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ABSTRACT 

Traditionally, analysis of individual differences in road traffic crash risk has relied on after 

the fact crash data. Nowadays with the help of technologies like GPS, new measures are 

developed to assess driving risk, inferred from naturalistic driving behavior of drivers. In 

this study, two main ways of modelling driver behavior in naturalistic driving research were 

discussed and compared to each other. For this purpose, 176 Bus Rapid Transit (BRT) drivers 

were investigated during their normal driving on Tehran BRT routes. Their speed was 

continuously recorded by a smart phone app from which was derived deceleration, jerk, and 

celeration measures. Analysis showed that all of the proposed measures had positive 

correlations with culpable crashes and that one of the jerk variables yielded the highest 

correlation. Measurements of speed derivatives like jerk and celeration can help to identify 

dangerous driving styles in public transportation and reduce the number of crashes. Although 

the results of this study are encouraging, further studies for longer periods are needed to 

improve the reliability of the measures.  

KEYWORDS: Driver behavior, Acceleration measures, Bus safety, Crash, Naturalistic 

driving study 

Relevance to human factors/ergonomics theory 

There are two fundamentally different ways of modelling driver behavior in naturalistic driving 

research, which are not always separated. This paper discusses and compares the two approaches 
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of events and means for calculating risk indexes. It also highlights the importance of explicit 

statements about what assumptions are actually made when different methods are used. 

 

1. Introduction 

The majority of road crashes are the result of human errors (Lewin, 1982; Mallia, Lazuras, Violani, 

& Lucidi, 2015), and individual differences in driving style have been shown to be associated with 

crashes (af Wåhlberg & Dorn, 2009; Elander, West, & French, 1993; Mallia et al., 2015). This 

leads us to the need to study the role of the human factor in the causing of crashes and to find 

individual differences regarding traffic safety. With the help of vehicle telematics, new measures 

could be obtained to explore individual differences concerning crash risk. A number of measures 

derived from drivers' speed change while driving have been developed in recent naturalistic driving 

studies (e.g. af Wåhlberg, 2000; 2006; Bagdadi, 2013; Bagdadi & Várhelyi, 2011; Chen, Yu, Zhu, 

Chen, & Li, 2015; Feng et al., 2017; Strauss, Zangenehpour, Miranda-Moreno, & Saunier, 2017), 

apparently with the aim of predicting individual differences in crash risk. Two main approaches in 

such measurements will be used in the present study. The first one will be called the mean-based 

approach; assuming that all speed changes while driving indicate risk (e.g., driver celeration 

behavior; af Wåhlberg, 2008a), while the second one could be called an event-based approach, 

which assumes that risk is only present when a certain threshold has been reached (e.g., jerk rate). 

These two approaches to naturalistic driving behavior will now be described in more detail. 

The mean-based approach originated with Robertson, Winnett, and Herrod (1992), but has been 

further developed by af Wåhlberg into the theory of Driver Celeration Behavior Theory (DCBT; 

af Wåhlberg, 2008a). This theory assumes a linear association between absolute acceleration and 



3 
 

risk of a crash, and that this measure captures all safety-relevant behavior of the driver. Therefore, 

the mean of absolute acceleration of the driver will be the best possible predictor of the driver's 

crashes (af Wåhlberg, 2008a). This measure has been applied to a number of bus safety-related 

studies (af Wåhlberg, 2006; 2007c; 2012) to predict individual differences in traffic safety. Similar 

calculation methods have been used by Lajunen, Karola, and Summala (1997) and Quimby, 

Maycock, Palmer, and Grayson (1999) for crash prediction, with some positive results.  

In the event-based approach, deceleration rate (DR) is another measure which is the result of 

braking (i.e., deceleration) of drivers while driving. In the literature, deceleration rate (number of 

events exceeding a threshold per time) has been used as a measure of safety, especially for the 

proactive safety assessment of crash-prone locations. Strauss et al. (2017) used smart phone GPS 

data from cyclists in Montreal to calculate their deceleration behavior while cycling in different 

parts of the city. The primary hypothesis behind their research was that locations with more high 

DRs were the ones where more cyclists were injured, and a 0.6 correlation between dangerous 

sites and deceleration events was found. Many other studies have used rapid deceleration events 

(usually called 'harsh braking') as a measure indicating individual differences in safety, but with 

different cut-offs for what was considered dangerous (Albert, Musicant, Lotan, Toledo, & 

Grimberg, 2011; Bell, Taylor, Chen, Kirk, & Leatherman, 2017; Chevalier et al., 2017; Farmer, 

Kirley, & McCartt, 2010; Hickman & Geller, 2005; Strömberg & Karlsson, 2013; Tapp, Pressley, 

Baugh, & White, 2013). However, there is little evidence that this kind of measure is actually 

related to crash involvement at the level of the individual driver (e.g. Guo, Klauer, Hankey & 

Dingus, 2010; Jun, Ogle & Guensler, 2007; Simons-Morton, Zhang, Jackson & Albert, 2012). It 

can also be noted that the method of Pande et al. (2017) theoretically lies somewhere in between 

the DCBT and the event-based approach. 
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Another event-based measure used in naturalistic driving studies is the jerk. Jerk means the rate of 

change of acceleration, and it could, therefore, be averaged like celeration. However, in research 

using this measure, it has always been regarded as an event when a certain threshold was exceeded, 

in similarity to DR. According to some studies, jerkiness in driving could be a measure 

representing riskier driving behavior (Bagdadi, 2013; Bagdadi & Várhelyi, 2011; Feng et al., 

2017), although no theoretical reasons for this have been given. In a study of 166 private car 

drivers, drivers with a higher number of jerks had more crashes (Bagdadi & Várhelyi, 2011). 

However, the dependent variable in the study was self-reported crashes of drivers, meaning that 

their results might have been biased (af Wåhlberg, 2002; Maycock, Lockwood, & Lester, 1991; 

Wood, Donnell, & Fariss, 2016) although we do not know in which direction. This problem was 

addressed in the present study since the crash data used in are from professional Bus Rapid 

Transfer (BRT) drivers whose crashes are well recorded by the bus company1. In similarity to DR, 

jerky driving has also been used to identify crash-prone locations (Pande et al., 2017).  

Previous studies on jerk rate and DR have used different values for thresholds to investigate 

individual differences, assuming a predefined threshold as an indicator of risky driving. For 

example, Bagdadi and Várhelyi (2011) assumed -10 m/�� as the threshold for high magnitude jerk, 

while Pande et al. (2017) used -2 ft/�� for their study. Similarly, while Chevalier et al. (2017) used 

7.35 m/��as the threshold for DR, Strauss et al. (2017) chose 3.4 m/��. Besides, there was a number 

of other studies that did not assume a single special threshold, and instead considered a number of 

different cut-off levels (Klauer, Dingus, Neale, Sudweeks, & Ramsey, 2009; Klauer, Sayer, 

                                                 
1 In the Tehran Bus Company, drivers are instructed to report crashes to the supervisor of the route and also 

to the Police. The crash descriptions are then manually entered into a computer system by an agent 

responsible for the crash records in the bus company. 
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Baynes, & Ankem, 2016). These differences in cut off levels could be due to the aims of the 

studies, the data available, groups of drivers studied, but also a lack of proper theory. 

In the present study, the aim has been to consider these two approaches (means and events) as 

ways to model driver behavior in BRT drivers. In previous naturalistic driving behavior studies on 

bus drivers, mainly celeration behavior of drivers (the mean-based approach) has been discussed, 

while measures like DR and jerk rate (event-based approaches) have not been investigated. The 

reverse situation is at hand for car drivers. The present paper is the first study which compares 

these three variables. Identifying these measures in bus drivers is essential because of the 

prominent role of this mode in everyday passenger transport (Muhlrad & Lassarre, 2005). In the 

United States, in 2016 over 71000 buses were involved in traffic crashes (including fatal, injury 

and PDO crashes), and the number of fatalities in bus crashes per 100 million vehicle miles 

travelled was 1.61, which was higher than for passenger vehicles (1.15) (Analysis Division Federal 

Motor Carrier Safety Administration, 2018). The bus safety issue is even more challenging in 

developing countries, due to the higher risk of travel by this mode in comparison to developed 

countries (Barua & Tay, 2010; Kaplan & Prato, 2012). In Bangladesh, among all vehicles involved 

in crashes in urban areas, 17% are transit buses (Barua & Tay, 2010). In Ghana, the passengers of 

buses/minibuses are among the road users with the highest fatality risk (National Road Safety 

Commission, NRSC, 2014), and buses/minibuses were about 24% of the total number of vehicles 

involved in crashes in the period 1991-2014 (Sam, Daniels, Brijs, Brijs, & Wets, 2018). In Iran, 

bus transit safety is of high importance because of the popularity of this mode of travel among the 

majority of people, due to the affordability and accessibility of bus travel (Besharati & Tavakoli 

Kashani, 2017). Bus Rapid Transit (BRT) is very popular, especially in Tehran, for those reasons. 

There are ten routes of BRT in Tehran in service every day. In two of these routes about 600 
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crashes were recorded from April 2015 to June 2017. In addition, BRT’s higher speed (since they 

have exclusive lanes in most of their routes) and the higher number of passengers per day (because 

of their higher capacity) by this mode of travel results in greater risk in comparison to standard 

transit buses.  

Given that driver behavior in terms of speed and its derivatives is posited to be very closely related 

to crashes (at least in celeration theory; af Wåhlberg, 2008a), it follows that other crash predictors, 

like age and experience, should be correlated to speed derivatives in a similar way as to how they 

are correlated with crashes. This should happen because age and experience are internal variables 

which cause part of the externally visible behavior, which in its turn cause the crashes. This leads 

to the prediction that the relative strength of correlations of internal variables versus crashes and 

speed derivatives will be the same (af Wåhlberg, 2018), but also that they will not be significant 

in a model which takes into account both speed derivatives and other variables, because the former 

will always explain the same variance in the crash data, but with more power (af Wåhlberg, 2008a). 

Testing whether age and experience conform to this predicted pattern in the current study is, 

therefore, a supporting test of the celeration model concerning how speed derivatives relate to 

crash involvement. Also, it could be expected that younger drivers have more crashes and display 

more dangerous behavior in terms of speed derivatives, which is also tested. 

2. Method 

2.1 Objective 

In the present study, using a smart phone app, the speed profiles of a number of BRT drivers were 

recorded while they were driving in normal traffic conditions. Using recorded crashes as the 

dependent variable, this study tested deceleration, jerk, and celeration as safety proxy variables. 
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For the variable with the highest correlation with crashes, a model was fit to the data to see the 

measure's effects on crash frequency.  

2.2 Subjects 

The population studied was Tehran BRT drivers, working at two routes of Tehran BRT routes 

(route A and B). In these two routes about 280 drivers, all male, drive either a morning or an 

evening shift (6 a.m. to 2 p.m. or 2 p.m. to 10 p.m. A driver usually works one shift only, i.e. there 

is no regular change between shifts. The drivers have two and a half days off each month. At the 

terminals, there are facilities for the drivers where they can rest. 

Before measurements started, the staff and the drivers of the bus company were informed about 

the study, but since the drivers did not know the researcher, the assumption was that they would 

keep driving in their natural driving style, and the presence of the researcher should have had no 

effect on their behavior. Also, the researcher did not measure anything which is not openly 

available to anyone riding on the bus. This sample of drivers was a convenience sample, as the 

researcher entered any bus which happened to arrive at the starting point of measurement. Over 

250 measurements were made in February, March, May, and June of 2017. To lessen the effects 

of environmental factors on driver behaviours (af Wåhlberg, 2007b), almost all of the 

measurements were made between 7:30 a.m. and 4:00 p.m., because the duration 5:00 p.m. to 9:00 

p.m. is the traffic peak period in Tehran (morning peak period in Tehran is 6:30 a.m. to 7:30 a.m.). 

In addition, no measurement was made during holidays, since holiday traffic differs from normal 

traffic conditions. In the end, data on a sample of 176 BRT drivers was collected. All drivers on 

these two routes have more than ten years of service, as only drivers who are experienced in 

standard transit buses are allowed to drive BRTs. The descriptive statistics for age, years of service, 
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crashes and moving time of measurements (for the drivers having more than one measurement, 

moving time is the average of two or three measurements) of the sample are shown in Table 1. 

 

 

Table 1. Descriptive statistics of age2, experience, crashes and moving time 

Measures Minimum Maximum Mean 
Std. 

Deviation 
Variance 

Age  35  58 45.24  4.77  22.78 

Years of service  11  27 15.39  3.00  9.05 

Crashes 0 9 1.82 1.59 2.53 

Moving time (total time – stopping time) 

(minutes) 
14.58 36.15 23.83 5.39 29.06 

 

2.3 Procedure 

The two routes where the research was undertaken both start from the same terminal but end at 

two different terminals. Route A is about 13 km long and route B about 10 km. Both directions in 

each of these routes are almost the same. The difference between the distances of the two ways in 

route A is less than 5% of the whole length of the route.  The speed limit for both routes is 50 

km/h. The method used in this study for data gathering was similar to the study by af Wåhlberg 

(2000). The researcher entered a bus at one of the three terminals (one is shared between routes), 

and sat on the last seat at the rear of the bus, then started recording the speed until the bus stopped 

at the other terminal. Then the identity of each driver was determined from the bus company’s 

                                                 

2 Age and experience data of 16 drivers were not available in the list the authors were provided by the 

department of bus company which is responsible for route A and B, which could be due to driver 

transfers from other BRT routes. The statistics of age and experience in Table 1 and further analysis 

of age data were therefore based on 160 drivers. 
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duty list (based on plate number, date and time). All of the BRT buses were of the same type 

(Yutong). The instrument used in this study to record the speed of drivers was a smart phone 

(Huawei Ascend) app which recorded speed at each second (1Hz). Using smart phones for data 

gathering in research is getting more popular, as they are easy to use and can record data in a 

sophisticated manner (Blanc & Figliozzi, 2017; Guido et al., 2012; Picone, Amoretti, & Zanichelli, 

2012; Strauss et al., 2017; Vaiana et al., 2014). Today some of the smart phones use a combination 

of different GNSS3s which could improve the accuracy of positioning, due to more satellites being 

available in comparison to standalone GPS (Angrisano, Gaglione, & Gioia, 2013; Mohammed, 

Moore, Hill, Bingley, & Hansen, 2016). The smart phone used in this study took advantage of a 

combination of GNSSs, including GPS, A-GPS, and GLONASS. 

2.4 Editing data 

In some of the measurements, a few seconds of speed data were not recorded, because of low 

signals from the GPS or app malfunction. In the deceleration calculations this could cause spurious 

values; therefore all the records of each measurement were scrutinized in search of GPS gaps. If 

in a portion of data one second or more was lost, DR or jerk rate measures related to that part of 

the measurement were not counted. Records which had more than a few seconds data lost were 

deleted from the sample. About 10 percent of the total measurements were removed from the 

sample due to this reason. 

2.5 Crash data 

Crash data were acquired from Tehran Bus Company from April 2015 to June 2017. All of the 

sample's drivers had been working during this period. In addition to the drivers' name each record 

                                                 
3 Global Navigation Satellite System 
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in these crash data is accompanied by two more fields, the location of the crash (i.e., whether the 

crash had occurred while the driver was in route or terminal or at a bus repair shop) and a 

description of the crash (mentioning whether the driver was culpable or not based on a police 

report, and also an explanation about the crash). Crash data before the date mentioned above are 

not accompanied by those two extra fields and are therefore unreliable. Descriptive statistics of 

crashes are presented in Table 1.  

The crashes that happened in terminals or other places except the route were deleted because they 

could be related to maintenance, refuelling or even poor design of terminals (causing difficulties 

for buses to stand in a queue) rather than driver behavior (Strathman, Wachana, & Callas, 2010). 

In addition, in this study, drivers' behavior was only studied while they were driving between 

terminals. The original number of crashes was about 1650, of which about 40 percent happened 

on-route. Some of the other records that did not include a collision (e.g., front glass break after 

being hit by a rock) were also deleted. Furthermore, only the culpable crash records were used, 

while non-culpable crashes were deleted. These were about five percent of the on-route crashes. 

There are a number of studies which have used culpable crashes only as the dependent variable in 

bus driver safety studies (af Wåhlberg, 2004; Goh, Currie, Sarvi, & Logan, 2014; Tseng, 2012). 

As could be expected (af Wåhlberg & Dorn, 2007; Dorn & af Wåhlberg, 2018) it has been found 

in some studies that culpable crashes have a higher correlation with predictors than all crashes (af 

Wåhlberg, 2008b; Arthur, Strong, & Williamson, 1994; Gully, Whitney, & Vanosdall, 1995; see 

af Wåhlberg, 2009 for a review). The number of drivers in the sample with their respective number 

of crashes is shown in Table 2. 

Table 2. Number of drivers in each crash category 

Number of Crashes Number of drivers 

Zero 37 
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One 45 

Two 50 

Three 21 

Four 12 

Five 6 

Six 3 

Seven 0 

Eight 1 

Nine 1 

Total number of crashes 321 

2.6 Explanatory variables 

The speed data were used to compute acceleration between every two consecutive records, using 

equation 1: 

� = ����                                                                                     (1) 

In equation 1, a is acceleration (m/��); �� is the change in speed between two consecutive points 

(m/s); �� is the change in time between two consecutive points (s);  

Thereafter accelerations were used to compute jerks (j), deceleration (DR) and celeration: 

� = ����                                                                                      (2) 

j is jerk (m/��); �� is the change in acceleration (m/��). This method of calculating acceleration 

and jerk is similar to those in previous studies (Pande et al., 2017; Strauss et al., 2017).  

As mentioned before, this study assumes that the drivers who tend to cause more harsh braking 

events would have more crashes, but to measure these situations a proper threshold in deceleration 

or jerk is needed. Since no theoretical reason for choosing a certain threshold for retaining jerks as 

significant events had been found, several different classifications of thresholds for both 

decelerations and jerks were tested. 
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A set of thresholds were used for deceleration, defined as follows: 

d_x; number of all critical decelerations that are equal or below threshold –x m/�� (e.g., d_2 

meaning sum of deceleration events equal or less than –2 m/��) 

The threshold values which were tested in this study, are 2, 3, 4, 5 and 6 m/��. Higher thresholds 

have been used for other groups of drivers in previous studies (Bagdadi & Várhelyi, 2011; 

Chevalier et al., 2017), but for this group of drivers, higher thresholds yielded very low frequencies 

and even zero events. 

The same thresholds were used for jerks and are defined as follows: 

j_x; number of all critical jerks that are equal or below –x m/�� 

The jerk rate and DR measures were gained from two routes with different lengths. Therefore, to 

hold exposure constant (Bagdadi & Várhelyi, 2011), the sum of deceleration and jerk measure of 

each measurement was divided by the length of the route it was recorded on.   

To compute celeration, the mean of absolute values of accelerations while speed was greater than 

zero was calculated for each driver. Since this sample was a convenience sample, some of the 

drivers were repetitively measured 2 or 3 times (42 drivers were measured two times, and eight 

were measured three times). Repetitive measurements were used to average the measures, as this 

could improve the reliability of the measure (af Wåhlberg, 2000; 2007a).  

2.7 Statistical analysis 

First, correlation coefficients were calculated to observe the variables' correlation with the crashes 

and to find the one with the strongest association. Based upon those results, a model was fitted to 

the data to see the measure's effects on crash frequency. Since crashes are count variables (i.e., 

they’re non-negative integers) they can be modelled with count models. Negative Binomial and 

Poisson regression models are the most popular models for count data modelling (Washington, 
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Karlaftis, & Mannering, 2010). For this study, a Negative Binomial model was used, since the 

variance of the crash data was greater than the mean (descriptive statistics of crash data is shown 

in Table 1), and such over-dispersion violates the assumptions of the Poisson count model (Coruh, 

Bilgic, & Tortum, 2015; Miaou, 1994; Washington et al., 2010). Also, the dispersion parameter 

was significantly greater than zero (Z=1.683, � − ����� =0.046) meaning that using a Poisson 

regression would be incorrect. The Negative Binomial model is a modified version of Poisson 

model which addresses the problem of over-dispersion in data (Dereli & Erdogan, 2017). Also, to 

investigate if there was any statistical difference between age groups regarding the number of 

crashes and critical jerks, Kruskal-Wallis and Mann-Whitney tests were conducted. For statistical 

calculations, the SPSS 21 software was used. 

3. Results 

3.1 Descriptive values 

As can be seen in Table 1, drivers tended to be middle-aged and very experienced. Descriptive 

values of the explanatory variables are displayed in Table 3. As could be expected, the means and 

standard deviations differed a lot between different threshold levels for jerks and deceleration 

rates. 

3.2 Correlation analysis 

The correlation coefficients were calculated between number of crashes, celeration, DR and jerk 

rate, at five thresholds that were described in the Explanatory variables' section. The descriptive 

statistics of the variables are presented in Table 3. Minimum and maximum numbers for DR and 

jerk rate in Table 3 show the number of times which a certain threshold was exceeded divided by 

length of the route (km) (e.g., d_2 means number of times that deceleration was less than –2 m/s� 



14 
 

divided by the length of the route, and j_4 shows number of times that jerk was less than –4 m/s� 

divided by the length of the route), and for celeration, they show the mean of absolute values of 

acceleration when the vehicle is moving. 

Table 3. Descriptive statistics of DR, jerk rate and celeration measures. 

Measures Minimum Maximum Mean Std. Deviation Skewness Kurtosis 

Deceleration       

d_2        0        2.846       0.909        0.546         0.750          0.358 

d_3 0 1.000 0.172 0.167 1.854 5.126 

d_4 0 0.385 0.041 0.060 2.119 6.852 

d_5 0 0.200 0.011 0.033 3.846 16.438 

d_6 0 0.200 0.002 0.017 9.392 97.462 

Jerk       

j_2 0 4.500 1.224 0.835 1.394 2.333 

j_3 0 1.692 0.295 0.263 1.910 5.466 

j_4 0 0.600 0.091 0.105 1.643 4.049 

j_5 0 0.400 0.031 0.058 2.627 9.915 

j_6 0 0.200 0.012 0.035 3.134 10.439 

Celeration 0.304 0.599 0.432 0.055 0.272 0.072 

d, Deceleration Rate 

j, Jerk Rate 
    

  

 

Table 3 shows the descriptive statistics of each threshold of DR and jerk rate measures and also 

the celeration measure, which are inferred from the whole sample (meaning the measures were 

calculated for each driver). 

The correlation results between variables and crashes are shown in Table 4: 

Table 4. The Pearson correlations between the crash number and DR, jerk rate and celeration. 

Measures Crashes Celeration d_2 d_3 d_4 d_5 d_6 j_2 j_3 j_4 j_5 j_6 

Deceleration             

d_2 .208** .670** 1 .769** .542** .272** .017 .781** .655** .578** .315** .095 

d_3 .244** .503* .769** 1 .716** .390** .081 .691** .681** .608** .432** .212** 

d_4 .209** .352** .542** .716** 1 .545** .243** .480** .585** .651** .509** .230** 

d_5 .163* .189* .272** .390** .545** 1 .486** .263** .317** .451** .739** .427** 

d_6 .081 .022 .017 .081 .243** .486** 1 -.065 -.024 .133 .235** .459** 

Jerk             

j_2 .283** .530** .781** .691** .480** .263** -.065 1 .806** .673** .397** 0.164* 

j_3 .249** .475** .655** .681** .585** .317** -.024 .806** 1 .801** .480** .179* 

j_4 .259** .398** .578** .608** .651** .451** .133 .673** .801** 1 .656** .400** 

j_5 .170* .230** .315** .432** .509** .739** .235** .397** .480** .656** 1 .652** 

j_6 .075 .076 .095 .212** .230** .427** .459** .164* .179* .400** .0.652** 1 
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Celeration .183* 1 .670** .503** .352** .189* .022 .530** .475** .398** .230** .076 

*significant at 95%, **significant at 99%            

 

Table 4 reports correlation results between speed change measures and crashes for the whole 

sample, 176 drivers. Celeration and different thresholds of DR and jerk rate measures all had 

positive correlations with crashes. For the DR measure, the thresholds -2 m/��, -3 m/��, -4 m/��, 

and -5 m/�� had significant correlations with crashes. There were positive inter-correlations 

between different thresholds of the DR measure with all other variables, and most of these 

correlations were significant. For the jerk rate measure the correlation with crashes for thresholds 

-2, -3, -4, and -5m/�� was significant. Celeration also had a positive significant correlation with 

crashes and positive, mostly significant, correlations with all other measures. Among decelerations 

and jerks, jerks in all of the thresholds except -6 m/�� showed higher correlations in comparison 

to the deceleration threshold of the same number (e.g., j_2 correlation, in comparison to d_2 

correlation). Since more than one threshold was used for each of jerk rate and DR, the mean of 

thresholds' correlation for each measure was compared with celeration. The average correlations 

of DR and jerk rate were 0.181 and 0.207 respectively, while the value of celeration was 0.183. 

The averaged values of DR and jerk rate measures were thus very similar to that of celeration. 

Among all of the jerk measures, the threshold -2 m/�� had the highest correlation with crashes and 

was used for crash frequency modelling in the next section.  

Also, the reliability of measurements for celeration in this study was calculated. The correlation 

between first and second measurements was calculated to see how much they agreed within drivers 

(af Wåhlberg, 2004). Results show a 0.351 (n=42, � − ����� = 0.022) correlation between these 

variables. 
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3.3 Crash frequency modelling 

Thereafter, negative binomial regression modelling with crashes as dependent variable was 

undertaken. The explanatory parameters were jerk rate, continuous age and experience variables, 

and a variable defining route (showing from which route data was gathered). 

In the first model, only the jerk rate was significant. Experience showed a negative coefficient, 

meaning the more experienced drivers had fewer crashes, and age had a positive coefficient 

showing the more aged, the more crashes, but none of these two was a significant contributor to 

the model. The route variable also was not significant, which could be expected since the means 

of crashes were very similar between these two routes (this was statistically tested, route 1, mean 

rank = 87.21- route 2, mean rank = 90.02, p-value = 0.708 not significant). The continuous variable 

of age was not significant. However, age can be expected to have a non-linear effect on crashes. 

Therefore, the age of drivers was classified into four categories: 35-40 (group 1), 41-46 (group 2), 

47-52 (group 3), and 53-58 (group 4) and then added as a group variable in a new model. The 

boundaries of age categories were chosen on the basis of previous studies and available age of 

drivers in the sample. The number of drivers in the age groups is shown in Table 5. 

Table 5. Number of drivers in each age group 

Age Drivers 

35-40 (Group 1)  27 

41-46 (Group 2) 72 
47-52 (Group 3) 49 

53-58 (Group 4) 12 

Total 160 

 

Another model, inclusive of jerk rate and the age group variable was tested. Again, the age variable 

was not significant. Variables with no explanatory value (i.e., � − ����� > 0.05) were excluded 

from the model.  The final model results are presented in Table 6.  
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Table 6. Final Negative binomial model results (age, experience, and the route variable were 

excluded) 

Variables � − ����������� (��%CI) ���(�) (��%CI) � − ����� 

Jerk-rate (j_2)  0.253(0.122 - 0.384)  1.287(1.129-1.468)  0.000 

Intercept 0.267(0.049-0.485)   

    

 

The results of the final model based on 176 drivers show a positive significant 0.253 coefficient 

for the jerk (j_2) parameter. The model implies that for each additional jerk per kilometre, the 

number of crashes of that driver increases by 28.7%. 

Although the age groups showed no statistically significant effect on the expected number of 

crashes based on the Negative binomial regression model, a non-parametric Kruskal-Wallis test 

was computed as a separate test. The result of this test was also not significant (� − ����� > 0.7), 

meaning there is no statistical difference in crashes between these age groups. 

Also, it could be interesting to see if there is any statistical difference between age groups in terms 

of causing critical jerks. Younger drivers could be expected to cause more jerks and subsequently 

to have more crashes, but in the case of present study no difference in crashes was found which 

could be due to the small number of drivers and also because of the fact that crashes are rare events 

that need a larger sample of drivers and a wider range of age, including very young drivers, to 

show the effect. However, a difference in jerky driving would be easier to detect. To test this, a 

Kruskal-Wallis test was conducted to consider if there was any statistical difference in terms of 

the number of jerks between these age groups. The result shows that there was no statistical 

difference between age groups concerning the jerk either (� − ����� = 0.950). This was also 

tested for the jerk rate threshold -4 m/��, which had the second highest correlation with crashes 
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after j_2. This time a significant difference between age groups was found (� − ����� = 0.024). 

To consider differences between each two age groups, Mann-Whitney tests were conducted. 

The results show that age group one (i.e. 35-40 year old drivers) caused significantly more high 

jerks (based on j_4 threshold) than age group two (mean rank group 1 = 62.65, mean rank group 

2 = 45.26, � − ����� = 0.006). Also the results show that age group one made significantly more 

jerks than group three (mean rank group 1 = 45.59, mean rank group 3 =34.59, � − ����� = 

0.034), and even group one caused significantly more jerks than group four (mean rank group 1 = 

22.74, mean rank group 4 =13.83, � − ����� = 0.022). No significant differences were found 

between age groups two with three (� − ����� = 0.492), two with four (� − ����� = 0.458), 

and three with four (� − ����� = 0.265). 

4. Discussion 

4.1 Results 

This study aimed to consider two main ways of modelling driver behavior. For this, three speed-

change derivative measures taken from naturalistic driving were investigated, and their 

associations with crashes of each driver were calculated. Among these measures, celeration has 

been investigated previously in bus drivers, while DR and jerk rate were analyzed for the first time 

for this type of driver. The correlation results showed that in almost all of the jerk rate measures 

(except the -6 m/�� threshold) there were higher correlations with crashes than for the DR 

measures. Results also showed that the celeration measure had a positive and significant 

correlation with crashes. It can be noted that as cut-off levels (thresholds) in jerk measures were 

set lower, this measurement approached the mean (celeration) method, as is also shown by the 

increasing correlation with this variable. It can, therefore, be predicted that crash involvement 

prediction will improve as thresholds for events are lowered, as is evident in the present study. 
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However, this effect is difficult to evaluate, because events tend to become very uncommon at 

higher thresholds, meaning that restriction of variance will influence the effect sizes. 

Correlation results showed that three of the jerk measures had higher correlation with crashes than 

the celeration measure, and also the mean of jerk measures' correlations was higher than 

celeration's, so jerk was chosen as the explanatory variable for the count regression model. The 

final regression count model only included the jerk variable as explanatory. As expected, the route 

variable was not significant, due to the similarity of crash numbers between the routes. Also, the 

model found that the effect of age on crashes was not significant. The final model shows a positive 

relationship between the rate of jerks caused by a driver and his crashes. Although the age variable 

was not significant in crash prediction, its effect in terms of the rates of jerks in different age groups 

was tested. Based on a threshold of -4 m/�� (j_4), a significant difference was found. It could be 

expected that younger drivers cause significantly more critical jerks in comparison to older drivers, 

due to their higher risk of crashing, and this result was in agreement with the finding of a previous 

study (Bagdadi, 2013). 

The present study used no specific threshold of time for identifying events, only the sheer 

magnitude of difference at 1Hz of measurement. This mean that the number of events would have 

been different if, for example, a criterion of two seconds duration had been applied. Similarly, if 

the frequency of measurement had been different, the values would have been too. As this kind of 

information is usually not given in naturalistic driving studies, it is therefore not really possible to 

compare the current results with others. 

 

4.2 Limitations and suggestions for further research 
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This study used an average of about 24 minutes of driving (moving time) for each driver which 

yielded a 0.35 correlation between measurements for the celeration variable which is not a very 

high reliability. Although there are previous studies that have used about the same duration of 

measurements (af Wåhlberg, 2000; 2004) for bus drivers, low reliability could be a limitation for 

this study. For future studies, longer periods of study are recommended, as predictive power versus 

crashes increase with longer measurements (af Wåhlberg, 2007a).  

A methodological difficulty in this kind of research which must be acknowledged is that the event-

based and the mean-based variables can be expected to correlate rather heavily, as was seen in the 

present study. This could be due to the sharing of in-data (common method variance), and that 

they measure parts of the same behavior syndrome. Statistical power to detect any differences (in 

crash prediction) will therefore be low, and rather large samples will be needed to test which 

approach is superior. 

Another limitation of this study was that effects of gender were not studied. In previous naturalistic 

driving studies, gender effects in braking events have been discussed, for example Bagdadi (2013) 

found the effects of gender not significant in causing critical jerks while Montgomery, Kusano, 

and Gabler (2014) found a statistical difference in terms of time to collision (TTC) at onset of 

braking between men and women. If any difference between men and women in terms of crash 

risk does exist for a certain population, it should also be measurable as events and celeration 

behaviour. Although in Iran female drivers, especially in BRTs, are scarce, considering the effects 

of gender on crashes and acceleration behavior is recommended in future studies. 

 

4.3 Conclusions 
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As stated in the introduction, the majority of telematics research studies (including jerk studies) 

do not use an over-arching theory, or even test explicit hypotheses. The only exception is the 

celeration theory of af Wåhlberg (2008a). However, given the tenets of that theory, and the quasi-

theoretical properties of event detection as described in various naturalistic driving studies, the 

results of the current study can still be considered for what they mean in terms of theory. First, 

there is one curious discrepancy in the results of this study; although predictive power versus 

crashes was higher for low threshold deceleration events than for high thresholds, the mean of 

these was still higher than the effect for celeration. This is strange, because as the threshold for 

events is lowered, the event variable becomes more similar to the celeration parameter. Therefore, 

celeration should have the higher predictive power, as predicted by the DCBT. Why this did not 

happen in these data, and the pattern of effects just described, is therefore in need of a theoretical 

explanation. This could for example be couched in terms of a theory in which events of a certain 

threshold are more strongly associated with crashes than those of other thresholds. Currently, 

naturalistic driving studies use no theory, and any kind of threshold, and it is therefore not really 

possible to know what the results mean. 

For the DCBT, the results were positive in terms of showing, again, a positive correlation between 

this variable and crash involvement. On the other hand, the prediction of a higher coefficient for 

this variable than for events was not upheld. However, it is still too early to conclude whether the 

theory needs to be revised. More studies are needed before it can be said with certainty whether 

results are in line with predictions. 

Age and experience were not significant predictors in a statistical model which included one of 

the jerk variables. This is in line with the prediction from the DCBT, but it is not a good test of the 

hypothesis, because age and experience were very weakly associated with crash involvement 
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anyway. This lack of association was probably due to low variance in this population of selected 

drivers. Also, age might be non-linearly correlated with crash involvement, even in this population 

without very old drivers.  

In a wider theoretical sense, the present analyses and results indicate that the undertaking of 

measuring safety-related driver behaviour is not an easy task, as results may differ a lot due to 

exactly how the variable is specified when it is extracted from the raw speed/time data. It can be 

noted that this measurement problem is hardly ever considered in papers about naturalistic driving 

and similar topics (e.g. Birrell, Young, Jenkins & Stanton, 2012; Engström et al., 2017; Jeon, 2015; 

Ljung Aust & Engström, 2011; Pampel et al., 2018).  

For this study, a smart phone was used by a researcher to gather data which was very time-

consuming. In future studies, smart phone data from regular bus passengers could be used. For 

most companies it is also possible to use the telematics system which records speed data of the 

vehicle, although some vendors are reluctant to share the raw data.  

Finally, this study could be helpful to bus companies and bus safety administrators in allowing for 

methods of discovering and lessening dangerous behaviours by the drivers by better monitoring of 

their performance regarding their deceleration and acceleration behaviours. Since the data in this 

study was gathered from a smart phone, which is a very common and available device among 

people, the results of this study could be further extended and lead to more reliable measures. 
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