
(◦
)

(◦
)

E
le

v.
(m

)
P

re
c.

(m
)

A
gu

a
C

al
ie

nt
e

I
A
D
10

-2
25

(B
)

1
-2
3.
08

43
03

-6
7.
40

10
78

42
33

.5
0.
8

ca
lc
ite

w
hi
te

po
ro
us

tu
fa

A
D
09

-9
8(
D
)

2
-2
3.
08

33
91

-6
7.
40

79
70

42
40

.6
0.
8

w
hi
te

po
ro
us

tu
fa

A
D
10

-2
33

a(
A
)

3
-2
3.
17

41
39

-6
7.
39

92
02

42
43

.0
0.
9

ca
lc
ite

ho
ne

y
ca
lc
ite

A
D
10

-2
33

a(
A
)

4
-2
3.
17

41
39

-6
7.
39

92
02

42
43

.0
0.
9

ca
lc
ite

ho
ne

y
ca
lc
ite

A
D
10

-2
33

a(
B
)

5
-2
3.
17

41
39

-6
7.
39

92
02

42
43

.0
0.
9

ca
lc
ite

ho
ne

y
ca
lc
ite

A
D
10

-2
25

(A
)

6
-2
3.
08

43
03

-6
7.
40

10
78

42
33

.5
0.
8

ca
lc
ite

ho
ne

y
ca
lc
ite

in
tu
fa

C
Y
C
15

-0
49

(A
)

7
-2
3.
16

01
74

-6
7.
39

78
51

42
42

.7
0.
9

ho
ne

y
ca
lc
ite

ce
m
en
tin

g
be

ac
h
sa
nd

A
D
09

-9
8(
A
)

8
-2
3.
08

40
21

-6
7.
40

66
79

42
34

.0
2.
0

ca
lc
ite

m
ix
tu
re

of
ho

ne
y
ca
lc
ite

an
d
w
hi
te

tu
fa

A
D
09

-9
8(
A
)

9
-2
3.
08

40
21

-6
7.
40

66
79

42
34

.0
2.
0

ca
lc
ite

m
ix
tu
re

of
ho

ne
y
ca
lc
ite

an
d
w
hi
te

tu
fa

A
D
09

-9
8(
B
)

10
-2
3.
08

40
21

-6
7.
40

66
79

42
34

.0
2.
0

m
ix
tu
re

of
ho

ne
y
ca
lc
ite

an
d
w
hi
te

tu
fa

A
D
09

-9
8(
C
)

11
-2
3.
08

40
21

-6
7.
40

66
79

42
34

.0
2.
0

m
ix
tu
re

of
ho

ne
y
ca
lc
ite

an
d
w
hi
te

tu
fa

A
D
10

-2
28

(A
)

12
-2
3.
08

55
68

-6
7.
40

21
28

42
36

.6
0.
8

ca
lc
ite

m
ix
tu
re

of
ho

ne
y
ca
lc
ite

an
d
w
hi
te

tu
fa

A
D
10

-2
28

(C
)

13
-2
3.
08

55
68

-6
7.
40

21
28

42
36

.6
0.
8

ca
lc
ite

m
ix
tu
re

of
ho

ne
y
ca
lc
ite

an
d
w
hi
te

tu
fa

A
D
10

-2
28

(D
)

14
-2
3.
08

55
68

-6
7.
40

21
28

42
36

.6
0.
8

m
ix
tu
re

of
ho

ne
y
ca
lc
ite

an
d
w
hi
te

tu
fa

A
D
09

-9
5(
A
)

15
-2
3.
08

33
91

-6
7.
40

79
70

42
40

.6
0.
8

ca
lc
ite

m
ix
tu
re

of
ho

ne
y
ca
lc
ite

an
d
w
hi
te

tu
fa

A
D
09

-9
5(
B
)

16
-2
3.
08

33
91

-6
7.
40

79
70

42
40

.6
0.
8

ca
lc
ite

m
ix
tu
re

of
ho

ne
y
ca
lc
ite

an
d
w
hi
te

tu
fa

A
D
09

-9
5(
C
)

17
-2
3.
08

33
91

-6
7.
40

79
70

42
40

.6
0.
8

ca
lc
ite

m
ix
tu
re

of
ho

ne
y
ca
lc
ite

an
d
w
hi
te

tu
fa

A
D
09

-9
5(
D
)

18
-2
3.
08

33
91

-6
7.
40

79
70

42
40

.6
0.
8

m
ix
tu
re

of
ho

ne
y
ca
lc
ite

an
d
w
hi
te

tu
fa

A
D
09

-9
5(
E)

19
-2
3.
08

33
91

-6
7.
40

79
70

42
40

.6
0.
8

m
ix
tu
re

of
ho

ne
y
ca
lc
ite

an
d
w
hi
te

tu
fa

A
D
09

-1
00

(A
)

20
ca
lc
ite

m
ix
tu
re

of
ho

ne
y
ca
lc
ite

an
d
w
hi
te

tu
fa

A
D
09

-1
00

(B
)

21
m
ix
tu
re

of
ho

ne
y
ca
lc
ite

an
d
w
hi
te

tu
fa

A
D
09

-2
21

(A
)

22
m
ix
tu
re

of
ho

ne
y
ca
lc
ite

an
d
w
hi
te

tu
fa

C
on

tin
ue

d
on

ne
xt

pa
ge

132



T
ab

le
3.

2
–

co
nt

in
ue

d
fr

om
pr

ev
io

us
pa

ge
ID

La
ti

tu
de

Lo
ng

it
ud

e
dG

P
S

V
er

t.
Sa

m
pl

e
N

am
e

N
o.

(◦
)

(◦
)

E
le

v.
(m

)
P

re
c.

(m
)

M
in

er
al

og
y

D
es

cr
ip

ti
on

A
D
10

-2
26

(A
)

23
-2
3.
08

27
55

-6
7.
40

10
42

42
37

.2
3.
6

ca
lc
ite

ik
ai
te

ps
eu

do
m
or
ph

A
D
10

-2
26

(A
)

24
-2
3.
08

27
55

-6
7.
40

10
42

42
37

.2
3.
6

ca
lc
ite

ik
ai
te

ps
eu

do
m
or
ph

A
D
10

-2
26

(B
)

25
-2
3.
08

27
55

-6
7.
40

10
42

42
37

.2
3.
6

ik
ai
te

ps
eu

do
m
or
ph

A
D
09

-9
9(
A
)

26
-2
3.
08

42
64

-6
7.
40

64
69

42
28

.8
0.
8

ca
lc
ite

pl
at
ey

ca
rb
on

at
e
no

du
le

A
D
09

-9
9(
B
)

27
-2
3.
08

42
64

-6
7.
40

64
69

42
28

.8
0.
8

pl
at
ey

ca
rb
on

at
e
no

du
le

A
D
09

-2
21

(B
)

28
ca
lc
ite

pl
at
ey

ca
rb
on

at
e
no

du
le

A
D
09

-9
6(
A
)

29
pl
at
ey

ca
rb
on

at
e
no

du
le
(?
)

A
D
09

-9
6(
A
)

30
pl
at
ey

ca
rb
on

at
e
no

du
le
(?
)

A
D
09

-9
6(
B
)

31
ca
lc
ite

pl
at
ey

ca
rb
on

at
e
no

du
le
(?
)

C
Y
C
15

-0
16

A
(A

)
32

-2
3.
08

55
33

-6
7.
40

08
64

42
44

.8
0.
9

w
hi
te
,c

le
an

ca
lc
ite

in
fil
lin

g(
?)

C
Y
C
15

-0
16

B
(A

)
33

-2
3.
08

55
33

-6
7.
40

08
64

42
44

.8
0.
9

w
hi
te
,c

le
an

ca
lc
ite

in
fil
lin

g(
?)

A
D
09

-1
01

(A
)

34
ca
lc
ite

am
bi
gu

ou
s

Sa
la

r
de

Lo
yo

qu
es

C
Y
C
15

-0
47

(A
)

35
-2
3.
30

11
39

-6
7.
26

41
43

42
51

.0
1.
7

ca
rb
on

at
e
ce
m
en
tin

g
be

ac
h
gr
av
el

C
Y
C
15

-0
47

(B
)

36
-2
3.
30

11
39

-6
7.
26

41
43

42
51

.0
1.
7

ca
rb
on

at
e
ce
m
en
tin

g
be

ac
h
gr
av
el

C
Y
C
15

-0
25

A
A
(A

)
37

-2
3.
20

23
70

-6
7.
27

07
81

41
92

.6
1.
0

ik
ai
te

ps
eu

do
m
or
ph

C
Y
C
15

-0
25

A
A
(B

)
38

-2
3.
20

23
70

-6
7.
27

07
81

41
92

.6
1.
0

ik
ai
te

ps
eu

do
m
or
ph

C
Y
C
15

-0
22

A
(A

)
39

-2
3.
20

25
75

-6
7.
27

25
32

42
05

.5
1.
1

ik
ai
te

ps
eu

do
m
or
ph

C
Y
C
15

-0
21

A
(A

)
40

-2
3.
20

22
67

-6
7.
27

25
89

42
08

.5
2.
5

pl
at
ey

ca
rb
on

at
e
no

du
le

La
gu

na
de

Ta
ra

A
D
10

-2
46

(A
)

41
-2
3.
03

00
42

-6
7.
34

74
18

43
34

–
ca
lc
ite

ik
ai
te

ps
eu

do
m
or
ph

A
D
10

-2
46

(B
)

42
-2
3.
03

00
42

-6
7.
34

74
18

43
34

–
ca
lc
ite

ik
ai
te

ps
eu

do
m
or
ph

A
D
10

-2
45

(A
)

43
-2
3.
02

96
39

-6
7.
34

86
33

43
49

–
ca
lc
ite

ik
ai
te

ps
eu

do
m
or
ph

A
D
10

-2
45

(B
)

44
-2
3.
02

96
39

-6
7.
34

86
33

43
49

–
ca
lc
ite

ik
ai
te

ps
eu

do
m
or
ph

A
D
10

-2
44

(A
)

45
-2
3.
02

70
97

-6
7.
35

24
99

43
52

–
ca
lc
ite

ik
ai
te

ps
eu

do
m
or
ph

A
D
10

-2
44

(A
)

46
-2
3.
02

70
97

-6
7.
35

24
99

43
52

–
ca
lc
ite

ik
ai
te

ps
eu

do
m
or
ph

A
D
10

-2
44

(C
)

47
-2
3.
02

70
97

-6
7.
35

24
99

43
52

–
ca
lc
ite

ik
ai
te

ps
eu

do
m
or
ph

133



Ta
bl

e
3.

3:
U
-T

h
da

tin
g
re
su
lts

of
ca
rb
on

at
es

ex
am

in
ed

in
th
is
st
ud

y.
In

th
e
ID

nu
m
be

rc
ol
um

n,
a
‘∗
’s
ym

bo
li
nd

ic
at
es

th
at

th
e

po
w
de

r
da

te
d
is
a
m
ix
tu
re

of
tw

o
ph

as
es

of
ca
rb
on

at
e
an

d
do

es
no

t
re
pr
es
en
t
an

ag
e
lin

ke
d
to

a
sp
ec
ifi
c
ge
ol
og

ic
or

hy
dr
ol
og

ic
ev
en
t.

A
‘†
’s

ym
bo

li
nd

ic
at
es

th
at

th
e
re
lia

bi
lit
y
an

d
in
te
rp
re
ta
tio

n
of

th
e
ag

e
as

be
in
g
re
pr
es
en
ta
tiv

e
of

a
sp
ec
ifi
c
ev
en
t
is

un
cl
ea
rd

ue
to

fa
ct
or
ss

uc
h
as

am
bi
gu

ou
ss

am
pl
ec

on
te
xt
,h

ig
h
bl
an

k
co
rr
ec
tio

ns
,o

rl
ow

2
3
0
T
h/

2
3
2
T
h
ra
tio

s,
an

d
re
qu

ire
sf
ur
th
er

in
ve
st
ig
at
io
n
an

d
re
pl
ic
at
io
n.

a
R
ep

or
te
d
er
ro
rs

fo
r2

3
8
U
an

d
2
3
2
T
h
co
nc

en
tr
at
io
ns

ar
ee

st
im

at
ed

to
be

±
1%

du
et

o
un

ce
rt
ai
nt
ie
s

in
sp
ik
e
co
nc

en
tr
at
io
n;

an
al
yt
ic
al

un
ce
rt
ai
nt
ie
s
ar
e
sm

al
le
r.

b
δ
2
3
4
U

=
([2

3
4
U
/2

3
8
U
] ac

ti
vi

ty
-
1)

×
10

00
.

c
[23

0
T
h/

2
3
8
U
] ac

ti
vi

ty
=

1
-
eλ

2
3
0
T
+

(δ
2
3
4
U

m
ea

su
re

d
/
1
0
0
0
)[
λ
2
3
0
/
(λ

2
3
0
−

λ
2
3
4
)]
(1

−
e−

(λ
2
3
0
−
λ
2
3
4
)T
),

w
he

re
T

is
th
e
ag

e.
“U

nc
or
re
ct
ed

”
in
di
ca
te
s

th
at

no
co
rr
ec
tio

n
ha

s
be

en
m
ad

e
fo
r
in
iti
al

2
3
0
T
h.

d
A
ge
s
ar
e
co
rr
ec
te
d
fo
r
de

tr
ita

l2
3
0
T
h
as
su
m
in
g
an

in
iti
al

2
3
0
/2

3
2
T
h
of

(4
.4
±
2.
2)
×
1
0
−
6
.

e
δ
2
3
4
U

in
it

ia
l
co
rr
ec
te
d
w
as

ca
lc
ul
at
ed

ba
se
d
on

2
3
0
T
h
ag

e
(T

),
i.e

.,
δ
2
3
4
U

in
it

ia
l
=

δ
2
3
4
U

m
ea

su
re

d
×

eλ
2
3
4
T
,

w
he

re
T

is
th
e
co
rr
ec
te
d
ag

e.
f
B
.P
.s

ta
nd

s
fo
r
“B

ef
or
e
Pr

es
en
t”

w
he

re
th
e
pr
es
en
t
is

de
fin

ed
as

Ja
nu

ar
y
1,

19
50

C
.E
.D

ec
ay

co
ns
ta
nt
s
fo
r

2
3
0
T
h
an

d
2
3
4
U

ar
e
fr
om

C
he

ng
et

al
.(

20
13

a)
;
de

ca
y
co
ns
ta
nt

fo
r

2
3
8
U

is
1.
55

12
5×

1
0
−
1
0
yr

−
1
(J
aff

ey
et

al
.,

19
71

).

ID
2
3
8
U

2
3
2
T

h
δ
2
3
4
U

2
3
0
T

h/
2
3
8
U

2
3
0
T

h/
2
3
2
T

h
A

ge
(y

r)
A

ge
(y

r)
δ
2
3
4
U

in
it

ia
l

A
ge

(y
r

B
.P

.)f
N

o.
(n

g/
g)

a
(p

g/
g)

a
(h

)b
(a

ct
iv

it y
)

(p
pm

at
om

ic
)

(u
nc

or
re

ct
ed

)c
(c

or
re

ct
ed

)d
(h

, c
or

re
ct

ed
)e

(c
or

re
ct

ed
)

A
gu

a
C

al
ie

nt
e

I
1

15
10

0
±

30
0

30
90

0
±

11
00

12
41

.7
±

1
0.

44
33

±
0.

00
1

34
40

±
10

0
23

55
0
±

60
23

52
0
±

60
13

26
.9

±
1.

1
23

41
0
±

60
2∗

97
00

±
19

0
62

00
0
±

13
00

11
92

.4
±

0.
9

0.
38

29
±

0.
00

11
95

1
±

7
20

57
0
±

70
20

49
0
±

80
12

63
.4

±
1

20
38

0
±

80
3

40
00

±
80

19
00

±
20

0
12

62
.9

±
1.

3
0.

3
±

0.
00

5
10

10
0
±

12
00

15
30

0
±

30
0

15
30

0
±

30
0

13
18

.7
±

1.
7

15
20

0
±

30
0

4
40

30
±

80
33

30
±

12
0

12
81

.2
±

1.
2

0.
30

82
±

0.
00

09
59

30
±

18
0

15
62

0
±

50
15

61
0
±

50
13

39
±

1.
2

15
50

0
±

50
5

40
80

±
80

16
50

0
±

80
0

12
72

.7
±

1.
2

0.
30

52
±

0.
00

13
12

00
±

50
15

52
0
±

70
15

47
0
±

80
13

29
.5

±
1.

3
15

36
0
±

80
6

31
83

±
19

67
65

±
5

12
73

±
3

0.
30

4
±

0.
00

2
24

00
±

20
15

45
0
±

14
0

15
42

0
±

14
0

13
29

±
3

15
31

0
±

14
0

7
43

20
±

90
14

10
00

±
30

00
11

37
.5

±
1.

8
0.

27
76

±
0.

00
17

13
5.

2
±

0.
8

14
99

0
±

10
0

14
50

0
±

20
0

11
85

±
2

14
40

0
±

20
0

8∗
76

02
.6

±
1.

8
18

13
50

±
16

0
12

27
±

2
0.

35
36

±
0.

00
14

24
6.

7
±

1.
1

18
57

0
±

80
18

27
0
±

17
0

12
92

±
3

18
16

0
±

17
0

9∗
51

20
±

10
0

72
00

0
±

20
00

12
17

.4
±

1.
2

0.
31

8
±

0.
00

5
35

7
±

10
16

70
0
±

30
0

16
50

0
±

30
0

12
75

.4
±

1.
7

16
40

0
±

30
0

10
∗

42
10

±
80

10
20

0
±

40
0

12
20

.6
±

1.
6

0.
28

5
±

0.
00

6
18

70
±

80
14

80
0
±

30
0

14
80

0
±

30
0

12
73

±
2

14
60

0
±

30
0

11
45

20
±

90
11

80
0
±

50
0

12
27

±
1

0.
29

54
±

0.
00

12
17

90
±

70
15

32
0
±

70
15

29
0
±

70
12

81
.1

±
1.

1
15

18
0
±

70
12

∗
39

20
±

30
16

83
4
±

13
12

52
±

3
0.

31
1
±

0.
00

3
12

13
±

10
16

01
0
±

18
0

15
96

0
±

18
0

13
10

±
3

15
85

0
±

18
0

13
57

80
±

12
0

38
00

0
±

80
0

12
33

.1
±

1
0.

29
98

±
0.

00
07

72
4
±

2
15

52
0
±

40
15

43
0
±

60
12

88
±

1.
1

15
32

0
±

60
14

50
30

±
10

0
11

80
0
±

40
0

12
33

.4
±

0.
9

0.
29

92
±

0.
00

1
20

20
±

60
15

49
0
±

60
15

45
0
±

60
12

88
.3

±
1

15
34

0
±

60
15

∗
79

22
.6

±
1.

8
21

91
0
±

20
12

79
±

2
0.

32
03

±
0.

00
13

19
42

±
14

16
29

0
±

70
16

26
0
±

80
13

39
±

2
16

15
0
±

80
16

24
20

±
40

11
02

5
±

11
12

60
±

5
0.

30
8
±

0.
00

6
11

40
±

16
15

80
0
±

30
0

15
70

0
±

30
0

13
17

±
5

15
60

0
±

30
0

17
∗

85
70

±
17

0
18

00
0
±

40
0

12
53

±
1.

2
0.

33
66

±
0.

00
08

25
42

±
16

17
39

0
±

40
17

36
0
±

50
13

15
.9

±
1.

3
17

25
0
±

50
18

49
80

±
10

0
26

00
±

30
0

12
62

.8
±

0.
9

0.
30

28
±

0.
00

13
92

00
±

12
00

15
47

0
±

70
15

46
0
±

70
13

19
.1

±
0.

9
15

35
0
±

70
19

∗
35

60
±

70
62

00
±

30
0

12
45

±
0.

9
0.

31
13

±
0.

00
13

28
30

±
15

0
16

06
0
±

70
16

04
0
±

70
13

02
.7

±
1

15
93

0
±

70
20

∗
12

60
±

20
22

20
0
±

20
12

68
±

6
0.

31
4
±

0.
00

8
29

8
±

5
16

00
0
±

40
0

15
80

0
±

40
0

13
26

±
7

15
70

0
±

40
0

C
on

tin
ue

d
on

ne
xt

pa
ge

134



T
ab

le
3.

3
–

co
nt

in
ue

d
fr

om
pr

ev
io

us
pa

ge
ID

2
3
8
U

2
3
2
T

h
δ
2
3
4
U

2
3
0
T

h/
2
3
8
U

2
3
0
T

h/
2
3
2
T

h
A

ge
(y

r)
A

ge
(y

r)
δ
2
3
4
U

in
it

ia
l

A
ge

(y
r

B
P

)
N

o.
(n

g/
g)

(p
g/

g)
(h

)
(a

ct
iv

ity
)

(p
pm

at
om

ic
)

(u
nc

or
re

ct
ed

)
(c

or
re

ct
ed

)
(h

,c
or

re
ct

ed
)

(c
or

re
ct

ed
)

21
†

74
70

±
15

0
80

60
0
±

17
00

12
34

.3
±

0.
9

0.
32

82
±

0.
00

11
48

3
±

3
17

08
0
±

60
16

94
0
±

90
12

94
.7

±
1

16
83

0
±

90
22

∗
16

85
7
±

5
27

17
00

±
20

0
11

95
.6

±
1.

8
0.

31
37

±
0.

00
1

32
3.

8
±

1.
2

16
59

0
±

60
16

38
0
±

12
0

12
52

.1
±

1.
9

16
27

0
±

12
0

23
†

20
59

±
15

10
71

8
±

9
11

93
±

3
0.

26
9
±

0.
00

3
86

4
±

7
14

11
0
±

15
0

14
04

0
±

16
0

12
42

±
3

13
94

0
±

16
0

24
†

21
90

±
40

18
60

0
±

80
0

11
72

.3
±

2
0.

24
±

0.
02

45
0
±

40
12

70
0
±

11
00

12
60

0
±

11
00

12
15

±
4

12
50

0
±

11
00

25
†

24
50

±
50

21
40

0
±

40
0

11
62

.9
±

1.
2

0.
39

44
±

0.
00

1
71

5
±

3
21

56
0
±

60
21

45
0
±

90
12

35
.4

±
1.

3
21

34
0
±

90
26

∗
20

65
4
±

5
73

54
00

±
60

0
12

06
.7

±
1.

7
0.

33
45

±
0.

00
12

15
6.

2
±

0.
6

17
67

0
±

70
17

20
0
±

20
0

12
67

±
2

17
10

0
±

20
0

29
20

15
±

13
12

17
2
±

12
11

89
±

3
0.

27
7
±

0.
00

3
76

5
±

6
14

57
0
±

15
0

14
49

0
±

15
0

12
39

±
3

14
38

0
±

15
0

30
∗

86
10

±
17

0
13

80
00

±
30

00
11

71
.7

±
1.

2
0.

26
93

±
0.

00
09

26
6.

1
±

1.
8

14
27

0
±

50
14

06
0
±

12
0

12
19

.1
±

1.
3

13
95

0
±

12
0

31
†

10
90

0
±

20
0

69
20

0
±

17
00

11
83

.5
±

1.
2

0.
28

19
±

0.
00

15
70

8
±

11
14

89
0
±

90
14

81
0
±

10
0

12
34

±
1.

3
14

70
0
±

10
0

32
†

13
50

0
±

30
0

60
0
±

30
0

12
12

.8
±

1.
1

0.
14

64
±

0.
00

04
50

00
0
±

20
00

0
74

20
±

20
74

20
±

20
12

38
.5

±
1.

1
73

10
±

20
33

†
14

80
0
±

30
0

65
00

±
70

0
11

97
.3

±
1.

6
0.

10
98

±
0.

00
06

40
00

±
40

0
55

60
±

30
55

60
±

30
12

16
.2

±
1.

6
54

50
±

30
34

∗
25

4
±

8
58

12
±

6
12

26
±

9
0.

31
5
±

0.
01

2
23

0
±

5
16

40
0
±

70
0

16
10

0
±

70
0

12
83

±
10

16
00

0
±

70
0

Sa
la

r
de

Lo
yo

qu
es

35
†

15
50

±
30

26
30

00
±

50
00

72
3
±

6
1.

33
±

0.
03

12
5.

2
±

0.
7

13
90

00
±

50
00

13
70

00
±

50
00

10
63

±
18

13
60

00
±

50
00

36
†

15
20

±
30

19
60

00
±

40
00

70
8.

8
±

1.
6

1.
25

2
±

0.
00

6
15

3.
6
±

0.
8

12
65

00
±

11
00

12
45

00
±

15
00

10
07

±
5

12
44

00
±

15
00

37
†

56
90

±
11

0
78

00
±

20
0

75
2.

1
±

1.
4

1.
21

4
±

0.
00

3
14

10
0
±

30
0

11
49

00
±

50
0

11
49

00
±

50
0

10
40

±
2

11
48

00
±

50
0

38
†

54
30

±
11

0
10

40
0
±

30
0

76
6.

3
±

1.
3

1.
25

9
±

0.
00

3
10

47
0
±

15
0

12
02

00
±

50
0

12
01

00
±

50
0

10
76

±
2

12
00

00
±

50
0

39
†

10
10

0
±

20
0

16
70

00
±

30
00

70
5.

2
±

1.
3

1.
32

4
±

0.
01

12
72

±
12

14
00

00
±

20
00

14
00

00
±

20
00

10
47

±
6

14
00

00
±

20
00

40
†

21
70

0
±

40
0

29
30

00
±

60
00

71
3.

4
±

1.
3

1.
18

25
±

0.
00

2
13

89
±

4
11

45
00

±
30

0
11

43
00

±
40

0
98

5
±

2
11

42
00

±
40

0
La

gu
na

de
Ta

ra
41

†
29

56
±

19
46

38
0
±

40
88

9
±

3
0.

25
±

0.
00

2
26

5.
7
±

1.
9

15
34

0
±

16
0

15
11

0
±

20
0

92
8
±

3
15

00
0
±

20
0

42
†

25
00

±
50

87
60

0
±

18
00

93
0.

8
±

1.
4

0.
26

94
±

0.
00

08
12

2.
1
±

0.
3

16
20

0
±

50
15

70
0
±

30
0

97
2.

9
±

1.
6

15
60

0
±

30
0

43
†

28
36

±
19

15
72

90
±

14
0

89
0
±

3
0.

27
6
±

0.
00

3
82

.9
±

0.
8

17
00

0
±

20
0

16
20

0
±

50
0

93
2
±

3
16

10
0
±

50
0

44
†

37
20

±
70

26
30

00
±

50
00

92
1
±

1.
3

0.
28

02
±

0.
00

08
62

.9
2
±

0.
13

16
98

0
±

50
15

90
0
±

60
0

96
3
±

2
15

80
0
±

60
0

45
†

18
00

9
±

7
16

64
20

±
19

0
10

41
.1

±
1.

7
0.

18
86

±
0.

00
06

33
9.

7
±

1.
4

10
49

0
±

40
10

36
0
±

70
10

72
±

1.
8

10
26

0
±

70
46

†
10

70
0
±

20
0

55
70

0
±

17
00

10
31

.4
±

1.
3

0.
18

2
±

0.
00

3
55

4
±

16
10

15
0
±

19
0

10
07

0
±

20
0

10
61

.1
±

1.
5

99
60

±
20

0
47

†
33

00
±

70
65

70
0
±

13
00

95
4
±

1.
6

0.
26

37
±

0.
00

12
21

0.
5
±

1.
1

15
63

0
±

80
15

33
0
±

17
0

99
6.

2
±

1.
7

15
22

0
±

17
0

135



Ta
bl
e
3.
4:

St
ab

le
iso

to
pe

da
ta

of
sa
m
pl
es

fr
om

A
gu

a
C
al
ie
nt
e
Ia

nd
La

gu
na

de
Ta

ra
.
Se

e
Ta

bl
e
3.
2
fo
r
ID

nu
m
be

r
re
fe
re
nc

es
.

Se
e
Se

ct
io
n
3.
6.
3
fo
r
a
de

sc
rip

tio
n
of

th
e
m
et
ho

d
of

da
ta

ac
qu

isi
tio

n.

ID
δ
1
3
C

U
of
A

±
1
σ

δ
1
8
O

U
of
A

±
1
σ

δ
1
3
C

W
H
O
I

±
1
σ

δ
1
8
O

W
H
O
I

±
1
σ

N
o.

(h
)

(h
)

(h
)

(h
)

A
gu

a
C

al
ie

nt
e

I
1

0.
34

0.
03

1.
56

0.
03

0.
58

0.
01

1.
21

0.
02

3
1.
75

0.
01

1.
60

0.
01

1.
91

0.
01

1.
83

0.
04

4
1.
75

0.
01

1.
60

0.
01

1.
91

0.
01

1.
83

0.
04

6
2.
47

0.
00

2.
09

0.
04

2.
41

0.
01

2.
03

0.
01

8
2.
16

0.
01

2.
03

0.
04

2.
24

0.
02

1.
96

0.
02

9
2.
16

0.
01

2.
03

0.
04

2.
24

0.
02

1.
96

0.
02

10
2.
62

0.
00

1.
67

0.
02

12
1.
99

0.
04

1.
76

0.
03

2.
53

0.
26

1.
55

0.
04

15
2.
00

0.
05

1.
24

0.
07

2.
00

0.
07

1.
05

0.
11

16
2.
00

0.
00

1.
41

0.
01

20
2.
35

0.
00

1.
38

0.
03

2.
17

0.
02

1.
81

0.
01

22
1.
14

0.
02

1.
25

0.
05

24
3.
06

0.
02

1.
70

0.
06

2.
89

0.
01

1.
51

0.
02

26
-1
.2
8

0.
02

1.
74

0.
04

-1
.4
3

0.
09

1.
85

0.
05

27
-2
.3
5

0.
02

2.
34

0.
07

-2
.2
8

0.
01

2.
36

0.
02

28
-1
.4
5

0.
02

2.
19

0.
02

31
1.
92

0.
02

2.
42

0.
04

1.
57

0.
06

2.
03

0.
04

34
1.
96

0.
01

2.
34

0.
02

2.
26

0.
24

2.
29

0.
03

La
gu

na
de

Ta
ra

41
3.
21

0.
01

1.
02

0.
04

43
2.
61

0.
01

0.
67

0.
06

45
2.
80

0.
02

0.
77

0.
05

46
2.
80

0.
02

0.
77

0.
05

47
2.
63

0.
05

0.
78

0.
01

136



3.9 Supplementary Materials

3.9.1 Differential GPS measurements of shoreline features and sample
locations

A GPS receiver (rover) calculates distance using the travel time and velocity of radio signals
from orbiting satellites. These radio signals may be delayed by atmospheric disturbances
in the troposphere such as cloud cover or charged particles in the ionosphere. Discrepancies
between satellite and receiver clocks, varying levels of satellite connectivity, and inaccurate
monitoring of satellite positions also can lead to errors. We use dGPS to correct for these
errors by relying on the coordination of two receivers: a stationary base station and a
roving receiver making dGPS measurements. The coordinates of the known locations of
base stations serve as local points of reference, which then are used for differential correction
of rover data in post-processing. The base stations run around the clock collecting data on
their location, quantifying drift by comparing their current measured GPS location with
its single known location. In post-processing, the proprietary Trimble Pathfinder Office
software differentially corrects rover data according to this calculated amount of drift at
the time of measurement by comparing time stamps between rover and base station data.

For the differential correction of all dGPS data collected in Agua Caliente I and Salar
de Loyoques, we used hourly data from a Scripps Orbit and Permanent Array Center
(SOPAC) base station in Cordoba, Argentina, located ∼950 km air distance away from
the site. This base station is the closest station to our field site for which data is easily
accessible through the proprietary software. For the 197 dGPS measurements taken, the
estimated post-processed accuracy of the 197 dGPS measurements taken falls between 0.8
and 1.0 m for 57.9% of data; 1.0 and 2.0 m for 33.0% of data; and >2.0 m for 9.1% of
data. See Figure 3-12A for histogram of estimated post-processed accuracy of all dGPS
measurements. All dGPS measurements were made in the WGS84 datum (EGM96 geoid),
with elevations reported relative to mean sea level (MSL).

3.9.2 Calculation of modern lake areas and paleolake areas

We used ESRI ArcGIS 10.2 software to determine the area of modern lakes and paleolakes.
Using the dGPS elevation measurements and satellite imagery of the highest paleoshoreline
features in each basin, we generated contour lines of elevation from the 1-arc second (∼30
m) digital elevation model from the Shuttle Radar Topography Mission (SRTM DEM)
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and used these outlines as approximations of the perimeter of highstand paleolake areas,
accounting for the ∼3.5 m average difference between dGPS elevation measurements and
the 30-m SRTM DEM (3-12). The following contour lines of elevations are used to represent
the highstands of each lake basin: 4248 m for Agua Caliente I; 4253 m for Laguna de Tara;
and 4270 m for Salar de Loyoques. To estimate the outline of the modern lake in each lake
basin, we identified ‘flat patches’ within the SRTM DEM, taking advantage of the fact that
the SRTM DEM records water surfaces as horizontal planes. These outlines for paleolake
highstands and modern lakes were then used for lake area calculations, using an equal-area
conic projection centered on South America.

In the future, we plan to apply the methods described in Hudson and Quade (2013) to
better estimate modern lake areas. Our current methods use the lake areas of 2009 (the
year of the SRTM) to represent modern.

3.9.3 Differences in δ234Uinitial values of lake carbonates between basins

The carbonates from Agua Caliente I analyzed thus far vary within a narrow range of
δ234Uinitial values, from 1180 to 1340 h (average = 1280 ± 40h). In Salar de Loyoques,
the δ234Uinitial values of carbonates also fall within a narrow range between 980 and 1080h
(average = 1040 ± 30h). In Laguna de Tara, δ234Uinitial values range between 930 and
1070h (average = 990 ± 60h).

Unpaired student t tests of the δ234Uinitial values in each basin indicate that Agua
Caliente I δ234Uinitial values are statistically distinct from the other two basins, suggest-
ing that the Agua Caliente I basin’s water source spends a statistically significant dif-
ferent amount of time interacting with bedrock before entering the lake. The difference
in δ234Uinitial value between samples from Salar de Loyoques and Laguna de Tara is not
statistically significant.

3.9.4 Paleoshoreline features in Agua Caliente I and Salar de Loyoques

We measured the elevations of various paleoshoreline features in Agua Caliente I and
Salar de Loyoques. In Agua Caliente I, the best preserved features were located in the
northeastern corner of the basin. At least three distinct abrasion platforms in volcanic
bedrock hillsides are present between 4244 and 4252 m elevation. The elevation of the
base of the alluvial fan scarp varies between 4243 and 4245 m. Satellite imagery of the
fan incision in the northwest part of the basin shows that there is a noticeable amount of

138



salt deposit “staining” the landscape at ∼4235 m, suggesting that the water levels may
have fluctuated at approximately that elevation for a long enough duration to leave such
salt deposits. At the base of the incised alluvial fan scarp in the southeast, we found
pebble-sized pieces of reworked white tufas with the honey calcite cement (Figure 3-13),
suggesting that a lake must have existed at this elevation at some point after the deposition
of the honey calcite.

Three separate sets of gravel barriers occupy a narrow range of elevations. The highest
set consists of at least 6 individual barriers that occupy a narrow, ∼3 m range of crestal
elevations (4244–4247 m) across a lateral distance of ∼200 m. The relief of these gravel
barriers is minimal, with crestal heights of <0.5 m relative to lows between individual
barriers. Although these barriers are obvious in satellite imagery, the individual crests
of gravel barriers are only distinguishable on the ground by the relative abundance of
pink disk-shaped ignimbritic cobbles, which are more abundant on crests. Cross-sectional
exposure of these gravel barriers via the channel of spring discharge reveals that beach
cobbles and pebbles are oriented lake wards for at least several meters below the surface.

The lowest set of gravel barriers, clustering around ∼4230 m elevation, are more promi-
nent in relief (∼3 m). These barriers also contain reworked floret tufas with the nodular
carbonate cap. Unfortunately, we did not examine the intermediate set of gravel barri-
ers, but we estimate their elevation to be approximately 4233–4235 m based on satellite
imagery and the DEM (Section 3.9.2). It is possible that this set of barriers should be
grouped with the lowest set of barriers.

For our measurements of the base of the inactive stream channel connecting the Agua
Caliente I and Salar de Loyoques basins, the highest elevation measured was 4240.5 ± 1.1
m. We tentatively call this elevation the “sill” or spillover elevation for Agua Caliente I.
Taking advantage of color differences between different alluvial fans along the length of
this inactive stream channel, it appears that the direction of flow is predominantly from
northwest to southeast based on the color of entrained materials into the channel, i.e., from
Agua Caliente I to Salar de Loyoques. This observation is consistent with the monotonically
decreasing elevation of the stream channel base towards the southeast, as well as an alluvial
fan feature at the juncture of the stream channel and the Loyoques basin. However, recent
human bulldozing activity at both ends of the stream channel make it difficult to entirely
rule out a pathway of water into Agua Caliente I. The relationship between the elevations
of the sill, the paleoshoreline features, and the tufa and other carbonate deposits found
within Agua Caliente I is illustrated in Figure 3-3.
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In Salar de Loyoques, constructional paleoshoreline features are only well-preserved
within two embayments in the southeast part of the basin. At least 9 individual gravel
barriers exist, spanning an elevational range of 4225–4270 m across a distance of ∼1.3 km.
Faint traces of gravel barriers in the northern part of the basin are between 4191–4192 m
elevation.

3.9.5 Potential avenues for future geomorphological research

The following are potential pathways for future geomorphological research in these lake
basins:

• The U-Th ages of shoreline deposits could be compared to optically simulated lumi-
nescence (OSL) of beach gravels and detrital material beneath the caliche, as well as
cosmogenic 3He exposure dating of the abrasion platforms of basalt. Any statistically
significant difference between such dating results could constrain “growth” rates of
the encrusting floret and cone-shaped tufa deposits, or help calibrate the OSL and
3He exposure dating systems.

• Due to color differences in different volcanic deposits in the Laguna de Tara basin,
the cumulative amount of along-shore transport is recorded by lighter-colored ign-
imbritic deposits settling over darker colored sediments of basaltic composition in the
northwest and southeast parts of the basin. Given basin geometry and an average
wind speed and direction, process-based modeling could determine the cumulative
amount of time that the lake occupied the elevation of these paleoshorelines based
on the cumulative amount of along-shore transport indicated by such deposits.

• The alluvial fans in the western and southernmost parts of Salar de Loyoques formed
after the regression of the large lake that existed at some time before 100 ka. Once
a robust U-Th age is determined for the carbonate cements of the beach gravels, we
can calculate a lower bound on the accumulation rate of these fans.
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Sample Elev. Lon. Lat. δ18O δD DescriptionName (m) (◦W) (◦S) (h) (h)
AD09-103 4238 67.4081 23.0885 2.6 -31 spring, ACI
AD10-222 – 67.4002 23.0867 -7.6 -77 main outflow channel of ACI
AD10-229 4225 67.4173 23.1473 0.6 -36 steaming hot spring, SW corner of ACI
AD10-240 4329 67.3353 23.0100 -7.6 -77 small spring, L. de Tara
AD10-243 4332 67.3388 23.0180 -9.1 -83 major creek flowing into NW corner of Tara

Table 3.5: Table of δ18O and δD values of various waters from Agua Caliente I (ACI) and Laguna
de Tara. Elevations and coordinates were measured with a a handheld Garmin GPS.
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Figure 3-10: [A] Data representation by continent in the Global Lake Status Database
(Qin et al., 1998; Kohfeld and Harrison, 2000). A value of 1.0 indicates that a continent
has the same data density as the global average for that timestep. [B] and [C] Comparison
of lakes with status information in the database from the past 30 ka in South America and
Africa, respectively.
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Figure 3-13: Panels showing the location of reworked pieces of tufa with honey calcite,
which were found in the float of the scarp of an incised alluvial fan [B] in the southeast
corner of the Agua Caliente I lake basin [A]. [C] Kim Huppert stands at the base of the
scarp while Justin Stroup stands at the top. The elevational difference between the base
and top of the scarp is ∼4.5 m. [D] Photo of the reworked pieces of tufa with honey calcite.
Chilean peso for scale is 2.7 cm in diameters.
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Figure 3-14: [A] Comparison of the maximum areal extent of Laguna de Tara (green
line) to modern day extent of the lake (cream yellow polygons). [B] Comparison of the
maximum areal extent of Agua Caliente I (red line) and Salar de Loyoques (blue line) to
modern day extent of the lake (cream yellow polygons). The outline for Agua Caliente I is
drawn under the assumption that no overflow occurred into the Salar de Loyoques.
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Chapter 4

Honey calcite: gravitational drip
cements of lacustrine origin
preserve evidence of rapid,
large-magnitude lake level
fluctuations

4.1 Introduction

Porous carbonate build-ups of lacustrine origin called “tufas” are widespread in desert
landscapes, but determining the age of their formation, and thus the timing of the lakes
that formed them, has been notoriously difficult. Early researchers attempting to date
such deposits with carbon-14 techniques remarked on their internal complexity, noting that
multiple carbonate deposition events were often present on sub-centimeter scales (Broecker
and Orr, 1958; Kaufman and Broecker, 1965). Because identification of such composite or
altered samples was not always obvious, and radiometric dating tools at the time could
not operate on sample sizes smaller than the scale of cross-cutting relationships, tufas were
generally considered problematic for geochronological purposes. These sentiments were
further ingrained as subsequent research revealed the problem of carbon reservoir effects in
precipitated carbonates, and even moreso when initial promise for U-Th dating techniques
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was dampened by difficulties with detrital constituents in tufas (Ku and Liang, 1984).
Here, we report the existence of a distinct carbonate cement found in close association

with tufas and other lake deposits that may reignite optimism for geochronological control
of these materials. This “honey calcite” is named for its golden color and cloudy translu-
cency, and is documented in two geographically disparate Pleistocene-aged lake basins in
northern Chile and the southwestern United States. We suspect its occurrence in closed-
basin lake tufa and shoreline deposits is more common than previously known. We show
that U-Th dates of this deposit are reproducible and stratigraphically coherent, suggesting
that the data are viable as geologically meaningful and interpretable age constraints. The
significance of this deposit is even more compelling when considering its morphology: it
appears within cracks and void spaces as a gravitational “dripstone” or pendant cement
characterized by thickening along the undersides of tufa or other substrates. This morphol-
ogy is considered a classic indicator of the vadose zone, where cements of uneven thickness
precipitate from excess droplets of saturated water and are therefore orientated parallel to
the gravity vector (Müller, 1971; Longman, 1980; Schoelle and Ulmer-Schoelle, 2003).

Because of the diagnostic morphology, field context, and the lateral and elevational
extent of the cement, we interpret the honey calcite to represent a “spray-zone” deposit
formed by high-magnitude lake level fluctuations. The presence of fine laminations in the
cement and U-Th ages suggest that these fluctuations may be rapid, occurring on century
to decadal timescales. We present U-Th geochronological data, petrographic analysis,
and stable isotope results to support our argument. At the site in northern Chile, the
duration of fluctuations captured by the honey calcite is confined to the last ∼1000 years of
Heinrich Event 1 (18–15 ka). We speculate that this may suggest that the time immediately
preceding the termination of this north Atlantic winter cooling period was characterized
by high variance (unstable) and large magnitude local climate change, similar to findings
by Bakke et al. (2009) from high-resolution northern Atlantic marine sediments and Pigati
et al. (2019) from desert wetlands during the Younger Dryas cold period.

4.2 Field and Geologic Context

The most pristinely preserved instance of honey calcite found thus far is from Agua Caliente
I (23.13◦S, 67.41◦W, 4200 meters above sea level; Figs. 3-2 and 3-7A) in northern Chile. In
this basin, the cement is observed in two distinct situations: (1) coating the exterior of or
infiltrating primary void spaces within porous tufas and (2) cementing sands and gravels
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of colluvium or gravel barrier deposits. In all observed cases, the honey calcite is dense
(non-porous), hard, and crystalline.

For (1), throughout the basin, the honey calcite is found associated with the encrust-
ing floret and cone-shaped tufas (see orange vertical bar in Fig. 3-3). In these contexts,
the honey calcite appears thickest along the exterior sides of cones (Figure 4-1) and other
surfaces that were exposed at the time of honey calcite deposition. Fig. 4-2 features pet-
rographic images of the honey calcite infiltrating an encrusted floret tufa sample collected
from ∼14 m above the modern salt flat. The sample shared a contact with an igneous
bedrock boulder and was cross-sectionally slabbed along a plane normal to the contact
surface. Fig. 4-2B shows a gradient in the amount of honey calcite present: there exists
more cement along the outer parts of the sample compared to the inner parts. Petro-
graphic analysis of this thin section made along this plane show the characteristic pendant
morphology of the honey calcite, especially when infilling larger primary pore spaces in the
outer part of the floret tufa (Figure 4-2J–K). Fine laminations of a few tens of microme-
ters thick are also discernible, in which layers are bounded by a fine layer of dark micritic
material. Despite the laminations, the bladed crystals comprising the honey calcite appear
to grow across multiple laminae (Figure 4-2K).

For (2), along a road cut exposing colluvium at the southern margin of the lake basin
(4243.0 ± 0.9 m elevation; Figure 4-3), we find honey calcite cements up to 1 cm in thickness
predominantly coating the undersides of cracks. The cements are only found within a
resistant belt of outcrop that is laterally continuous at roughly the same elevation for ∼100
m, though their own presence throughout this resistant layer is not uniform throughout.
Like that observed within void spaces of tufa, the honey calcite here is laminated and hangs
as smooth and broad overlapping pendants from the roof of cracks. Where the cements do
not entirely fill spaces within cracks, a thin <1-mm-thick veneer of opaque white carbonate
coats the bottom of these cements where exposed to air.

The honey calcite also occurs as sub-horizontal discontinuous “sheets” upon and incor-
porating detrital sediment. In one location at 4242.7 ± 0.9 m elevation, the honey calcite
fully infiltrates sediment within a spit-like formation to form sub-horizontal layers of honey
calcite-supported beach sands. In another location, the honey calcite forms around lenses
of silt-sized particulate sediments, but leaves fenestral pore spaces between overlapping
sub-horizontal sheets.

Another key observation is that, in hand sample, the honey calcite appears to have three
packages differentiable by color, in which the oldest package is darkest yellow in color and
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Figure 4-1: Field photographs showing that, in the context of shoreline tufas, the honey calcite
appears thickest along the sides of cone-shaped tufas where primary gaps and spaces between cones
exist. [A] Cone-shaped tufas on top of encrusting floret tufa on a volcanic boulder at 4233.9 ± 1.5
m elevation. Panels [B], [C], and [D] are close-up photographs of locations where thicker deposits
of honey calcite are found, indicated by ovals of black dashed-lines and arrows. Red pen is 15.5 cm
in length; pen cap is 6.5 cm.
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Figure 4-2: An examination of the two distinct phases of carbonate formation in Agua Caliente
I, as seen in sample AD10-225 (ID #1 and #6). [A] Photograph showing the field context of the
sample. AD10-225 was attached to a volcanic boulder in the area indicated by the shaded region
outlined in white. The dashed black line indicates the orientation of the planar surface pictured
in [B] and the thin section in [C]. The black orientation arrow is pointing radially away from the
tufa-boulder contact in the direction of growth. This orientation arrow appears in all other panels
of this figure. Red pen is 15.5 cm in length. [B] Flat slabbed surface of AD10-225 with U.S. penny
(∼1.9 cm in diameter) for scale, showing two distinct carbonate phases: a dense, honey-colored,
translucent calcite, and a porous, opaque white material. The box represents the approximate area
made into a thin section (40 mm × 60 mm). [C] Close-up of the sample embedded in resin, showing
the location of areas featured in remaining thin section panels. The thin section plane is oriented
parallel to the growth direction. Note that in this panel and all others, gravity is oriented parallel
to the vector going into and out of the page. [D] Thin section photomicrograph in plane polarized
light showing that the white porous carbonate phase consists of dark, branching, microbial peloids
(1) surrounded by micrite containing thin, growth-oriented filaments and dark, lenticular tube-like
cyanobacterial-algal microfossils (2). The honey calcite phase is most easily observed filling or
coating primary pore space (3). [E] Photomicrograph in plane polarized light showing trapped
detritus in primary pore space (1). Trapped materials include skeletal fragments of ostracods (2),
microbial peloids, and possibly carbonate fecal pellets. [F] Photomicrograph in plane polarized
light. The honey calcite possesses fine-scale layering and most obviously fills primary pore space
(1), but it also infiltrates the previously-deposited white porous carbonate phase (2). There are
few places where the white porous phase is untouched by the honey calcite (3). [G] and [H]
Photomicrographs in cross polarized light showing good preservation of ostracod shells (1), which
have been infilled by honey calcite. The honey calcite frequently exhibits an undulose extinction
pattern (2). [J] and [B] Photomicrographs in plane and cross polarized light, respectively, showing
that the honey calcite exhibits pendant-like morphology in areas where it fills primary pore space.
The morphology suggests that the honey calcite phase is a gravitational cement. Thin, micrometer
thick layers are separated by bands of thin, dark-colored micritic material.
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Figure 4-3: [A] Image of sample location AD10-233, where a road cut exposes an outcrop of
honey calcite cementing colluvium made of ignimbritic and igneous materials. [B] Closer-up
view of the outcrop with a Sharpie marker for scale.
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the youngest package is a translucent white color. These three differently-colored packages
of honey calcite are observable elsewhere in the basin, such as within tufas. On top of the
outermost layer, a thin veneer of opaque white carbonate can be found.

4.3 Stratigraphic coherence of U-Th geochronological results

The preparation and chemical procedure for U-Th dating of these deposits is described in
previous chapters. We drilled powders from the tops and bottoms (start and end) of the
three distinct honey calcite packages across multiple samples from both the road-cut out-
crop as well as from a thick honey calcite deposit found along the outside of a cone-shaped
tufa. The initial 230Th/232Th ratio used to correct the data for detrital contamination was
determined by calculating dates for a broad range of initial 230Th/232Th ratio values and
deciding which ratio brought the U-Th data into stratigraphic coherence. After running
these tests, a initial 230Th/232Th ratio of 4.5 ± 3.0 ppm atomic was chosen.

Fig. 4-4 shows an example of U-Th data from a sample from the road-cut outcrop.
Here, the dates fall in stratigraphic order.

Fig. 4-5 combines all U-Th dates from honey calcite in Agua Caliente I and displays
them as “camel” plots, or probability density functions. With some exceptions, the vast
majority of the U-Th dates from the tops and bottoms of the three honey calcite packages
are consistent with the constraints of stratigraphic order. When comparing the mean ages
of dates grouped together by coevality (same layer), the data indicate that the depositional
period of the honey calcite occurs at the end of HE1 for ∼1000 years.

We hypothesize that the good behavior of U-Th dates owes itself to the purity of the
honey calcite; the cement contains few inclusions and peloidal grains. Our observations of
the extent of honey calcite infiltration from thin section also explains the lack of repro-
ducible data from the encrusting floret tufas: the honey calcite has penetrated the original
underlying tufa to a degree that makes isolating the floret tufa phase on its own practically
impossible (Figs. 4-2F, 4-6).

4.3.1 Origins of the honey calcite cement

Our current working hypothesis for the origin of the honey calcite cement is that it is
an upper-littoral “spray-zone” deposit, precipitating from lake waters that intermittently
spray over the tufa formations, beach sands, and gravels. This hypothesis is consistent
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Figure 4-4: U-Th dates from sample AD10-233-10. Locations of drilling are indicated with
red lines and are annotated by alphabetical letter in order of stratigraphically oldest to
youngest (i.e., A is the oldest layer drilled).
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Figure 4-5: Camel plot diagram of all U-Th dates from honey calcite at sample sites
AD10-233 and CYC15-019. Each date is represented by a circle color-coded by honey
calcite package (see ‘Marker Legend’ on the right). Top two rows show data from the start
and end (top and bottom) of the innermost, stratigraphically oldest honey calcite package;
middle two rows show data from the start and end of the middle honey calcite package; and
the bottom three rows show data from the start, middle, and end of the outermost honey
calcite package. Error bars represent the uncertainty of each date (2-σ range). Each date
is then represented by a probability density function, in light gray. The dark gray curve
represents the cumulative probability density function of dates in each row. The mean and
standard deviation of dates in each row is listed to the right of each plot.
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Figure 4-6: Comparison of U-Th dates of different tufa and carbonate deposits at different
elevations in Agua Caliente I.
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with the following observations:

1. The smooth laminations, lack of inclusions and peloidal particles, and positive δ13C
values indicate that the honey calcite was physio-chemically deposited, rather than
biologically formed. Inorganic precipitation could have been assisted by evaporation
of spray waters, raising the carbonate saturation state of the fluid to encourage
precipitation of the cement.

2. The pendant morphology observed in both the floret tufa and the road cut of exposed
colluvium suggests that the honey calcite is a gravitational cement reflecting vadose
conditions (Müller, 1971; James and Choquette, 1984). Such pendant, microstalactic-
like morphologies are observed in Holocene beach sediments and ancient limestones
elsewhere, and are interpreted as indicators of supratidal environments, areas where
seawater regularly splashes but does not submerge (e.g., Inden et al., 1996; Schoelle
and Ulmer-Schoelle, 2003).

3. If the honey calcite were a spray deposit, we would expect the cement to be thickest
where spray waters would accumulate most, on the outer tops and exterior sides of
surfaces. We observe that the honey calcite cement more completely fills the pore
spaces in the outer part of floret tufas (Figure 4-2B–C), leaving open primary pore
space filled with trapped detritus in the inner part of the tufa (Figure 4-2E). The
honey calcite also is also thickest along the sides of cones (Figure 4-1).

4. Both the positive δ18O value and the ubiquitous presence of the honey calcite through-
out the lake basin strongly point towards a lacustrine origin for this deposit. The
δ234Uinitial value of the honey calcite is very similar to that of other lacustrine de-
posits in the basin, suggesting that the source of the honey calcite cannot have been
purely groundwater.

5. Good preservation of delicate ostracod remains, which have also been infiltrated by
the honey calcite cement (Figure 4-2G–H), and the lack of dissolution textures at
the contact between separate phases are strong indications that the honey calcite
cement is syn-sedimentary cement, rather than a cement formed via dissolution and
reprecipitation of the original encrusting floret or cone-shaped tufas.

6. Some evidence suggests that the honey calcite cements are greater in percent abun-
dance at lower elevations than at higher elevations. Figure 4-2F shows that the
honey calcite does not merely coat the surface of the floret tufa, but also infiltrates
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it, causing the original white porous material to take on a more beige-colored appear-
ance. Samples collected at lower elevations tend to be more completely infiltrated by
the honey calcite cement, with few white-colored areas. More field observations are
needed before this observation can be confirmed.

7. The abrasion platforms on volcanic bedrock hillsides indicate that significant wave-
eroding action must have been present at some point in the past, despite the small
fetch length of the lake.

Such gravitational cements have also been described in beachrock settings in the marine
environment, which may be materials that have yet to be taken advantage of in terms of
geochronological control. Reconstructions of past sea level could benefit from finding a
new type of material for dating.
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Figure 4-7: δ18O data from sample AD10-233-10. Image on left shows the location of drill
holes; plot on right compares the δ18O values in stratigraphic order. Note that the vertical
axis does not represent depth quantitatively. Annotations on plot to the right represent
the current working hypothesis for the behavior of lake levels at the time of honey calcite
formation.
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Chapter 5

U-Th dating of tufas from the
Miscanti-Miñiques-Pampa Varela
lake system, northern Chile

5.1 Geologic Setting
Lagunas Miscanti and Miñiques are two high-altitude (∼4000–4200 meters above sea level)
permanent shallow lakes located in the Altiplano-Puna plateau of northern Chile (Fig. 5-
1). Together with Pampa Varela, these basins fall immediately to the east of a major
northeast-striking fault that separates the Andean cordillera from the lower elevation pre-
cordillera to the west. The basin lithology consists primarily of ignimbrite and other
clastic igneous rocks associated with the now dormant volcanoes that share the same name
as these two water bodies below them (Fig. 5-1B). In the present day, the water budget
is predominantly driven by groundwater flow from a large catchment area (∼320 km2)
and evaporation (Valero-Garcés et al., 1996). Today, this lake system is part of the Los
Flamencos National Reserve and is maintained by the Indigenous Atacameños people in
Socaire in partnership with the National Forest Corporation of Chile (CONAF).

Previous work on lake sediments and tufa deposits in the basin has indicated that
these basins experienced higher lake levels at some time during the last deglaciation and
Holocene (Grosjean et al., 1995; Valero-Garcés et al., 1996, 1999; Grosjean et al., 2001). In
a sediment record from Laguna Miscanti spanning the last ∼22 ka (Grosjean et al., 2001),
two periods of higher lake levels during the last deglaciation are inferred from aquatic
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Figure 5-1: [A] Overview map of the Altiplano-Puna plateau in the central Andes. White
rectangle marks the location of the Miscanti-Miñiques-Pampa Varela (MMPV) lake system.
[B] Satellite imagery of the MMPV lake system. Blue outlines are contours of elevation
that approximate the high shoreline in each sub-basin. Contour outline were generated
using the SRTM DEM. Dark blue dashed lines with arrows trace the pathway of overflow
in between each sub-basin. Yellow circles mark the locations of tufa samples discussed in
this paper. This site is approximately ∼10 km from the town of Socaire in northern Chile.

pollen assemblages and sediment lithology. Unfortunately, interpretation of these records
was hampered from poor chronological control due to a reservoir effect of unconstrained
magnitude on radiocarbon dates. Since terrestrial material suitable for radiocarbon dating
was non-existent in the core, radiocarbon dates were made on aquatic organic matter
and bulk carbonates formed in waters with 14C/12C ratios that may have been out of
equilibrium with that of the atmosphere. This is especially a likely scenario in the active
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volcanic setting of the central Andes, in which volcanic CO2 is present in groundwaters.
Slow recharge times are also typical in modern lakes in this area and contribute to the
reservoir effect. Modern measurements from the nearby Laguna Lejía suggest that the
modern reservoir effect is ∼2000 years for aquatic organic matter and as high as ∼8000
years for carbonates (Grosjean et al., 1995).

In this chapter, we continue our exploration of the link between Heinrich Events and the
hydroclimate of the Altiplano-Puna plateau of the Central Andes by U-Th dating lacustrine
tufa deposits in the Miscanti-Miñiques-Pampa Varela (MMPV) lake basin system. Vari-
ous studies in this region—including work on carbonate-encrusted paleoshorelines showing
lake expansions (Bills et al., 1994; Sylvestre et al., 1999; Placzek et al., 2006a, 2006b;
Placzek et al., 2009; Blard et al., 2011; Placzek et al., 2013; Chen et al., unpublished data),
cave stalagmites indicating increased rainfall amounts (Kanner et al., 2012), paleowetland
deposits showing elevated groundwater tables (Quade et al., 2008), fluvial terraces and ro-
dent middens showing increased stream discharge (Latorre et al., 2006; Nester et al., 2007;
Gayo et al., 2012), and glacial moraines showing substantial ice cover expansion (Smith
and Rodbell, 2010)—all indicate that this region experienced the wettest conditions of the
last deglaciation during Heinrich Event 1 (∼15–18 ka). The regional synchroneity of these
wet phases is so prominent that the local phenomenon is often revered to as a “Central
Andean Pluvial Event” (CAPE).

Because Miscanti and Miñiques overflow into the Pampa Varela basin upon breaching
the elevations of their sills, the timing of the lake creating the high shoreline in Pampa
Varela represents the hydrologic maximum of the drainage basin.

5.2 Methods

We mapped paleoshorelines and collected carbonate samples over two days in May 2016.
We used a Trimble GEO 7x handheld receiver to collect precise location and elevation data
of shoreline features and tufa samples, which yields sub-meter accuracy after differential
correction using proprietary software.

Carbonate samples were then prepared for U-Th dating following the same procedures
described in the previous chapter. We used an initial 230Th/232Th ratio of 4.5 ± 3.0 ppm
atomic for the calculations of dates. Petrographic images of thin sections were made using
a Zeiss AX10 microscope.

Several powders drilled from tufas were also analyzed for their mineralogy using a Nico-
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let iS50 attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectrometer
at the Center for Nanoscale Systems at Harvard University. To test the reliability of the
results, we prepared three mixtures consisting of known proportions of clean calcite and
aragonite standards and determined if the measurements could accurately reconstruct these
relative proportions. Measurements of these mixed standards were all within 5% of true
proportions of calcite and aragonite.

5.3 Results

5.3.1 Geologic and geomorphic context of tufa deposits

Due to the short time on site, we were unable to survey the basins and their tufa deposits
comprehensively, and thus recognize that this work is limited by our sampling. Regardless,
we report our findings on the most conspicuous deposits, generally located on the northern
parts of each basin (Fig. 5-1B, yellow circles). This spatial distribution may be related to
pathways of groundwater flow and spring discharge: in both Miscanti and Miñiques, warm
spring waters are observed seeping into the modern lake along the northern shoreline.

In Miscanti, the high shoreline in the north is mainly expressed as a salient wave-cut
terrace eroded into igneous bedrock (Fig. 5-2A). The promontory in the north-central part
of the coastline consists of a broad platform with outcrops of smoothed basalt boulders on
its lakeward edge. These boulders act as the substrate for a thick (∼20–35 cm) and laterally
continuous (∼200 m) deposit of tufa (Fig. 5-2B) that runs parallel to the paleoshoreline.
Although much of this tufa remains in situ (Fig. 5-2C), it is very porous and friable; as a
result, many fragments of tufa are found in float in the surrounding area. The extent of
this re-deposition of tufa is illustrated by the color contrast between the eroded pink-beige
tufa and dark purple-brown basalt, which is easily observable in both the field (Fig. 5-2B,
see ‘tufa in float’) and satellite imagery.

In contrast, the smaller Miñiques basin does not have any broad platforms. Here,
tufa deposits are found encrusting basalt boulders along the more steeply sloping bedrock
hillsides (Fig. 5-2D). In Pampa Varela, the only instances of in situ tufa that we encountered
were found encrusting boulders in protected spaces (e.g., undersides of boulders).

In all three basins, pebble- to cobble-sized fragments of tufa were found redeposited
at the crests of the constructional gravel berms at the high and intermediate shorelines.
In fact, in the northeastern corner of Miñiques, an cross sectional exposure reveals that a
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Figure 5-2: Field photographs of paleoshorelines and tufa deposits. [A] In the northwest embay-
ment of Miscanti, the high shoreline is expressed as a distinct wave cut terrace eroded into basalt
bedrock (dGPS elev. = 4164±1.0 m) and a constructional gravel berm. Photo taken looking east.
[B] The promontory in the north-central coastline of Miscanti. The outer, lakeward edge of this
platform has outcrops of smooth basalt boulders that are coated with a thick (∼20–30 cm) and
laterally continuous (∼200 m) deposit of tufa (see ‘tufa in place’); pieces of this tufa can be found
on the landward, backshore side of this platform in float. The extent of this redeposition of tufa
is illustrated by the contrasting colors of the pink-beige tufa and the dark purple-brown of the
basalt (see ‘tufa in float’). Photo taken looking southeast. [C] Close up view of the thick tufa
deposit coating bedrock featured in Panel B as ‘tufa in place’. Note the same bedrock headland in
the backgrounds of Panel B and C. [D] In Miñiques, tufa is found on top of more steeply-sloping
hillsides of bedrock boulders.
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∼10–15 cm thick layer made entirely of eroded tufa fragments lies at the crest of the high
shoreline gravel barrier. In many instances, the hydrodynamical differences between tufa
fragments and other clastic igneous rocks created a ‘highlighting’ effect, whereby geometry
of berms was accented in color by the spatial distribution of the tufa fragments. These
observations indicate that there was at least one occurrence of higher lake levels after the
original formation of the tufa deposits.

5.3.2 Characteristics of various tufa facies

The tufas in the MMPV lake basin system can be broadly categorized into two categories:
(1) fibrous mats and (2) carbonate cement encrustations. We now describe these two facies
categories in Figs. 5-3–5-5.

The fibrous mat tufa facies consists of fine and elongate calcite crystals that are arranged
radially relative to the surface of the substrate (Figs. 5-3B and C). The thick, continuous
deposit of porous tufa described in Fig. 5-2B and C consists primarily of this facies. These
tufas are not well-lithified and are highly weathered, with many exhibiting clear signs of
recrystallization and/or diagenesis (Fig. 5-3B, white arrows). In exposed cross sections
of outcrop, different beds of fibrous tufa with slightly varied macro-scale morphology are
discernible, with some exhibiting a more splayed, feather-like fabric and others exhibiting
a more classic radial growth fabric. On a sub-centimeter scale, banding can be observed
within the tufas and appears to be related to porosity. In plan view, weathered surfaces
exhibit closely packed polygonal shapes, suggesting that the internal structure of these
tufas consists of a composite of smaller inverted cone shapes of varying sizes. In thin
section, abundant diatoms are observed oriented parallel to the fabric of these tufas.

The cements are the second most common form of carbonate deposition in the tufa
deposits. These ∼1–3 mm thick cements are generally isopachous, finely laminated and
are found indiscriminately coating various substrates. They are most well-preserved when
coating cobbles of clastic igneous rocks (Fig. 5-4). The coatings vary in color from being
beige to mostly translucent white.

Another common substrate of the carbonate cements are the remains of charophyte
algae. Many tufas found in situ in Miñiques exhibited excellent structural preservation
of macroscopic charophyte algae of the order Charales, commonly known as “stoneworts”
(Fig. 5-5). Charales are morphologically complex filamentous green algae and are found
in shallow, calm, fresh and brackish waters worldwide (Wood and Imahori, 1959; Bold
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Figure 5-3: The fibrous mat carbonate facies. [A] Outcrop photo, close up view of tufa on
bedrock platform from Panels B and C in Fig. 5-2. Hammer is ∼33 cm tall. [B] Cross-
sectional view of a sample of the fibrous mat facies (CYC16-017A, found in float). Pink
shapes indicate the drilling locations of powder used for U-Th dating. Annotated dates are
in units of years before 1950. Uncertainties are 2-σ range. White arrows labeled ‘1’ mark
areas which have been recrystallized, which are the exposed surfaces of the sample. Arrow
represents the direction of stratigraphic up. [C] Close up view of internal structure of the
sample.
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and Wyynne, 1978). Living charophytes are found at the sediment-water interface today
(Fig. 5-5A). Finding a direct modern analogue of fossil tufas is very uncommon; if the
depth constraints on the modern occurrence of charophytes could be determined, this
information would allow for better interpretations of the paleolake level represented by the
tufa deposits.

A carbonate-encrusted sample of charophyte algae was found in float in Miscanti, but
we were not able to locate the corresponding in situ outcrop in this basin.

5.3.3 Results of U-Th dates on tufa deposits

The uranium concentrations of these deposits were between 10 and 300 ppm, ∼2–3 orders of
magnitude higher than concentrations observed in tufa deposits from the Bolivian Altiplano
(Placzek et al., 2006a) and elsewhere in northern Chile (Chen et al., unpublished). In
several instances, tufas are comprised of both the fibrous mat facies and carbonate cements.
In these situations, we are able to leverage the incontrovertible constraints of cross-cutting
relationships and stratigraphic order to test the viability of our U-Th dates. For example,
the cement in sample CYC16-025A featured in Fig. 5-5D has clearly formed around both
the charophyte algae as well as the fibrous mat (see white triangle labeled ‘3’), and thereby

�brous mat
isopachous cement

CYC16-029AAA B
11,000 ± 500

9,550 ± 190

11,110 ± 130
10,780 ± 110

cobble
cement coating

Figure 5-4: The cement encrustations facies. [A] Hand sample consisting of large pebbles
and cobbles that are coated in a ∼1–3 mm thick rind of isopachous carbonate cement. [B]
Exposing a cross section of the sample featured in Panel A (CYC16-029AA) reveals that
one cobble is made not of igneous rock, but rather a fibrous mat tufa. The cement has
infiltrated the pore spaces of the fibrous mat tufa cobble.
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Figure 5-5: Preservation of charophyte algae by carbonate cement. [A] Modern living charophytes
living at the sediment-water interface, extracted during sediment coring from Miniques in April
2013. Photo taken by Matías Frugone. [B] Pristine charophyte preservation by carbonate encrus-
tation on the hillside in the Miniques basin featured in Panel D of Fig. 5-2. [C] Petrographic thin
section image of a carbonate-encrusted charophyte tufa sample. 1: Isopachous, radial calcite cement
with many inclusions. The area immediately surrounding the original charophyte is darker due to
a higher proportion of dark microbial peloids. 2: Holes indicate locations where the charophyte
used to be. 3: This area is either the primary preservation of the original carbonate skeleton of
the charophyte, or a secondary infilling. The carbonate here contains an abundance of diatoms.
[D] Hand sample of a carbonate-encrusted charophyte algae associated with a ∼2 cm thick fibrous
mat tufa. 1: An instance in this sample of a well-preserved charophyte stem. 2: Fine layers in
the fibrous mat tufa. 3: The isopachous cement is coating the fibrous mat, indicating that the
formation of the cement occurred after the formation of the fibrous mat.
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constrains its formation to be after that of the fibrous mat. For the cements, we are also
able to test the reproducibility of coeval layers within a sample.

Fig. 5-3B shows analyses from two separate layers in a fibrous mat tufa sample. Here,
we observe that the dates within each layer are not reproducible—as in, the analytical
uncertainties calculated from measurements do not overlap with one another. We also
notice that the dates from the stratigraphically older layer are older than the dates from the
stratigraphically younger layer. Note that while the existence of layers implies a sequence
in time, because each layer in these fibrous mat tufa samples is delineated by a change in
porosity rather than any layer representing a depositional hiatus, it is possible that the
entire thickness of the sample formed within a narrow window rather than over a long
enough period of time to allow for U-Th dates to differentiate between the top and bottle
of the sample.

Fig. 5-4B shows analyses from carbonate cements coating cobbles of igneous rock and
one fibrous mat tufa. The uniform color and thickness of the cement surrounding these
cobbles suggests that all the cement in this hand sample formed at the same time. However,
the two analyses of the cement from different locations in the sample yield dates that differ
by ∼1.5 kyrs and do not overlap in uncertainty. In addition, one of the dates on the
fibrous mat tufa cobble are inconsistent with stratigraphic order constraints. The latter
observation could be explained by the fact that the cement has infiltrated most of the pore
spaces in the fibrous mat tufa, so much so that attempts to isolate powder from the original
fibrous mat cobble is not practically feasible, similar to the effect of the honey calcite in
Agua Caliente I.

Fig. 5-5 shows analyses from a sample that exhibits cross-cutting relationships between
fibrous mat tufa and cements encrusting a charophyte algae. Here again, the two dates
on the isopachous cement do not overlap in uncertainty. Analyses along the uppermost
part of the fibrous mat tufa are all within the same ∼500 year range but some analytical
uncertainties of analyses do not overlap.

These results can be explained a number of different ways: (1) It is possible that the
formation of the cement occurred very slowly, such that small differences in the location
of drilling can lead to large differences in calculated dates; (2) the initial 230Th/232Th
ratio used for the calculation of dates does not adequately account for the true amount
of initial 230Th in these samples; (3) there exists hydrogenous Th in the lake system that
was incorporated into the tufa at the time of formation; and/or (4) these tufas have not
remained closed systems with respect to uranium.
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Some data from fibrous mat tufas in both Miscanti and Pampa Varela support the hy-
pothesis for open system behavior (Fig. 5-6). In sample CYC16-018A, powders were drilled
from the bottom and top of the sample in an attempt, originally, to determine the dura-
tion of tufa formation, especially given that this sample formed directly on top of bedrock.
Again, the analyses along seemingly coeval locations yield dates that do not overlap in
uncertainty. However, we notice that dates of powders drilled from portions that appear
altered (recrystallized) have elevated δ234Uinitial values and low uranium concentrations
(Fig. 5-6B), a pattern that is consistent with uranium loss.

We also observe elevated δ234Uinitial values in analyses from the outermost part of the
sample CYC16-038A from Pampa Varela (Fig. 5-6C and D). These analyses yielded dates
that were old and inconsistent with stratigraphic order constraints.

Thus, we have good evidence to suggest that these analyses shown in gray in Fig. 5-
6 have experienced uranium loss and should not be considered data that represent any
geologically meaningful event. However, there are still inconsistencies in the remaining
data, primarily the lack of reproducibility of dates from coeval layers and lack of adherence
to the constraints imposed by stratigraphic order. Here, dates from coeval layers span a
range of ∼5–10 kyrs or more, as opposed to data previously shown in Figs. 5-3–5-5, which
only span a range of <2 kyrs.

Fig. 5-7 plots all U-Th analyses from tufa samples in the MMPV lake system. The
scatter of dates of samples of the fibrous mat facies in Pampa Varela makes it difficult
to make many interpretations on the timing of tufa formation in this basin. We are only
able to say with confidence that a lake of deglacial age once existed in Pampa Varela. In
contrast, there is more coherence in data from Miscanti and Miñiques: We notice that the
fibrous mats in both basins generally occupy the same ∼3-kyr-long time range. There also
exists dates of carbonate cement encrusted charophytes in both basins between ∼16–13
kyr ago. Other carbonate cements yield dates that are consistent with those from fibrous
mat tufas, with some dates being younger than the youngest fibrous mat data, consistent
with stratigraphic relationships.

Thus, there is evidence from U-Th dating that there existed a higher lake levels from
16–9 ka, broadly consistent with the CAPE I and CAPE II intervals. However, time
intervals in this plot with no data do not necessarily prove that higher lake levels did not
exist during these times: again, we are limited by our sampling bias. In other words, the
absence of data does not prove the absence of a lake.

Future work (imminently) will compare these results to past data from the Miscanti
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Figure 5-6: Evidence of open system behavior from analyses of recrystallized portions
of tufa [A, gray] and the outermost layer of porous tufa [C, gray]. All dates are in units
of years before 1950. Dates listed on the left side of Panel C correspond to the layers
annotated on the sample (1–4, 1 being stratigraphically the oldest). [B] and [D] Com-
parison of δ234Uinitial and uranium concentration of samples featured in Panels A and C,
respectively. Note that there are analyses featured in these panels that are not shown in
the sample images; additional analyses come from different cross-sectional exposures of the
same sample. In Panel D, the groups labeled 1–3 correspond approximately to analyses
from layers 1–3 in Panel C.

sediment core and attempt to provide another estimate of the reservoir correction of this
lake.
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Table A.1: U-Th data associated with Chapters 3–5. Reported errors for 238U and 232Th concentra-
tions are estimated to be ±1% due to uncertainties in spike concentration; analytical uncertainties
are smaller. δ234U = ( [234U/238U]activity - 1) × 1000. Ages are corrected for detrital 230Th as-
suming an initial 230Th/232Th of 4.5 ± 3.0 ppm atomic. δ234Uinitial corrected was calculated based
on 230Th age. B.P. stands for “Before Present” where present is defined as January 1, 1950 in the
Common Era. Decay constants for 230Th and 234U are from ?; decay constant for 238U is 1.55125
× 1010 yr−1 (Jaffey et al., 1971).
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Table A.2: U-Th data associated with Chapters 3–5 (continued).
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Table A.3: U-Th data associated with Chapters 3–5 (continued).
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Table A.4: U-Th data associated with Chapters 3–5 (continued).
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