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Abstract— The use of functional magnetic resonance imaging
(fMRI) to visualize brain activity in a non–invasive way is
an emerging technique in neuroscience. It is expected that
data sharing and the development of better search tools for
the large amount of existing fMRI data may lead to a better
understanding of the brain through the use of larger sample
sizes or allowing collaboration among experts in various areas
of expertise. In fact, there is a trend toward such sharing
of fMRI data, but there is a lack of tools to effectively
search fMRI data repositories, a factor which limits further
research use of these repositories. Content–based (CB) fMRI
brain map retrieval tools may alleviate this problem. A CB–
fMRI brain map retrieval tool queries a brain activation map
collection (containing brain maps showing activation areas after
a stimulus is applied to a subject), and retrieves relevant brain
activation maps, i.e. maps that are similar to the query brain
activation map. In this work, we propose a graph–based repre-
sentation for brain activation maps with the goal of improving
retrieval accuracy as compared to existing methods. In this
brain graph, nodes represent different specialized regions of a
functional–based brain atlas. We evaluated our approach using
human subject data obtained from eight experiments where a
variety of stimuli were applied.

I. INTRODUCTION

Functional Magnetic Resonance Imaging (fMRI) provides
methods to non–invasively visualize brain activity by com-
puting statistical evidence of functional brain activations.
Task–based fMRI, which we focus on in this paper, is
concerned with obtaining this activation data for experiments
in which the subject undergoes a specific sensory stimulation,
or carries out a specific task [1]. Developing successful
fMRI experiments is labor– and time–intensive. It requires
careful preparatory work on the experimental design, data
acquisition techniques and data analysis methods [2]. In
addition to the planning and acquisition planning, there is
the cost in maintaining and operating the MR scanner and
its operating environment. The combination of these resource
demands means that, in any measure, fMRI data is not cheap,
and it is therefore of great interest to maximize the use of
the collected data. fMRI data sharing may be expected to
be a significant factor for maximizing the research value
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of collected fMRI data sets. For example, such sharing
will enable experiment replications for validation (or dispute
of the results) of the original study. Another significant
example is that data sharing will allow analysis work by
researchers who do not have physical resources to do the
data acquisition themselves. Therefore fMRI data sharing can
improve research practices or even reduce the cost of doing
science. Despite this observation, fMRI data sharing is not
yet a common or easy practice, although some efforts have
been made [3], [4]. Databases such as Neurosynth1, allow
further analysis of the experimental output, i.e., of the brain
activation maps resulting from the statistical analysis of the
experiments. Even though some fMRI data repositories exist,
what is still lacking is a retrieval tool for the analyzed data
available in repositories. Content–based (CB) fMRI retrieval
aims to provide a tool to search collections of fMRI brain
activation maps for maps similar to an input query map. This
capability supports the analysis of inter–study variations and
provides a new tool for investigating study results [5].

Several researchers have published work on CB–fMRI
retrieval [6], [7], [8], approaching the problem using various
fMRI map descriptors. A common approach is to use the
whole–brain, voxel–wise, as a descriptor [9]. Tungaraza et
al. [10] proposed a method to threshold the voxels within the
brain maps and extract spatially distinct regions from the
voxels that remain. Each region is defined by a descriptor
containing several geometrical values. Garcia et al. [11]
proposed two descriptors to reduce the cost of whole–brain
voxel–wise methods: a map layout descriptor (MLD) which
captures the spatial distribution of intensity, and a whole–
brain, ROI–wise, descriptor. In this work, we present a
new a brain activation map descriptor based on treating the
activated regions as nodes in a connected graph.

Fig. 1. Overview of the CB–fMRI activation map retrieval approach.

There is a increasing popularity of modeling the brain as

1http://neurosynth.org/
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a connected system where nodes represent different regions
specialized by function [12], as a brain graph. Graph–
based approaches provide a way to describe whole–brain
patterns [13]. In this representation brain functionality is
represented by a number of nodes interconnected by a set of
edges [14]. Takerkart et al. [15] address inter–subject pattern
analysis by proposing a graph–based approach closely related
to our work. They use unsupervised learning to construct
attributed graphs that represent fMRI brain activation maps.
In this work, we proposed an undirected unweighted atlas–
based brain graph to model the brain activation maps. The
proposed brain graph is then used as a descriptor for the
retrieval step.

II. METHODS

This section describes the dataset and the techniques we
employed to carry out the experiments.

a) CB–fMRI activation map retrieval: The goal is to
retrieve relevant brain activation maps from a database, for
a given query. The query is itself a brain activation map.
The retrieval approach follows the typical retrieval schema
showed in Figure 1. A descriptor is extracted from the
query map and for each of the brain activation maps in the
database. Then, a similarity measure is used to compare the
descriptor from the query with the descriptors extracted from
the database (which are saved in the index). The final result
consists of retrieval results ranked in order of similarity to
the query.

b) Descriptor extraction: The main features of the
two proposed fMRI brain activation map descriptors are
described below.
• ROI–based representation: A binary descriptor based on

whole–brain ROI is defined by Garcia et al. [11]. It
combines voxels into functionally distinct ROIs which
are provided by the human brain atlas proposed by
Craddock et al. [16] (see Figure 2). The human brain
atlas provided by Craddock et al. [16] parcellates the
brain into spatially coherent, functionally homogeneous
regions of interest (ROIs). The Craddock et al. atlas is
used in this work because it is functional–based, rather
than anatomical–based, which may improve fidelity of
functional network modeling [17]. Garcia et al. [11]
show that retrieval using this descriptor results in re-
trieval results similar to those obtained by using a voxel–
wise approach, but in a more efficient way. Therefore,
we chose the ROI–based representation for comparison
with the graph–based representation proposed in this
work.

• Graph–based representation: Most of proposed human
brain graphs are binary brain graphs, where edges
between nodes are undirected and unweighted [14]. We
follow this approach in this work. The fMRI brain ac-
tivation maps are represented as undirected unweighted
atlas–based brain graphs (see Figure 2). The most com-
mon approach of the application of graph theory prin-
ciples to neuroimaging brain data is to define nodes by
the use of anatomical atlases for brain parcellation [18],

Fig. 2. In the left, a slice of the Craddock et al. atlas with 20 ROIs. In the
middle, the same slice with some red ROIs representing the functionally
activated ROIs in the brain after a particular stimulus. In the right, a
connected graph representation of that activated brain.

[12]. We used the Craddock atlas [16] for consistency
with the atlas used for the ROI–based descriptor and
because this atlas allows a structural and functional
graph representation of the fMRI brain activation maps.
For each of the ri Craddock ROIs there is a correspond-
ing node ni in the brain graph. Therefore, N = n1, ...,nN
is the set of nodes of the brain graph and N is the
number of the ROIs in the atlas To define the edges we
define all edges as undirected and unweighted. The set
of edges is represented by a binary adjacency matrix
A. The adjacency matrix A has binary elements, where
each element (ai j) is either 1, if the activation attributes
of both connected nodes ( θ(ni) and θ(ni)) are 1, or 0
otherwise:

A = (ai j) ∈ BN×N ,

where ai j =

{
1 if θ(ni) 6= 0 and θ(n j) 6= 0
0 otherwise (1)

Since the graph is undirected the adjacency matrix is
symmetrical [19]. Therefore, only the upper triangular
part of the adjacency matrix above the main diagonal,
T , is considered. Similar to Richiardi et al. [20], a
binary high–dimensional vector f is then generate by
linearizing T . f is the graph–based descriptor which
we use for measurement of similarity to other graphs.
c) Similarity measure: Levenshtein distance and his-

togram intersection (HI) are proposed to measure the similar-
ity between graphs. A description of standard graph metrics
which can be applied to brain graphs is given in [21]. For the
ROI–based approach, we use HI to compare this approach
with the proposed graph–based approach.
• Levenshtein distance: Edit distance is a widely accepted,

commonly used method for graph matching [22]. Our
graph–based descriptor f can be viewed as a string of
”0”s and ”1”s. This naturally suggests using Levenshtein
distance (string edit distance) for similarity compar-
isons. This distance essentially consists of counting the
minimum number of operations (insertions, deletions
and substitutions) required to transform one graph–
based descriptor fx into the other fy.

• HI: Due to the high computational complexity of Leven-
shtein distance [23], we also tested HI. This is possible
because our graphs are undirected and unweighted. HI



measures the number of intersecting values in each bin
of a histogram [24]; it is similar to Levenshtein distance,
in the sense that the dissimilarity of graphs is quantified
by the amount of distortion needed to transform one
graph into another [23].

III. EVALUATION

The data was obtained from 359 subjects during 8 experi-
ments. Since the distribution of subjects in each experiment
is uneven, only four subjects per experiment were considered.
The experiments consist of fMRI brain activity comparisons
during various tasks such as watching films, using moral
dilemmas as probes or doing basic memory exercises. Brain
activity of each subject was recorded for each separate
experiment (i.e. for each task). This study does not require
ethical review because only statistical summaries with no
identifying data are used.

In order to get the fMRI brain activation maps, a statistical
analysis of fMRI time–series needs to be carried out. The
retrieval approach presented in this work operates on brain
activation maps regardless of the method of computation
of the map; our retrieval is not limited to any particular
method, and operates independently of the method used to
compute the map. However, in the collection use for the
evaluation contains brain activation maps extracted using
the probabilistic independent component analysis (PICA)
method only. The PICA components contains in each voxel a
statistical z–value, indicating the level of activation in a brain
voxel. From each subject 10 PICA components are used,
and we considered only the highest 10% z–values in each
component of the brain activation maps. In our experiments,
we used each PICA component in the collection as a query.

For purposes of comparison with previous results, this
work follows the same evaluation scenario as in Garcı́a et
al. [11] and Bai et al. [25]. Therefore, a retrieved brain
activation map is considered relevant to a given query if they
both belong to the same experiment . Each brain activation
map in the collection is used as a query. The brain activation
maps which belong to the same subject as the query are
excluded. Finally, we calculate the area under the ROC curve
for each experiment.

IV. EXPERIMENTAL RESULTS

Graph–based algorithms can deal with only with a small
number of nodes because of the high computational cost of
computing graph distances [13]. In particular, Levenshtein
distance grows exponentially with the number of nodes [29].
Therefore, in this work, for the experiments only a small
number of nodes was chosen: n = 10,20,30. Using HI it is
possible to use a larger number of nodes. In particular, we
used n = 200 with HI to compare results with the previous
result in Garcia et al. [11] which used 200 ROIs. Results
using 200 nodes and the Levenshtein distance, for the graph–
based approach approach, are not presented because the
computational complexity became unacceptable. Table IV
presents the results achieved using the two descriptors and
the two similarity measures presented in Section II. The use

TABLE I
AVERAGE OF THE AREA UNDER THE ROC CURVE (%) AND THE

STANDARD DEVIATION (SD) ON EIGHT EXPERIMENTS WITH FOUR

SUBJECTS EACH ONE (AND TEN PICA COMPONENTS EACH ONE). TWO

DESCRIPTORS AND TWO SIMILARITY MEASURES (SM) ARE USED.

Descriptor n. ROIs SM % SD
ROI 10 HI 49.65 11.70
ROI 20 HI 49.68 11.60
ROI 30 HI 49.66 11.60
ROI 200 HI 49.68 11.59
Graph 10 Levenshtein 50.50 6.79
Graph 20 Levenshtein 53.59 9.35
Graph 30 Levenshtein 52.75 9.49
Graph 10 HI 50.45 11.60
Graph 20 HI 52.04 8.14
Graph 30 HI 52.01 11.04
Graph 200 HI 50.55 13.09

of 200 ROIs does not improve retrieval results in the case of
either descriptor. When applying the ROI–based approach
and the HI distance the best results were obtained when
using 20 ROIs; this yielded the same accuracy as when using
200 ROIs. Applying the graph–based approach, best results
were also obtained when using 20 nodes. Overall best results
were obtained when using the graph–based representation
with the Levenshtein distance; next best was the graph–
based representation with HI. In addition, we observed that,
when using the graph–based representation, the standard
deviation (SD) is smaller. Figure 3 shows the results using
20 ROIs. Graph–based approaches are more stable over the
experiments than the ROI–based approach.
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Fig. 3. Average area under the curve ROC per each of the experiments
using the best runs. This runs used ROI–based or graph–based descriptors
and Histogram Intersection (HI) or Levenshtein distance.

Finally, Table II displays the time needed to search for
similarities on the collection for a given query. It shows using
the Levenshtein distance, the query takes 18 seconds; with
HI, the query takes less than 1 second.

V. DISCUSSION & CONCLUSIONS

We propose a new approach for CB–fMRI retrieval based
on fMRI brain graph representation. We define an undi-
rected unweighted atlas–based brain graph to model brain



TABLE II
TIME NEEDED TO SEARCH ON THE COLLECTION WITH 320 SUBJECTS

(3,200 BRAIN MAPS SINCE EACH SUBJECT CONTAINS 10 PICA
COMPONENTS) FOR ONE BRAIN MAP QUERY. THE COMPARED RUNS

USED ROI–BASED OR GRAPH–BASED DESCRIPTORS AND HISTOGRAM

INTERSECTION (HI) OR LEVENSHTEIN DISTANCE.

Method ROI HI Graph HI Graph Levenshtein
Seconds 0.1 0.2 18

activation. Each node of the graph represents a specialized
region defined by a functional–based brain atlas. We provide
experimental retrieval results using two alternative distance
measures: Levenshtein distance and HI. Despite the low
accuracy achieved for our CB–fMRI retrieval approach, our
results show that the proposed brain graph approach achieves
better retrieval results on this set of data than the ROI–
based approach, (which was shown by Garcia et al. [11]
to be more efficient than voxel–based approaches). We
feel that the low accuracies are likely due to the inherent
difficulty of the problem and also due to the limitations of
our evaluation scenario. We show that the proposed graph–
based approach provides superior retrieval to the ROI–based
approach for this data. Specifically, we show that best results
are obtained when using only 20 nodes, and Levenshtein
distance. However, this distance has the disadvantage of high
computational complexity. HI achieves second best results,
with low computational cost.

We expect that increasing sharing of fMRI data among
research sites will significantly add to important findings
about brain functioning. Tools for managing this data, such as
the CB–fMRI retrieval tool we present, are critically needed
to support the increasing demands for data sharing; more
research and development work is required to meet this need,
and the field of tool development for fMRI data search is
under-researched at the current time. Our future work will
include ROI spatial information in the brain graph, and we
expect to expand our collection of brain maps to include a
greater variety of experiments.
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