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ABSTRACT
Background: A Rohingya refugee camp in Cox’s Bazar, Bangladesh experienced a

large-scale diphtheria epidemic in 2017. The background information of previously

immune fraction among refugees cannot be explicitly estimated, and thus we

conducted an uncertainty analysis of the basic reproduction number, R0.

Methods: A renewal process model was devised to estimate the R0 and ascertainment

rate of cases, and loss of susceptible individuals was modeled as one minus the sum

of initially immune fraction and the fraction naturally infected during the epidemic.

To account for the uncertainty of initially immune fraction, we employed a Latin

Hypercube sampling (LHS) method.

Results: R0 ranged from 4.7 to 14.8 with the median estimate at 7.2. R0 was positively

correlated with ascertainment rates. Sensitivity analysis indicated that R0 would

become smaller with greater variance of the generation time.

Discussion: Estimated R0 was broadly consistent with published estimate from

endemic data, indicating that the vaccination coverage of 86% has to be satisfied to

prevent the epidemic by means of mass vaccination. LHS was particularly useful in the

setting of a refugee camp in which the background health status is poorly quantified.

Subjects Computational Biology, Mathematical Biology, Epidemiology, Global Health,

Infectious Diseases

Keywords Corynebacterium diphtheriae, Diphtheria, Epidemiology, Outbreak, Basic reproduction

number, Bangladesh, Refugee, Vaccination, Mathematical model, Statistical estimation

INTRODUCTION
Diphtheria, a bacterial disease caused by Corynebacterium diphtheriae, is a vaccine-

preventable disease. Symptomatic patients initially complain sore throat and fever.

Additionally, a gray or white patch causes the “croup,” blocking the airway and causing a

barking cough. Due to widespread use of diphtheria–tetanus–pertussis (DTP) vaccine
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globally, the incidence has steadily declined over time, and thus, diphtheria is

commonly perceived as a disease of pre-vaccination era. Nevertheless, sporadic cases and

even epidemics of the disease have been yet reported especially in politically unstable areas,

and many cases have been considered as arising from susceptible pockets of the vulnerable

population (Rusmil et al., 2015; Hosseinpoor et al., 2016; Sangal et al., 2017).

In 2017, multiple diphtheria outbreaks were reported in refugee camps, including those

in Yemen and Bangladesh (World Health Organization (WHO), 2017a). Of these, a

Rohingya refugee camp in Bangladesh, which is temporarily located in Cox’s Bazar,

experienced a large-scale diphtheria epidemic. As of December 26, 2017, the cumulative

number of 2,526 cases and 27 deaths were reported (World Health Organization (WHO),

2017a). To interrupt chains of transmission, emergency vaccination has been conducted

among children since December 12, 2017, achieving the overall coverage greater than 90%

by the end of 2017 (World Health Organization (WHO), 2018). Due to vaccination

effort and other countermeasures, including contact tracing and hospital admission of

cases, the epidemic has been brought under control, with incidence beginning to decline

by the end of December 2017 (World Health Organization (WHO), 2017a).

Considering that diphtheria has become a rare disease in industrialized countries,

epidemiological information on model parameters that govern the transmission dynamics

has become very limited, and thus, it is valuable to assess how transmissible diphtheria

would be through the analysis of the recent outbreak data. The basic reproduction

number, R0, is interpreted as the average number of secondary cases that are produced

by a single primary case in a fully susceptible population, acting as the critical measure

of the transmissibility. To date, an explicit epidemiological estimate of R0 for diphtheria

has been reported only by Anderson & May (1982): using a static modeling approach

to age-dependent incidence data with an assumption of the endemic equilibrium, R0

was estimated as 6.6 in Pennsylvania, 1910s and 6.4 in Virginia and New York from 1934

to 1947. Subsequently, a few additional modeling studies of diphtheria took place

(Kolibo & Romaniuk, 2001; Sornbundit, Triampo & Modchang, 2017; Torrea, Ortega &

Torera, 2017), but none of these offered an empirical estimate of R0.

Here we analyze the epidemiological dataset of diphtheria in Rohingya refugee

camp, 2017, aiming to estimate R0 in this particular epidemic setting. Given that the

epidemic occurred among refugees, we explicitly account for uncertainties associated

with unknown background information, including the fraction of previously immune

individuals and ascertainment rate of cases.

MATERIALS AND METHODS
Epidemiological data
The latest epidemic curve was extracted from the report of the World Health Organization

(WHO) Regional Office for South East Asia (SEARO) (World Health Organization (WHO),

2017a). Figure 1 shows the latest available epidemic curve. As of December 26, 2017 (the

latest date of observation), a total of 2,526 cases have been reported. Cases consist of

(i) confirmed cases: cases reported as positive for C. diphtheriae by multiplex assay,

(ii) probable cases: cases with upper respiratory tract illness with laryngitis or
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nasopharyngitis or tonsillitis AND sore throat or difficulty swallowing and an adherent

membrane (pseudomembrane) OR gross cervical lymphadenopathy, and (iii) suspected

cases: any case with a clinical suspicion of diphtheria, including cases that are unclassified

due to missing values (World Health Organization (WHO), 2017b). Prior to December 11,

2017, cases satisfied only the condition of suspected cases. The definition was improved on

and after December 12 (World Health Organization (WHO), 2017c), enforcing to count

mainly probable cases, while not restricting the reporting of suspected cases. For this reason,

cases reported by December 11 are considered to have been likely over-ascertained

compared with cases that were reported later under improved case definition. Mass child

vaccination started on December 12, and according to the administrative coverage, greater

than 90% vaccination coverage was achieved by December 30 (World Health Organization

(WHO), 2018). Vaccine-induced immunity requires at least 7–14 days to become effective,

and moreover, the reporting delay was assumed to be about four days (based on additional

analyses; results not shown). For these reasons, the dataset from December 23–26 was

discarded as the number of cases may be influenced by emergency vaccination and also

biased by the reporting delay.

Modeling methods
To formulate the epidemiological model, here we mathematically capture the

epidemiological process of secondary transmission using R0 and the serial interval,

Figure 1 Daily incidence of diphtheria cases in Rohingya refugee camp, 2017. Daily number of new

cases as extracted from the latest open data (World Health Organization (WHO), 2017a). The vertical

axis represents the total of confirmed, probable and suspected cases. By December 11, 2017, the count

represents suspected cases. On and after December 12, 2017, the case definition was improved, and

probable cases replaced the majority. Full-size DOI: 10.7717/peerj.4583/fig-1
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i.e., the time from illness onset in the primary case to illness onset in the secondary case.

We assume that secondary transmission does not take place before illness onset.

According to a classical study by Stocks (1930) in the United Kingdom (UK), the

time interval from first to second diphtheria cases in the household revealed a bimodal

shape. Following Klinkenberg & Nishiura (2011), the first peak corresponds to an

independent infection in the community and the second peak reflects within-household

transmission. As one of peak time-lags in the observed time interval was observed on

day 8, we assumed that the mean serial interval was eight days, and we imposed an

assumption that the coefficient of variation (CV) of the serial interval distribution

was 50%, and later varied it from 25% to 75% as part of the sensitivity analysis.

To capture the epidemiological phenomena of reproduction, it has been shown

that the renewal process can capture the serial stochastic dependence structure

(Nishiura, 2010). Let it be the number of new cases on day t. gt represents the

distribution of the serial interval. To describe the time-dependent incidence it on day t,

we have

it ¼ R0st
Xt�1

t¼1

it�tgt; (1)

where st represents the fraction of susceptible individuals on day t. The renewal process of

this type is not original to the present study and has been applied to other settings including

real-time epidemic modeling studies (Asai & Nishiura, 2017; Dinh et al., 2016; Ejima &

Nishiura, 2018; Endo & Nishiura, 2015; Nishiura et al., 2010, 2016; Tsuzuki et al., 2017). It

should be noted that the incidence it includes both symptomatic and asymptomatic cases. Let

ct be the reported number of cases on calendar day t. Supposing that only the fraction at

among the total number of infections are diagnosed and reported, ct satisfies

it ¼ ct

at

; (2)

where at is modeled as a function of t. Because the case definition was improved from

December 12, 2017 onward, the ascertainment rate likely varied around that time. Namely,

we set at = a1 for time by December 11 and a2 on December 12 and later. We assumed that

only the ascertainment rate changed as a function of time, and also that R0 and depletion of

susceptible individuals were unaffected by time.

We model the fraction susceptible st on day t in the following way. Let n represent the

previously immunized fraction so that only fraction (1 - n) of the population is

susceptible at the beginning of the epidemic. In addition to the previously immune

fraction, st decreases when natural infection takes place. Suppose that the total population

size was N, st is written as

st ¼ 1� n�

Pt�1

y¼1

cy
ay

N
: (3)
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We assume that N is equal to the population size of epidemic area within Rohingya

refugee camp as 579,384 persons (Banerji & Ahmed, 2017). Accordingly, the renewal

equation is written as

Eðct ;R0; n; a1; a2Þ ¼ atR0 1� n�

Pt�1

y¼1

cy
ay

N

0
BBB@

1
CCCA

Xt�1

t¼1

ct�t

at�t
gt (4)

where t in the right-hand side indicates the time since infection (or the so-called

“infection-age”). We assume that ct follows a Poisson distribution. The likelihood to

estimate u consisting of the parameters R0, n, and at is derived as

Lð�; cTÞ ¼
YT
t¼1

EðctÞct expð�EðctÞÞ
ct !

� �
; (5)

where T is the latest time of observation (i.e., December 22 in our case study) and

cT = (c1, c2, : : : , cT).

Uncertainty and sensitivity analyses
While we specified unknown parameters as R0, n, and at, it is expected that R0 is

correlated with initially immune fraction n and also at. Thus, it is vital to quantify R0

while accounting for the uncertainty of other model parameters. In the present study, n
was estimated through uncertainty analysis, while at was estimated as a step function

governed by two parameters, a1 and a2. Uncertainty in parameter values can be addressed

by randomly sampling the uncertain parameter value from probability distributions

(Gilbert et al., 2014). Here we use the Latin Hypercube sampling (LHS) method (Sanchez

& Blower, 1997) in which a symmetric triangular distribution of n was assumed to be in

the range from 0.0 to 0.7; the health survey of Rohingya population indicated that overall

30.8% of children had received no vaccinations (Guzek et al., 2017), and the remaining

69.2% receives at least a single immunization, which is not necessarily against diphtheria,

thus, vaccination coverage for diphtheria should be less than 69.2%. Thus, we expect

that the actual coverage is nearby the mid-point of the range from 0.0 to 0.7. In addition,

we examined the sensitivity of R0 to variations in the length of the serial interval.

Ethical considerations
The present study analyzed data that is publicly available. As such, the datasets used in our

study were de-identified and fully anonymized in advance, and the analysis of publicly

available data without identity information does not require ethical approval.

RESULTS
Figure 2 shows univariate distributions of estimated parameters R0 and at based on LHS

(n = 1,000) of parameter n from 0 to 0.70 with the peak at 0.35. a1 Reflects ascertainment

by December 11, 2017, while a2 shows the same on and after December 12. R0 took the

minimum and maximum estimates at 4.7 and 14.8, respectively, with the median estimate
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at 7.2. The distribution was skewed to the right with the mode at 6.7. Excluding lower and

upper tails, 950 samples (95%) of R0 (or what it can be assumed as the 95% tolerance

intervals) were in the range of 5.0–12.3. Distributions of a1 and a2 were also right

skewed. a1 Ranged from 0.007 to 0.021 with the median 0.010, while a2 ranged from

0.003 to 0.011 with the median 0.005. Lower and upper 95% tolerance intervals of a1 and

a2 were (0.007, 0.017) and (0.004, 0.009), respectively. A decline of at was observed,

because the incidence was supposed to have grown more during the early phase (i.e. by

December 11) given the estimated epidemiological parameters. In practical sense, the

timing coincided with the involvement of contact tracing practice enforced by the

Médecins Sans Frontières.

Figure 3 shows the distributions of two estimated parameters in two-dimensional

spaces and also the comparison between observed and predicted epidemic curve. As can

be expected from Eq. (4), R0 and n were positively correlated given an epidemic curve.

Specifically, as n increases R0 must also increase to achieve an identical epidemic curve.

Similarly, R0 was positively correlated with ascertainment rates, a1 and a2. While the

ascertainment might have been lowered due to the stricter case definition, the small

estimate of a2 can also indicate that a substantial fraction of undiagnosed individuals

existed and the susceptible fraction was then gradually depleted in the population. The

observed and predicted epidemic curves are compared in the right lower panel of Fig. 3.

While the model is kept simple with four unknown parameters, the predicted epidemic

curve overall captured the observed pattern.

Sensitivity of R0 to the variation in the serial interval is shown in Fig. 4. We varied the

CV of the serial interval distribution from 25% to 75%. When the CV was 25%, the

median and mode of R0 from LHS were 9.4 and 8.2, respectively. When the CV was 75%,

the median and mode of R0 were estimated to be 5.7 and 5.2, respectively. That is, as

the variance increases, the estimate of R0 decreases. However, the variation in R0 induced

by the CV was smaller than the uncertainty associated with the initially immune fraction.

Figure 2 Estimated values of the basic reproduction number and case ascertainment rate. Univariate

probability distribution of (A) the basic reproduction number, (B) a1 by December 11 and (C) a2 by

December 12 from Latin Hypercube sampling (n = 1,000). During the Latin Hypercube sampling, the

vaccination coverage, n, has a symmetric triangular distribution ranging from 0.0 to 0.7.

Full-size DOI: 10.7717/peerj.4583/fig-2
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DISCUSSION
The present study estimated R0 of diphtheria in the Rohingya refugee camp, explicitly

accounting for case ascertainment and previously immune fraction. Since previously

immune fraction n of the refugee population was not precisely known, uncertainty

analysis of R0 was conducted with an input parameter assumption for n employing the

LHS method. R0 ranged from 4.7 to 14.8 with the median estimate at 7.2. To our

knowledge, the present study is the first to statistically estimate R0 of diphtheria from

epidemic data. For the statistical estimation of R0, the renewal process model was

employed, which has an advantage to handle the right-censored data during the course

of an epidemic, compared with other available methods for completely observed data,

e.g., Nishiura (2010).

Estimated median R0 was broadly consistent with the value ranging from 6 to 7 as

indicated by Anderson & May (1982) based on a static model for endemic data that uses

the age-dependent incidence in the UK. We have shown that the frequently quoted

estimate agrees well with dynamically estimated R0 from the refugee camp in the present

day. Assuming R0 = 7, to control diphtheria by means of mass vaccination, the coverage

greater than 86%must be satisfied. Since our study focused on uncertainty and sensitivity

analyses, the exact estimate of R0 cannot be pointed out. However, despite the uncertainty

Figure 3 Estimated correlations in each pair of estimated parameters, and comparison between

observed and predicted epidemic curves. (A), (B) and (C) represent a two-dimensional plot of esti-

mated parameters. During the Latin Hypercube sampling (n = 1,000), the vaccination coverage, n, has a
symmetric triangular distribution ranging from 0.0 to 0.7. (D) shows the comparison between observed

and predicted epidemic curves. Bars constituting the epidemic curve show the observed data, while dots

indicate predicted epidemic curve from Latin Hypercube sampling (n = 1,000).

Full-size DOI: 10.7717/peerj.4583/fig-3
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regarding n in this population, we estimated a distribution of R0 consistent with

previous estimates. While the mode of distribution for R0 was 6.7, the validity of this value

depends on the validity of our prior distribution of n, which was not supported by any

published evidence of this refugee population. Nevertheless, a Demographic and Health

Survey data of the Rohingya population in Myanmar indicated a close value from 40% to

50% as the coverage of DTP (Ministry of Health and Sports, 2017). Ascertainment

rates were jointly estimated only by using the epidemiological case data and the

population size.

What we have shown in the present study is that when we have an access to not only the

initial growth rate of the epidemic but also the incidence data around the time at which

peak incidence is observed, R0 and susceptible fraction can potentially be jointly

quantified. Even without explicit estimate of the initially immune fraction, we have shown

that an indication of the possible value of R0 can be obtained through uncertainty analysis.

LHS appeared to be particularly useful in the setting of refugee camp in which the

background health status is not well quantified (Helton & Davis, 2002; Nishiura et al.,

2017). LHS can offer probabilistic distribution of the outcome measure, R0 in our case,

and this method appeared to be particularly useful when one or more uncertain input

information exist (Elderd, Dukic & Dwyer, 2006; Coelho, Codeço & Struchiner, 2008;

Samsuzzoha, Singh & Lucy, 2013; Gilbert et al., 2014). While Bayesian modeling has

replaced LHS to some extent of uncertainty analysis as it can also offer posterior

distributions of even uncertain parameters (Elderd, Dukic & Dwyer, 2006;

Figure 4 Sensitivity of R0 with respect to the serial interval. R0 was estimated with variable values of

the coefficient of variations (CV) of the serial interval. Mean serial interval was fixed at eight days.

Variations of R0 along the vertical axis reflects the uncertainty associated with the initially immune

fraction v of the Rohingya refugee population. Full-size DOI: 10.7717/peerj.4583/fig-4
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Coelho, Codeço & Struchiner, 2008), there could be an issue of identifiability when two or

more parameters are evidently correlated, e.g., as anticipated between R0 and n in our

model (4). In such an instance, we cannot be sure if the limited epidemic data with the

Bayesian estimation method can offer identifiable distributions for all parameters, and

then LHS can remain to act as a useful tool for uncertainty analysis.

The estimated small ascertainment rate during the epidemic is considered as reflecting

the time-dependent diagnostic practice at a local level. In fact, the small ascertainment

rate can lead us to observing the low case fatality risk of diphtheria in the Cox’s Bazar that

has been estimated to be small (27/2,526 = 1%), although the right censoring would of

course matter for the real-time interpretation (Nishiura et al., 2009; Mizumoto et al.,

2015). Nevertheless, cases could have died in the community unnoticed with low

specificity of the case definition, and this is endorsed as a possible reason for observing the

small number of deaths by the World Health Organization (WHO) (2017d). A follow-up

study in this regard should be conducted in the future.

Several limitations must be noted. First, our model rested on a homogeneous

mixing assumption. No heterogeneous patterns of transmission, including contact

patterns and age-dependency were taken into account due to shortage of information.

In addition, the time-dependent heterogeneity, including the reduced transmission

potential due to contact tracing and rapid hospitalization, was not explicitly taken into

account due to insufficiency of the data. If there were any additional indications or

datasets that would allow explicit quantification of the effective reproduction number

from December 12, that could give additional insights into the success of control

measures. Second, for similar reasons, no spatial information was explicitly incorporated

into the model. Third, a little more realistic features of refugee population, such as the

impact of migration on the epidemic were unfortunately discarded in the present study.

Similarly, one could investigate how overcrowding and malnutrition in the deprived

population would help enhance the spread of diphtheria, given sufficient data backup

from epidemiological investigations.

While these features need to be explicitly quantified in the future, we believe that

our study adds an important piece of evidence to the literature on diphtheria. The

transmissibility of diphtheria in the refugee population was estimated to be consistent

with that in an endemic setting and mass vaccination must satisfy at least the coverage of

86% to halt the major epidemic of diphtheria.

CONCLUSION
The present study estimated R0 of diphtheria in the Rohingya refugee camp, explicitly

accounting for case ascertainment and previously immune fraction. Since previously

immune fraction n of the refugee population was not precisely known, uncertainty

analysis of R0 was conducted with an input parameter assumption for n employing the

LHS. R0 ranged from 4.7 to 14.8 with the median estimate at 7.2. LHS can offer

probabilistic distribution of the outcome measure, and this method appeared to be

particularly useful in the setting of refugee camp in which the background health status is

poorly quantified.
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