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A newly-developed normal mode model of laser dynamics in a generalised array of waveg-

uides is applied to extend the spin-flip model (SFM) to pairs of evanescently-coupled spin-

VCSELS. The effect of high birefringence is explored, revealing new dynamics and regions

of bistability. It is shown that optical switching of the polarisation states of the lasers may

be controlled through the optical pump and that, under certain conditions, the polarisation

of one laser may be switched by controlling the intensity and polarisation in the other.
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I. INTRODUCTION

Recent years have seen a growth of research interest in the nonlinear dynamics of arrays of

vertical cavity surface-emitting lasers (VCSELs) and in potential applications of these effects.

Notable advances include work on parity-time symmetry and non-Hermiticity associated with the

control of gain and loss in neighbouring VCSEL cavities [1–4]. Progress has also been rapid in

the understanding of ultrahigh-speed resonances that offer the prospect of very high frequency

modulation of coupled VCSELs and nanolasers [5–8]. Additional insight into optical coupling

between adjacent elements of a two-dimensional VCSEL array has been achieved by careful analysis

of the effects of varying the injected current independently on each array element [9]. The coupling

was shown to provide extra optical gain for array elements and thus lead to additional output

power of the array due to in-phase operation [9, 10], reduced thresholds of individual elements

[9, 11] and even cause unpumped elements to lase [9].

In almost all the above examples of recent progress, modelling of the array behaviour based on

coupled mode theory (CMT) has been used to explain experimental results and develop improved

understanding of fundamental effects. Conventional CMT describes only the amplitude and phase

of the electric field of the photons and the total concentration of the electrons. Whilst this is

adequate for modelling many phenomena occurring in laser arrays, it cannot easily be adapted to

include the effects of optical polarisation or electron spin that are often relevant in vertical cavity

lasers. For this purpose, the spin flip model (SFM) [12] is well-established as the method of choice,

and has been successfully extended to model mutually coupled VCSELs by adding delayed optical

injection terms [13]. This approach has been successfully applied recently to proposed applications

of mutually coupled VCSELs in secure key distribution based on chaos synchronization [14] and

reservoir computing based on polarization dynamics [15].

Spin-VCSELs, where the polarisation and dynamics can be controlled by the injection of spin-

polarised carriers, have recently attracted considerable attention since very high-speed (>200 GHz)

modulation has been demonstrated [16] by applying mechanical stress to increase the birefringence.

In the present contribution we explore some of the dynamics predicted for coupled pairs of spin-

VCSELs based on a newly-developed theoretical treatment [17] that extends the SFM to apply to

VCSEL arrays. This approach, which uses normal modes rather than CMT, accounts accurately

for instantaneous coupling via evanescent fields or leaky waves. It is therefore able to model the

details of the optical guidance in the spin-VCSELs and effects of varying the spacing between them,

thus going beyond the description offered by adding optical injection terms to the conventional
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SFM. The next section gives a brief summary of this treatment leading to a set of rate equations.

Subsequent sections deal with results, discussion and conclusions.

II. DOUBLE-GUIDED STRUCTURE

In Ref. [17], a general set of rate equations for any number of coupled lasers with an arbitrary

waveguide geometry and any number of optical modes, including the polarisation was derived

from Maxwell’s equations and the optical Bloch equations. In this model, the geometry of the

waveguides is introduced through the introduction of overlap factors, defined by

Γ
(i)
kk′ ≡

∫
(i)

Φk(r)Φk′(r) dr (1)

where k and k′ label the modes, Φk(r) is the spatial profile of the kth mode and the integral is

over the (i)th guide. In fact, (1) represents a simplified model for which the gain is assumed to be

uniform over a guide and zero elsewhere. The mathematical model of Ref. [17] allows for a more

general treatment, although this would greatly increase the complexity of the numerical solution.

In an earlier work [18], we showed that the dynamics of coupled lasers in slab guides could be very

sensitive to these overlap factors and stressed their importance.

FIG. 1. Circular guides of radius a and edge-to-edge separation d. In this work, we set a = 4 µm and allow

d to be variable.

In the present work, we consider the particular case of double-guided structures consisting of

two identical circular guides of radius a = 4 µm, as illustrated in Fig. 1. Note that in this paper,
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we take the edge-to-edge separation to be d (rather than 2d as in Ref. [17]). We choose values

of the cladding refractive index n2 and the refractive index in the guides n1 such that, for the

operating wavelength of λ = 1.3 µm, there are only two supported modes with even (for the lower

order mode) and odd parity. We shall refer to these as the symmetric and anti-symmetric modes

and denote them by k = s, a respectively. The values we choose are n2 = 3.4 and n1 = 3.400971.

By restricting the number of solutions in this way with such small differences in refractive index,

the evanescent tails of the optical modes tend to extend into the cladding regions to a significant

extent.

An slightly more intuitive sketch of the guiding arrangement, illustrating how such a guiding

configuration relates to VCSELs is shown in Fig 2. This extends the view of Fig. 1 into the

propagation direction of the light and indicates, schematically, the active regions. To keep the

diagram simple, no attempt has been made to add in further detail such as the Bragg stack

mirrors. Due to their equivalence at this level of abstraction, we shall use the terms ‘guide’ and

‘laser’ interchangeably throughout the text.

Limiting the number of modes to two, the notation required to denote the overlap factors may

be specialised. Denoting the guide by the superscript (i), Γ
(i)
ss is the overlap of the symmetric

modes, Γ
(i)
aa the overlap of the antisymmetric modes and Γ

(i)
sa is the cross product. Note that, due

to the symmetry of the guides, we always have Γ
(1)
sa = −Γ

(2)
sa , due to the parity of the modes.

Moreover, as the separation d between them increases, we have Γ
(i)
sa → 0 and Γ

(i)
ss → Γ

(i)
aa → ΓS/2,

where ΓS is the optical confinement factor of an isolated guide. The factor of 1/2 arises since the

modes are normalised over all space, which includes 2 guides.

1. Normalised rate equations

The general form of the normal mode model and its reduction to the double-guided structure in

dimensional and normalised form are derived in Ref [17]. Here we shall just quote the normalised

form used in our numerical calculations. The model has 11 independent variables: the spin-

polarised carrier concentrations in each guide M
(i)
± , where i ∈ {1, 2} labels the guide and +/−

labels the spin up / down components respectively; the optical amplitudes in each guide Ai,±,

where +/− labels the right-circularly / left-circularly polarised components respectively and three

phase variables φ21++, φ21−− and φ11+−. The φ21±± are the phase differences between A2,± and

A1,±, which we shall refer to as the spatial phase. This is the phase of the coupled mode model

of Ref [19]. The variable φ11+− is the phase difference between A1,+ and A1,−, which is the phase
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FIG. 2. A 3D schematic of two coupled circular waveguides encapsulating the essence of the application

to a pair of VCSEL cavities. Shown are the cylindrical waveguide regions incorporating the active areas.

Pumping is assumed to be confined to these regions. Note that we have omitted the Bragg stack mirrors

and substrate from this figure.

referred to in the literature of the SFM. We shall call this the polarisation phase. A fourth phase

variable φ11+− is related to the other three via φ22+− = φ21++ − φ21−− + φ11+−.

Note that the Ai,± are not the amplitudes of the modal solutions of the Helmholtz equation

but rather ‘composite modes’ defined in terms of a superposition of the actual modal solutions

(symmetric and anti-symmetric) to better exploit the symmetry of the waveguide. Specifically,

these become the amplitudes of the local solutions in isolated guides as the separation between

them is increased to infinity, retaining close similarity at nearer distances. Hence, they offer a more

intuitive, physical representation of the optical field in each guide. The actual normal modes may

be reconstructed from the composite modes and the phases using the procedure described in the

appendix of Ref [17].

For convenience of formulation in the double-guided structure model, we introduce new Γ terms

defined in terms of the optical overlap factors by
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Γ
(i)
± =

Γ
(i)
ss + Γ

(i)
aa ± 2Γ

(i)
sa

2
(2)

and

∆Γ(i) =
Γ
(i)
ss − Γ

(i)
aa

2
. (3)

Using these, we introduce further new variables defined via

M12± =
Γ
(1)
+ M

(1)
± + Γ

(2)
+ M

(2)
±

ΓS
, (4)

M21± =
Γ
(1)
− M

(1)
± + Γ

(2)
− M

(2)
±

ΓS
(5)

and

∆M± =
∆Γ(1)M

(1)
± + ∆Γ(2)M

(2)
±

ΓS
, (6)

in terms of which the optical rate equations are more concisely written.

The normalised carrier rate equations are

∂M
(i)
±

∂t
= γ

[
η
(i)
± −

(
1 + I(i)±

)
M

(i)
±

]
− γJ

(
M

(i)
± −M

(i)
∓

)
, (7)

where η
(i)
± are the polarised pumping rates in each guide, γ = 1/τN is the inverse of the carrier

lifetime τN , γJ is the spin relaxation rate and the polarised components of the optical intensity in

each guide are given by

I(i)± =
Γ
(i)
+

ΓS
|A1,±|2 + 2

∆Γ(i)

ΓS
|A1,±||A2,±| cos(φ21±±)

+
Γ
(i)
−

ΓS
|A2,±|2. (8)

Note that in the normalised form of the SFM, the effective spin relaxation rate γs = γ + 2γJ is

often used.
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The normalised optical rate equations are

∂|A1,±|
∂t

= κ (M12± − 1) |A1,±|+ [κ∆M± (cos(φ21±±)− α sin(φ21±±))− µ sin(φ21±±)] |A2,±|

− [γa cos(φ11+−)± γp sin(φ11+−)] |A1,∓|, (9)

∂|A2,±|
∂t

= κ (M21± − 1) |A2,±|+ [κ∆M± (cos(φ21±±) + α sin(φ21±±)) + µ sin(φ21±±)] |A1,±|

− [γa cos(φ22+−)± γp sin(φ22+−)] |A2,∓|, (10)

∂φ21±±
∂t

= κα (M21± −M12±) + µ cos(φ21±±)

(
|A1,±|
|A2,±|

− |A2,±|
|A1,±|

)
+ κ∆M±

[
α cos(φ21±±)

(
|A1,±|
|A2,±|

− |A2,±|
|A1,±|

)
− sin(φ21±±)

(
|A1,±|
|A2,±|

+
|A2,±|
|A1,±|

)]
+ γp

[
cos(φ11+−)

|A1,∓|
|A1,±|

− cos(φ22+−)
|A2,∓|
|A2,±|

]
∓ γa

[
sin(φ11+−)

|A1,∓|
|A1,±|

− sin(φ22+−)
|A2,∓|
|A2,±|

]
,

(11)

and

∂φ11+−
∂t

= κα (M12+ −M12−) + µ

(
cos(φ21++)

|A2,+|
|A1,+|

− cos(φ21−−)
|A2,−|
|A1,−|

)
+ κ∆M+ (α cos(φ21++) + sin(φ21++))

|A2,+|
|A1,+|

− κ∆M− (α cos(φ21−−) + sin(φ21−−))
|A2,−|
|A1,−|

+ γa sin(φ11+−)

(
|A1,+|
|A1,−|

+
|A1,−|
|A1,+|

)
+ γp cos(φ11+−)

(
|A1,+|
|A1,−|

− |A1,−|
|A1,+|

)
(12)

The parameters of the optical model are the linewidth enhancement factor α, the cavity loss rate

κ, the dichroism rate γa, the birefringence rate γp and the coupling coefficient µ. Note that µ is

given in terms of the modal frequencies by [17, 20]

µ =
νs − νa

2
, (13)

for the symmetric (s) and anti-symmetric (a) modes found from solution of the Helmholtz equation

for the waveguiding structure.

It will be convenient to define the pump ellipticity in the ith guide in terms of the right and left

circular polarised pumping rates η
(i)
+ and η

(i)
− by
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P (i) =
η
(i)
+ − η

(i)
−

η
(i)
+ + η

(i)
−
. (14)

Similarly, we may define the output optical ellipticity in the (i)th guide via

ε(i) =
|Ai,+|2 − |Ai,−|2

|Ai,+|2 + |Ai,−|2
. (15)

We describe this as the ‘modal’ ellipticity since it is in terms of the composite mode amplitudes.

Although this is defined for each guide, there is a spatial dependence beyond this. The actual

ellipticity we would measure is given in terms of the spatially dependent components of the optical

intensity via

ε(x, y) =
I+(x, y)− I−(x, y)

I+(x, y) + I−(x, y)
, (16)

where the I±(x, y) are given in terms of the normal mode amplitudes Ak,± by

I±(x, y) = |As,±Φs(x, y) +Aa,±Φa(x, y)|2 . (17)

Here, we have used the subscript k to distinguish these as the amplitudes of the modal solutions

of the waveguide (i.e. the solutions of the Helmholtz equation) rather than the ‘composite modes’

used elsewhere in this paper (as discussed above), which are denoted by the subscript i. See Ref [17]

for further details of this calculation.

III. RESULTS AND DISCUSSION

A. Stability boundaries

The dynamics of pairs of laterally-coupled lasers with circular guides of radius a = 4 µm have

been investigated by plotting stability boundaries in the η(i) − d plane, where η(i) = η
(i)
+ + η

(i)
−

is the total normalised pumping rate in either guide and d is the edge-to-edge guide separation

(Fig. 3). These plots are topologically equivalent to the scheme of Λ/Λth v d/a diagrams used in

Refs [18] and [17], where Λ and Λth are the total pump power and threshold pump respectively.

Here, because we may vary the pump ellipticity in each guide independently, Λth is not well defined

and so represents an inaccurate measure.
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FIG. 3. Stability boundaries in the η(i) = η
(i)
+ + η

(i)
− verses edge-to-edge distance d plane for circular guides

equally pumped with a pump ellipticity of P (i) = 0.0 for different values of the birefringence rate γp.

A similar stability map, in terms of Λ/Λth v d/a has been shown for the non-polarised case using

the coupled mode model in Fig. 6 of Ref [19]. A remaining discrepancy between the results of the

coupled mode model and the present work is due to the sensitivity of the dynamics to the overlap

factors. It was shown in Ref [18] that, taking the asymptotic values of the overlap factors as the

guide separation tended to infinity, the stability map for the non-polarised case reproduced that

of the coupled-mode treatment in Ref [19] exactly. This would then correspond to a birefringence

rate of γp = 0 ns−1, which is almost indistinguishable from the case of γp = 10 ns−1 plotted in

Fig. 3.

For all the stability boundaries investigated here, we keep the total normalised pumping rate η

the same in each guide and so may be conveniently plotted in the η(i) − d plane. In the regions of

instability, we typically see oscillatory behaviour of the type reported in Section III B 3.

In Ref. [17] stability boundaries were plotted for devices with a small birefringence rate γp of
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FIG. 4. Stability boundaries for γp = 30 ns−1 in the η(i) = η+ + η− verses edge-to-edge distance d

plane for circular guides equally pumped with a pump ellipticity of P (i) = 0.0. The solid lines are for the

(polarisation) in-phase solutions and the dashed for the out-of-phase solutions. Stable in-phase solutions lie

above the solid line, whilst stable out-of-phase solutions lie to the right and beneath the dashed line. The

shaded area indicates the regions of bistability where both types of solution are stable.

2 ns−1, which gives very little coupling between the right and left circularly polarised components

of the optical field. These gave rise to Hopf bifurcations qualitatively similar to the curve for

γp = 10 ns−1 shown in Fig. 3, up to around d = 25 µm (in these calculations, all other parameters

have been kept the same as in Ref. [17] for the purposes of comparison). In this earlier work,

the stable, steady state solutions found above the curve were termed ‘out-of-phase’ solutions, in

keeping with the terminology of the coupled mode model [19]. In terms of the normal mode model,

such out-of-phase solutions correspond to the anti-symmetric normal modes (at large separation,

these tend to the solutions of isolated guides with a phase difference of π between them, meaning

the amplitudes are inverted). This phase relation is associated with the φ21±± variables, i.e. at

large separation φ21±± = π. Earlier, we designated this the spatial phase to distinguish it from the
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TABLE I. Parameters used in numerical simulations.

Parameter Value Unit Description

α -2 Linewidth enhancement

κ 70 ns−1 Cavity loss rate

γ 1 ns−1 Carrier loss rate

γa 0.1 ns−1 Dichroism rate

γs 100 ns−1 Effective spin relaxation rate

N0 1.1× 1018 cm−3 Transparency density

adiff 1.1× 10−15 cm−1 Differential gain

ng 3.4 Group refractive index

Note, we tabulate the effective spin relaxation rate γs = γ + 2γJ to aid direct comparison with the SFM

model. These are the same parameters as used in Ref. [17] except that in this paper we vary the

birefringence rate γp.

polarisation phase associated with the φii+− variables.

The graphs in Fig. 3 are calculated for pump ellipticities of P (i) = P (1) = P (2) = 0 (i.e. for

linearly polarised pumps). In Ref [17] it was shown that, in general, the stability boundaries

tended to move towards the origin as the pump ellipticity moves away from zero. In this work, we

investigate the effect of increasing the birefringence rate γp, which has the effect of coupling power

between the opposite circular components of the optical polarisation. Here, we see the emergence

of a new stability boundary moving roughly horizontally across the plane and increasing in η as γp

increases. These boundaries are plotted for the polarisation in-phase solutions, for which φii+− is

close to zero. These are characterised by the fact that the output optical ellipticity takes the same

sign as the pump ellipticity. On the other hand, the ellipticity of the polarisation out-of-phase

solutions, for which φii+− is close to π, has the opposite sign to the pump ellipticity.

Stability boundaries for both in-phase and out-of-phase solutions for for γp = 30 ns−1 and values

of P (i) = P (1) = P (2) from 0 to 0.8 are shown in Figs 4 to 8 (from here on, we shall be referring

to the polarisation phase whenever we speak of in-phase or out-of-phase solutions without specific

qualification). These show the out-of-phase stability boundaries as dashed lines with the stable

solutions to the right of the curved borders and beneath the horizontal borders. Investigating the
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FIG. 5. Stability boundaries for γp = 30 ns−1 in the η(i) = η+ + η− verses edge-to-edge distance d plane

for circular guides equally pumped with a pump ellipticity of P (i) = 0.2. The grey lines show continuations

of the Hopf bifurcation into the unstable region. Note that, unlike the other stability maps shown, in this

case there is no region of bistability.

sharp kinks in the borders, we find that this is due to the continuation of Hopf bifurcations into

the unstable regions. An example is shown in Fig. 5 in the case of P (i) = 0.2

A clear feature of these stability boundaries is that, in most cases, the out-of-phase boundary

crosses that of the in-phase boundary creating regions of bistability where both types of solution

are stable. These are shown as the shaded areas and suggest the possibility of optical switching

between these stable states. This is investigated in the next sub-section, where we find that optical

switching via pump power and / or ellipticity is indeed achievable.

In the case of P (i) = 0.2, we note that, unlike the other cases shown, there is no region of

bistability in domain plotted. At this point, however, we can offer no definitive explanation for

this behaviour.
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FIG. 6. Stability boundaries for γp = 30 ns−1 in the η(i) = η+ + η− verses edge-to-edge distance d plane

for circular guides equally pumped with a pump ellipticity of P (i) = 0.4 (details as for Fig. 4).

B. Bistability

1. Switching both lasers together on pump power

We have examined the dynamics within the bistable regions via time series solutions of the

rate equations using the Runge Kutta method (technical details are given in Ref. [17]). Each time

series is run for a simulation time of 400 ns for a given pump power and ellipticity in each guide.

The output solutions at the end of each solution are then used as the intial conditions for the next

simulation with different pumping parameters. In this way, we can see how the system behaves as

we vary these parameters smoothly or in sharp jumps.

For an initial set of simulations, we keep the birefringence at γp = 30 ns−1, take the edge-to-edge

separation to be d = 20 µm and the pump ellipticity in either guide to be P (i) = P (1) = P (2) = 0.6.

The stability boundaries in this case are shown in Fig. 7. We start the simulation with equal pump
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FIG. 7. Stability boundaries for γp = 30 ns−1 in the η(i) = η+ + η− verses edge-to-edge distance d plane

for circular guides equally pumped with a pump ellipticity of P (i) = 0.6 (details as for Fig. 4).

power η(i) = η(1) = η(2) = η
(i)
+ + η

(i)
− = 12. From Fig. 7 we can see that this is in a region of

instability for the in-phase solution but just on the edge of the stable region for the out-of-phase

solution. We then start increasing the pump power in both guides and track the modal output

optical ellipticity ε(i), given by (15). This is shown in Fig. 9, where at η(i) = 12 we have ε(i) = −0.2

and track down to η(i) = 22, ε(i) = −0.44 following the direction of the red solid arrow. After this

point, we enter into a region of unstable dynamics where the system fails to settle down to the

in-phase steady state solution until the power reaches η(i) = 56. This is indicated by the dashed

red arrow. At this point, we track back, ramping down the power. This time, the system remains

in the in-phase steady state solution all the way through the bistable region until it cross the Hopf

bifurcation delimiting the in-phase dynamics and the system drops to the out-of-phase solution.

It is natural to ask whether we may obtain switching behaviour by applying step changes to

the pump. To investigate this, we start the system off in an out-of-phase steady state solution
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FIG. 8. Stability boundaries for γp = 30 ns−1 in the η(i) = η+ + η− verses edge-to-edge distance d plane

for circular guides equally pumped with a pump ellipticity of P (i) = 0.8 (details as for Fig. 4).

with η(i) = 22 in both lasers. This gives an output ellipticity of ε(i) = −0.44. We then step up

the power to η(i) = 56 for a period of 20 ns. This settles down to a steady-state in-phase solution

with ε(i) = 0.3 after about 9 ns as shown in Fig 10. After this, the power is dropped back down

to η(i) = 22. However, the system now settles down in an in-phase steady-state with ε(i) = 0.2.

Again, it takes aroung 9 to 10 ns for the system to settle to the steady-state solution. Following

this, the power is further dropped to η(i) = 22 and the system switches to an out-of-phase solution

with ε(i) = −0.2. Finally, stepping the power back up to η(i) = 22, we arrive back at the out-of-

phase solution with ε(i) = −0.44. Hence, we can use the pump power for the purposes of optical

switching, with an overal switching time of around 20 ns in this case (giving a possible switching

rate of around 8 MHz).

The switching dynamics are explored in more detail in Figs. 11 to 14 on the sub-nanosecond

time-scale. Fig. 11 shows the dynamics as the system is switched from the out-of-phase solution

at η(i) = 22 to the in-phase at η(i) = 56. We see on this scale that the behaviour is oscillatory,
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FIG. 9. Hysteresis curve of the ellipticity for equally pumped guides with γp = 30 ns−1, an edge-to-edge

separation of d = 20 µm and pump ellipticity P (i) = 0.6. The points trace out the dynamics as the total

pump power η is changed gradually in the direction of the arrows.

varying between around ε(i) = −0.9 to ε(i) = 0.9 with an angular frequency of approximately

64 rad·ns−1 (∼10 GHz). Figs. 12 to 13 show the steps from η(i) = 56 to η(i) = 22 and η(i) = 22 to

η(i) = 12 respectively on the same scale, with similar angular frequencies of 72 rad·ns−1 (∼11 GHz)

and 66 rad·ns−1 (∼11 GHz). In the final step from η(i) = 12 to η(i) = 22 shown in Fig. 14, the

system settles down much faster. The angular frequency of the oscillations in this case is around

58 rad·ns−1 (∼9.2 GHz).

It may seem natural to seek an explanation for this oscillatory behaviour in terms of relaxation

oscillations. We can explore this possibility using the expression for the angular frequency ωR of

damped oscillations given in Ref. [19] derived from a stability analysis of the coupled mode model

ω2
R = 2γκ (η − 1)− γ2D, (18)



17

FIG. 10. Time series showing the response of equally pumped guides with an edge-to-edge separation of

d = 20 µm and pump ellipticity P (i) = 0.6, to stepped total pump powers of η(i) = 22, 56, 22, 12 and 22

again. This demonstrates a mechanism of switching between two stable solutions for η(i) = 22 with optical

ellipticities of the opposite sign (indicated by the dashed lines).

where γD is the damping rate given by

γD = −γη
2
. (19)

However, for values of η = 56, 22 and 12, using (18) we obtain values of ωR = 83, 53 and 39 ns−1

respectively, showing a strong dependence on the pump power η.

Instead, we note that in the analysis of spin-polarised VCSELS [16, 21, 22], it has been found

that the frequency of birefringence-induced oscillations was mainly determined by the birefringence

rate γp, given approximately by γp/π for large γp (in GHz if γp is given in ns−1). In our case, we

have γp = 30 ns−1, giving γp/π = 9.5 GHz, which is very close to the observed frequency in the

numerical simulations.
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FIG. 11. Detail of Fig. 10 between t = 19.5 ns and t = 21.5 ns. The system starts in the out-of-phase

steady-state solution for η(i) = 22. As the pump power in each guide is stepped up η(i) = 56, the ellipticity

initially undergoes oscillations with an angular frequency of approximately 64 rad·ns−1 before settling down

to a stable steady state in-phase solution.

2. Switching one laser via the other

Having verified that is possible to switch the ellipticity of the lasers in the bistable region by

varying the pump powers in each simultaneously, we next investigate the possibility of switching

one laser purely by varying the pump on the other, hence via the coupling between them. The

following is a proof of concept and is not supposed to represent the optimal conditions for such

functionality.

The edge-to-edge separation is taken to be a little shorter at d = 18 µm and for the initial

investigation, the total pump power in either guide is held fixed at η(i) = 20. The birefringence

is γp = 30 ns−1 as before. Initially, the pump ellipticity is set at P (i) = 0.6 in both guides and

the simulation is started with both lasers in the steady-state in-phase solution. P (1) is kept fixed
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FIG. 12. Detail of Fig. 10 between t = 39.5 ns and t = 41.5 ns. Starting from the in-phase solution for

η(i) = 56, the pump power in each guide is stepped down to η(i) = 22. The ellipticity initially undergoes

oscillations with an angular frequency of approximately 72 rad·ns−1 and a much smaller amplitude than in

Fig. 11 before decaying to the constant in-phase solution for η(i) = 22.

throughout and P (2) is then varied, initially being increased to P (2) = 1 and then reduced again to

P (2) = 0.5 (see Fig. 15). Throughout this range, both solutions remain in a stable in-phase solution.

However, below P (2) = 0.5, both lasers drop to an out-of-phase steady-state solution, which then

varies smoothly as P (2) is reduced to -0.7. During this variation, the laser in guide (1) remains

in an out-of-phase solution, whilst the ellipticity in guide (2) varies linearly from an out-of-phase

solution to an in-phase solution. Beyond P (2) = −0.7, neither laser settles to a steady-state.

As P (2) = −0.7 is increased to P (2) = 0.7, the ellipticity tracks back over its previous values

and then continues to vary smoothly past the point where the in-phase solution dropped to the

out-of-phase solution. These behaviours are shown in Fig. 15 where the square points show the

ellipticity in guide (1), the diamond points show the ellipticity in guide (2) and the red arrows

indicate the directions in which P (2) is varied.
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FIG. 13. Detail of Fig. 10 between t = 59.5 ns and t = 61.5 ns. From the in-phase solution with η(i) = 22,

the pump power is stepped down to η(i) = 12, leading to oscillations in the ellipticity with an angular

frequency of approximately 66 rad·ns−1. In this case the amplitude of the oscillation increases until it is

varying between -1 and 1 before suddenly collapsing to a steady state out-of-phase solution.

In fact, it is found that once the system is on the lower line of Fig. 15 with guide (1) in an

out-of-phase steady-state solution, it cannot be switched back to an in-phase state by varying P (2).

This can only be achieved by varying the pump power. However, it can be achieved by only varying

the pump power in laser (2), so the goal of switching one laser purely by coupling with the other

is achievable.

Specifically, we can use the following sequence: Starting with η(i) = 20 and P (i) = 0.6 in the

in-phase solution, we have ε(1) = 0.19. Stepping P (2) to 0.4, ε(1) drops to -0.40. Putting P (2) back

to 0.6, ε(1) changes very little, with ε(1) = −0.39. If we now step η(2) up to 60, the ellipticity in

guide (1) then changes to ε(1) = 0.19. Dropping the power in guide (2) back down to 20, we end

up again in the original in-phase solution with ε(1) = 0.19. For this particular set of parameters,

the switching time is quite slow, taking around 100 ns to settle down to the steady-state solutions.
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FIG. 14. Detail of Fig. 10 between t = 79.5 ns and t = 81.5 ns. With the system in an out-of-phase steady

state solution at η(i) = 12, the pump power is stepped up to η(i) = 22. The ellipticity oscillates with an

angular frequency of approximately 58 rad·ns−1 and then very rapidly decays to the out-of-phase steady

state solution.

3. Oscillations in the ellipticity

This switching behaviour on the basis of variation of P (2) does not occur under all conditions

within a bistable region. At d = 20 µm, the variation in the output ellipticities is similar to that

shown in Fig. 15 except that there is drop from the steady-state in-phase solutions to the out-of-

phase steady-state solutions as P (2) is reduced. Instead, the system becomes unstable with the

ellipticity oscillating as shown in Fig. 16 for P (2) = 0.3.

The time period for the oscillations shown in Fig. 16 is approximately T = 0.1 ns (i.e. a

frequency of 10 GHz). This does not change as P (2) is varied from 0.3 to -1, although the maxima

and minima of the oscillations do. This variation is shown in Fig. 17. We note a qualitative break

in behaviour between P (2) = −0.6 and P (2) = −0.7.
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FIG. 15. Optical ellipticity switching by varying the pump ellipticity in guide 2. Here γp = 30 ns−1,

d = 18 µm, P (1) = 0.6 and η(i) = 20. The grey squares show the optical ellipticity in guide 1 and the white

diamonds show the ellipticity in guide 2, for which the pump ellipticity was directly varied. The red arrows

show the sequence in which the pump ellipticity in guide 2, P (2), was varied.

IV. CONCLUSIONS

A recently-developed theory of evanescently-coupled pairs of spin-VCSELs has been applied to

study the dynamics of structures with two identical circular cylindrical waveguides and realistic

material parameters. Stability boundaries in the plane of total normalised pump power versus

edge-to-edge spacing of the lasers have been presented for the cases of (1) zero pump polarization

ellipticity with varying birefringence rate, and (2) fixed birefringence and varying pump ellipticity,

with equal pump power in each laser for all cases. Boundaries for in-phase and out-of-phase

solutions are found in terms of the spatial phase of the normal modes of the system. It is shown

that intersection of these boundaries can give rise to sharp kinks in the overall stability boundaries

for some pump ellipticities, whilst for others crossing of the in-phase and out-of-phase solutions
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FIG. 16. Oscillations in the optical ellipticity for guide 1 (black) and guide 2 (grey) with a separation of

d = 20 µm. Here γp = 30 ns−1, P (1) = 0.6, P (2) = 0.3 and η(i) = 22.

can yield regions of bistability. The dynamics of the coupled spin-VCSELs in the bistable regions

have been examined by time series solutions of the rate equations. It is shown that it is possible

to switch the output ellipticity of the lasers by varying the pump powers in each simultaneously.

It is also possible to switch the output elllipticity of one laser by varying the pump ellipticity

or pump power of the other, under certain operating conditions. For other conditions, however,

values of the pump ellipticity of one laser can be found that produce oscillatory behaviour of the

output ellipticities of both lasers. Thus, it has been demonstrated that evanescently-coupled pairs

of spin-lasers can yield a rich variety of different dynamics. Further work is needed to explore the

effects of varying material, device and operating parameters and hence to investigated potential

applications of these dynamics.
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FIG. 17. Minima and maxima of the oscillations in the optical ellipticity for guide 1 (squares) and guide 2

(diamonds) with a separation of d = 20 µm as P (2) is varied. Here γp = 30 ns−1, P (1) = 0.6, and η(i) = 22.

ACKNOWLEDGEMENT

This research was funded by the Engineering and Physical Sciences Research Council (EPSRC)

under grant No. EP/M024237/1.

[1] Z. Gao, S. T. Fryslie, B. J. Thompson, P. S. Carney, and K. D. Choquette, Optica 4, 323 (2017).

[2] Z. Gao, M. T. Johnson, and K. D. Choquette, Journal of Applied Physics 123, 173102 (2018).

[3] Z. Gao, B. J. Thompson, H. Dave, S. T. Fryslie, and K. D. Choquette, Applied Physics Letters 114,

061103 (2019).

[4] H. Dave, Z. Gao, S. T. M. Fryslie, B. J. Thompson, and K. D. Choquette, IEEE Journal of Selected

Topics in Quantum Electronics (2019).

[5] S. T. Fryslie, Z. Gao, H. Dave, B. J. Thompson, K. Lakomy, S. Lin, P. J. Decker, D. K. McElfresh,
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