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Antimicrobial susceptibility testing (AST) performed according to defined guidelines is
important to identify resistance and to predict the clinical success or failure of specific
antibiotic therapy. However, these guidelines do not cover all physiological conditions
that can have a tremendous impact on in vivo resistance. In this study, we tested
the susceptibility of thirteen mcr-1-positive Escherichia coli strains against colistin,
one of the last resort antibiotics for treating multi-drug resistant pathogens, in media
recommended for ASTs as well as – physiologically more relevant – in human serum
and artificial urine (AU). Minimal inhibitory concentration (MIC) values in heat-inactivated
human serum were similar to those in cation-adjusted Mueller-Hinton broth (CAMHB),
but reduced in native serum for almost all strains that could grow in this media. In AU
MIC values for mcr-1 positive E. coli were increased significantly up to 16-fold compared
to that in CAMBH, which did not apply to the colistin-susceptible E. coli strains tested.
Although different growth media could affect the MIC of colistin alone, their impact on the
synergistic effect of the combination with the antiviral drug azidothymidine was minimal.
The higher divalent cation concentration combined with acidic pH values is most likely
responsible for the increased MIC values of the mcr-1 harboring E. coli strains tested
against colistin in AU compared to that in CAMHB. Antimicrobial susceptibility screening
procedures for colistin using CAMHB only could lead to an underestimation of resistance
under different physiological conditions. Therefore, not only pharmacokinetic but also
pharmacodynamic studies in urine are as important as in serum or plasma.
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INTRODUCTION

Gram-negative bacteria, especially Enterobacteriaceae are the
major cause of community and hospital acquired urinary tract
infections (UTI). Due to a worldwide increasing number of
multidrug-resistant (MDR) Gram-negative bacteria combined
with a lack of development of new antibiotics, physicians
are turning to older antibacterials to treat antibiotic-resistant
infections. Thus, polymyxins like colistin, which was discarded
because of toxicity concerns, are now seen as last line defense
(World Health Organization [WHO], 2011).

Unfortunately, appreciable emergence of resistance to
colistin has been shown recently (Paterson and Harris, 2016).
Modifications of the lipid A moiety of lipopolysaccharide
(LPS), which result in an inefficient binding of colistin, can be
attributed either to a chromosome-encoded machinery or to
the plasmid-transferred mobilized colistin resistance (mcr-1)
gene (Baron et al., 2016; Cannatelli et al., 2016; Lui et al., 2016).
MCR-1 is a member of the phosphoethanolamine transferase
enzyme family catalyzing the addition of phosphoethanolamine
to lipid A (Lui et al., 2016). Since the development of new
antibiotics is decreasing, it is mandatory to find solutions to
break the resistance to or enhance the antimicrobial activity
of older antibiotics by co-administration of appropriate
drugs, otherwise not used for antibiotic therapy. Recently,
we have demonstrated that colistin in combination with the
antiviral drug azidothymidine enhanced the colistin activity
against colistin-resistant Enterobacteriaceae (Hu et al., 2018;
Loose et al., 2018).

Antimicrobial susceptibility testing (AST) is important
to predict the clinical outcome of an antibiotic therapy
against particular pathogenic microorganisms. To ensure the
reproducibility of the results, these tests are performed using
guidelines established by the Clinical and Laboratory Standard
Institute (CLSI) and the European Committee on Antimicrobial
Susceptibility Testing (EUCAST). These guidelines recommend
AST using cation adjusted Mueller-Hinton broth (CAMHB)
as growth medium and define a bacterial inoculum of
∼5× 105 CFU/mL (Clinical and Laboratory Standards Institute,
1999, 2015). However, the susceptibility of bacteria to antibiotics
are influenced by many factors such as bacterial inoculum size,
composition of the medium (e.g., pH, ion concentrations) and
host factors (e.g., serum factors) (Yang et al., 2014; Li et al., 2017).
A recent study showed an increase of colistin Minimal inhibitory
concentration (MIC) values for colistin-resistant strains by
enhancing the calcium concentration in CAMHB (Gwozdzinski
et al., 2018). But so far no data of MIC determinations of colistin
in physiologically more relevant media such as urine or human
serum have been published.

In this study we determined the minimal inhibitory and
bactericidal concentrations (MIC/MBC) of colistin using
different media, including artificial urine (AU) and human
serum, with different inoculum size against mcr-1-positive
as well as colistin-susceptible E. coli strains. In addition, we
investigated whether these different media and inoculum sizes
also affect the synergistic effect of azidothymidine on colistin
antimicrobial activity.

MATERIALS AND METHODS

Bacterial Strains
Thirteen clinical Escherichia coli isolates harboring the colistin
resistance gene mcr-1 as well as twelve colistin-susceptible
E. coli strains (one reference strains, E. coli ATCC25922
and eleven clinical isolates) were included in this study
(Supplementary Table S1).

Determination of Minimal Inhibitory and
Bactericidal Concentrations (MIC/MBC)
Minimal inhibitory concentration (MIC) and Minimal inhibitory
bactericidal concentrations (MBC) determinations were
performed according to the CLSI- and EUCAST-Standards
(Clinical and Laboratory Standards Institute, 1999, 2015;
Clinical laboratory testing, 2006). Broth microdilution assay
was used for determination of the MIC of colistin sulfate
(Sigma-Aldrich, Darmstadt, Germany) in CAMHB (Sigma-
Aldrich), IsoSensitest broth (ISB) (Oxoid, Wesel, Germany),
native and heat-inactivated (30 min at 56◦C) human serum
(Sigma-Aldrich), as well as AU, which contains [g/L] CaCl2 –
0.49, MgCl2 × 6H2O – 0.65, NaCl2 – 4.6, Na2SO4 – 2.3, Na2
citrate 2H2O – 0.65, Na2C2O4 – 0.02, KH2PO4 – 2.8, KCl –
1.6, NH4Cl – 1.0, Urea – 25.0, gelatine – 5.0 and Tryptone
soya broth – 10.0; pH 6.1 (Stickler et al., 1999). Two final
inocula were used: 105 CFU/mL and 106 CFU/mL, confirmed
by plating, ranged from 3.4–8.5 × 105 CFU/mL and from
1–5 × 106 CFU/mL, respectively. The MIC was defined as the
lowest concentration inhibiting visible growth (OD600 < 0.1)
after incubation at 37◦C for 20 ± 2 h. For determination of
MBCs, in a second step 3 µl were transferred onto IsoSensitest
agar supplemented with 5% blood (Oxoid) using a one-time
inoculator (Dr. Brinkmann Floramed, Nürtingen, Germany).
The plates were incubated overnight at 37◦C. The number
of colonies subsequently grown was used to determine the
bactericidal endpoint. MBC was defined as a >99.9% (>3-log)
reduction of the initially inoculated colony counts (0.01%
threshold for inoculum 105/106 CFU/mL: 1–2/10–12 colonies).
MIC/MBC determinations were performed at least three times.

For chelating divalent cations in CAMHB and in AU 1 mM
EDTA (ethylenediaminetetraacetic acid; Sigma-Aldrich) was
added 30 min prior to colistin sulfate addition.

Checkerboard Assays
A two-dimensional, two-agent broth microdilution checkerboard
titration method was used to study the interaction between
colistin sulfate and azidothymidine (AZT; Sigma-Aldrich)
(Eliopoulos and Moellering, 1996). The final inoculum,
confirmed by plating, ranged from 3.1–6.5 × 105 CFU/mL
or 1.0–5.3 × 106 CFU/mL. After 20 ± 2 h of incubation
at 37◦C, the MIC and MBC of azidothymidine and colistin
sulfate were determined. Checkerboard determinations were
performed only once.

Interactions between azidothymidine and colistin sulfate
were then evaluated using the fractional inhibitory/bactericidal
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concentrations indices (6FIC/6FBC) calculated as the sum of
the FIC or FBC as follows:

6FIC = FICCS + FICAZT

FIC – MIC of the substance in combination/MIC of the
substance alone.

Correlation between 6FIC/6FBC and the effect of the
combination according to EUCAST definition (European
Committee for Antimicrobial Susceptibility Testing [EUCAST]
of the European Society of Clinical Microbiology and Infectious
Diseases [ESCMID], 2000): Synergy − ≤ 0.5, additive >0.5–1,
indifference >1 to < 2 and antagonism ≥2.

Statistical Analysis
MIC and MBC values are reported as median values. High
off-scale MIC results were converted to the next highest
concentration and low off-scale results were left unchanged
for comparisons. Concentration data were transformed
to compensate for the doubling dilution series by log2
transformation prior to statistical analysis. Differences between
MIC or MBC values were identified following analysis of variance
(ANOVA) and post hoc analysis of significance for each of the
variables. MIC/MBCs within ±1 log2 dilution (two-fold) were
regarded as identical. Statistical calculations were performed by
using Microsoft excel 2016.

RESULTS

Minimal Inhibitory and Bactericidal
Concentrations
The median of MIC determinations of colistin performed
according to EUCAST and CLSI guidelines in CAMHB
with an inoculum of 105 CFU/mL (Clinical and Laboratory
Standards Institute, 1999, 2015; Clinical laboratory testing, 2006)
revealed a range between 4–16 mg/L for the mcr-1-positive
strains classifying them as colistin-resistant according to the
EUCAST definition (there are no CLSI criteria for colistin and
Enterobacteriaceae) (The European Committee on Antimicrobial
Susceptibility Testing, 2017). Colistin MIC values for the non-
mcr-1 strains ranged from 0.25–1 mg/L classifying them as
colistin-susceptible (Table 1). The median MBC values in
CAMHB with an inoculum of 105 CFU/mL hardly differ to
the obtained MIC values for colistin-resistant as well as –
susceptible strains (Table 1). Using IsoSensitest broth (ISB),
another traditional medium used for antimicrobial testing,
showed an slight colistin MIC increase for the colistin-resistant,
but not the susceptible, strains. Since patients with symptomatic
UTI usually show bacterial loads greater than 105 CFU/mL
and since inoculum size can affect MIC values of antibiotics,
we also performed MIC/MBC determinations with inocula of
106 CFU/mL. There were no differences between median MIC
and MBC values for the mcr-1-positive strains between using
inoculum of 105 and 106 CFU/mL. In contrast, increasing
inoculum led to increased MIC values in ISB for the colistin-
susceptible strains (Table 1).

Since all E. coli strains used were isolated mostly from blood
and urine, we were interested to determine MIC values under
these physiological conditions. Therefore, AU and human serum
were used. The MIC values for the mcr-1-positive strains in
AU were significantly increased up to16 fold (4 log2) compared
to CAMHB for both inocula tested. In contrast, for colistin-
susceptible E. coli strains the MIC values remained almost
unchanged in AU compared to CAMHB (Table 2). Median MIC
values in heated serum were almost equal to those in CAMHB
for all strains tested. Furthermore increasing the inoculum size
had no effect on the MIC values in AU and heated serum
for the mcr-1 positive E. coli strains tested, but resulted in a
slight but significant increase of the MIC values of the colistin-
susceptible strains in AU (Table 2). Not all of the strains used
were able to grow constantly in native human serum. Therefore,
MIC determinations in native serum were performed with lower
number of strains. Median MIC values of the mcr-1 containing
E. coli (except for E. coli Af49), growing in native human serum,
were clearly decreased as compared to those in CAMHB. Only
the MIC value for E. coli Af49 was comparable in native serum
(4 mg/L) to that in CAMHB (8 mg/L). In contrast, MIC values
were only slightly reduced in native serum for colistin-susceptible
strains with the lower inocula (Table 2).

The E. coli strains tested showed a similar growth rate in
AU compared to CAMHB (Supplementary Figure S1). Thus,
a slower bacterial growth due to a lack of nutrients in the
AU can be ruled out as a reason for the different MIC values.
Since divalent cations are known to influence the activity of
colistin (D’Amato et al., 1975; Gwozdzinski et al., 2018), we were
interested in whether the increased MIC values in AU resulted
from higher concentrations of Ca2+/Mg2+ (4.4/3.2 mM vs.
0.5/0.4 mM) compared to CAMHB. Supplementation of CAMHB
with Ca2+ and Mg2+ to a final concentration of 3 mM increased
the median MIC values eight-fold for all three mcr-1-positive
strains tested (Table 3). In addition, adding of 1 mM EDTA to
chelate divalent cations had no effect in CAMHB but in AU
it diminished MICs 16-fold reaching values equal to CAMHB
for mcr-1-positive strains. In contrast, cation-supplementation
did not affect MIC values for the colistin-susceptible E. coli
tested and EDTA addition led to no reduction of MIC values
(Table 3). Furthermore, we determined the effect of difference
in pH between AU (pH 6.1) and CAMHB (pH 7.3) by adjusting
the pH to 7.3 and 6.1, respectively. For the mcr-1-positive
strains, reducing the pH of CAMHB increased the MIC values,
which was further enhanced by cation supplementation and was
abolished by adding of EDTA comparable to AU. Changing of
the pH or chelating cations by adding EDTA in AU did not
affect MIC values of colistin for the colistin-susceptible E. coli
strains (Table 3).

Checkerboard Assays to Determine the
Combination Effect of Colistin and
Azidothymidine
Recently we showed that a combination of colistin with the
antiviral drug azidothymidine, which has also antibacterial
properties (Elwell et al., 1987), was synergistic for the treatment
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TABLE 1 | Median MIC and MBC values of colistin in CAMHB and ISB with different inocula.

CAMHB 105 CFU/mL CAMHB 106 CFU/mL ISB 105 CFU/mL ISB 106 CFU/mL

MIC [mg/L] MBC [mg/L] MIC [mg/L] MBC [mg/L] MIC [mg/L] MBC [mg/L] MIC [mg/L] MBC [mg/L]

Colistin-susceptible E. coli

ATCC 25922 1 1 2 2 0.5 2 2 4

UTI89 0.5 0.5 1 1 0.5 1 1 2

CHD3 0.5 0.5 1 1 1 2 4 4

CHD4 0.5 0.5 1 1 0.5 2 2 2

CHD5 0.5 0.5 1 1 0.5 2 2 2

CHD6 0.5 0.5 1 2 0.5 2 1 2

CHD7 0.25 0.5 1 1 0.25 1 1 2

CHD8 0.5 0.5 1 1 0.5 1 2 2

CHD10 1 1 2 2 0.5 4 4 4

CHD11 0.5 0.5 1 1 0.5 2 2 2

CHD12 0.5 1 1 2 0.5 2 2 2

CHD16 1 1 1 1 0.5 1 2 2

Mean (range) 0.5 (0.25–1) 0.5 (0.5–1) 1 (1–2) 1 (1–2) 0.5 (0.25–0.5) 2 (1–4) 2 (1–4)a 2 (2–4)

mcr-1-positive E. coli

Af23 8 8 8 8 16 16 8 8

Af24 8 16 16 16 32 32 16 64

Af31 6 16 8 16 16 16 16 32

Af40 8 16 8 32 16 16 16 32

Af45 8 16 8 16 32 32 16 64

Af48 6 8 8 16 16 32 16 16

Af49 8 16 8 8 32 32 16 32

CDF1 4 16 8 32 16 32 8 16

CDF2 16 16 16 32 32 32 32 32

CDF6 8 16 4 32 24 48 16 64

CDF8 8 16 8 64 16 24 16 32

S115 8 8 8 8 16 64 16 64

PS1 8 8 8 8 24 48 16 64

Median (range) 8 (4–16) 16 (8–16) 8 (8–16) 16 (8–32) 16 (8–32) 32 (8–64) 16 (8–32) 32 (8–64)

≥4 fold (± 2 log2) difference with p < 0.0001: acompared to 105 CFU/ml in same media.

of colistin-resistant E. coli (Hu et al., 2018; Loose et al.,
2018). Since FIC indices calculations are based on MIC values
measured by microbroth dilutions in CAMHB with an inoculum
105 CFU/mL (Hu et al., 2018), we were interested to ask
whether using a higher inoculum or different growth media
could have an influence on the synergistic activity between
colistin and azidothymidine. Using CAMHB and an inoculum
of 105 CFU/mL, the combination with azidothymidine reduced
the colistin MIC50/MBC50 value for the mcr-1-positive strains
by four-fold. Furthermore, based on the 6FICmin values the
combination of colistin with azidothymidine was synergistic for
46% and additive for the remaining strains tested. The results
were similar to the previous study (Hu et al., 2018). Based on
the 6FBCmin values synergistic activities were shown even for
69% of the tested strains (Table 4). Also with an increased
inoculum and/or in ISB and AU, the MIC50 values of colistin
were reduced by two to four-fold and the MBC50 values even
by four to eight-fold with the combination of azidothymidine
and colistin as compared to colistin alone (Table 4). Based on
6FICmin/6FBCmin, however, the combination of colistin with

azidothymidine was only slightly less synergistic in CAMHB/ISB
with an inoculum of 106 CFU/ml as compared to an inoculum of
105 CFU/mL in CAMHB.

DISCUSSION

According to EUCAST and CLSI guidelines, our study
demonstrated that all the mcr-1-positive E. coli strains tested
are resistant to colistin as confirmed in previous studies (Poirel
et al., 2016; Hu et al., 2018; Loose et al., 2018). We showed for
the first time, that MIC values for the mcr-1-positive strains,
but not colistin-susceptible strains, significantly increased
up to 16-fold in AU compared to CMHB. This increased
resistance depends most likely on the cationic concentrations
and pH of the medium.

It is well known that increasing concentrations of divalent
cations antagonize the activity of colistin (D’Amato et al., 1975).
In addition our data showed that higher concentrations of
divalent cations in AU increased the MIC values of mcr-1 positive
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TABLE 2 | Median MIC values [mg/L] of colistin in artificial urine and human serum.

Artificial urine Native serum Heat inactivated serum

105 CFU/mL 106 CFU/mL 105 CFU/mL 106 CFU/mL 105 CFU/mL 106 CFU/mL

Colistin-susceptible E. coli

ATCC 25922 2 4 0.25 0.25 2 2

UTI89 0.5 2 nd 0.25 1 1

CHD3 0.5 2 nd nd 1 1

CHD4 0.5 2 nd nd 0.5 1

CHD5 0.25 2 0.125 1 1 1

CHD6 0.5 2 0.0625 0.5 0.5 2

CHD7 0.5 1 nd nd 0.25 1

CHD8 0.5 2 0.0625 1 0.25 2

CHD10 1 4 0.5 2 2 4

CHD11 0.5 1 nd nd 1 1

CHD12 0.5 4 0.125 2 1 4

CHD16 0.25 1 0.5 2 1 1

Median (range) 0.5 (0.25–2) 2 (1–4)b 0.13 (0.063–0.5) 1 (0.25–2) 1 (0.25–2) 1 (1–4)

mcr-1-positive E. coli

Af23 64 64 0.0625 0.5 8 16

Af24 >64 64 nd nd 16 16

Af31 64 64 nd nd 8 8

Af40 >64 >64 0.125 nd 8 8

Af45 >64 64 nd 0.25 16 8

Af48 64 64 nd nd 8 8

Af49 64 64 4 4 8 16

CDF1 64 64 0.5 1 8 8

CDF2 >64 >64 nd nd 32 32

CDF6 >64 64 nd 0.5 16 16

CDF8 64 >64 0.5 0.25 8 8

S115 >64 >64 nd 0.5 16 16

PS1 >64 64 nd 0.5 8 8

Median (range) >64 (64−>64)a 64 (64−>64)a 0.5 (0.063–4) 0.5 (0.25–4) 8 (8–32) 8 (8–32)

≥4 fold (± 2 log2) difference with p < 0.0001: acompared to corresponding inoculum in CAMHB; bcompared to 105 CFU/ml in same media; nd – not definable.

TABLE 3 | Median MIC (range) in cation supplemented and/or pH adjusted CAMHB and artificial urine.

MIC [mg/L]

CAMHB pH 7.3 CAMHB pH 6.1 Artificial urine pH 6.1 Artificial urine pH 7.3

3 mM Ca2+/Mg2+ 3 mM Ca2+/Mg2+

+ 1mM EDTA +1 mM EDTA + 1 mM EDTA +1 mM EDTA

CS-susceptible 0.5 1 0.5 0.5 0.5 1 0.25 0.25 0.5 0.25

E. coli (n = 3) (0.5–2) (0.5–2) (0.5–2) (0.5–2) (0.5–4) (1–2) (0.25–2) (0.25–2) (0.5–2) (0.25–1)

mcr-1-positive 4 32a 32a 24a >64a,b 6b,c 64a 4d 32a 16

E. coli (n = 3) (4–8) (16–64) (8–64) (16–32) (64−>64) (2–16) (32−>64) (2–16) (4–64) (2–32)

≥4 fold (± 2 log2) difference with p < 0.01 a – compared to CAMHB pH 7.3. b – compared to CAMHB pH 6.1. c – compared to CAMHB pH 6.1 + 3 mM Ca2+/Mg2+.
d – compared to artificial urine pH 6.1.

colistin-resistant strains. Since MIC values of colistin-susceptible
strains were not affected, it can be assumed that increased cation
concentrations do not generally inhibit the antimicrobial activity
of colistin. Recently, Gwozdzinski et al. showed an increase
of colistin MIC values in calcium enhanced (5 mM) CAMHB

compared to normal CAMHB for mcr-1 harboring colistin-
resistant E. coli, but not colistin-susceptible Enterobacteriaceae
strains. Furthermore, they showed that MIC values increased
in calcium enhanced media after a colistin-susceptible strain
was transformed with different mcr-1-containing plasmids
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TABLE 4 | MIC and MBC range. MIC/MBC50 and MIC/MBC90 values for colistin before and after combination with azidothymidine in different media/with
different inoculum.

MIC (mg/L) MIC (mg/L) in combination with
azidothymidine

Results of checkerboard titration assays
based on minimum 6FIC

MIC range MIC50 MIC90 MIC range MIC50 MIC90 Synergistic Additive Indifferent

CAMHB/105 (n = 13) 4–8 4 8 0.25–2 1 2 6 7 0

CAMHB/106 (n = 13) 4–16 8 16 0.5–8 4 8 2 11 0

ISB/106 (n = 13) 8–32 32 32 1–32 8 8 4 7 2

AU/106 (n = 4) 64−>64 64 >64 4–32 16 32 2 2 0

MBC (mg/L) MBC (mg/L) in combination with
azidothymidine

Results of checkerboard titration assays
based on minimum 6FBC

MBC range MBC50 MBC90 MBC range MBC50 MBC90 Synergistic Additive Indifferent

CAMHB/105 (n = 13) 4–16 16 16 0.25–8 2 4 9 4 0

CAMHB/106 (n = 13) 4–64 32 64 1–8 4 8 7 5 1

ISB/106 (n = 13) 8–64 32 64 1–32 8 8 9 3 1

AU/106 (n = 4) 128–256 128 256 8–32 16 32 4 0 0

(Gwozdzinski et al., 2018). This supports our assumption that
increased cation concentrations influence the mcr-1 mediated
colistin resistance. Despite the relatively small number of
strains used in this study, the mcr-1 positive E. coli strains
represent a heterogeneous group including different plasmids,
sequence types and source of isolation (Supplementary Table
S1). Irrespective of these differences, each individual mcr-1
positive strain tested, but none of the colistin-susceptible strains,
showed a marked MIC increase of 6–16 fold in AU compared
to CAMHB, leading to the assumption that the calcium-
induced mcr-1 mediated colistin resistance is independent of
the different plasmids groups or sequence types. This was also
indicated by Gwozdzinski et al. (2018). Since plasmid-encoded
mcr-1 polymyxin resistant has also been identified in other
Enterobacteriaceae as Klebsiella pneumoniae and Enterobacter
cloacae, a calcium-induced resistance could also be assumed
for these strains. However, this must be further investigated,
as well as a possible cation- and pH-dependence of the other
plasmid-borne colistin resistance genes, such as mcr-2, mcr-3,
and mcr-4.

Resistance of the mcr-1-positive strains is mediated by 4′-
phosphoethanolamine modification of the lipid A on LPS
masking the negatively charged phosphate groups on the bacterial
surface, which are involved in interactions with colistin. This
modification is catalyzed by the MCR-1 enzyme (Pristovsek
and Kidric, 1999; Lui et al., 2016). On the one hand, divalent
cations may act as cofactors during lipid A modification
as for a Ca2+-induced phosphoethanolamine transferase in
E. coli (Kanipes et al., 2000). On the other hand, increased
cation levels could result in positively charged modified LPS.
Furthermore, acidification of CAMHB hand in hand with
increasing cation concentrations resulted in increased MIC
values for the mcr-1-positive strains. Thus, the lower pH of
the AU could additionally promote the reduction of the net
negative charge of lipid A, effectively diminishing the electrostatic
colistin-bacteria interaction. In addition, low pH may enhance

the phosphoethanolamine addition to lipid A as was shown
for Cronobacter sakazakii (Liu et al., 2016). Concentrations
of colistin, necessary to eliminate mcr-1-positive strains, are
much higher under physiologically relevant conditions in AU.
Assumptions that antibiotic concentrations reached in urine are
high enough to eradicate even resistant pathogens are often based
only on pharmacokinetic, but not pharmacodynamic results
using MIC values obtained in CAMHB only. Pharmacokinetic
parameters, like AUC (area under the concentration-time
curve)/MIC and Cmax (maximum concentration of the drug
in urine)/MIC ratios will often be much less favorable
under physiologically relevant conditions. Therefore, not only
pharmacokinetic but also pharmacodynamic studies in urine are
as important as in serum or plasma.

Antibiotic susceptibility increases notably in native serum for
almost all strains, including those that are able to grow in serum.
Serum contains more than thirty proteins of the complement
system, which is the first line of defense and is essential for a rapid
elimination of invading pathogens. An activated complement
cascade triggers the formation of a ring-structured pore (the
membrane-attack complex), which increases the permeability
of the bacterial membrane (Walport, 2011). Weakening the
bacterial membrane integrity by the complement system, even
without killing the bacteria, could enhance the effectiveness
of colistin. Thus, lower concentrations of colistin are usually
necessary to kill bacteria in native serum. On the other hand, lipid
A modifications to evade complement system could encourage
the binding of colistin leading to an increased antimicrobial
activity. For instance, one strategy to evade the attack of the
complement system and thus being able to grow in serum is a
switch to less acylated lipid A structures in the LPS (Matsuura,
2013). Coincidently, it was shown that K. pneumoniae strains
with under-acylated lipid A are more susceptive to polymyxin
B binding (Velkov et al., 2013). Susceptibility of colistin in heat
inactivated human serum, by which the complement system is
destroyed, did not differ from those in CAMHB.
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Results of our checkerboard testing confirmed the recent
findings (Hu et al., 2018), namely that the combination of
colistin with azidothymidine can reduce the MIC of colistin by
about 2 to 32 fold for mcr-1-positive E. coli in CAMHB. The
antibacterial activity of azidothymidine can be traced back to the
inhibition of the replicative DNA-synthesis after incorporation
of azidothymidine-triphosphate (Olivero, 2016). The membrane
permeabilization by colistin (Katz et al., 2003) could increase the
entry of azidothymidine into the bacterial cells. The beneficial
effect of this combination is even more pronounced when testing
the effect for the MBCs. Therefore, additional evaluation of MBC
data could be an advantage to show actual bacterial killing.
Although the increase of the inoculum size or changing the
growth media to ISB or AU affected the MIC of colistin alone,
they only had a small influence on the synergistic effect of the
colistin and azidothymidine combination. It should be noted,
however, that the colistin MICs/MBCs in AU, even when reduced
by the combination with azidothymidine, are still higher in AU
than those of colistin alone in CAMHB.
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