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Introduction 

Trauma is a global public health problem and a leading source of the world’s burden of disease. 1-3 A 

critical complication following trauma haemorrhage is the early development of deranged 

coagulation.4 Patients that develop trauma-induced coagulopathy (TIC) have worse outcomes, with 

significantly higher rates of organ dysfunction, sepsis and mortality. 4-6 Furthermore, this patient 

group place considerable demand on hospital resources with greater blood transfusion and ventilator 

requirements, and longer critical care and hospital length of stay. 7, 8 

 

Early and aggressive resuscitation strategies that directly target TIC are associated with improved 

outcomes. 9-14 These “damage control” strategies include early empiric transfusion of whole blood or 

balanced ratios of blood products (1:1:1 for units of plasma to platelets to red blood cells) 14, 15, 

permissive hypotension 16, rapid haemorrhage control with abbreviated surgical procedures10, and 

early administration of plasma 17, cryoprecipitate 18 and tranexamic acid 9. While these interventions 

improve survival in patients at risk of TIC, they may cause significant harm and waste precious 

resources if used in the majority of injured patients with normal coagulation. 19-21 Early identification 

of TIC is, therefore, key to effective initiation of damage control interventions.22 23 However, rapid 

identification of at-risk patients can be challenging. Conventional coagulation tests have limited 

accuracy in trauma, and results are not available in a clinically useful timeframe to guide therapy. 24, 25 

Existing prediction models are also not accurate enough to reliably inform treatment decisions.26 

Viscoelastic haemostatic assays are better able to diagnose TIC and can provide results within a few 

minutes of blood draw 24, 27, but these complex devices are expensive, problematic for use in an 

emergency setting, and are unlikely to be routinely available worldwide. Current practice, therefore, 

relies on clinical judgement, which although rapid, is prone to error in the emergency setting 28, 29; or 

blind, unguided protocols, which preclude the tailoring of decisions to individual patient needs.  

 

Advances in machine learning, together with the availability of high-quality patient datasets, provide 

the opportunity to develop robust risk prediction algorithms that could be used to support early and 

tailored therapeutic decisions.30, 31 Accordingly, this study aimed to develop and validate a prediction 
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model that can provide clinicians with an early and accurate estimate of an injured patient’s risk of 

developing clinically relevant TIC. 

 

 



 3 

Methods 

Study design 

We developed a multivariable risk prediction model using a supervised machine learning method that 

combined domain knowledge and data from patients enrolled in the Activation of Coagulation & 

Inflammation in Trauma (ACIT) study. The development cohort comprised data from consecutive 

patients enrolled in the ACIT study between January 2007 and October 2011 at the Royal London 

Hospital. Performance was validated in new patients enrolled into the ACIT study following 

completion of model development (November 2011 to January 2014) at the Royal London Hospital 

(Temporal validation cohort) and two independent centres (External validation cohort): John 

Radcliffe Hospital, Oxford, UK, and the Cologne-Merheim Medical Centre, Cologne, Germany. The 

study is reported according to the Transparent Reporting of a multivariable prediction model for 

Individual Prognosis Or Diagnosis (TRIPOD) statement.32 

 

Sources of information 

Domain knowledge 

Domain knowledge on the causal mechanisms of TIC was identified by an electronic search of the 

MEDLINE and Embase databases using a combination of the terms “trauma” and “coagulopathy”. 

Relevant original studies, review articles, and clinical guidelines were considered. The reference lists 

of relevant articles were reviewed to identify additional publications. A structured framework is used 

to organise and present the evidence and knowledge that underpins each part of the model. 33 

 

Cohort study 

ACIT is a multi-national, prospective cohort study designed to identify the mechanisms by which the 

body’s coagulation pathways are activated immediately following injury.34 Adult patients (>15 years) 

presenting directly to participating Major Trauma Centres, who meet local criteria for trauma team 

activation, are included. Exclusion criteria include: arrival in the emergency department > 2 hours 

after injury; prehospital administration of > 2000ml intravenous fluid; and burns covering > 5% of 

body surface area. Patients are retrospectively excluded if they decline consent, take anticoagulation 
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medication, have moderate or severe liver disease, or a bleeding diathesis. The study was reviewed 

and approved by the National Research Ethics Committee of participating countries and written 

informed consent was obtained for all participants. 

 

Data collection 

Data were collected prospectively on patient demographics, injury characteristics, admission vital 

signs, treatment administered, and outcome. Blood samples were collected immediately on hospital 

arrival and used for standard laboratory coagulation tests, rotational thromboelastometry (ROTEM, 

TEM Innovations, Munich Germany), and blood gas analysis. Injuries were classified according to the 

2005 Abbreviated Injury Scale (AIS) and Injury Severity Score (ISS) by certified coders.35 All 

patients were followed-up daily until hospital discharge or death. 

 

Prediction outcome  

The model was designed to predict the risk of developing clinically relevant TIC. As standard 

coagulation tests have limitations in diagnosing TIC 24, 26, a systematic approach was used to classify 

each patient’s coagulation status into normal or TIC. First, all patients were classified according to the 

clinically accepted laboratory definition of TIC, an admission Prothrombin Time ratio (PTr) > 1.2. 36 

Second, all patients were independently clustered into normal or abnormal coagulation, based on the 

their clinical, laboratory, and thromboelastometry profile, using an expectation-maximisation (EM) 

algorithm.37 Third, cases where laboratory and machine-learning methods agreed were assigned the 

corresponding coagulation state as their final classification. Finally, cases where the two methods 

disagreed, or the PTr sample had haemolysed, underwent expert review to determine a final 

classification. Two TIC experts independently reviewed the clinical, laboratory, and 

thromboelastometry data of each discrepant case. Disagreement was resolved by consensus with a 

third expert. Experts were blind to the EM algorithm result and structure of the predictive model. 

Inter-reviewer agreement was evaluated with the kappa-statistic and expert consistency was evaluated 

in a random sample of 50 patients with known coagulation status. 
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Clinical relevance of outcome 

The clinical relevance of TIC was assessed in terms of mortality, transfusion requirements, Damage 

Control Surgery (DCS) requirements, and duration of ICU and hospital admission. Massive 

transfusion was defined as ≥ 10 units of blood transfused in 24 hours.38 DCS was defined as 

immediate resuscitative surgery aimed at controlling active haemorrhage and restoring normal 

physiology. DCS procedures included resuscitative thoracotomy, emergency laparotomy, extra-

peritoneal pelvic packing, temporary vascular shunts, and primary (life-saving) amputations; but 

excluded emergency craniotomy, exploratory laparotomy in patients’ with normal physiology, wound 

debridement, and definitive fracture fixation. 

 

Model development 

The algorithm is a Bayesian Network (BN). BNs consist of two parts: a network structure that 

graphically describes the models’ variables and their relations, and a set of parameters that captures 

the strength of the relationships between variables.39 The network structure was learned from domain 

knowledge and the parameters were learned from ACIT data. Our method follows an iterative, step-

wise, supervised machine-learning approach that has previously been described 37, and is summarised 

below: 

 

Step 1) Causal structure 

The BN structure was learned from domain knowledge. This enabled an evidence-based structure 

consistent with current understanding of the causal mechanisms of TIC to be developed. Domain 

knowledge informed the choice of variables, relationships between variables, and states that each 

variable can take. Where required, latent (unobserved) variables were introduced to model important 

intermediate mechanistic steps.37 Logical and physiological constraints, defined by clinical 

knowledge, were applied to variables. 

 

Step 2) Predictors 
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Potential predictors were identified from domain knowledge and limited to information that is 

available at the time the model is intended for use – during the initial patient assessment (primary 

survey). Continuous predictors were not catagorised and data-driven methods of selecting predictors 

were not used. Predictors were measured on admission by ACIT investigators prior to knowledge of 

the participant’s outcome. 

 

Step3) Parameter learning 

In a BN, the strength of the relationship between variables is defined by a conditional probability 

distribution (CPD). The CPD of each of the relations determined in Step 1 were learned from the 

ACIT development dataset using an Expectation-Maximisation (EM) algorithm.40 37  

 

Step 4) Internal validation and model refinement 

Prognostic performance was estimated by ten-fold cross validation in the development dataset.41 

Cases with inaccurate predictions were identified and underwent expert review. As the BN is 

compatible with domain knowledge, the reasoning mechanisms can be described, and inaccurate 

predictions can offer valuable lessons for model refinement. Possible causes of inaccuracies were 

investigated to identify 1) potential opportunities to improve the models structure, 2) data errors, and 

3) limitations in the models scope. Where opportunities to improve the model were identified, the 

development process returned to Step 1, with any changes supported by evidence. Where potential 

data errors were identified, the original sources were examined to verify data accuracy. Limitations to 

the scope of the model were documented and are presented in the discussion section. 

 

External validation and performance measures 

The trained BN generates a continuous number between 0 and 1 that corresponds to the probability of 

developing TIC. Performance in new participants was assessed in the temporal and external validation 

cohorts. Predictor information, recorded by ACIT investigators during the primary survey, was 

entered into the model. No imputation was performed for unknown variables. Performance was 

assessed in terms of discrimination, calibration, and accuracy. Discrimination was measured using the 
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Area Under the Receiver Operating Characteristic curve (AUROC). Calibration was evaluated with 

the Hosmer-Lemeshow test and graphically using a calibration plot of observed against predicted 

values.42 Accuracy was evaluated with the Brier Score (BS) and the Brier Skill Score (BSS). 43, 44 The 

BS has a value between 0 (perfect model) and 1 (worst possible model) and the BSS has a range from 

- ∞ to 1, where a negative value indicates a worse prediction than the average probability, and 1 

indicates a perfect model.  

 

Sensitivity analyses 

We assessed the impact that each predictor variable has on the model’s probability calculations using 

one-way sensitivity analyses. Second, we compared the model’s performance to that of each 

individual predictor included in the model. Finally, we assessed the BN’s sensitivity to missing 

information in the combined validation cohort (temporal and external) by comparing overall 

performance to performance when each predictor variable, in turn, was omitted as an input. 

 

Statistical analysis  

Statistical analyses of the results were performed using GraphPad PRISM v6 (GraphPad Software 

Inc., San Diego, CA, USA) and R statistical software (version 2.15.2). The BN was developed with, 

and is computed by, AgenaRisk software (Agena, London, UK). Numerical data are reported as 

median with interquartile range (IQR) and categorical data as frequency (n) and percentage (%). The 

Mann–Whitney U test was used to compare numerical data and Fisher’s Exact test was used to 

compare categorical data. Outcome comparisons between groups are reported as Relative Risk (RR) 

with corresponding 95% Confidence Intervals (CI). Time from injury to death between groups was 

compared with the log-rank (Mantel-Cox) test, and results presented as Kaplan-Meier curves. 

AUROC was calculated and compared using the method described by Hanley and McNeil. 45 The area 

under correlated ROC curves was compared using a non-parametric method that accounts for the 

paired test design. 46 Statistical significance was set as a two tailed p-value of < 0.05.  
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Results 

The study population comprised 1091 injured patients, with 600 patients in the development cohort 

and 491 patients in the validation cohorts. Their median age was 37 (range: 15 - 95) years, 873 

(80.0%) were male, and 890 (81.6%) suffered a blunt mechanism of injury. The median time from 

injury to hospital admission was 76 (58 – 95) minutes. Baseline characteristics of the development 

and validation cohorts are presented in Table 1. Overall, 124 (11.4%) patients developed TIC. 

Characteristics of patients who developed TIC were significantly different to those with normal 

coagulation (SDC Table 1). With the exception of admission body temperature, missing data for 

clinical variables was minimal (Table 1). 

 

Outcome classification 

TIC classification was achieved by agreement between laboratory and EM methods in 978 (89.6%) 

patients and by expert review in the remaining 113 (10.4%) patients. The reasons for expert review 

were 1) no available PTr result due to haemolysis of the blood sample (66 cases, 6.1%) and 2) a 

discrepancy between the laboratory and EM classification (47 cases, 4.3%). Inter-reviewer agreement 

was excellent (κ = 0.94 [95% CI: 0.88 – 1.0]) and expert consistency was perfect. 

 

Clinical relevance of TIC 

Patients that developed TIC had substantially worse outcomes than those with normal coagulation 

(Table 2). Overall, patients that developed TIC were ten times more likely to die than those with 

normal coagulation, and the majority of deaths in coagulopathic patients occurred soon after injury 

(SDC Figure 1). Blood transfusion requirements, DCS requirements, ICU and hospital length of stay 

were all significantly greater in patients that developed TIC, compared to those with normal 

coagulation (Table 2). 
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Model development 

Domain knowledge describes five potential causes of TIC: tissue hypoperfusion, tissue injury, 

acidaemia, hypothermia, and haemodilution. These causal factors, and the relationships between 

them, formed the core structure of the prognostic model (Figure 1). Domain knowledge also describes 

several potential predictors for these causal mechanisms, which would be available during a standard 

primary survey. Fourteen predictor variables were incorporated in the final model and are defined in 

Table 3. The relationships between predictor variables, causal variables, and TIC are represented by 

the structure of the BN (Figure 2). Full details of the evidence supporting the BN’s structure are 

presented in the supplemental information (SDC Table 2A to E) and a web-based evidence browser 

(www.traumamodels.com). 33 

 

Internal validation 

The BN had excellent predictive performance in the development cohort (AUROC 0.93 (95% CI: 

0.90 to 0.95)). The predicted risk of TIC calibrated well with observed outcomes (Figure 2A) and the 

Hosmer-Lemeshow goodness-of-fit test result was non-significant (P = 0.32). The BN’s predictions 

were accurate, with a Brier Score of 0.06 (95% CI: 0.05 – 0.08) and a Brier Skill Score of 0.40 (95% 

CI: 0.30 – 0.51). All predictor variables contributed to the BN’s performance (SDC Figure 2). 

Continuous variables related to hypoperfusion – specifically blood gas variables (Base Deficit, 

Lactate, pH), systolic blood pressure and heart rate – had the greatest impact on the model’s result. 

 

External Validation 

The BN’s performance in new populations matched the performance in the development cohort 

(Figure 2 and Table 4). AUROC was 0.96 (95% CI: 0.94 – 0.99) in the temporal validation cohort, 

and 0.93 (95% CI: 0.85 – 1.0) in the external validation cohort (Figure 2C). The model remained 

accurate and well calibrated in both validation cohorts (Figure 2 and Table 4). 

 

Sensitivity analyses 
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The BN was a better predictor of TIC than any individual variable in the model (SDC Figure 3 and 4). 

Omission of each predictor in turn from the models inputs did not have any significant effect on 

overall prognostic performance (Figure 2D). Indeed, the omission of all blood gas variable inputs, the 

three strongest individual predictors, had minimal effect on the BN’s performance (overall 

performance: AUROC 0.95 (0.93 - 0.98) versus performance without blood gas information: AUROC 

0.94 (0.91 – 0.98); P = 0.286).  

 

Model presentation 

The BN is available at http://www.traumamodels.com. Entering predictor variable values allows the 

calculation of an individual patients risk of TIC.  

 

 

http://www.traumamodels.com/
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Discussion 

Injured patients that present to hospital with trauma-induced coagulopathy (TIC) can be difficult to 

identify, but are responsible for almost all early trauma deaths, and require immediate, resource 

intense, resuscitative interventions. This study validates the clinical relevance of TIC, and describes 

the development and validation of a predictive model that enables early and accurate estimation of the 

risk of TIC in an injured patient.  

The findings of this study have some important implications for trauma care. The model’s outputs 

could be used to guide and support rational decisions on the effective activation and implementation 

of damage control resuscitation and surgery.  Early identification of high-risk patients, potentially 

prior to hospital arrival, could be used to objectively activate in-hospital pathways and protocols, 

thereby minimising logistic delays in the provision of critical interventions such as blood component 

transfusions, emergency surgery, and interventional radiology. On a wider scale the model has the 

potential to underpin quality assurance within trauma systems e.g. audit of major haemorrhage 

protocol activations and damage control decisions, in addition to patient stratification in clinical trials 

to select at risk populations most likely to benefit from novel therapies for TIC. 

 

Three models have previously been developed to identify patients with TIC.47-49 Cosgriff and 

colleagues derived a simple score using four binary predictors (systolic blood pressure < 70mmHg, 

temperature < 34 °C, pH <7.1, and ISS > 25), and suggest that their score may assist damage control 

surgery decision-making. 47  A critical limitation of this score is that one of the variables, ISS, is 

unknown when the score is intended for use. More recently, two scores have been developed to 

predict TIC using prehospital information.48, 49 Mitra and colleagues score uses five predictors that are 

all available during the early phase of care (entrapment; systolic blood pressure < 100mmHg; 

temperature < 35 °C; suspected abdominal or pelvic injury; and chest decompression), while Peltan 

and colleagues score uses six predictors (age, injury mechanism, prehospital shock index ≥1, Glasgow 

Coma Score, and need for prehospital tracheal intubation and/or CPR. 48, 49 Both scores achieved only 

moderate performance in new patients, with sensitivity less than 30% when operated at the 
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recommended thresholds.49 Although these scores demonstrate that TIC is predictable from clinical 

information, none are accurate enough to reliably support clinical decision-making.26 The moderate 

performance may be the result of a number of methodological limitations (Table 5). First, simple 

scores may not be sufficiently powerful to accurately predict complex pathophysiological processes. 

Second, by limiting the number of predictors and dichotomising continuous variables, much of the 

prognostic potential of available information is lost.50, 51 Finally, although developed to predict 

patients with TIC, these scores actually predict a laboratory test result, and using an imperfect 

surrogate outcome may limit the clinical relevance of the score. 52  

 

The findings of this study have implications for methodology used to develop prognostic models for 

use in other emergency settings. Our results support the use of domain knowledge to reduce over-

fitting and develop evidence-based models with better generalisability. An advantage of Bayesian 

networks is that they provide a platform that facilitates the incorporation of a broad range of evidence, 

not just data, in model development. 37, 39 Furthermore, we have shown that Bayesian networks can 

produce robust models that are able to use a variable selection of predictor information, and capable 

of handling missing or uncertain information. This is likely to be a meaningful advantage in 

emergency settings, and overcomes a major limitation of traditional prognostic models, which require 

accurate and complete predictor information to function. 39 

 

The scope of our model may be limited in certain circumstances. First, although the models structure 

was learned from knowledge, the parameters were learned from data. The ACIT study provides an 

optimal source of data for developing a TIC prediction model. However, certain study exclusions 

applied, and the model may not be accurate in these populations. Patients on anticoagulation 

medication or with significant liver disease were excluded, and the model is not designed to predict 

coagulation abnormalities resulting from these causes. Patients who could not be recruited within two 

hours of injury were also excluded. Although the model includes predictors for all known causes of 

TIC, accuracy may be affected following prolonged periods of resuscitation. Haemodilution is an 

important iatrogenic cause of TIC but patients administered more than two litres of prehospital fluid 



 13 

were excluded from ACIT. Published evidence was used to learn the relationship for higher volumes8, 

however, accuracy in these circumstances has not been validated.  

Second, during development, subgroups of injured patients in which the model performed less well 

were identified. Although the model accurately predicts coagulopathy in the majority of patients with 

a head injury, it underestimates the degree of coagulopathy in patients with catastrophic head injuries 

(Head AIS≥5, extensive intracranial bleed, brain herniation). Indeed, patients with catastrophic head 

injuries, and no evidence of major extracranial injury, account for over 80% of false negative 

predictions. The mechanisms of coagulopathy following traumatic brain injury are uncertain.53 As the 

model is derived from existing knowledge, the incomplete understanding of the causes of 

coagulopathy in patients with isolated severe brain injuries is reflected in the model’s performance in 

this subgroup of injured patients.  Finally, patients who suffered an assault, with a relatively minor 

injury, but presented with a marked metabolic acidosis following extreme physical exertion, also 

resulted in some inaccurate predictions (false positive). In these patients the model was unable to 

accurately differentiate the acute physiological changes resulting from decreased oxygen delivery in 

compensated haemorrhagic shock from those caused by increased oxygen requirements following 

extreme physical exertion.  

 

This study has some limitations. First, a BN’s predictive performance depends on how accurately its 

structure and parameters approximate reality. Our BN’s structure was informed by existing 

knowledge. However, our current understanding of the causes and mechanisms of traumatic 

coagulopathy is not complete. This may explain the model’s underperformance in certain subgroups, 

such as patients with catastrophic head injuries, where knowledge of the mechanism of coagulopathy 

is weak. The excellent performance in the majority of injured patients, however, provides evidence 

that existing knowledge of the key causes of TIC is reliable. Network parameters were learned from 

data, which was collected in a standardised way as part of a prospective observational study 

investigating TIC. This represents the optimal source of data for developing a prognostic model, as it 

limits missing data and information bias. However, one variable (temperature) had a large amount of 

missing data, which may introduce bias to its parameter estimate. 
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Second, the model’s performance was validated in a civilian trauma population, where all patients 

were treated in well-resourced specialist trauma centres and therefore its performance in military 

casualties or less well-resourced settings is not known. Third, the model is designed to enable early 

identification of coagulopathy risk to support rapid activation of targeted haemostatic interventions. 

The model was not designed to measure the response of the coagulation system to these interventions, 

and has not been validated for this purpose. Near-patient tests, such as thromboelastography, are able 

to describe specific coagulation function defects, and may be better suited to assess the response to 

therapy and tailor damage control interventions accordingly. 54 Last, although the Bayesian network 

provides fundamental information to support rational damage control decisions, the impact of this 

information on decision-making, and ultimately patient outcomes, has not been assessed. Further 

research is warranted to examine the impact of using the model on clinical decisions, patient outcome, 

and cost-effectiveness of care, compared to standard trauma care. 

 

In conclusion, this study demonstrates that an individual patients risk of TIC can be reliably predicted 

from available clinical information using a Bayesian Network. This information may be used to 

support early and rational decisions on the use of damage control interventions and guide rapid and 

efficient activation of damage control resuscitation protocols, which in turn, may prevent an 

established coagulopathy and lead to improved outcomes. 
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Figure legends 

 

 

Figure 1: Structure of the Bayesian Network predictive model. Black variable represents the 

predicted outcome. Grey (latent) variables represent the five identified causal factors, and white 

variables represent predictors associated with the causal factors. HR, Heart Rate; SBP, Systolic Blood 

Pressure; BD, Base Deficit; °C, measured temperature in degrees Celsius; Fluid, volume of 

prehospital resuscitation fluid administered; GCS, Glasgow Coma Scale; MOI, Mechanism Of Injury; 

Temp, Temperature. 

 

Figure 2: Discrimination and calibration of the trauma-induced coagulopathy (TIC) predictive model. 

The calibration plot shows the relationship between ideal (dashed line) and observed (solid line) 

predicted values in the development cohort (A) and the combined (temporal and external) validation 

cohort (B). The rug plot along the bottom demonstrates the distribution of predicted probabilities. The 

circles with 95% confidence intervals indicate observed frequencies by decile of predicted 

probability. The Receiver-Operating-Characteristic (ROC) Curves show the relationships between 

true positive and false positive TIC predictions in the development, temporal, and external validation 

cohorts (C). The forest plot compares the performance of the model at predicting TIC in the combined 

(temporal and external) validation cohort when each of the models predictors in turn was omitted as 

inputs (D). Performance was measured by calculating the Area Under the ROC curve with 95% 

Confidence Intervals. 
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Supplementary Digital Content 1: Table comparing baseline characteristics of 1091 injured patients 

according to their coagulation function. 

 

Supplementary Digital Content 2: Figure illustrating Kaplan-Meier estimates of the probability of 

survival for 1091 injured patients with either normal coagulation or trauma-induced coagulopathy. 

The p-value was calculated using the log-rank (Mantel-Cox) test. 

 

Supplementary Digital Content 3: Tables (2A-E) presenting the evidence supporting the causal 

structure of the trauma-induced coagulopathy prediction model. 

 

Supplementary Digital Content 4: Figure illustrating one-way sensitivity analyses of the impact 

individual predictor variables have on the models result. Analyses were performed using data from 

the development cohort. The dotted line represents the prior probability of trauma-induced 

coagulopathy in the development population. 

 

Supplementary Digital Content 5: Figure illustrating the Area under the Receiver Operating 

Characteristic (ROC) curve with 95% Confidence Intervals for trauma-induced coagulopathy 

predictions in 491 injured patients (combined validation cohort) using individual predictors and the 

full predictive model. The area under the ROC curve was calculated for each continuous and ordinal 

predictor in the model. 

 

Supplementary Digital Content 6: Figure illustrating the Odds Ratios with 95% Confidence 

Intervals (CI) for trauma-induced coagulopathy in 491 injured patients (combined validation cohort), 

according to individual predictors and the full predictive model. An Odds Ratio was calculated for 

each binary predictor in the model. The full model was operated at the threshold that achieved 90 
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percent sensitivity for trauma-induced coagulopathy in the development cohort. FAST, Focused 

Assessment with Sonography for Trauma; MOI, Mechanism Of Injury. 

  



 23 

Table 1: Baseline characteristics of the study populations. 

Characteristic 
Missing 
Data (%) 

Development cohort 
(N=600) 

Validation cohort 

Temporal 
(N=373) 

External 
(N = 118) 

Age – years (range) <1 35 (16 – 95) 38 (16 – 93) 45 (16 – 92)§ 

Gender - male 0 486 (81.0) 309 (82.8) 78 (66.1)§ 

Mechanism of Injury - Blunt 0 475 (79.2) 299 (80.2) 116 (98.3)§ 

Pre-Hospital fluid (ml) <1 0 (0 – 500) 0 (0 – 100) 100 (0 – 350) 

Primary Survey:     

Respiratory Rate (bpm)* 1.3 20 (16 – 24) 18 (15 – 20)§ 17 (14 – 22) 

Heat Rate (bpm) <1 95 (76 – 118) 87 (75 – 104)§ 84 (74 – 108)§ 

Systolic Blood Pressure (mmHg) 1.9 130 (107 – 148) 134 (116 – 149) 136 (114 – 150) 

Body Temperature (°C) 39.8 35.8 (35.1 – 36.5)  36.1 (35.7 – 36.7)§ 36.0 (35.3 – 36.6) 

Glasgow Coma Scale* <1 15 (11 – 15) 15 (13 – 15)§ 15 (10 – 15) 

Suspected Haemothorax <1 89 (14.9) 49 (13.2) 13 (11.1) 

Suspected unstable pelvic fracture <1 58 (9.7) 31 (8.3) 23 (20)§ 

Suspected long bone fracture <1 132 (22.2) 89 (23.9) 28 (24.4) 

FAST - Positive <1 49 (8.2) 26 (7.0) 15 (12.7) 

Baseline Blood Gas Analysis:     

pH 5.2 7.35 (7.30 – 7.40) 7.36 (7.31 – 7.39) 7.34 (7.25 – 7.39) 

Lactate 6.2 2.1 (1.3 – 3.6) 2.3 (1.4 – 3.5) 2.6 (1.6 – 3.5) 

Base Deficit 5.6 1.8 (-0.2 – 4.4) 0.6 (-1.5 – 3.3)§ 1.6 (-0.7 – 5.1) 

Baseline Thromboelastography:     

EXTEM CA5 (mm) 7.6 44 (38 – 49) 44 (39 – 50) 46 (42 – 52)§ 

EXTEM MCF (mm) 7.6 61 (56 – 65) 63 (59 – 68)§ 63 (57 – 68)§ 

FIBTEM MCF (mm) 7.6 14 (10 – 17) 15 (11 – 20)§ 16 (11 – 20)§ 

Baseline laboratory values:     

PTr 6.1 1.1 (1.0 – 1.1) 1.1 (1.0 – 1.1)§ 1.0 (1.0 – 1.1)§ 

APTT (seconds) 7.2 23 (22 – 26) 23 (22 – 26) 27 (25 – 30)§ 

Haemoglobin (g/dL) 4.4 13.9 (12.4 – 14.9) 14.1 (12.9 – 15.0)§ 13.7 (12.2 – 14.8) 

Platelet count (x109 /L) 5.0 231 (193 – 272) 219 (182 – 264)§ 245 (209 – 288)§ 

Injury severity:     

Injury Severity Score 2.4 16 (9 – 29) 13 (5 – 25)§ 17 (9 – 29) 

Head AIS ≥ 3 2.8 173 (28.8) 89 (25.9) 33 (28.0) 

Chest AIS ≥ 3 2.8 257 (42.8) 106 (30.8)§ 50 (42.4) 

Abdomen AIS ≥ 3 3.4 62 (10.3) 44 (12.8) 15 (12.7) 

Extremity AIS ≥ 3 2.7 198 (33.0) 100 (29.1) 52 (44.1)§ 
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Outcomes:     

Trauma-Induced Coagulopathy 0 71 (11.8) 39 (10.5) 15 (12.7) 

Mortality 0 71 (11.8) 28 (7.5) § 21 (17.8) 

Data presented as number (%) or median (IQR) unless otherwise stated. 

* Admission measurement or, if patient arrived intubated, pre-hospital measurement prior to sedation and intubation. 

§  The characteristic differs significantly (p < 0.05) compared with the development cohort. 

FAST, Focused Assessment with Sonography for Trauma; CA5, Clot Amplitude at 5 minutes; MCF, Maximum Clot 

Firmness; PTr, Prothrombin Time ratio; APTT, Activated Partial Thromboplastin Time; AIS, Abbreviated Injury Score. 
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Table 2: Comparison of outcomes and resuscitation resource requirements in 1091 injured 

patients stratified by coagulation status. 

 

Outcome 
Missing 
Data (%) 

Trauma-Induced 
Coagulopathy 

(N=124) 

Normal 
Coagulation 

(N=967) 
Relative Risk 

(95% CI) P-Value 

In-hospital mortality:      

< 24-hour 0 41 (33.1) 9 (0.9) 35.5  (17.7 – 71.3) < 0.0001 

Overall 0 67 (54.0) 53 (5.5) 9.9  (7.2 – 13.4) < 0.0001 

Emergency intervention in first 24 hours:    

Transfusion <1 114 (91.9) 193 (20.0) 4.6  (4.0 – 5.3) < 0.0001 

Massive transfusion <1 54 (43.5) 11 (1.1) 38.3  (20.6 – 71.2) < 0.0001 

DCS 4.8 67 (55.8) 31 (3.4) 16.6  (11.3 – 24.2) < 0.0001 

Length of stay (days)*      

Critical Care 0 13 (3 – 21) 0 (0 – 2) - < 0.0001 

Hospital 0 32 (19 – 50) 8 (2 – 20) - < 0.0001 

Data presented as number (%) or median (IQR). Risk Ratios are for the coagulopathic group, as compared 
with the normal coagulation group. * Median length of stay of survivors. DCS, Damage Control Surgery 
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Table 3: Definitions of predictor variables in the trauma-induced coagulopathy model. 

 

Predictor Variable Type of Node Definition 

Heart rate Continuous Heart rate in beats per minute 

Systolic blood pressure Continuous Systolic Blood Pressure in mmHg 

Temperature Continuous Body temperature in °C  

Haemothorax Boolean Present: Clinically suspected, based on examination or CXR 

findings. 

Absent: Not suspected 

FAST result Boolean Positive: Free peritoneal fluid identified. 

Negative: No free peritoneal fluid or investigation not clinically 

indicated. 

Unstable pelvic fracture Boolean Present: Clinically suspected, based on examination or PXR 

findings. 

Absent: Not suspected 

Long bone fracture Boolean Present: Clinically suspected fracture of femur, tibia or 

humerus. Traumatic amputation proximal to ankle or elbow. 

Absent: Not suspected 

GCS Ranked Glasgow Coma Score on admission or prior to intubation 

Lactate Continuous Admission Arterial or Venous Blood Gas Analysis 

Base Deficit Continuous Admission Arterial or Venous Blood Gas Analysis 

pH Continuous Admission Arterial or Venous Blood Gas Analysis 

Mechanism of Injury Boolean Blunt / Penetrating 

Energy Boolean High-Energy: High-velocity GSW; fall > 20 feet (6 meters); 

Pedestrian or cyclist versus vehicle > 20mph; Road Traffic 

Collision with mechanical entrapment, ejection from vehicle or 

death in same passenger compartment; Entrapment under a 

train or vehicle; Crush injury; Blast injury. 

Low-Energy: Stab; low-velocity GSW; and blunt injury excluding 

injuries above. 

Volume of fluid 

administered 

Continuous Volume of crystalloid or colloid fluid administered in ml. 

CXR, Chest X-Ray; PXR, Pelvic X-Ray; GSW, Gun Shot Wound 
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Table 4: Predictive performance measures for the trauma-induced coagulopathy model in the 

development, temporal validation, and external validation cohorts.  

 

Performance Measure 
Development 

Cohort 

Validation Cohort 

Temporal External 

AUROC 0.93 (0.90 - 0.95) 0.96 (0.94 - 0.99) § 0.93 (0.85 - 1.0) 

Calibration slope 0.96 (0.77 - 1.15) 1.30 (0.95 - 1.65) 1.15 (0.62 - 1.68) 

Calibration intercept 0.18 (-0.15 - 0.51) 0.62 (0.18 - 1.06) 0.42 (-0.29 - 1.12) 

Hosmer-Lemeshow Statistic 9.3 (P = 0.32) 11.0 (P = 0.20) 8.7 (P = 0.37) 

Brier Score 0.06 (0.05 – 0.08) 0.05 (0.03 – 0.07) 0.06 (0.03 – 0.09) 

Brier Skill Score 0.40 (0.30 – 0.51) 0.48 (0.37 – 0.59) 0.45 (0.26 – 0.64) 

§ Performance differs significantly (p < 0.05) compared with the development cohort. 

AUROC, Area Under the Receiver Operating Characteristic Curve. 
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Table 5: Comparison of key steps in model development and validation, and associated Risk of Bias 

(ROB), for existing Trauma Induced Coagulopathy (TIC) prediction models and the TIC Bayesian 

network. 

 Cosgriff 47 COAST 48 PACT 49 TIC-BN Risk of Bias (ROB)a associated with each methodological 
step (adapted from the PROBAST ROB tool 51) 

Model development      
Outcome      

Definition PT > 2x normal and 
PTT > 2x normal 

INR > 1.5 or  
aPTT > 60 sec 

INR > 1.5 INR > 1.2 and  
E-M clustering b 

Expert consensus c 

Conventional coagulation tests, such as PT, aPTT, and INR, 
have important limitations when used to estimate TIC and 
may result in errors in outcome classification. Errors in 
outcome classification can bias performance estimates.  

Clinical relevance Not assessed Assessed Assessed Assessed No matter how accurate a predictive model, it will have 
little clinical value if it is not developed to predict a relevant 
patient outcome.  

Participants      
Data source Transfusion registry 

(SC) 
Trauma registry (SC) Trauma registry (MC) Prospective cohort 

study (MC) 
High ROB when models are derived from existing registry or 
retrospective datasets. Low ROB when development data is 
collected as part of a prospective cohort study.  

Sample size (n)  58 1680 1963 600 High ROB when models are derived form small datasets. 
Study population Severely injured 

adults requiring 
massive blood 
transfusion 

Adult major trauma 
patients 
(ISS>15/surgery/ITU) 

Severely injured 
adults (died/ surgery/ 
ITU) 

Adult trauma patients 
who meet local 
criteria for trauma 
team activation 

High ROB if study participants are not representative of the 
target population. 

Predictors      
Predictor selection Data-driven 

(Univariable then 
Multivariable 
analyses) 

Data-driven 
(Univariable then 
Multivariable 
analyses) 

Data-driven 
(Univariable then 
Multivariable 
analyses) 

Knowledge-driven 
(Domain knowledge) 

High ROB when predictors are selected on the basis of 
univariable analysis prior to multivariable modeling. Low 
ROB when selection is based on existing knowledge of 
established predictors. 
 

Number of predictors 4 5 6 14  
Handling of continuous 
predictors 

Dichotomized Categorized Dichotomized No conversion High ROB when continuous predictors are dichotomized or 
categorized. 

Available at time model 
intended for use? 

No Yes Yes Yes High ROB if predictors are unlikely to be available at the 
time the model is intended for use. 

Prediction model      
Model/Algorithm type Logistic regression Simple score Weighted score Bayesian Network Simple scores and algorithms may not be sufficiently 

powerful to accurately predict complex pathophysiological 
processes. 

Handling of missing data 
during parameter 
learning 

Unclear Exclusion of cases 
with missing data 

Multiple imputation  
 

No exclusions High ROB when cases with missing data are omitted from 
analysis. 

Ability of model to 
handle missing predictor 
information? 

No No No Yes Missing predictor information is common in real-world 
cases and may significantly compromise model 
performance. 

Validation of Predictive Performance 
Discrimination Not assessed AUROC (I,T,E) AUROC (I,E) AUROC (I,T,E) 

Brier Scored (I,T,E) 
Brier Skill Scored (I,T,E) 

High ROB if both discrimination and calibration are not 
evaluated. 

Calibration Not assessed Hosmer-Lemeshow 
test (T,E) 

Calibration plot (E) 
Hosmer-Lemeshow 
test (I,E) 

Calibration plot (I,T,E) 
Calibration slope 
(I,T,E) 
Calibration intercept 
(I,T,E) 

High ROB if both discrimination and calibration are not 
evaluated. 
Hosmer-Lemeshow test has limited power to asses poor 
calibration. High ROB if only HL test is used to asses 
calibration 
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Hosmer-Lemeshow 
test (I,T,E) 

a Risk of bias occurs when shortcomings in study design, conduct, or analysis could lead to systematically distorted estimates of a model’s predictive performance. b Expectation-Maximization 

clustering using individual clinical, laboratory and thromboelastometry information. c  Expert consensus of outcome classification in cases with discrepancy between laboratory and clustering 

methods. d Brier Score and Brier Skill Score are measures of overall predictive performance that combine features of discrimination and calibration to measure how close, on average, 

predicted outcomes are to actual outcomes. (SC), Single Centre; (MC), Multicentre; PT, Prothrombin Time; PTT, Partial Thromboplastin Time; aPTT, activated Partial Thromboplastin Time; INR, 

International Normalised Ratio; E-M, Expectation-Maximization; ISS, Injury Severity Score; ITU, Intensive Treatment Unit; AUROC, Area Under the Receiver Operating Characteristic curve; (I), 

Internal validation; (T), Temporal validation; (E), External validation 

 
 



 30 

Figure 1 
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Figure 2 
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