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Abstract

Background: The Horvath epigenetic clock is widely used. It predicts age quite well from 353 CpG sites in the DNA
methylation profile in unknown samples and has been used to calculate “age acceleration” in various tissues and
environments.

Results: The model systematically underestimates age in tissues from older people. This is seen in all examined tissues
but most strongly in the cerebellum and is consistently observed in multiple datasets. Age acceleration is thus age-
dependent, and this can lead to spurious associations. The current literature includes examples of association tests with
age acceleration calculated in a wide variety of ways.

Conclusions: The concept of an epigenetic clock is compelling, but caution should be taken in interpreting associations
with age acceleration. Association tests of age acceleration should include age as a covariate.
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Background
Subject age is a piece of data available in almost every
study in which DNA methylation profiles are obtained.
There is thus a huge amount of cross-sectional data in
which it can be seen that the methylation level of many
CpG sites varies with subject age [1–4], which, amongst
other processes, could reflect developmental changes,
cellular aging, cumulative environmental effects, and
changes in cell-type composition. Exploring these sources
of variation could give insights into age-related processes.
Predicted ages can also provide a valuable quality control
and identity check on data in EWAS studies [5–8].
Horvath [8] used a large collection (n > 8000) of pub-

licly available Illumina HumanMethylation array data on
multiple tissue types to train and test a model for age
prediction from 353 CpG loci. This “epigenetic clock”
continues to be widely used and is extremely valuable as
a way of estimating ages of samples from unknown
donors and possibly as an indicator of whether there are

alterations in the aging rate of certain tissues or indi-
viduals. Although the epigenetic clock developed by
Horvath [8] provides an estimate of age, the testing
data used in generating this clock did not have a large
representation of tissue from elderly individuals and as
such it is unclear if the clock is accurate in older age
groups, or those with age-related diseases.
We have previously published an epigenome-wide

association study (EWAS) in Alzheimer disease (AD),
utilizing four brain tissues and pre-mortem blood, and
demonstrated DNA methylation differences at specific
loci in a tissue-specific manner [9]. This dataset offers a
good opportunity to examine the properties of the
Horvath [8] clock on different tissues in both elderly
non-demented individuals and AD sufferers. We further
explore the properties of the model using a cross-
sectional population sample from the UK Household
Longitudinal study (UKHLS), which has a wide range of
ages [10].
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Results
Age estimation
Initially, we observed in our AD dataset [9] that ages were
strikingly underestimated using the Horvath [8] clock. In-
deed, in this elderly data set, across multiple brain regions
and in blood, the model did predict age but with a slope of
predicted against actual age clearly less than 1 (Fig. 1a–f).
This was borne out in the much larger UKHLS set of
blood DNA samples measured with the Illumina EPIC
array [10] (Fig. 1g).

The discrepancy can be more clearly demonstrated
with a mean-difference (Bland-Altman) plot (thanks to a
reviewer for this suggestion). There is a trend to larger
discrepancy with age in the the AD data set, UKHLS,
and a collection of additional datasets listed in Add-
itional file 1: Table S1 (Fig. 2).
We focus in this study on the characteristics of the

Horvath model [8] because it remains widely used
and because it is designed to be applicable across tis-
sues. For the UKHLS dataset, we also looked at the

Fig. 1 Scatterplots of chronological vs DNAm ages of brain and blood samples. Each point corresponds to an independent sample. The dotted
line is the y = x bisector line, and the solid lines correspond to the regression line of each tissue. PFC, prefrontal cortex; EC, entorhinal cortex; STG,
the superior temporal gyrus; CER, cerebellum (data from [9] for panels a–f and [10] for panel g)
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blood-specific Hannum [6] model. This model is sim-
pler than the Horvath one, with 71 coefficients. On
the UKHLS dataset, it shows a very similar deviation,
with increasing underestimation in advanced age
(Fig. 3). There is an overlap of 6 loci between the
two models.

Clock properties
Next, to get some insight into the behavior of the clock,
we dissected possible reasons for its nonlinear response.
The absolute values of the coefficients in the Horvath
model range from 5.9e−6 to 3.07, so some of the CpG
sites are much more important than others. To investi-
gate this, we make an index of the influence of each
locus on the age estimate by dividing the absolute value
of the coefficient from the Horvath clock by an index of
dispersion from our data, the coefficient of variation.
The ten highest ranked probes by this measure (Fig. 4a,
black circles at the top and bottom of the plot) include
examples of both small variance (and large coefficient)
and large variance (and possibly smaller coefficient),

although clearly the smallest coefficients are not going
to make an appreciable difference to the age estimate no
matter what the variance. Two of the ten most influen-
tial probes, cg22736354 and cg06493994, are also used
in the Hannum model.
One simple way the clock rate could be reduced in

later life is by saturation, i.e., the CpG sites used in the
clock reaching either full methylation or complete de-
methylation. To investigate this, we dissect the ten most
influential further (Fig. 4b). Of these ten probes, three
(cg12830694, cg24580001, and cg02580606) might be can-
didates for saturation because they are highly methylated
and expected from the model to be increasing with age.
To test this further, we fitted a regression line between

chronological age and the beta values of each of the 353
loci and plotted the slopes against the Horvath coeffi-
cients. Of the ten most influential loci, four have a slope
opposite in sign to the Horvath coefficient (cg08090772,
cg03019000, cg04268405, and cg24580001) (Fig. 4c).
Loci with the largest coefficients demonstrate the same
direction of effect in our data as in the Horvath model.

Fig. 2 Mean-difference (Bland-Altman) plots showing the difference between Horvath model age and chronological age. a Elderly brain: AD data
set [9], b population blood sample [10], and c additional publicly available datasets (see Additional file 1: Table S1). The horizontal lines in each
case are at ± 1.96 * sd; for normally distributed difference due to error 5% of points would lie outside these and in each case many more do
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For this tissue and age range, many of the smaller coeffi-
cients are effectively random, but they may be influential
in the model’s performance in other tissues. Slieker et al.
[11] have shown that the majority of age effects are
tissue-specific.

Age acceleration associations
As an example of an association test using age acceler-
ation, we examined whether age acceleration (calculated
as the difference between DNAm age and chronological
age) associates with AD neuropathology (measured using
Braak score) in the London cohort [9]. We observed a
weak association in some brain tissues. However, when
age is included as a covariate, the association between age

acceleration and AD pathology disappears. We also see
this in the Mount Sinai cohort [12, 13] where no correl-
ation was found between age acceleration and amyloid
plaque levels when age is included as a covariate (Table 1).
In a broad but non-comprehensive survey of the litera-

ture (Table 2), we observe a variety of methods of calcu-
lating age acceleration, and many studies do not correct
for chronological age. Initially, Δ-age (the difference be-
tween chronological age and the DNAm predicted age)
was reported, but alternative methods have since arisen:
(1) the residual of regressing DNAm predicted age on
chronological age (possibly in a model including covari-
ates), (2) AgeAccel (difference between DNAm age value
and the value predicted by a regression model in the

Fig. 3 Plots showing the difference between Hannum model age and chronological age in the UKHLS [10] data set. a Scatter plot. b Mean-
difference (Bland-Altman) plot
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control group), and (3) intrinsic (IEAA) and (4) extrinsic
epigenetic age acceleration (EEAA) methods. Both IEAA
and EEAA are methods applicable only on blood since
they subtract out the effect of blood cell count [16, 18].

Discussion
The Horvath epigenetic clock [8] has been of practical
use in predicting the age of unknown samples and as a
quality check in epigenetic research. Additional widely
used age predictors specific for blood were published by
Hannum [6] and Levine [42] (phenotype-based). Here

we analyze the Horvath model, but the methods and
many of the conclusions may be more widely applicable,
in particular the Hannum clock model shows a similar
underestimation of ages in elderly subjects.
The mechanism or mechanisms of the apparent

change of gears in a person’s sixties are not clear. At
least part of the effect with these models seems to be
saturation, i.e., loci approaching the limits of 0 or 100%
methylation. Another intriguing part of the picture, at
least for the brain, could be 5-hydroxymethyl cytosine,
which is present at appreciable levels in brain tissues,

Fig. 4 Exploration of model coefficients in the elderly cerebellum. a Scatter plot of age coefficients against their influence score (coefficient from Horvath
[8]/coefficient of variation in our data). The 10 most influential loci (largest scores by absolute value) are plotted in black, b 10 most influential loci, with the
ages represented as a rug on the right-hand side of each strip chart. The Horvath coefficients are shown in the center, and their sign is also denoted by
the direction of the triangles, upward facing for positive and downward facing for negative. c Scatter plot of Horvath [8] coefficients against their linear-
model age coefficients in our data. The 10 most influential probes are shown in black
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especially cerebellum which is characterized by elevated
levels of 5-hydroxymethylcytosine (5hmC) [15]. We
found that 31 out of the 353 Horvath clock sites were
amongst the 65,663 elevated 5hmC probes found in the
cerebellum by Lunnon et al. [15]. Of these, two sites
(cg04268405, and cg24580001) are amongst the most in-
fluential sites (Fig. 4). Given that 5hmC is not distin-
guished from 5mC following bisulfite conversion, it is
possible that age-associated changes to the 31 5hmC
sites of the Horvath algorithm are offsetting the age
predictions.
These two models both use a small fraction of the

available age indexing GpGs, especially since much more
comprehensive arrays are now in use, and in fact their
site contents overlap. Although improved age prediction
can no doubt be achieved by making use of additional
informative loci, especially in tissue-specific models, we
believe it is more important to use existing models with
an awareness of their properties and limitations and not
as a black box.
In addition to age prediction, the Horvath [8] paper

also featured the idea of “age acceleration” in which dis-
crepancies between DNA methylation (DNAm) age and
chronological age might tell us something about the bio-
logical aging status of the organism. A number of positive
association findings with age association, particularly mor-
tality [43], make it compelling to think of the epigenetic
clock as an index of an underlying aging program that
adapts to health and environment. In light of the methodo-
logical variety though, we are concerned that the different
epigenetic clocks, and the variety of age acceleration
methods to choose from, lay a trap of potentially hidden
multiple testing, as the temptation will be to survey the
available methods for interesting results.
When comparing DNA methylation profiles across tis-

sues, individuals, and other variables such as health, the
dominant source of variation is the tissue, or more pre-
cisely the cell type. It is reasonable to suppose that this
developmental blueprint can change over time in re-
sponse to the environment, or simply drift or decay. This

point of view corresponds roughly with the “epigenetic
maintenance” model posited by Horvath [8], and devel-
oped further by Horvath and Raj [44].
The “decay clock” or epigenetic maintenance models

are perhaps more likely to be accurate than a biochem-
ical aging clock, but they are somewhat at odds with the
age acceleration concept. Association tests with age ac-
celeration are very common but should be treated
with caution, especially if the effect is small. As
shown in this study, in the latter third of the human
age range, where such associations are most likely ob-
served, negative age acceleration increases with age.
This means that any phenotype associated with age
will appear to be associated with age acceleration as
well, and a correct analysis should include chrono-
logical age as a covariate, as in the Alzheimer disease
example that we report.
A preprint which appeared while this paper was under

review [45] suggests that age acceleration may result
from confounding of age with other phenomena such as
blood cell composition, and indicates that adding further
age-predicting loci to a clock model reduces association
of mortality with age acceleration.
The clock model has interesting and useful character-

istics, but it is an extremely narrow summary of the
DNA methylation profile based on only 353 CpG sites
representing 1.15 × 10−5% of the methylome. EWAS, as-
sociation tests of the full DNA methylation profile, using
appropriate genome-wide confidence limits are much
more likely to lead to biological insights.

Conclusion
The age prediction properties of both Horvath [8] and
Hannum et al. [6] DNA methylation clock models begin
to degrade as subjects enter old age. This is at least
partly due to saturation, i.e., DNA methylation propor-
tion at some loci approaching 0 or 1, and confounding
with the effects of other age-related processes will also
play a role. It is likely that this could be ameliorated with
additional loci and/or further refined modeling of the

Table 1 Regression analysis of epigenetic age acceleration of four brain tissues and blood from the London Brain Bank cohort [9]
versus brain Braak stage and of two brain tissues from the Mount Sinai cohort [12] versus amyloid plaque levels

London cohort London cohort (age in model) Mount Sinai cohort (age in model)

Coefficient P value Coefficient P value Coefficient P value

Prefrontal cortex 0.434 0.164 − 0.345 0.107 − 0.029 0.629

Entorhinal cortex 0.969 0.004 0.424 0.125 – –

Sup. Temporal Gyrus 0.653 0.019 − 0.062 0.786 0.004 0.944

Cerebellum 1.127 0.002 − 0.059 0.788 – –

Blood − 0.278 0.632 − 0.090 0.870 – –

Shown for each cohort the coefficient and P value for the regression analysis between age acceleration and Braak stages (London cohort) or amyloid plaque
levels (Mount Sinai cohort) with chronological age as a covariate

El Khoury et al. Genome Biology          (2019) 20:283 Page 6 of 10



Table 2 Literature survey of age acceleration

Reference Phenotype AIM SIG Age acceleration method

Horvath [14] Obesity No Yes Residuals of DNAm age regressed on chronological age

Marioni et al. [15] All-cause mortality Yes Yes Δ-age

Levine et al. [16] Lung cancer incidence Yes Yes IEAA

Levine et al. [17] Neuritic plaque Yes Yes Residuals of DNAm age regressed on chronological age and sex

Horvath et al. [18] Parkinson’s disease Yes No AgeAccel

Yes No IEAA

Yes Yes EEAA

Horvath et al. [19] Down syndrome No Yes Residuals DNAm age regressed on chronological age in controls

Marioni et al. [20] Fitness variables Yes Yes Residuals DNAm age regressed on chronological age

Horvath et al. [21] HIV No Yes AgeAccel

Horvath et al. [22] Alzheimer in the cerebellum Yes No Residual DNAm age against chronological age in non-cerebellar brain
sample

Horvath et al. [23] Longevity No Yes AgeAccel

No Yes IEAA

No Yes EEAA

Walker [24] Multifocal developmental disorders No No Residuals DNAm age regressed on chronological age

Lin et al. [25] Life expectancy Yes Yes Δ-age

Perna [26] All-cause mortality Yes Yes Δ-age

Cancer mortality Yes Yes Δ-age

Cardiovascular mortality Yes Yes Δ-age

Horvath [27] Huntington’s disease No Yes Residuals DNAm age regressed on chronological age

Levine et al. [28] Age at menopause Yes Yes AgeAccel

Horvath [29] Race/ethnicity Yes Yes EEAA

Chen et al. [30] Time of death Yes Yes EEAA

Yes Yes IEAA

Yes Yes AgeAccel

Simpkin et al. [31] Birth weight No Yes Δ-age

Gao et al. [32] Smoking status Yes No Residuals DNAm age regressed on chronological age

Cumulative exposure Yes No Residuals DNAm age regressed on chronological age

Cessation time Yes No Residuals DNAm age regressed on chronological age

Breitling et al. [33] Frailty Yes Yes Δ-age

Ward-Caviness et al. [34] Air pollution No Yes Residuals DNAm age regressed on chronological age

Yes Yes EEAA

Yes Yes IEAA

Levine et al. [35] HIV-associated neurocognitive disorders Yes Yes Residuals DNAm age regressed on chronological age

Armstrong et al. [36] Longevity No Yes AgeAccel - Hannum

McKinney et al. [37] Schizophrenia duration No No Residuals DNAm age regressed on chronological age

Wolf et al. [38] PTSD hyperarousal No Yes Residuals DNAm age regressed on chronological age

PTSD severity No No Residuals DNAm age regressed on chronological age

Quach et al. [39] Diet and lifestyle Yes Yes EEAA

Diet and lifestyle Yes Yes IEAA

Binder et al. [40] Time to menarche No Yes AgeAccel

Pubertal tempo No Yes AgeAccel

Breast fibro-glandular volume No Yes AgeAccel
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currently used set. Association tests using age acceler-
ation should incorporate age as a covariate (as should
those using DNA methylation values for individual loci)
to avoid spurious associations.

Methods
This study was designed to investigate age prediction
from DNA methylation profiles across multiple brain re-
gions and blood, especially in older subjects. It uses a
number of existing data sets.

Samples
Tissue samples
Brain tissue samples (London cohort) were obtained
from individuals diagnosed with Alzheimer’s disease
(AD, n = 61) and from non-demented elderly control
individuals (CON, n = 31) through the MRC London
Neurodegenerative Disease Brain Bank as described in
Lunnon et al. [9, 46]. In total, four brain regions were
analyzed (prefrontal cortex (PFC), the entorhinal cortex
(EC), the superior temporal gyrus (STG), and the cere-
bellum (CER)) and pre-mortem blood from a subset of
individuals, collected as part of the Biomarkers of AD
Neurodegeneration study. A second independent cohort
(Mount Sinai cohort) was obtained from the Mount
Sinai Alzheimer’s disease and Schizophrenia Brain Bank.
This cohort consisted of two brain regions (PFC and
STG) for 75 AD and 72 CON donors [12, 13].

Population sample: the UK Household Longitudinal Study
(UKHLS)
UKHLS is an annual household-based panel study which
started collecting information about the social, economic,
and health status of its participants in 2009. Our analysis
data set is drawn from one of the arms of UKHLS, namely,
the British Household Panel Survey (BHPS), which merged
with UKHLS in 2010 at the start of wave two. UKHLS col-
lected additional health information, including blood sam-
ples for genetic and epigenetic analysis, at wave 3 for BHPS
(www.understandingsociety.ac.uk). DNA methylation pro-
filing and initial analysis are described in [10, 47].

Methylomic profiling
DNA from the London cohort tissue samples were
bisulfite-treated using Zymo EZ 96 DNA methylation kit
(Zymo Research) according to the manufacturer’s proto-
col. DNA methylation levels were assessed on an Illumina

HiScan System using the Illumina Infinium Human-
Methylation450 BeadChip as previously described by
Lunnon et al. [9]. Raw signal intensities and probes for the
London cohort were extracted using Illumina Genome
Studio software and were transformed into beta values
using the Bioconductor wateRmelon package [48]. These
were later normalized using the method implemented in
the Horvath [8] script. Data is available from both cohorts
under GEO accession numbers GSE59685 (London co-
hort) and GSE80970 (Mount Sinai cohort).
One thousand one hundred ninety-three DNA samples

from UKHLS were bisulfite-treated using Zymo EZ 96
DNA methylation kit (Zymo Research) according to the
manufacturer’s protocol. DNA methylation levels were
assessed on an Illumina HiScan System (Illumina) using
the Illumina Infinium Epic Methylation BeadChip, and
samples were randomly assigned to chips and plates to
minimize batch effects. Furthermore, in order to resolve
any experimental inconsistencies, and to approve data
quality, a fully methylated control (CpG Methylated
HeLa Genomic DNA; New England BioLabs, MA, USA)
was included in a random position on each plate. Raw
signal intensities and probes for UKHLS were extracted
using Illumina Genome Studio software and were trans-
formed into beta values using the Bioconductor bigme-
lon package (https://doi.org/10.18129/B9.bioc.bigmelon)
[49]. These were later normalized using dasen function
from the wateRmelon package [48]. After QC, a final n
of 1175 was reached.

DNA methylation age prediction
DNA methylation (DNAm) age was assessed for all sam-
ples of the London and Mt Sinai datasets on the R statis-
tical environment (R Development Core Team, 2015)
using the script provided by Horvath [8] as well as
through the online DNAm Age Calculator (https://dna-
mage.genetics.ucla.edu/). These methods predicted age
based on the DNAm coefficients of 353 CpG sites. The
model (although not the custom normalization method)
is also implemented in the agep() function of the wateR-
melon package (version 1.17.0). This is expected to per-
form very similarly to the original Horvath protocol as
long as reasonable preprocessing steps are used. A BA
plot demonstrates that this is the case for the AD study
samples (Additional file 1: Figure S1). The differences
are small (sd of difference 1.8 years) and approximately
normally distributed. The agep() function was used to
predict the ages of the UKHLS samples for this study.

Table 2 Literature survey of age acceleration (Continued)

Reference Phenotype AIM SIG Age acceleration method

Dugué [41] Mortality Yes Yes Residuals DNAm age regressed on chronological age

Yes Yes IEAA
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To maximize the number of brain samples included in
our assessment of age prediction, publicly available
450KMethylation brain tissue datasets obtained from GEO
(GSE40360, GSE53162, GSE59457, GSE61380, GSE61431,
GSE67748, GSE67749, and GSE89702 [50–60]) along with
the London and Mount Sinai cohorts were analyzed
(Additional file 1: Table S1).

Supplementary information
The online version of this article (https://doi.org/10.1186/s13059-019-1810-4)
contains supplementary material, which is available to authorized users.

Additional file 1: : Fig. S1. Describing the differences between DNA
methylation ages estimated with the Horvath 2013 calculator and the
agep() function. As well as Table S1. Detailing additional data sets used
in this study.
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