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Abstract 12 

This study presents the finite-element based micromechanical modeling approach to obtain the 13 

electromechanical properties of the piezoelectric metamaterial based on honeycomb (HC) cellular 14 

networks. The symmetry of the periodic structure was employed to derive mixed boundary 15 

conditions (MBCs) analogous to PBCs. Three classes of hexagonal HC cellular networks, namely, 16 

conventional HC (CHC), a re-entrant HC (RE) and a semi-re-entrant HC (SRE) were considered. 17 

The representative volume elements (RVEs) of these three classes of cellular materials were 18 

created, and finite element analyses were carried out in order to analyze the effect of orientation 19 

of the ligament on their effective electromechanical properties and their suitability in specific 20 

engineering applications. The longitudinally poled piezoelectric HC cellular networks showed an 21 

enhanced behavior as compared to the monolithic piezoelectric materials. Moreover, 22 

longitudinally poled HC cellular networks demonstrated that, as compared to the bulk constituent, 23 

their hydrostatic figure of merit increased and their and acoustic impedance decreased by one order 24 

of magnitude, respectively,  indicating their applicability for the design on hydrophones.  25 

Moreover, results showed that cellular metamaterial with tunable electromechanical characteristics 26 

and variety of auxetic behaviors such as negative, positive or zero Poisson’s ratios could be 27 
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developed. Such novel HC network-based functional cellular materials likely to facilitate the 28 

design of light-weight devices for various next-generation sensors and actuators. 29 

Keywords: cellular materials; effective electromechanical response, honeycomb cellular 30 

networks, micromechanical modeling, piezoelectric materials, smart auxetic structures. 31 

Introduction 32 
 33 

Piezoelectric materials (PMs) play a key role in advanced multifunctional composites industry by 34 

virtue of their unique electromechanical coupling characteristics (Muliana 2011). PMs have found 35 

applications in actuators, sensors, ultrasound imagers, hydrophones and echo-cardiogram 36 

(Marselli et al. 1999). In these devices, PMs convert mechanical energy into electrical or vice-37 

versa. For example, in sensing applications, PMs require high sensitivity and low acoustic 38 

impedance (Alkhader et al. 2015; Lethiecq et al. 2004). Existing bulk piezoelectric polymers show 39 

low acoustic impedance and sensitivity while ceramics type piezoelectric materials have high 40 

acoustic impedance and sensitivity (Kar-Gupta and Venkatesh 2006). Several studies were 41 

conducted to enrich the coupling characteristics between the mechanical and electrical properties 42 

in piezoelectric materials by either embedding constituents (Topolov and Bowen 2008) or by 43 

introducing the porosity (Hikita et al. 1983).  44 

Piezoelectric composites were tailored to exhibit improved piezoelectric activity and mechanical 45 

flexibility (for example, active fiber composites, AFM) (Elhajjar et al. 2013). However, the 46 

porosity can significantly enhance the performances of medical diagnostic devices (Smith 1989) 47 

and hydrophones (Geis et al. 2000). Both piezoelectric composites (e.g., (Skinner et al. 1978); 48 

(Ramesh et al. 2006); (Richard et al. 2004))., and porous PMs (e.g., Nagata et al. 1980; Hikita et 49 

al. 1983; Ting 1985; Bast and Wersing 1989; Bowen et al. 2004; Piazza et al. 2005; Zhang et al. 50 

2007; Lee et al. 2007) showed potential in obtaining low acoustic impedance and high piezoelectric 51 
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sensitivity. However, currently, piezoelectric composites demonstrate properties far from the ideal 52 

electromechanical characteristics.  53 

In designing the porous PMs and the piezoelectric composites, the spatial distribution of the two 54 

phases controls the effective enhancement of the electromechanical properties (Levassort et al. 55 

1998). Therefore, the concept of phase connectivity was defined (Newnham et al. 1978). To 56 

understand the role of connectivity of porosity on the properties of PMs, several experimental 57 

studies were conducted by considering numerous configurations of porosity, such as, embedded 58 

porosity in a PMs (3-0 foam) (Marselli et al. 1999; Kara et al. 2003; Ueda et al. 2010); long 59 

cylinder-like porosity (3-1 foam) (Wirges et al. 2007) and open-cell like porosity (3-3 foam) 60 

(Nagata et al. 1980). Results demonstrated that porosity help to enhance the sensitivity of PMs. 61 

Several analytical studies were conducted to estimate the electromechanical characteristics of 62 

porous PMs by considering simplified configurations of porosity (such as 3-0 and 3-1) (Banno 63 

1985, Dunn and Taya 1993b, Mikata 2001, Bowen and Topolov 2003). Several micromechanical 64 

models based finite element frameworks were developed for predicting electromechanical 65 

properties of 3-0, 3-1 and 3-3 type porous PMs and hence addressed more complex microstructure 66 

(Kar-Gupta and Venkatesh 2008, Bosse et al. 2012). These studies established that behavior of 67 

porous PMs governed by the porosity level, pore shape, pore direction, and their distribution, 68 

cellular interconnectivity and the direction of the poling (Iyer et al. 2015). 69 

Piezoelectric cellular materials (e.g., Challagulla and Venkatesh 2012, Bauer et al. 2014) and 70 

piezoelectric architectured foams (Fang et al. 2007; Ueda et al. 2010) are the possible subclasses 71 

of the porous PMs. These subclasses can be used to tailor the microstructure for developing novel 72 

materials with the desired multifunctionality for specific applications (Wadley 2006).  73 

 74 

  75 
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Among Piezoelectric cellular solids and architectured foams, the 3-1 type cellular honeycomb 76 

(HC) configuration is highly in use due to its simplicity, utility, and workability with structures. 77 

Based on the ligament orientations the HC architecture may produce deformation with positive 78 

(conventional), negative (auxetic) and zero Poisson ratio’s (Grima et al. 2010). Auxetic materials 79 

are attractive due to their counterintuitive response under deformation and improved properties. 80 

The structural behavior of HC cellular networks with passive elastic anisotropic ligaments 81 

representing auxetic effects has been extensively studied (Grima et al. 2010, Masters and Evans 82 

1996, Gibson and Ashby 1997, Zhu et al. 1997). These studies established that the ligament 83 

orientation of cellular network governed the hexagonal HC architecture-property relationship 84 

(Alkhader and Vural 2009; Papka and Kyriakides 1999).  85 

In the case of the PMs with cellular networks, there is an auxiliary complexity in finding out 86 

optimized architecture-property relationship due to the electromechanical coupling parameters. 87 

The dielectric, elastic, and electromechanical coupling anisotropy of the ligament base material, 88 

the orientation of the poling direction are the main features of the mentioned problem. There is no 89 

analytical model available in the literature that could yield the electromechanical properties of the 90 

piezoelectric HC cellular network. Moreover, the relationship between the overall 91 

electromechanical properties and the microstructure features for the complete family of 92 

piezoelectric HC cellular networks is still not available. Recent experimental work on the 93 

fabricated 3-1 type auxetic lattice structure from bulk PZT piezo-ceramic showed promising 94 

electromechanical properties with negative in-plane Poisson’s ratio of −2.05 (Fey et al. 2016). 95 

These experimental findings motivate the present study. 96 
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In this paper, micromechanical modeling based FE computational framework is proposed to 97 

characterize the effects of poling direction, anisotropic material behavior and ligament orientation 98 

on the electromechanical properties of piezoelectric hexagonal HC cellular solids. 99 

Architecture of Piezoelectric Cellular Material 100 

We have considered three types of HC piezoelectric architected materials as shown in Figure 101 

1. These included conventional hexagonal HC structure (CHC), a re-entrant HC (RE) (which 102 

generates auxetic behavior) and a semi-re-entrant HC (SRE). In specific configurations, the 103 

proposed HC cellular networks can yield a variety of auxetic behavior, i.e., positive, negative and 104 

zero Poisson’s ratio. 105 

Figure 1 shows the proposed architectures and the four parameters that are used to describe the 106 

geometry of HC cellular network. The parameters h, l, t, and θ are referred to as the height of 107 

vertical rib, the angular rib length, the rib thickness, and the rib angle, respectively, as shown in 108 

the unit cell (UC) of each HC network in Figure 1. We fixed the h=10mm, l=4mm, t=1mm. To 109 

obtain different auxetic behaviors, the orientations of the ligaments (θ) of the cellular network 110 

were varied as shown in the corresponding unit cell (UC). The HC cellular network ligament 111 

material is made of soft PM (i.e., PZT-5H). The HC cellular networks were assumed to be poled 112 

in two directions, i.e., aligned with the pore axis (longitudinally poled (LP) network) and 113 

perpendicular to the pore axis (transversely poled (TP) network).  114 

Constitutive Model of Piezoelectric Cellular Material 115 

The linearized constitutive equations for a piezoelectric material are given by: 116 

 

E

ij ijkl kl kij k

i ikl kl ij j

S d E

D d E

 

 

 

 
  (1) 117 
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The ij , ij , iD  and iE  represent the strain tensor, stress tensor, electric displacement vector, and 118 

electric field vector, respectively. The material constants 
E

ijklS , ij

 , and ijkd referred to as the 119 

fourth-order compliance tensor measured at zero or constant electric field, the second order 120 

dielectric tensor measures at zero or constant stress and the components of the piezoelectric strain 121 

tensor. Further discussions on the PM constitutive relations can be found elsewhere (Yang 2006). 122 

To obtain the homogenized electromechanical properties (
E

ijklS , kijd , and ij

 ) of the UC, Eq. (1) 123 

can be written in terms of average stresses ij , strains ij , electric field iE , and electric 124 

displacement iD .  125 

.  

E E

ij ijkl kl kij k

i ikl kl ij j

S d E

D d E 

 

 

 

 
  (2) 126 

According to Eq. (2), the modeling of electromechanical behavior of the cellular PMs requires 127 

computing 45 independent material constants, comprising 6 dielectric, 18 piezoelectric and 21 128 

elastic constants. 129 

We considered the linearized electromechanical coupled constitutive relations for each ligament 130 

material to obtain the homogenized electromechanical properties of the proposed cellular network. 131 

These linearized constitutive relations are simple and, arguably, the most practical method for 132 

describing the electromechanical behavior of cellular network at the macroscale (Challagulla and 133 

Venkatesh 2013, Iyer et al. 2014, Kar-Gupta and Venkatesh 2006, Sigmund et al. 1998). These 134 

assumptions lead to an orthotropic linear electromechanical material model. However, there are 135 

advanced models available in the literature (Misra and Poorsolhjouy 2016, Rosi and Auffray 2016, 136 

Dell’Isola et al. 2018) that showed that linear microelements in an RVE would produce a nonlinear 137 

homogenized response. The geometry-driven non-linearity prevents the use of linear models as 138 
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linear models do not correctly exhibit the complexity and inter-connectivity of different parameters 139 

involved in formulating the problem. In the present study, we do not consider models that account 140 

for geometry-driven nonlinearity. However, it will be interesting to analyze the proposed cellular 141 

network using such advanced models that account for higher order gradient theory and geometry-142 

driven non-linearity. 143 

It should be emphasized here that the use of linearized electromechanical coupled constitutive 144 

relations has some implications. For example, higher order gradient continuum models have been 145 

recently used by several researchers to investigate the dispersive wave propagation in strain 146 

gradient elastic media. Contrary to classical elasticity within the strain gradient framework, Rosi 147 

and Auffray (Rosi and Auffray 2016) showed that the wave propagation in hexagonal lattices 148 

becomes anisotropic and group velocity was proven to be different from energy velocity and 149 

should be treated as different quantities. Misra and Poorsolhjouy (Misra and Poorsolhjouy 2016) 150 

derived a micro-morphic continuum model for the elasticity of granular media, and the dispersion 151 

graphs have presented showing the relationship between the dispersion behavior and the micro-152 

scale parameters. Contrary to classical elasticity, where all the waves will be of an acoustic type, 153 

and there will be no possibility of frequency band gaps, the micro-morphic continuum model can 154 

show band gaps over a large range of wave numbers. Their results indicate that materials with 155 

specific wave propagation behaviors can be designed that can replace existing PMs which are 156 

commonly used in damage identification or vibration control applications. 157 

Micromechanical Finite Element Model for Piezoelectric Cellular Materials 158 

Recently, Khan and Abu Al-Rub (Khan and Abu Al-Rub 2017, 2018a; b) developed an FE-159 

based UC homogenization method to predict the overall mechanical properties of periodic 160 

architectured materials based on the microstructure geometry and its base material properties. In 161 
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this study, we have extended the framework to calculate the overall properties of architected and 162 

periodic cellular PMs. Figure 1 shows the UCs of the three types of hexagonal HC structures. 163 

Periodic boundary conditions (PBCs) are imposed on UC (Luxner et al. 2005, Kanit et al. 2003; 164 

Khan and Muliana 2009, Choudhry et al. 2016) that yield the responses of infinitely repeating 165 

patterns of architecture (Jiang et al. 2002, Abueidda et al. 2015). PBCs give quite reasonable 166 

estimates of the properties as compared to the homogeneous displacement and homogeneous 167 

traction boundary conditions (Zohdi and Wriggers 2005, Xia et al. 2003). Using the proposed 168 

framework, it is possible to characterize the linear electromechanical response of piezoelectric 169 

architecture materials completely. 170 

Finite Element Models 171 

FE models of the HC based cellular materials were created by varying the ligament orientation 172 

ranging from 30-60 degree which corresponds to porosity values ranging from 50-85%. The FE 173 

analyses on the UC were performed with the ABAQUS/Standard. A soft piezoelectric material 174 

(PZT-5H) was considered as a base material for the cellular material and its electromechanical 175 

properties are presented in Table 1. A representative FE model of HC RE is shown in Figure 2 176 

with its corresponding 6 boundary faces direction notations. UC has meshed with 10-noded 177 

quadratic piezo-electric tetrahedron elements (C3D10E). Each node in C3D10E has a total of four 178 

degrees of freedom (DOF), three displacements ( 1 2 3, ,u u u ), and one electrical potential ( ). To 179 

avoid the rigid body motion of the UC, under electrical loading cases, the locations of arbitrary 180 

points A, B, and C that are constrained specifically are also shown in Figure 2. 181 

The cellular materials were assumed to be poled longitudinally and transversely. We have 182 

assumed that every region of the FE model considered in this study was poled uniformly in one 183 

preferred direction. Uniform poling of the piezoelectric HCs normal to transverse porosity 184 
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direction is a very challenging task. However, fabrication of the cellular HCs porous networks 185 

with uniform poling along the longitudinal direction has been successfully demonstrated (Fey et 186 

al. 2016). 187 

 188 

Boundary conditions and homogenization for RVE 189 

PBCs are usually applied to the UC to ensure that UC represents the response of the whole 190 

architected foam. Moreover, the displacements compatibility and the electric potential continuity 191 

across neighboring UC boundaries are assured (Iyer and Venkatesh 2010, Iyer and Venkatesh 192 

2011). 193 

Xia et al. (Xia et al. 2003) developed periodic boundary conditions for a UC in terms of average 194 

contractions and stretches ( , 1, 2,3j

ic i j  )and shear deformations ( ,j

ic i j ) of the UC model,  195 

 (x, y, z) (x, y, z) ( , 1,2,3)j j j

i i iu u c i j      (3) 196 

The (x, y, z)j

iu 
 and (x, y, z)j

iu 
are the displacements on the positive and negative jX  directions, 197 

respectively. Similarly, the PBCs for the electric potential are given by as follows 198 

 (x, y, z) (x, y, z) (x ) ( 1,2,3)j j j j

i i iE x i          (4) 199 

Where, iE is the applied macroscopic electric field. The Eq. (3) and (4) are sufficient to ensure the 200 

displacements compatibility and the electric potential continuity. 201 

One of the requirements of the Eq. (3) is that on the two opposite boundary surfaces, the difference 202 

of the displacements of the corresponding points should be specified. However, Li (Li 2008) 203 

derived an explicit displacement BCs of UCs representing microstructure of periodic structure 204 

taken from the symmetry existent within the structure. In this study, the Li (Li 2008) work has 205 

been extended to account for electric charge continuity across neighboring UCs and the mixed 206 
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boundary conditions are proposed to compute the overall properties of piezoelectric architected 207 

materials. Table 2 shows the list of the B.C.s.  208 

To couple micro-macro scale behavior, a homogenization method was adopted to obtain the 209 

overall properties of the UC under various global loading conditions. The volume averaging 210 

approach was used to compute the average stress and strain as follows: 211 

    
1 1

, , , ,ij ij ij ij

V V

x y z dV x y z dV
V V

        (5) 212 

Analogously the average electric fields and electric displacements are defined by 213 

    
1 1

, , , ,i i i i

V V

E E x y z dV D D x y z dV
V V

     (6) 214 

Considering the traction continuity, the average stress can be written as 215 

  no summation on j
ij

ij

j

R

A
    (7) 216 

Using an electric charge continuity, the macroscopic electric displacement is given by 217 

 
i

i

i

q
D

A
   (8) 218 

Eq. (7) shows that the macroscopic stress over the UC can be computed from the total tractions (219 

ijR ) and the corresponding surfaces areas ( jA ). Similarly, Eq. 8 establishes that the macroscopic 220 

electrical displacement over the UC can be computed from the total charge ( iq ) and the areas (221 

iA ) of the corresponding boundary surfaces. 222 

Sanity Check 223 

In the literature, there is yet no analytical formulation available that offer explicit computation of 224 

the properties of the piezoelectric HC networks while their ligaments following orthotropic 225 
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material behavior. Hence, the mixed boundary conditions given in Table 2 was applied to one 226 

element and 100x100x100 elements cube to evaluate the correctness and appropriateness of the 227 

proposed methods. It was found that the proposed approach yields the homogenous properties of 228 

the PZT-5H given in Table 1. 229 

Results and Discussion 230 

To compute the effective properties of each unit cells, we applied the appropriate boundary 231 

conditions given in Table 2. For each load-case, it was ensured that the applied boundary conditions 232 

produced only one non-zero component of the macroscopic stress or electric field vector in Eq. 233 

(2). Using all set of the B.C.s, the 45 independent material constants could be determined. Table 2 234 

shows some of the relations for the calculation of typical material parameters. 235 

The effective properties of each of the three piezoelectric cellular HC network, such as, 236 

components of the elastic compliance, 
E

ijklS , piezoelectric strain tensors, ( , )E

kij ikld d 
, dielectric 237 

stress tensor, ij

 , and the corresponding elastic constants,
E

ijklC , elastic moduli, ( ,G )E E

ij kkE , and 238 

Poisson’s ratio, were obtained using proposed procedure. For both the LP and TP networks, all 239 

material parameters were computed for a wide range of the ligaments’ orientation. As the level of 240 

auxeticity and UC microstructure are controlled by θ, all the results were shown as a function of 241 

varying θ. Since some of the material parameters cannot be directly computed from the FE results, 242 

so, the most commonly used material constant of the PMs are derived from the following relations. 243 

 
      

           

1

1

; ;

; ; ;

TE E E

TD E D D D

 



 







                    

                          

C S e d C d e

S S d g C S g h S h e

  (9) 244 

Where 
D 

 C  and 
D 

 S are the components of the stiffness and compliance tensor measured at 245 

zero electric displacements, respectively. The  e ,  h ,  g  are the piezoelectric stress tensor, 246 
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strain tensor, and voltage tensor, respectively. The dielectric strain tensor 
    is computed at 247 

zero strain. 248 

 249 

Effective Elastic Response 250 

The Compliance matrix coefficients 
E

ijklS  were used to calculate the stiffness constants 
E

ijklC . 251 

Figure 3 illustrates the stiffness constants of longitudinally and TP HC structures over various 252 

angles 30°, 45°, and 60°.  Both LP and TP HC cellular materials showed substantial variations in 253 

both in-plane and out-of-plane stiffness coefficients values for different θ. The elastic properties 254 

were found to be anisotropic and showed different trends and non-intuitive behavior. 255 

The stiffness constants of the LP and TP HC network (except the in-plane stiffness constants, C12) 256 

varied nonlinearly with the increase of the θ. The conventional piezoelectric HCs exhibit 257 

considerably superior in-plane stiffness constants C12, C13 and C22 as compared to the re-entrant 258 

and semi re-entrant HC foams, whereas the re-entrant HC foams exhibited significantly improved 259 

in-plane stiffness constants such as C11. 260 

For all the HC cellular structures considered, the normal stiffness constants in the longitudinal 261 

direction (such as C33) are usually larger than the in-plane stiffness coefficients (such as C11 or 262 

C22). The high stiffness along the longitudinal direction (3 directions) is a result of stretching 263 

dominated mode of deformation while the lower stiffnesses along the in-plane directions (1 or 2 264 

directions) show that the bending dominated deformation behavior. For both poling directions, the 265 

highest stiffness was observed for re-entrant HC cellular structures.  266 

However, the out-of-plane normal stiffness constant C13 showed higher stiffness as compared 267 

to the in-plane stiffness constant C12. The in-plane compliant behavior is due to the fact that the 268 

in-plane Poisson’s ratio of the HC network is about one order of magnitude higher than the out of 269 
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plane Poisson’s ratio. For example, the in- (v12) and out-of- (v13) plane Poisson’s ratio of the 270 

conventional HC with an angle of ligaments of 30⁰ is 0.44 and 0.034, respectively. 271 

The shear stiffness constants involving the in-plane shear stiffness constant, C44, and out-of-272 

plane stiffness constant, C66, varied nonlinearly with the increase of the ligament angle (θ). The 273 

nonlinear relation between the relative density and ligament angle might be the cause of the 274 

nonlinear stiffness behaviors. However, with the increase of θ the out-of-plane shear stiffness 275 

constant in, C55, showed a linear trend (Zhang and Ashby 1992). Under the out-of-plane shear 276 

loading condition, the deformation behavior along the 3-directions is stretching dominated that 277 

makes the HC cellular network stiffer. On the other hand, the in-plane shear stiffness constant, C44, 278 

showed a nonlinear trend with the increase of θ. During in-plane shear loading, the ligaments of 279 

the HC network deform under bending along the directions 1 and 2. Among the three HC cellular 280 

networks, the semi re-entrant HC was observed to have highest in-plane (i.e., C44) and out-of-plane 281 

shear stiffness’s (i.e., C55, C66) both in longitudinally and transversely porous HC cellular 282 

materials. In addition, for the proposed HC cellular networks a diverse range of in-plane ν can be 283 

obtained (+ve, -ve and zero). Figure 5 shows that the biggest positive +ve and -ve  in-plane ν’s 284 

were observed at an angle of 300. Figure 4 and 5 results demonstrate that the HC based 285 

piezoelectric cellular materials can yield unique sets of elastic properties with different level of 286 

auxeticity.     287 

Figure 6 shows the displacement and electric potential contour plots for three different load case. 288 

For all three HC structures considered, the displacement contours in 1-direction under uniaxial and 289 

shear loading loadings are shown in Figures 6(a) and (b), respectively. These distributions of 290 

displacement fields clearly demonstrated the state of shear and uniaxial deformation behavior. For 291 

the loading case-7, the electric field of 0.1MV/m is applied, and the electric potential contours 292 
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plots are obtained. Figure 6(c) shows that for all three HC network, there is a linear variation of 293 

electrical potential between opposite faces of loading while a uniform electric potential was 294 

observed at the central part of the UCs. 295 

Effective piezoelectric properties 296 
 297 

Figure 7 shows the changes in the overall piezoelectric properties as a function of the angle of 298 

ligaments for HC cellular networks considered. The poling direction with respect to the porosity 299 

axis usually has an insignificant effect on the piezoelectric properties of porous materials (Iyer et 300 

al. 2015). However, it is observed for both TP and LP HC networks that the architecture of the HC 301 

cellular network does affect some of the piezoelectric properties. The level of magnitude of 302 

piezoelectric properties of TP networks are very less as compared to the LP HC network, but 303 

variation response as a function of ligament angle has similar trends. 304 

We analyzed both the normal and shear piezoelectric coefficients. It was found that shear 305 

piezoelectric properties of HC cellular network exhibited high piezoelectric sensitivity. However, 306 

the shear piezoelectric constants showed considerably different behavior as a function of θ. In the 307 

case of LP HC network, the e24 (LP) was increased, and e15 (LP) was decreased significantly with 308 

θ for all HC networks. The largest value of e15 (LP) was observed at 30 degrees for a re-entrant 309 

network; while for e24 (LP) the semi-re-entrant HC network was showing the highest values and 310 

increased with the values of θ.  311 

The effective normal piezoelectric properties were found to be a function of ligament angle and 312 

HC networks architecture. The normal piezoelectric constant, e33, is usually recognized as the most 313 

vital parameter for various applications utilizing monolithic PMs. For LP HC network e33 (LP) was 314 

amplified with the increase in ligament angle, but there was an insignificant variation for e33(TP). 315 

In addition, Figure 7 demonstrated that even though the e31 of the ligament base material has 316 
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negative values, the HC network could display both -ve and +ve values of e31 values by varying 317 

the angle θ. These results indicated that the piezoelectric HC architecture could show a different 318 

crystal symmetry as compared to the ligament base material. The LP HC network produced the 319 

highest negative values of e31 and e32. 320 

Effective dielectric properties 321 

The effective dielectric constants ij  were computed for all three HC cellular networks as a 322 

function of the θ as presented in Figure 8. Both LP and TP HC cellular networks showed 323 

noteworthy variations in the ij values at various angles. The ij values of all piezoelectric HC 324 

networks (except 11(LP)  and 11(T P)  for conventional and semi re-entrant HC) increased and 325 

varied nonlinearly as a function of ligaments angle. The decrease in the magnitudes of 11(LP)  326 

and 11(T P)  for conventional and semi re-entrant HC was related to the scattered path of the 327 

electric charges along the x-axis. The highest and lowest values of the ij were obtained for re-328 

entrant HC 33 (LP)  and conventional HC, 11(TP) , respectively. 329 

Effective Figure of Merit 330 

Various figures of merit (FOM) are of interest to evaluate the usefulness of PMs in industrial 331 

applications, such as an ultrasound imager, hydrophones, and energy harvesters. The combination 332 

of fundamental electromechanical coefficients (i.e., elastic, piezoelectric and dielectric coefficients 333 

as calculated by the above mentioned FEA) can be used to evaluate numerous industrial FOM. For 334 

cellular network FOM, the relevant constants in various applications (i.e., hydrophones) are the 335 

hydrostatic strain coefficient ( hd ), the hydrostatic FOM ( .gh hd ), the acoustic impedance ( Z ) and 336 

electromechanical thickness model coupling factor ( tk ) (Kar-Gupta and Venkatesh 2006, Dunn 337 

and Taya 1993b). There are some other FOM which are of importance in several different 338 
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applications. The relevant FOM parameters are given in Table 3. More details on FOMs can be 339 

found elsewhere, (Dunn and Taya 1993b). 340 

To assess how much the proposed HC networks enhanced the electromechanical responses the 341 

FOM of the HC network is normalized with the FOM of monolithic PM (PZT-5H) as shown in 342 

Figure 8. For the TP networks, the results show that all the normalized FOMs did not show any 343 

enrichment in electromechanical behavior. However, in the LP networks, some of the normalized 344 

FOMs varied strongly and marginally as a function of θ. The normalized hd  showed a very minor 345 

effect on the variation of θ while a normalized .gh hd  was decreased with the increase in the θ and 346 

the highest value was found at 30 degrees. The inverse relation between 33g  and 33  is the cause of 347 

such huge improvement in the .gh hd . Figure 8 shows that the ij decreases with the increase of 348 

porosity, and as a result, the gh  was increased. The lowest (better) normalized value of Z  was 349 

found at 300 while the Z value increases with an increase in the θ. The numerical results agreed 350 

well with the experimentally observed (Bast and Wersing 1989) trend of decrease in the values of 351 

Z with the increase of porosity.  352 

The proposed piezoelectric HC cellular material showed an improved behavior for the LP system 353 

as compared to the bulk material. For example, the LP HC networks showed one order of 354 

magnitude increase in their hydrostatic FOM. However, the acoustic impedance was decreased by 355 

one order of magnitude. 356 

The Z- .gh hd  relationship is important to be analyzed while designing the transducer and 357 

hydrophones. Figure 9 shows the Z- .gh hd  quid pro quo, where when the porosity of HC networks 358 

increases, the .gh hd  showed increasing trend while the Z value decreases. Such a quite unique 359 

combination of increased sensitivity and reduced acoustic impedances is nearly impossible to 360 
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obtain using bulk PMs and piezoelectric composites (Dunn and Taya 1993a). These results indicate 361 

that it is possible to design architected porous PM with required electromechanical characteristics. 362 

Several researchers have shown that auxetic geometry improves the performance of the 363 

piezoelectric composite and porous PMs. For piezoelectric composites, Smith (Smith 1991) 364 

showed that the polymer matrix with negative Poisson's ratio enhances their performance. 365 

Numerous studies combined topology optimization and finite element methods to design optimum 366 

topologies of unit cells to obtain a piezoelectric composite with better behavior. Using the topology 367 

optimization method proposed by Bendsøe and Kikuchi (Bendsøe and Kikuchi 1988), the optimum 368 

design of 1-3 piezoelectric composites for hydrophone applications were obtained by Sigmund et 369 

al (Sigmund et al. 1998). Using the criteria to maximize for hd  and .gh hd , the obtained optimal 370 

3D porous architected matrix showed auxetic effects in certain directions like re-entrant type HC 371 

cellular material. Moreover, the optimized design with porous architecture design increases the 372 

values of hd  and .gh hd  over monolithic piezoelectric ceramics by factors of more than 10 and 373 

10,000, respectively. A unit cell based topology optimization approach was proposed by Silva, 374 

Kikuchi, and co-workers (Silva et al. 1997, Silva et al. 1998) to find the distribution of inclusion 375 

and/or voids phases that enhances piezoelectric electromechanical efficiency. Several 2D and 3D 376 

auxetic structures (negative Poisson’s ratio) consisting of piezoelectric polymer and architected 377 

cellular materials were proposed. 378 

For the proposed piezoelectric HC cellular networks, a desirable elastic, piezoelectric and 379 

dielectric properties can be obtained that is nearly impossible to achieve using bulk PMs and 380 

piezoelectric composites. The unique set of electromechanical properties is a function of angle so 381 

all the properties cannot be improved at once. It requires some techniques to obtain an optimum 382 

combination of properties. For example, using topology optimization Sigmund et al. (Sigmund et 383 
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al. 1998) showed that the cell design should be optimized such that it gives the required strength 384 

and electromechanical properties. The proposed 3-1 type piezoelectric cellular networks are 385 

limited in terms of their electromechanical properties and strength. Recently, we have shown that 386 

3-3 type piezoelectric metamaterials can provide a good combination of strength and 387 

electromechanical properties (Khan and Khan 2019). The 3-3 type piezoelectric porous 388 

metamaterials design improves the values of hd  and .gh hd  over monolithic piezoelectric ceramics 389 

by factors of more than 15 and 12,000, respectively. 390 

Next, we analyzed the behavior of normalized electromechanical coupling factors ( 31 32, , tk k k ) 391 

and frequency constants ( 31 32, , NtN N ).Figures 10(a-c) showed the normalized magnitudes of 392 

the 3ik and tk . The k31 decreased while k32 increased with the increase in angle θ. The k31 and k32 393 

were equal for the bulk PZT-5H. For all proposed HC cellular materials, for given angles, the k31 394 

values ware seen to decrease more comparative to k32 because of the anisotropic nature of 395 

microstructure. For both modes, the d3i were nearly equal but the higher values of 11

ES  than 22

ES  396 

give rise to more decrease in k31 than k32. In contrast, to k31 and k32, the normalized kt values were 397 

one order higher than the monolithic PZT-5H. 398 

Figures 9(d-f) showed normalized plots of N1 and N2. For monolithic material, the frequency 399 

constants N1 and N2 were equal. For all the proposed HC cellular materials, for given angles, the 400 

N1 values were seen to decrease more comparative to N2. As compared to monolithic piezoelectric 401 

materials, the disparity in N1 and N2 values were due to the orthotropic constituent properties and 402 

the architecture of the HC cellular materials. Moreover, the reverse trend was observed for N1 and 403 

N2 with an increase in the porosity. The larger decreased in N1 than N2 values are due to the higher 404 

values of 11

ES  than 22

ES . The normalized Nt decreased with the increase of porosity as shown in 405 
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Figure 10(f). The decreased in Nt with increasing the porosity was linked with the increased in the 406 

33

ES  due to decrease in the transverse damping. 407 

The computational analyses show that the relationship between the architecture of HC cellular 408 

network and anisotropic nature of constituent properties leads to architecture-dependent elastic, 409 

piezoelectric and dielectric properties that vary significantly from the properties of the monolithic 410 

material. Among all three proposed HC networks, the CHC cellular materials showed exceptional 411 

electromechanical properties. The FE results confirm that the RE and SRE HC network 412 

demonstrate a combination of unique mechanical properties with auxetic effects and exceptional 413 

piezoelectric properties which cannot be realized from CHC network. Overall, the FE results 414 

endorsed that the cellular networks can be tailored to obtain a unique combination of tunable 415 

electromechanical properties as per the needs of various practical applications. The proposed novel 416 

RE and SRE HC networks have the capacity to design unique next generation actuators and sensors 417 

with negative and zero Poisson’s ratio. 418 

Conclusions 419 

This study proposed a finite element base micromechanical modeling framework to estimate 420 

the elastic, dielectric and piezoelectric of the HC based cellular PMs. Using the internal symmetry 421 

of the periodic structure a mixed boundary conditions analogous to PBCs were proposed. The 422 

modeling approach was applied to the UCs of conventional, auxetic and semi re-entrant type HC 423 

piezoelectric cellular networks and their electromechanical properties were presented. For the 424 

longitudinal poled network, the results showed that the HC network exhibited an exceptional 425 

combination of piezoelectric properties, i.e., low impedance and more sensitivity, which could not 426 

be obtained by monolithic PMs. However, for the TP network, the electromechanical properties 427 

displayed insignificant dependence on the porosity and angle of the ligament. The FE results 428 
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showed that HC network with tunable electromechanical characteristics coupled with auxetic 429 

behavior such as negative or zero Poisson’s ratio could be produced. Such novel HC network-430 

based functional cellular materials have the capacity to facilitate the design of light-weight devices 431 

for various next-generation sensors and actuators.  432 
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Table 1. Electromechanical properties of the PZT-5H (poled in 3-direction) 1 
 2 
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 4 

 5 

 6 
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 11 

 12 

 13 
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Properties PZT-5H 

2

11 22 (pm / N)E ES S   16.5 

2

12 21 (pm / N)E ES S  -4.78 

2

13 23 (pm / N)E ES S  -8.45 

2

33 (pm / N)ES  20.7 

2

44 (pm / N)ES  42.6 

2

55 66 (pm / N)E ES S  43.5 

15 24 (p m/ V)d d  741 

31 32 (p m/ V)d d  -274 

33 (p m/ V)d  593 

11 0 22 0/ /      3130 

33 0/   3400 

Density ( )  7500 kg/m3 

Permittivity of free space 0( )  8.85x10-12 C/Vm 
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Table 2. Complete set of boundary conditions with computation formulae to determine 15 

electromechanical coefficients. 16 
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Coefficients X- X+ Y- Y+ Z- Z+ Relation 
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*Points A, B and C are constrained on respective faces (having zero electric potential) to avoid 18 

rigid body motion. 19 
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Table 3. List of figure of merit. 22 

 23 

Parameter Relation 

hydrostatic strain coefficient ( hd ) 31 32 33hd d d d    
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Figure 1 Piezoelectric hexagonal HC cellular networks with their unit cells a) Conventional 1 

hexagonal HC structure (CHC) b) a re-entrant HC (RE) c) semi-re-entrant HC (SRE). 2 

 3 

Figure 2 The unit cell of HC RE meshed with 10 node quadratic tetrahedron piezoelectric elements 4 

(C3D10E) showing 6 boundary faces with respect to the axes directions.  5 

 6 

Figure 3: Sanity Check with a) one element and b) 100x100x100 elements. 7 

 8 

Figure 4: The overall elastic constants of piezoelectric HC cellular network at various angles (30o, 9 

45o, 60o). 10 

 11 

Figure 5: Variation in the overall Poisson’s ratio with various angles (30o, 45o, 60o) for 12 

piezoelectric HC networks. 13 

 14 

Figure 6 Displacement and electric potential contours in the UCs of several classes of piezoelectric 15 

HC foam structures with angle 45o. a) Displacement contours under mechanical normal loading 16 

(i.e., 0.1% normal strain along the x-axis) b) Displacement contours under mechanical shear 17 

loading (i.e., 0.1% shear strain in the x-y plane). c) Electric potential contours under electric field 18 

of 0.1MV/m.  19 

 20 

Figure 7: The overall piezoelectric constants of HC cellular network at various angles (30o, 45o, 21 

60o). 22 

 23 
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Figure 8: The overall dielectric constants of HC cellular network at various angles (30o, 45o, 60o). 24 

 25 

Figure 9: Normalized FOMs of HC cellular network at various angles (30o, 45o, 60o). (a) 26 

hydrostatic strain coefficient, (b) hydrostatic figure of merit, (c) acoustic impedance (d) Z- .gh hd  27 

relation 28 

 29 

Figure 10: Selected normalized FOMs of HC cellular network at various angles (30o, 45o, 60o). 30 
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Response to Reviewer’ comments: 

We would like thank the referees for their kind and constructive comments that have enabled 

us to clarify some important points overlooked in the original manuscript. Taking the referees’ 

comments into consideration, we have revised the manuscript to our best. All changes are 

highlighted by red color text in the revised manuscript 

The responses to reviewer’s comments are listed below: 

 

Comments to the Author  

-Reviewer 1 

This is a nice study on the Piezoelectric Metamaterial with Negative and Zero Poisson's Ratio. 

They used auxetic geometries to enhance the properties of piezoelectric composites. The 

mechanics part is nicely done. It can be published after these major comments: 

 

Response: The authors would like to thank the reviewer for appreciating our work. 

 

1- Piezoelectric materials are light. Why does auxectic geometry truly matter? 

Response: 

To address reviewer’s concern on why the auxetic geometry really matter, the following 

paragraph has been added in the revised manuscript. 

 

Several researchers have shown that the auxetic geometry enhances the performance of the 

piezocomposite and porous piezoelectric materials. Smith [1] showed that the negative Poisson's 

ratio polymer matrix enhances the performance of the piezocomposite materials. Numerous 

researchers employed topology optimization techniques and the homogenization method to 

improve the performance of piezocomposite materials by designing new topologies of unit cells. 

Sigmund et al [2] employed the topology optimization method suggested by Bendsøe and Kikuchi 

[3] to design 1-3 piezocomposites with optimal performance characteristics for hydrophone 

applications. When design for maximum hd  and .gh hd , the optimal three-dimensional, 

anisotropic porous matrix microstructure found to possess negative Poisson’s ratios in certain 

directions similar to re-entrant honeycomb network. Sigmund et al [2] showed that optimized porous 

microstructure design enhances the values of hd  and .gh hd  over pure piezoceramics by factors of more 

than 10 and 10,000, respectively. Silva, Kikuchi, and co-workers [4], [5] proposed a topology 

optimization techniques of finding the distribution of material and voids phases in a periodic unit 

cell that optimizes piezocomposite electromechanical efficiency. Several porous 2D and 3D 

piezoelectric-polymer and piezoelectric cellular microstructure were also proposed with negative 

Poisson's ratio behavior. 

 



2- Along the same line, does the geometry and cell design help strength (the enhancement is 

electric properties are good not magnificent)? In fact, these designs can create certain stress 

concentration and reduce the strength, which makes it impractical. Please comment. 

 

Response: 

For the proposed piezoelectric honeycomb cellular networks, by varying the re-entrant angle, a wide 

range of tunable elastic, piezoelectric and dielectric properties can be obtained that cannot be realized by 

monolithic piezoelectric materials. Since electromechanical properties exhibit individual dependence on 

an angle so they cannot all be optimized at once, though an optimum combination of properties can be 

obtained. For example, using topology optimization (Sigmund et al. [2]) the cell design should be 

optimized such that it gives the required strength and electromechanical properties. The proposed 3-1 

type piezoelectric cellular networks are limited in terms of their electromechanical properties and 

strength. Recently, we have shown that 3-3 type piezoelectric metamaterials can provide a good 

combination of strength and electromechanical properties [6]. In fact, the 3-3 type piezoelectric porous 

metamaterials design enhances the values of hd  and .gh hd  over pure piezoceramics by factors of more 

than 15 and 12,000, respectively. In another study, using topology optimization, Sigmund et al [2] also 

showed that optimized porous microstructure design enhances the values of hd  and .gh hd  over pure 

piezoceramics by factors of more than 10 and 10,000, respectively. 

 

This is true that the cellular lattice materials are prone to stress concentration regions but as discussed 

earlier the compromise in strength and electromechanical properties should be sought by the designer 

for the specific application and select the optimized design of cellular structure accordingly. 

 

 

  



-Reviewer 2 

Khan presents a finite-element based micromechanical modeling framework to compute the 

electromechanical properties of a series of periodic piezoelectric materials. Negative and zero 

Poisson's ratios were predicted based on averaged model. The work done in the paper is 

extensive, and the paper is well written with some revisions to be made before publication: 

 

1. There are numerous grammatical errors and mistakes made in the paper.  

For example, line 101, it should be "described",  

line 11, "to" is to be removed,  

line 155, "total (of) four degree(s) of freedom..." is the correct form, and 2 commas are 

needed, one before "three" and one before "and",  

line 175 must be "poled" not "pole".  

Other lines that need corrections, among others, are line 196, 224, 257 (the figure number), 

307, 308, 386, 387, 389, etc. 

Response: 

We appreciate the reviewer’s careful review and thankful for suggested corrections. All 

corrections have been made. Manuscript is carefully revised with the help of an English language 

expert.    

 

2. Authors have used linearized electromechanical coupled constitutive relations for the 

piezoelectric material being used. This formulation is generally accepted. Thereafter, the 

authors assume a similar form of constitutive relation, with averaged values, for the RVE that 

is build from the piezoelectric unit cell. This assumption leads to an orthotropic linear material 

model. We already know from the literature [1,2, 3] that linear microelements in an RVE will 

produce nonlinear behavior of the macro-material point. Even in the simplest case for the 

geometry shown in the paper, and for a linear isotropic material (and not a piezoelectric 

material), the geometry-driven non-linearity prevents the use of linear models as linear 

models do not correctly exhibit the complexity and inter-connectivity of different parameters 

involved in formulating the problem. Perhaps, a justification of using Eq. 2 in the paper will 

answer such objectives. 

[1] Misra, A. and P. Poorsolhjouy, Granular micromechanics based micromorphic model predicts 

frequency band gaps. Continuum Mechanics and Thermodynamics, 2016. 28(1-2): p. 215-234. 

[2] Rosi, G. and N. Auffray, Anisotropic and dispersive wave propagation within strain-gradient 

framework. Wave Motion, 2016. 63: p. 120-134. 

[3] dell'Isola, F., et al., Pantographic metamaterials: an example of mathematically driven design 

and of its technological challenges. Continuum Mechanics and Thermodynamics, 2018: p. 1-34. 

 

Response: 



Thanks for providing the above references. We appreciate the reviewer’s recommendation and 

found it useful for our research. To address the reviewer’s concern, we have added a small 

paragraph discussing the role of linearized electromechanical coupled constitutive relations in 

designing piezocomposites and porous piezoelectric materials. We have cited the above 

mentioned reference and many relevant and recent papers in the revised manuscript. 

 

To address reviewer’s concern, the following text has been added in the revised manuscript. 

 

We considered the linearized electromechanical coupled constitutive relations for each ligament 

material to obtain the homogenization electromechanical properties of the proposed cellular 

network. These linearized constitutive relations are simple, attractive and, arguably, the most 

feasible approach for describing the electromechanical response of a cellular network at the 

macroscale [7],[8],[9],[2]. These assumptions lead to an orthotropic linear electromechanical 

material model. However, there are advanced models available in the literature [[10], [11], [12]] 

that showed linear microelements in an RVE will produce a nonlinear homogenized response. 

The geometry-driven non-linearity prevents the use of linear models as linear models do not 

correctly exhibit the complexity and inter-connectivity of different parameters involved in 

formulating the problem. In the present study, we do not consider models that account for 

geometry-driven nonlinearity. However, it will be interesting to analyze the proposed cellular 

network using such advanced models that account for higher order gradient theory and 

geometry-driven non-linearity. 

 

3. A consequence of the point mentioned in (2) is that the behavior of the material when excited 

will not be dispersive, while we know from [1] that dispersion occurs and the velocity of wave 

will be a function of the frequency/wavenumber. An explanation on this matter will also help 

the reader in grasping the physics of the problem. 

Response: 

The author’s would like to thank the reviewer for raising this interesting point. The following text 

has been added in the revised manuscript discussing the behavior of material subjected to 

excitation while considering higher order gradient continuum models. 

 

It should be emphasized here that the use of linearized electromechanical coupled constitutive 

relations has some implications. For example, higher order gradient continuum models have 

been recently used by several researchers to investigate the dispersive wave propagation in 

strain gradient elastic media. Contrary to classical elasticity within the strain gradient framework, 

Rosi and Auffray [11] showed that the wave propagation in hexagonal lattices becomes 

anisotropic and group velocity was proven to be different from energy velocity and should be 

treated as different quantities. Misra and Poorsolhjouy [10] derived a micro-morphic continuum 



model for the elasticity of granular media and the dispersion graphs have presented showing the 

relationship between the micro-scale parameters and the dispersion behavior. Contrary to 

classical elasticity where all waves will be of an acoustic type and there will be no possibility of 

frequency band gaps, the micro-morphic continuum model has the capability to present band 

gaps over a large range of wave numbers. Their results indicate that there is a possibility of 

designing materials with specific wave propagation behaviors that can be used as alternates to 

piezoelectric materials used commonly for structural vibration control or for damage 

identification. 

. 

4. Line 185-186, how is forcing parallel faces of the unit cell to remain parallel justified? This 

extra boundary condition must be accounted for in the energy expressions. I suggest the 

authors clarify such an assumption further by stating the pros and cons of such an 

assumption. 

Response: 

 

We feel that this sentence is confusing and it does not explains clearly what we used in our 
computation. Here, the forcing of parallel faces of the unit cell to remain parallel is referred to 
only the faces subjected to displacement loading along one specific degree of freedom for load 
cases 1-6. The other faces follows the deformation mechanism as per the boundary conditions 
[13],[14],[15]. 
 
On the loading face, we use the common concept of master node to apply the boundary 
conditions. Here, the master node (the loading direction, e.g., displacement along x-axis for load 
case 1) is coupled with all the nodes on respective loading face along one degree of freedom. 
This coupling allows all the nodes to be displaced by the same amount as a master node. For the 
loading cases 7-9 there is no such conditions of forcing of parallel faces of the unit cell to remain 
parallel is considered. 
 
To avoid confusion, we have removed the sentence on line 185-186. 
 
Enforcing any additional boundary condition that has not been accounted in energy expression 
may lead to over- or under-stiff homogenized behavior of the unit cell and incorrect micro field 
variables distribution.  
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