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A key aspect in the preliminary design of new combat aircraft is the prediction of the 

afterbody and exhaust system aerodynamic drag. To meet the various operating conditions 

requirements for a multi-role vehicle the afterbody typically includes a variable geometry. 

Within the preliminary design context, this makes the aerodynamic performance prediction a 

difficult challenge. This research investigates reduced order models for prediction of the 

aerodynamic performance of axisymmetric transonic afterbody and nozzle systems for a 

range of aerodynamic conditions and geometric degrees of freedom. The aerodynamic 

performance metric of interest is afterbody drag coefficient (CD). Two reduced order models 

are investigated: artificial neural network and Gaussian process. The geometric variables 

include boattail closing angle, nozzle throat to exit area ratio and afterbody mean angle and 

the aerodynamic parameters are free-stream Mach number and nozzle pressure ratio. The 

results show that these types of reduced order models can be used for preliminary design 

aerodynamic performance prediction. The Gaussian process CD prediction is less accurate 

compared to the artificial neural network with the latter giving a prediction uncertainty of 

approximately ±0.01 in CD with a 2σ confidence level. The Gaussian process prediction 

uncertainty is approximately ±0.013 CD. 

 

I. Nomenclature 

Roman symbols: 
𝐴9

𝐴8
⁄  = exit to throat area ratio 

A1 =  afterbody shoulder cross-sectional area 𝐴1 = 𝜋𝑟𝑖
2 

CD = afterbody drag coefficient based on A1  

𝑀∞ = free-stream Mach number 

NPR = Nozzle total to static Pressure Ratio 𝑁𝑃𝑅 =  
𝑃07

𝑝∞
 

DNPR = Design Nozzle total to static Pressure Ratio 

R = gas constant for dry air: 𝑅 = 287  
𝐽

𝐾𝑔 𝐾⁄  

𝑇7 = nozzle inlet total temperature  
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Greek symbols: 

γ = specific heat ratio 

β = boattail closing angle 

𝛽1 = Prandtl-Glauert factor   𝛽1 = √1 − 𝑀∞
2 if 𝑀∞ < 1, 𝛽1 = √𝑀∞

2 − 1 if 𝑀∞ > 1 

ϑ = afterboby mean angle 

II. Introduction 

Some new generation fighter aircraft are expected to be multi-role vehicles designed to perform a large variety of 

missions. The required flexibility makes the design process more challenging and different requirements must be taken 

into account over a wide range of flight Mach numbers and engine power settings. These requirements may include 

high manoeuverability, low infrared signature, thrust vectoring, variable area nozzle and low radar signature as well 

as extended range [1]. To comply with these performance demands the integration of the propulsion system within 

the aircraft is a key consideration. Intakes and afterbody-nozzle systems can include moving parts to efficiently 

accommodate different power settings and flight speeds. In addition, due to weight and balance requirements, fighter-

type aircraft tend to incorporate short, steep afterbodies which may be prone to external flow separation [2].  

Although an aircraft has many sources of drag, not all the components contribute in the same manner. For instance, 

in some vehicles the afterbody can account for up to 30% of their zero-lift drag [3]. For this reason it is important to 

understand the afterbody drag sensitivity to geometric features, engine power settings and aircraft flight conditions 

from the early design stages. Experimental studies have addressed the effect of 𝑀∞, NPR and afterbody mean angle 

(ϑ) on drag for simple geometry parametrizations such as circular arc and conical afterbodies [2], [4]. The data was 

used to develop empirical correlations for the prediction of afterbody aerodynamic performance (CD). These 

correlations allowed the prediction of CD for the subsonic (𝑀∞=[0.4-0.96]) and supersonic (𝑀∞=[1.15-1.3]) flight 

regime separately with an accuracy of ±0.01CD and ±0.05CD for circular arc and conical afterbodies respectively [5]. 

These correlations were made available in the form of carpet plots for specific 𝑀∞ and graphical interpolation is 

required to assess CD at intermediate 𝑀∞ [5]. Correlations of this form are difficult to use to address the problem of 

multivariate aircraft optimization therefore other types of afterbody performance correlations were explored [6]. 

However these were in the form of simple equations and allow the assessment of a reduced number of degrees of 

freedom on afterbody and nozzle system aerodynamic performance. 

The use of Response Surface Models (RSMs) could represent a significant advantage both in terms of accuracy 

and suitability for optimization algorithms by replacing the current simple correlations [6]. The aim of this paper is to 

assess quantitatively the performance of RSMs for the prediction of afterbody drag across the 𝑀∞ regime and for 

different throttle settings (NPR), boattail closing angle (β), nozzle exit to throat area ratio (A9/A8) and ϑ. In the past 

RSMs have been successfully used in the civil aerospace applications for the prediction of aerodynamic loads on 

aircraft and for the performance prediction of low NPR subsonic exhaust systems [7], [8]. However, to the authors’ 

knowledge they have not been used for drag prediction of transonic afterbody and exhaust systems across a wide range 

of geometric and aerodynamic variables. 

III.Background 

A. Afterbody and Exhaust Parametrization 

The afterbody geometry parametrization is based on the CST method. This analytical definition of the geometry 

is infinitely differentiable and offers the advantage of generating smooth curves with good aerodynamic properties 

using an arbitrary number of intuitive Degrees of Freedom (DoF) [9]. In this study the afterbody and exhaust system 

geometry is defined by six independent geometric DoF, afterbody length (L), shoulder radius (ri), nozzle base 

thickness (δ), boattail angle (β) exhaust duct exit to throat area ratio (A9/A8) and straight shoulder length (L1) (Fig. 

1a). The divergent section of the exhaust duct is designed using the Method of Characteristics (MoC) [10]–[12]. This 

is to allow the ideal expansion of the exhaust gas and to minimize the external afterbody-exhaust flow interaction 

terms at the design NPR. The geometry of the divergent section of the nozzle duct is univocally defined by A9/A8 

while the convergent section is parametrized using a CST curve. This afterbody and exhaust geometry parametrization 

method has been introduced and discussed in detail in previous work and it has shown that it offers improved flexibility 

compared to traditional circular arc or conical afterbodies [13] (Fig. 1b).  
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(a) (b) 

Fig. 1: (a) CST afterbody parametrization and (b) Effect of β 

B. Aerodynamic Simulations 

The data used for the Response Surface Models has been generated using Computational Fluid Dynamics (CFD) 

simulations. The axisymmetric computational domain consists of a 2D circular far-field of radius 80ri, a sting that 

extends 22ri upstream of the afterbody from the point P1=(0,ri). The circular far-field was modelled with a pressure 

far-field boundary condition where the static pressure and temperature were prescribed. The free-stream Mach number 

(𝑀∞)was altered by changing the total pressure at the far-field with static pressure and static temperature kept constant. 

The sting was modelled as an inviscid wall for the first portion adjacent to the pressure far field (LS=6.6ri) and as a 

viscous wall boundary condition for the remaining part. All the remaining walls were modelled as no-slip adiabatic 

wall boundary conditions. The inlet of the nozzle duct was modelled with a pressure inlet boundary condition where 

the NPR was changed by prescribing the inlet total pressure. The computational mesh was generated using a hybrid 

approach encompassing rectangular cells in the near-wall region and an unstructured mesh made of triangular cells in 

the remaining part of the domain. The near-wall region was discretized with a set of 60 inflation layers spaced with a 

growth ratio of 1.15. In this region the y+ was approximately 1. A mesh independence study based on the GCI [14] 

led to the choice of a mesh size of approximately 440 thousands elements [13]. An implicit, density based, 

axisymmetric RANS solver was used. The conservation equations were discretized with a second order scheme and 

the gradients were computed with a Green-Gauss node-based scheme. This computational approach has been validated 

against experimental results [13]. 

The dataset used to build the RSM (Dataset-A) consists of 4608 points. This generated performance correlations 

aimed to assess the effect of afterbody external geometry parameters (β, ϑ), flight condition (𝑀∞) and nozzle operating 

condition (NPR, A9/A8) on external afterbody aerodynamic performance. The dataset comprised 36 geometries and 

128 aerodynamic conditions and was based on full factorial spacing of the data points (Table 1 [13]). 

 

DoF Values 

A9/A8 1.2, 1.4, 1.6 

β 10°, 20°, 30° 

L1 0.0L, 0.2L, 0.4L, 0.6L 

(ϑ) (~5°-20°) Dependent variable 
 

DoF Range 

NPR 3.5-8.25 

𝑀∞ 0.6-1.4 
 

(a) (b) 

Table 1: Geometric DoF (a) and Aerodynamic DoF (b) ranges of the aerodynamic simulations 

Additional independent datasets were used to assess the performance of the RSMs. The aim of these additional 

datasets was to enable the assessment of RSMs accuracy and performance robustness for CD prediction. The RSM 

prediction accuracy test was based on an independent dataset (Dataset-B) made of 500 configurations selected from a 

Latin Hypercube Sampling (LHS) of the bounds of Dataset-A (Table 1). The LHS gives combinations of the 5 DoF 

in a way that provides the optimum distribution of the bounds of the DSE. For this case it consists of 500 different 
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geometries each one run at a unique combination of NPR and 𝑀∞. The RSMs performance and robustness was 

assessed with 20 independent datasets (Dataset-C) each one based on an LHS containing 25 afterbody and exhaust 

systems configurations with each one assessed at a different combination of aerodynamic conditions. This enabled the 

assessment of the impact of random aspect of the test data selection. 

C. Performance Metrics 

The main metric used to assess the aerodynamic performance of the afterbody is CD. This is based on the stream 

force and control volume approach [15] and is defined following the schematics and engine station numbers of (Fig. 

2). The drag coefficient accounts for the effect of the viscous and pressure forces acting on the afterbody external 

surface including the nozzle base (Eq. 1).  

𝑪𝑫 =
𝝓𝒂𝒇𝒕

𝟏
𝟐

𝑨𝟏𝑽∞
𝟐 𝝆∞

 (1) 

Where 𝜙𝑎𝑓𝑡 is the afterbody external drag force, 𝑉∞ is the free-stream velocity, A1 is the afterbody maximum cross 

sectional area and 𝜌∞ is the free-stream density.  

 

Fig. 2 Control volumes and forces definition for a generic afterbody and exhaust system 

D. Performance Correlation State of the Art 

To enable the afterbody and exhaust aerodynamic performance prediction some low order model were developed. 

These were built on wind-tunnel based experimental data on transonic axisymmetric afterbody and nozzle systems. 

The vast majority of the data was generated using circular arc afterbodies with simple convergent nozzles. These 

performance correlations enabled the assessment the dependency of CD on a number of geometric and aerodynamic 

parameters. The afterbody geometry parametrization used for most of the experimental work was a simple circular 

arc, therefore the geometric DoF were afterbody length (L) and mean angle (ϑ). The aerodynamic DoF explored were 

NPR and 𝑀∞. Although the 𝑀∞ range was relatively large, spanning from subsonic (𝑀∞ = 0.4) to supersonic (𝑀∞ =
1.3) these correlations enabled the prediction of CD for the subsonic (𝑀∞=[0.4-0.96]) and supersonic (𝑀∞=[1.15-1.3]) 

flight regime separately. with an accuracy of ±0.01CD and ±0.05CD for circular arc and conical afterbodies respectively 

[5] No information was provided for the transonic 𝑀∞ range (𝑀∞=0.96 to 𝑀∞=1.15). Other correlations provided 

information for the transonic regime but were based on jet-off experimental work and simple circular arc or conical 

geometry parametrizations. These correlations were presented in the form of carpet plots for specific 𝑀∞ requiring 

graphical interpolation to determine CD at intermediate 𝑀∞ [5]. Correlations of this form are difficult to use to address 

the problem of multivariate aircraft optimization therefore other types of afterbody performance correlations were 

explored ([6]). These only enabled the prediction of CD as a function of the geometric features of the afterbody (L, ϑ) 

and no accuracy assessment was provided. 

IV.Methodology 

A. Gaussian Process 

The Gaussian process method used within this research is based on the work by Lophaven [16]. The typical use of 

this method is to construct an approximated model of a physical phenomenon based on a discrete collection of pairs 

of inputs and the related output [17]. The approximated model, known as Response Surface Model (RSM), can be 

used as a surrogate for the computer model and it offers a continuous interpolation of the input data. A Gaussian 
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process RSM approximates a generic function y(x) using a model made of the combination of a regression function 

and a correlation function, μ and z respectively (Eq. 2(1). 

�̃�(𝒙) =  𝝁 + 𝒛(𝒙) 2 

Where �̃�(𝑥) is the RSM approximation of y(x). The correlation function adopted within this formulation is the 

linear combination of p known polynomials of order 0<=d<=2 which give a constant, linear and quadratic regression 

function respectively (Eq.3).  

𝝁 = ∑ 𝜶𝒌𝒇𝒌(𝒙)

𝒑

𝒌=𝟏

 3 

Where 𝛼=(𝛼1, …𝛼𝑘 , …𝛼𝑝) is the p-dimensional vector containing the regression coefficients. For a dataset made 

of N samples a constant regression model will have p=1 and 𝑓𝑘=1 [17]. The correlation function z is expressed in the 

form of a stochastic process assumed to have zero mean and standard deviation σ [17] which is the combination of 

stationary, one-dimensional correlations that are a function of the relative position of an untried point x relative to all 

the points in the computer experiment (Eq. 4): 

𝒛 = ∑𝜸𝒔 ∏𝒇(𝑹𝒉(𝝑𝒉, 𝒅𝒊𝒋), 𝒓(𝝑𝒉, 𝒅𝒊𝒙))

𝒅𝒊𝒎

𝒉=𝟏

𝑵

𝒊=𝟏

 4 

Where N is the size of the dataset, dim is the dimensionality of the problem, 𝛾𝑠 are weighing coefficients, 𝑅ℎ is 

one of the dim NxN matrices of stochastic process correlation, 𝑑𝑖𝑗 = (𝑥𝑖 − 𝑥𝑗) is the distance between the i-th and j-

th input point of the input dataset with i,j=1…N and the parameter 𝜗ℎ accounts for the correlation between input 

points. 𝑟(𝜗ℎ , 𝑑𝑖𝑥) is the column vector that takes into account the distances of the untried, generic point x from all the 

other experimental points with 𝑑𝑖𝑥 = (𝑥𝑖 − 𝑥). Large values of 𝜗ℎ lead to faster correlation decrease. For a given 

untried point x and a given distance 𝑑𝑖𝑥, as 𝜗ℎ increases the influence of the experimental point 𝑥𝑖 on the RSM output 

in x decreases. The method used in this work offers the choice of several correlation functions (Table 2). In all the 

cases the correlation decreases as 𝑑𝑖𝑗  and 𝜗ℎ increase and it reaches its maximum when 𝑑𝑖𝑗 = 0, for i=j. 

 

NAME 𝑹𝒉(𝝑𝒉, 𝒅𝒊𝒋) 

Absolute exponential 
1

𝑒𝜗ℎ|𝑑𝑖𝑗|
 

Squared exponential (Gaussian) 
1

𝑒𝜗ℎ(𝑑𝑖𝑗)
2 

Cubic 1 − 3𝜀2 + 2𝜀3      𝜀 = 𝑚𝑖𝑛(1, 𝜗ℎ|𝑑𝑖𝑗|) 

Linear 𝑚𝑎𝑥(0,1 − 𝜗ℎ|𝑑𝑖𝑗|) 

Table 2: List of correlation functions used for the Gaussian process RSM 

The parameters 𝜗ℎ, 𝛾𝑠 and 𝛼𝑘 are determined by the algorithm through maximum likelihood estimation and  𝜗ℎ is 

assumed to be constant in all the dimensions, giving an isotropic problem. In the case of a Gaussian correlation 

function, for a given index h, the correlation matrix would be the following (Eq. 5): 
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𝑹𝒉(𝝑𝒉, 𝒅𝒊𝒋) = [
𝑹𝒉(𝝑𝒉, 𝒅𝟏,𝟏) ⋯ 𝑹𝒉(𝝑𝒉, 𝒅𝟏,𝑵)

⋮ ⋱ ⋮
𝑹𝒉(𝝑𝒉, 𝒅𝑵,𝟏) ⋯ 𝑹𝒉(𝝑𝒉, 𝒅𝑵,𝑵)

] =

[
 
 
 
 𝟏 ⋯

𝟏

𝒆𝝑𝒉(𝒅𝟏,𝑵)𝟐

⋮ ⋱ ⋮
𝟏

𝒆𝝑𝒉(𝒅𝑵,𝟏)𝟐
⋯ 𝟏

]
 
 
 
 

 5 

The fact that the diagonal only contains ones means that the RSM resulting from the combination of all these Rh 

will be forced to pass through the input data points. In the case where there is a known level of uncertainty or some 

known amount of noise on the output data due to the precision of the computational model used for the input data 

generation, it is possible to allow the RSM to float around the experimental points. This is done by adding a non-zero 

value, called nugget (η), to the diagonal of Rh (Fig. 3).  

 

  

(a) (b) 

Fig. 3: (a) model with η=0 and (b) effect of non-zero η (based on [18]) 

The generic 𝑟(𝜗ℎ, 𝑑𝑖𝑥) for an untried point x reads as follows (Eq.6): 

𝒓(𝝑𝒉, 𝒅𝒊𝒙) = [
𝟏

𝒆𝝑𝒉(𝒅𝟏,𝒙)
𝟐 , … ,

𝟏

𝒆𝝑𝒉(𝒅𝒊,𝒙)
𝟐 , … ,

𝟏

𝒆𝝑𝒉(𝒅𝑵,𝒙)
𝟐]

𝑻

     𝒊 = 𝟏,… ,𝑵 6 

The final RSM is then the combination of regression and correlation function. The regression function is a retro-

fitting of the experimental results while the correlation function models the deviation of the complex physics from the 

simpler regression function [18] (Fig. 4). 

 

 

Fig. 4: Correlation and regression function example (based on [18]) 

In this research the Gaussian process is used to model the aerodynamic performance of axisymmetric transonic 

afterbody and nozzle system as a function of the 5 DoF explored within Dataset-A (CD =f(NPR, 𝑀∞, L1, β, A9/A8)).  



7 

 

B. Gaussian Process RSM Performance Assessment 

The performance of an RSM is usually assessed with the k-fold cross-validation method. The input dataset is 

randomly split into k different, mutually exclusive, subsets of equal size known as the folds. k different RSMs are 

then built using an input dataset made of k-1 folds. The excluded subset is used to test the RSM and assess the 

difference between RSM prediction and actual computer input data giving some measure of the quality of the RSM. 

The Leave One Out (LOO) is the extreme case of k-fold cross-validation, where k=N and the size of each fold is just 

one point. One of the metrics that is conventionally used to assess the quality of the Gaussian process RSM is the root 

mean squared (RMS) of the LOO error [19] (Eq. 7).  

𝑹𝑴𝑺𝑳𝑶𝑶 = √
𝟏

𝑵
∑(

𝜺𝒊

𝒚𝒊_𝒆𝒙𝒑
)

𝟐𝑵

𝒊=𝟏

 7 

Where 𝜀𝑖 = �̃�𝑖_𝐿𝑂𝑂 − 𝑦𝑖_𝑒𝑥𝑝 is the LOO error for the i-th fold. �̃�𝑖_𝐿𝑂𝑂 is the prediction of the RSM built with N-1 

input points when interrogated in the missing fold, 𝑦𝑖_𝑒𝑥𝑝 is the value obtained from the computer experiment for the 

i-th point. Along with RMSLOO in this study the average value (Eq.8) and the standard deviation (Eq.9) of the LOO 

error are also of interest. 

�̅�𝑳𝑶𝑶 =
∑ 𝜺𝒊

𝑵
𝒊=𝟏

𝑵
 8 

𝝈𝑳𝑶𝑶 = √
∑ (𝜺𝒊 − �̅�)𝟐𝑵

𝒊=𝟏

𝑵
 9 

The disadvantage of this method is that the algorithm that provides the N RSMs used to assess the LOO needs to 

run N times, which increases the computational time required by a factor of N. The RMS error of the LOO can be 

seen as a representative error of the prediction of the RSM in the area covered by the initial input dataset [19]. To 

assess which combination of regression function, correlation function and nugget size gave the best RSM all the 

possible combinations of these parameters have been explored by carrying out a full factorial analysis. In this 

assessment the regression functions explored were of order 0, 1 and 3 while the correlation functions used were linear, 

absolute exponential and squared exponential. The range of η explored is [10−6 − 10−3]. This gives a total number 

of RSM assessed equals to 72. For each one of them the RMS error of the LOO model is computed along with the 

mean value and the standard deviation of the LOO error. Since 𝑅𝑀𝑆𝐿𝑂𝑂  can sometimes be misleading [19] an 

additional Gaussian process RSM performance test was conducted. This was based on the root mean squared error 

(𝑅𝑀𝑆𝐼𝑇, (Eq.10)) and the standard deviation (𝜎𝐼𝑇 (Eq.11)),of the RSM CD prediction for the configurations explored 

within Dataset-B. 

𝑹𝑴𝑺𝑰𝑻 = √
𝟏

𝑵𝑰𝑻
∑(

𝜺𝒋

𝒚𝒋_𝒆𝒙𝒑
)

𝟐𝑵𝑰𝑻

𝒋=𝟏

 10 

𝝈𝑰𝑻 = √
∑ (𝜺𝒋 − �̅�)𝟐𝑵𝑰𝑻

𝒋=𝟏

𝑵𝑰𝑻
 11 

Where in this case NIT=500, 𝜀𝑗 = �̃�𝑗_𝑅𝑆𝑀 − 𝑦𝑗_𝑒𝑥𝑝 is the RSM prediction error with �̃�𝑗_𝑅𝑆𝑀 being the RSM predicted 

CD for the j-th case and 𝑦𝑗_𝑒𝑥𝑝 being the actual value computed for Dataset-B. Other performance metrics computed 

to have a better insight on the RSM accuracy are the mean absolute error (MAEIT, Eq. 12) and the RSM maximum 

error (Emax=max(𝜀𝑗)). These are based on Dataset-B. 
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𝑴𝑨𝑬𝑰𝑻 = [
𝟏

𝑵𝑰𝑻
∑|𝜺𝒋|

𝑵𝑰𝑻

𝒋=𝟏

] 12 

C. Artificial Neural Network 

An Artificial Neural Network (ANN) is a biologically inspired computational model [20]. In biological neural 

networks, a neuron is a specialist cell, which processes information [21]. A neuron is formed of a cell body known as 

a soma and out-reaching branches known as axons and dendrites [21]. In an ANN artificial neurons are nodes with 

connections between them with coefficient weights bound to the connections[20]. Neuron k in Fig. 5 can be described 

mathematically as: 

𝒖𝒌 = ∑𝒘𝒌𝒋𝒙𝒋

𝒎

𝒋=𝟏

 13 

and 

𝒚𝒌 = 𝝑(𝒗𝒌) 14 

Where x1, x2, …, xm are the input signals, w1, w2, …, wm, are the synaptic weights, vk is the sum of the input signals 

weighted by their respective synaptic strengths and the bias bk, φ(∙) is the activation function and yk is the output signal 

of the neuron [22]. The output is defined by the activation function. When non-linear activation functions are employed 

complex problems can be modelled with only a small number of nodes. The most basic activation function is the 

identity function in which the net output is equal to the output of the neuron: 

𝒇(𝒗𝒌) = 𝒗𝒌 15 

and the output from neuron k (yk) is simply calculated as a linear combination of the inputs [23]. If linear activation 

functions are used then the last hidden layer will always be a linear function of the first hidden layer and therefore 

adds no complexity to the system and can be collapsed to a single hidden layer. To allow the network to create complex 

mappings as more hidden layers are added non-linear activation functions must be used. Two of the most common 

non-linear activation functions are the logistic and hyperbolic tangent functions (Eq. 16 and Eq. 17). 

𝒇(𝒗𝒌) =
𝟏

𝟏 + 𝒆𝒙𝒑(−𝒗𝒌)
 16 

𝒇(𝒗𝒌) = 𝐭𝐚𝐧𝐡(𝒗𝒌) 17 

Both logistic and hyperbolic functions can have slow convergence due to the vanishing gradient problem where 

for very high or low inputs (vk) there is almost no change in the prediction and the error vanishes as it gets propagated 

back [24]. The Rectified Linear unit (ReLu) activation function (Eq. 18) overcomes the vanishing gradient problem 

and is commonly used in multilayer perceptron and convolutional neural networks. However one potential problem 

with the ReLu activation function is thaet the gradient is 0 when the neuron is not active. Therefore the network cannot 

perform back-propagation and prevents learning [25]. 
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𝒇(𝒗𝒌) = 𝒎𝒂𝒙(𝟎, 𝒗𝒌) 18 

The basic architecture of a neural network (Fig. 5b) consists of three types of neuron layers: input, hidden and 

output layers [26]. Hidden layers and their constituent hidden nodes allow the network to cope with non-linearly 

separable problems and are so called because they do not interact with the external environment [27]. The selection 

of the number of hidden layers and neurons is a crucial decision. A large number of hidden neurons will allow the 

network to correctly predict the data on which it has been trained but can compromise the generalization ability of the 

network [26]. However, with too few hidden neurons it may not be possible to train the network to have sufficiently 

low error [26]. 

In a feed-forward network, signal flow is strictly from input to output nodes. The network can contain many hidden 

layers but no feedback connections are present [26]. One class of feed-forward ANNs, the Multi-layer Perceptron 

(MLP) has been used in this paper [18]. The MLPregressor model has outputs, which are continuous values, and 

optimizes the squared-loss [18]. A quasi-Newton method, L-BFGS and two stochastic gradient-based optimizers, SGD 

and Adam [28] are implemented as solvers for the weight optimization.  

The space of possible network functions grows exponentially large with the depth of the network and may lead to 

an overfit of the training data and the network to poorly predict outcome values for non-training data. This type of 

error is known as generalization error[29]. Overfitting of data can be reduced by the addition of a penalty or 

regularization term (α) for controlling the magnitude of the model parameters to the error function [30]. The 

MLPregressor model employs the well-known L2norm or ridge regression method [18]. 

 

 

 

(a) (b) 

Fig. 5: (a) Model of a neuron adapted from [22] and (b) neural network architecture for a network with 

five inputs, two hidden layers with four neurons each and a single neuron in the output layer 

D. Neural Network Performance Assessment 
The independent dataset, Dataset-B, was used to compare the performance of the ANN with the Gaussian –process 

surrogate model. Therefore all of Dataset-A was used to train the ANNs. The model prediction error was quantified 

by the maximum error, (Emax = max(𝜀𝑗)) the Root Mean Squared Error, (RMSIT, Eq. 10), the Mean Absolute Error, 

(MAEIT, Eq. 12),the standard deviation of the error, (σIT, Eq. 11), and the percentage of predictions with an absolute 

error greater than 0.01 CD. 

E. RSMs Robustness Testing 
Although the test cases contained in the LHS-based independent dataset are optimally spaced to provide the best 

coverage of the hypervolume defined by the bounds of the independent DoF, the combinations of geometric DoF (L1, 

β, A9/A8) and aerodynamic boundary conditions (NPR, 𝑀∞) is not uniquelly defined. Different LHSs containing the 

same number of samples and based on the same ranges of DoF will give different geometries operated at different 

aerodynamic boundary conditions. For this reason, additional testing was conducted to assess the robustness of the 

performance of the RSMs and the impact of test data spacing. For this purpose smaller LHS-based datasets (Dataset-
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C) were used to quantify the average value of the RMS error and standard deviation distribution (𝐸𝑅𝑀𝑆 , 𝜎𝐶) of the 

RSM predictions. These are defined as: 

𝑬𝑹𝑴𝑺 =
𝟏

𝒏
∑ 𝑹𝑴𝑺𝒌

𝒏

𝒌=𝟏
 19 

𝝈𝑪 = √
∑ (𝝈𝒌 − �̅�)𝟐𝒏

𝒌=𝟏

𝒏
 20 

Where n is the number of independent datasets contained in Dataset-C (n=20), RMSK is the RMS error of the RSM 

tested with the k-th dataset in Dataset-C, 𝜎 is the average value of the standard deviation of the error distribution (𝜎 =
1

𝑛
∑ 𝜎𝑘

𝑛
𝑘=1 ) and 𝜎𝑘 is the standard deviation of the error distribution for the k-th RSM test performed. 𝐸𝑅𝑀𝑆 and  𝜎𝐶 

quantify the sensitivity of the RSM performance to the testing data used and therefore the robustness of the RSMs. 

V.Results 

A. Gaussian Process Performance  

1. LOO-based performance evaluation 

The initial assessment of the Gaussian process RSM performance was based on the LOO error. This identified the 

best combination of regression function, correlation function and nugget size (η). The best performing RSM was the 

result of the combination of linear correlation function and quadratic regression function with a η=5x10-4 (Fig. 6). For 

this model the performance metrics are: 𝑅𝑀𝑆𝐿𝑂𝑂 = 0.00126, 𝜎𝐿𝑂𝑂 = 0.00127, 𝜀�̅�𝑂𝑂 = 1.1𝑒 − 06 and the maximum 

error is Emax=0.0196. This performance assessment method tests the relative importance of each one of the input points 

in Dataset-A on the overall quality of the RSM. The maximum error Emax of the best RSM corresponds to the prediction 

of the LOO model built with Dataset-A with the exception of the input point given by the configuration with A9/A8=1.2 

(DNPR=3.75), L1=0.6L and β=10° when operated at NPR=5.23 and 𝑀∞=1.059.  

 

 
Fig. 6: Gaussian process hyperparameter study for the LOO-based performance assessment 

 

2. Independent test 

Dataset-B was used to independently quantify the RSMs performance. Rather than quantifying the relative effect 

of each single data point on the RSM quality this performance assessment method assesses the overall behavior of the 

model across the hypervoulme defined by the DoF bounds. This assessment identified the best performing RSM as 

the one resulting from the combination of absolute exponential correlation function, quadratic regression function and 

a η=5x10-5 (Fig. 7). For this model the correlation between Dataset-B and model prediction is very good and 1.4% of 

the predictions were outside of the interval ±0.01 CD (Fig. 8a). The RSM prediction performance metrics are: 𝑅𝑀𝑆𝐼𝑇 =
0.0034, 𝜎𝐼𝑇 = 0.0031, 𝜀�̅�𝑇 = 0.0014 and the maximum error is Emax=0.01593 (Fig. 8b). The Gaussian process 

performance proved robust and repeatable when tested for the effect of randomness in the testing data (Fig. 9). For 

this case the average standard deviation was 𝜎=0.0035 while the standard deviation of the distribution of the standard 

deviations was 𝜎𝐶=0.00064. It can be concluded that the Gaussian process accuracy on CD for axisymmetric afterbody 

and exhaust systems is 𝜀�̅�𝑇±2𝜎𝐼𝑇 = 0.0014±0.0062 with a 2𝜎𝐼𝑇 confidence level. The value of 𝜎𝐼𝑇 can vary within the 

range ±2𝜎𝐶 = 0.00128 giving a worse case error on the prediction of CD of 0.0135 with a 2𝜎 confidence level. 
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Fig. 7: Gaussian process hyperparameter study for independent performance assessment. X marks the 

best combination of regression function, correlation function and nugget size.  

 

 

Emax 0.0159 

𝑅𝑀𝑆𝐼𝑇 0.0034 

MAEIT 0.0023 

% outside ±0.01 CD 1.4% 

σIT 0.0031 
 

(a) (b) 

Fig. 8: (a) Correlation of Gaussian process prediction and Dataset-B and (b) performance metrics of the 

best Gaussian process 

 



12 

 

 

Fig. 9: Correlation of test values and RSM prediction for the 20 LHS dataset in Dataset-C 

B. Artificial Neural Network Performance  

To select the hyperparameters for the ANN surrogate model a full factorial investigation was carried out varying 

the L2 penalty term, α, the activation function, the number of hidden layers and the overall number of nodes. The 

model fitness was assessed by the RMSIT of predictions made for Dataset-B (Fig. 10). Three activation functions were 

investigated, including the logistic, hyperbolic tangent and rectified linear unit functions. For each activation function 

various network structures were modelled. The overall number of hidden neurons and the number of hidden layers 

were varied from five to 480 and one to five respectively. In addition a range of L2 norm regularization parameters 

(1x10-6 ≤α≤ 1x10-2) were studied. The minimum RMSIT error (0.0025 CD) was found for a ANN with a ReLu activation 

function, a L2 norm regularization parameters equal to 0.01 and 2 hidden layers each consisting of 60 hidden neurons. 

The ANN prediction performance metrics are: 𝑅𝑀𝑆𝐼𝑇 = 0.0025, 𝜎𝐼𝑇 = 0.0024 and the maximum error is 

Emax=0.0110 (Fig. 11a and b). The ANN performance also proved robust and repeatable when tested for the effect of 

randomness in the testing data (Fig. 12). For this case the average standard deviation was 𝜎=0.0027 while the standard 

deviation of the distribution of the standard deviations was 𝜎𝐶=0.00051. It can be concluded that the ANN prediction 

accuracy on CD for axisymmetric afterbody and exhaust systems is 𝜀�̅�𝑇±2𝜎𝐼𝑇 = 0.0±0.0048 with a 2𝜎𝐼𝑇 confidence 

level. The value of 𝜎𝐼𝑇 can vary within the range ±2𝜎𝐶 = 0.00102 giving a worse case error on the prediction of CD 

equals to 0.098 with a ±2𝜎 confidence level. 

C. RSM comparison 

Both RSM showed good accuracy on the prediction of CD for axisymmetric aerodynamic afterbody and exhaust 

systems. The overall performance of the ANN is better than the Gaussian process both in terms of systematic error 

(𝜀�̅�𝑇) and standard deviation of the error distribution (σIT). For these reasons ANN is more suitable for accurate 

afterbody and exhaust systems aerodynamic performance and it is a better candidate for the use within a Multivariate 

Vehicle Optimization (MVO) tool. On the other hand, the Gaussian process type RSM can still be a good fit for a 

MVO tool due to its relatively small σIT. Although this RSM has a non-zero mean error (𝜀�̅�𝑇) and the prediction of CD 

will be affected by a systematic error, this might not be relevant for an optimization process. The aim of MVO tools 

is not the prediction of CD as an absolute value but to identify the areas in the design space where the “good” 

configurations are. These region in the design space are evaluated relatively to a starting case, which will also be 

affected by a systematic error (Fig. 13). Another important parameter that needs to be considered is the computing 
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time required for these models. The ANN algorithm takes few minutes to produce an RSM while the Gaussian process 

takes hours.  

 

 

Fig. 10: ANN hyperparameter study for independent performance assessment. X marks the best ANN  

 

 

Emax 0.0114 

𝑅𝑀𝑆𝐼𝑇 0.0025 

MAEIT 0.0018 

% outside ±0.01 CD 0.6% 

σIT 0.0024 
 

(a) (b) 

Fig. 11: (a) Correlation of ANN prediction and Dataset-B and (b) performance metrics of the best ANN 
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Fig. 12: Correlation of test values and ANN prediction for the 20 LHS dataset in Dataset-C 

 

Fig. 13: Probability density function of prediction error distributions of the Gaussian process and Neural 

Network models assessed with independent dataset-B 

VI.Conclusions 

The aim of this research was to quantify the performance of Gaussian process and Artificial Neural Network 

(ANN) RSMs on afterbody and nozzle system CD prediction. The objective was to provide a low order model able to 

predict CD as a function of several geometric parameters (L1, β, A9/A8) and aerodynamic (NPR, 𝑀∞) conditions. The 

models were tested using two i[21]ndependent datasets. Dataset-B was used for the RSM prediction performance 

assessment while Dataset-C used to assess the RSMs robustness and performance repeatability. Overall the Gaussian 

process and the ANN had prediction uncertainties of 0.0014±0.0062 and ±0.0048 with a 2sigma confidence, 

respectively. The maximum error was Emax=0.01593 for the Gaussian process and Emax=0.0110 for ANN. The ANN 

R
M

S IT
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showed no bias in the performance prediction assessed based on Dataset-B and only 0.2% of the predictions were 

outside the range ±0.01 CD. 

The most important conclusion is that both these low order methods provide an improvement over the conventional 

models. The prediction accuracy of ANN and Gaussian process is comparable to previous performance correlations. 

However, the proposed correlations enable the assessment of afterbody drag over a continuous range of flight Mach 

number including the transonic regime as well as additional geometric control on the afterbody definition to enable a 

greater set of designs to be considered.  
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