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Abstract: The present work determines the non-isothermal cure parameters of aerogel/epoxy 

samples along with the effect of a wetting agent. The cure parameters were calculated using 

Kissinger and isoconversional methods after which the reaction was modelled with the 

Sestak-Berggren equation. It is seen that the composites had higher activation energy and 

frequency factor values compared to the pure resin and, similarities in cure parameters 

between the aerogel/epoxy composites with and without the wetting agent were seen. Hence 

the former’s use is advocated due to its positive influence on the resin-aerogel interface 

without sacrificing the cure parameters.  
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1 Introduction 

Aerogels are materials with highly porous structures, large specific surface areas, low 

densities and excellent thermal insulation properties 1, 2 prepared by replacing the liquid in a 

gel with air 3. Typically, the thermal conductivity values of silica aerogel are between 0.01 to 

0.03 W/(m K) 4 thereby resulting in numerous applications as thermal insulators. Hrubesh 5

and Schmidt & Schwertfeger 6 in their respective studies have detailed various applications of 

aerogels including uses as insulators in, amongst others, cryogenics, space vehicles, portable 

coolers and transport vehicles. Although the numerous small pores of the aerogel ensures 

excellent thermal, optical, acoustic and physical properties, the same structure limits the 

mechanical strength of the material 7 such as their fragility and brittleness 8, 9, 10.To overcome 

this drawback, a polymer binder is considered and the studies of Wei et al. 10 and Meador et 

al. 11 show that the introduction of a polymer within the aerogel improves the mechanical 

properties of the system. Another method of aerogel-epoxy synthesis is the impregnation of 

the aerogel in a polymer matrix; according to Schmidt & Schwertfeger 6 these binding 

systems can be divided into wet and dry systems. When comparing the coefficient of thermal 

resistance, it is seen that a liquid binding system (using dispersion) shows a better 

performance in comparison to a thermoplastic bound aerogel composite 6. Hence an epoxy 

resin system was chosen as a binding material in the present work because of the polymer’s 

wide use in composite materials 12.  

The study of cure kinetics and the relationship between the degree of cure and the properties 

are essential parameters needed to identify optimum cure conditions 13, 14. When considering 

the cure kinetics of epoxy resins, Gonis et al. 15 noted that the amount of heat released during 

cure was indirectly proportional to the number of ethylene oxide units in the epoxy resin. 

Roşu et al. 16 calculated the activation energy of two different epoxy resins, diglycidyl ether 

of bisphenol A (DGEBA) and diglycidyl ether of hydroquinone (DGEHQ) using the 
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isoconversional method and found the activation energy remains independent of the working 

conditions and almost constant between conversion intervals of 0.3 and 0.6. The curing of 

epoxy resins is a complex multistep process that could include numerous chemical reactions 

or a reaction that could have complex effects like vitrification and viscous relaxation 17. 

These effects, according to Yoo et al. 18, play a role in decreasing the activation energy 

towards the end of the cure. The work of El-Taher et al. 19 compared the activation energies 

and frequency factors for DGEBA resins cured with hydrolysed materials from salt solution 

and curing agents without salt and, found the values for the former to be higher than the 

latter. However, the activation energies calculated for the curing agent without the salt 

solution was similar for the three methods used in the paper (Kissinger, isoconversional and 

autocatalytic methods) but varied when the material from the salt solution was used.  

Montserrat and Malek 14 compared the results of non-isothermal and isothermal data and 

stated that both methods produce similar results when the curing is primarily controlled by 

the chemical reaction. However at lower temperature, the authors argue that the problem is 

more challenging due to effects such as vitrification. When considering the different non-

isothermal methods, Hong and Lee 20 calculated the activation energy of silicone rubber using 

the Kissinger, Ozawa, Flynn-Wall-Ozawa and Friedman methods wherein the methods 

showed similar results with Friedman method having the lowest value. El-Thaher et al. 19, 

state that the Kissinger method is more accurate than the Ozawa method for nth order 

reactions.  

The current work considers the effect of aerogel on the cure kinetics of the epoxy resin by 

studying the cure parameters of a pure epoxy resin and a composite material consisting of 

aerogel and epoxy. Additionally, the effect of a wetting agent is also explored to assess the 

suitability of using it in the production of the said composite. The cure parameters, for the 

reasons discussed above, will be identified using the Kissinger and isoconversional (that 
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would give the cure parameters as the cure progresses) methods. Then the materials’ cure 

kinetics would be modelled using an autocatalytic equation and validated against 

experimental data. The results of the three methods are then discussed and compared with 

each other. 

2 Materials and Methods 

2.1 Materials 

The aerogel used was the Enova Aerogel IC3110 (Cabot Corporation, USA) which are 

particles between 100-700μm in size. RS-M135 (PRF composites, UK) was used as the 

epoxy resin along with a hardener which was a custom blend of RS-MH137 and RS-MH134 

(both by PRF composites) in a 2:1 weight ratio wherein both hardeners are amine based 

systems. The resin and the hardener were then mixed in a 10:3 weight ratio for all samples. 

Additionally, a wetting agent- BYK-P 9920 (BYK-Chemie, Germany) was used to prepare 

one of the batches; the wetting agent is a combination of organically modified 

polydimethylsiloxane, a branched polyolefin and an epoxyfunctional reactive thinner (oral 

communication from a company representative- April, 2017). The wetting agent was 

recommended by the company for the above-mentioned materials and the amount used in the 

present study i.e., 3% (by weight) is the maximum recommended level suggested by the 

company in the product’s data sheet 21.  

The first batch of the sample was made from pure epoxy resin and hardener wherein the resin 

and the hardener were mixed in the required ratio before testing. For the second batch, which 

included the aerogel, the resin and the hardener were mixed together as previously discussed 

and then 0.03 (mass fraction) of aerogel was added, mixed and the samples tested. Finally, to 

prepare the third batch, after the resin was weighed, 3% (by weight) liquid wetting agent was 

added to the resin using a dropper. The hardener was then introduced and the solution mixed 
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together before 0.03 (mass fraction) of aerogel was added and the samples tested. It must be 

noted that the mixing for all the samples were carried out manually. 

2.2  Differential Scanning Calorimetry    

To calculate the cure kinetics, the samples were tested in a Q200 DSC (differential scanning 

calorimetry (TA instruments, USA) under a 50 mL/min nitrogen purge using the TA 

Refrigerated Cooling System 90 (RCS 90). The obtained peaks were then analysed using the 

TA Universal Analysis 2000 (version 4.5A) software.  

Each batch was subjected to four dynamic runs at constant heat rates- 5⁰C/min, 10⁰C/min, 

15⁰C/min and 20⁰C/min from 40⁰C to 300⁰C. The samples were tested in Tzero Aluminium 

pans wherein the lids were pressed onto the pans using a sample encapsulation press. It must 

be noted that efforts were made to maintain the mass of the material in the Tzero pans 

between 13-16 mg. 

The cure kinetic parameters for the three batches were calculated using three different 

methods and the results compared. 

3 Results 

3.1 Dynamic Runs 

Figure 1 shows the dynamic DSC curves for the samples in the present study.  The samples 

show an exothermic reaction between ~50⁰C and ~250⁰C across all the considered heating 

rates due to the cure of the resin. Although, individual samples show varying peak heights for 

different heating rates, the difference between them is small enough to be neglected. Hence, it 

is believed that the three samples studied have identical behaviour within the heating rates 

considered. 
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3.2 Kissinger Energy 

This method, described by Kissinger 22, calculates the activation energy and the frequency 

factor from the peak temperatures (Tp) using Equation 1.  
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Equation 1    

Where Eak is the activation energy, R is the universal gas constant, ø is the heating rate and Tp

is the temperature at the peak. 

The activation energies and the frequency factors for the three batches are calculated using 

Equation 2 and Equation 3 respectively as described in the work of Nordeng 23. The slope and 

intercept values are obtained from the Kissinger plots (as shown in Figure 2 for batch 3) for 

the three batches. The curve was fitted using a linear function (‘poly1’ model name in 

MATLAB R2015b) and the r2 values for the three batches are shown in Table 1 wherein, all 

the values are >0.95. 

E�� = −(Slope × R)

Equation 2 

A = ((e��������� × ���)/R)

Equation 3 

3.3 Isoconversional Method 

Although the Kissinger method results in a simple calculation of the activation energy and 

frequency factor using the peak temperatures, it doesn’t give further information on the 

reaction progress. The isoconversion method, on the other hand, allows the calculation of the 
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frequency factors and activation energies at different conversion rates, thereby providing 

additional information on the reaction kinetics 19.  

The degree of conversion/cure (α) is calculated according to the formula in 17 whose 

simplified version is shown in Equation 4. 

� =
�(�)

��

Equation 4 

Where QT is the total enthalpy (heat) of the reaction and Q(t) is the cumulative heat of the 

reaction.  

QT was calculated using the Integrate Peak function and Q(t) was calculated using the 

Running Integral function, both in the Universal Analysis software. It must also be noted that 

both values had identical starting and ending points (as shown in Figure 3). The degree of 

cure (α) as a function of temperature with different heating rates for batch 3 is given in Figure 

4 where the temperature at a certain degree of cure is seen to increase with the heating rate. 

To calculate the activation energy and the frequency factor using the isoconversion method, 

Equation 5 is followed 17. 
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Equation 5 

The values of dα/dt were calculated from α and t and, smoothened using the moving average 

filter in MATLAB before postprocessing. An example of such a signal before and after 

smoothening is shown in Figure 5 for the 10⁰C/min run of batch 3.   
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Using the smoothened signal, plots for Equation 5 were generated; an example of such a plot 
is given in Figure 6 for batch 3. The activation energy and the frequency factors are once 
again calculated using Equation 2 and Equation 3 respectively. The activation energies and 
frequency factors calculated at various α values for the three batches are tabulated in Table 2
and  

Table 3 respectively. For both quantities, the values between 0.3>α>0.7 are shown thereby 

eliminating the inaccuracies due to peak tails which lead to higher error magnitudes 14.  It 

must be noted that the r2 values for all the fits were above 0.98.    

3.4 Autocatalytic Method  

In terms of modelling, epoxy resins are usually described by either reaction order kinetics or 

autocatalytic cure 16, 17.  However, the curing of epoxy always converts the oxygen in the 

epoxy ring into a hydroxyl group, which in turn, is also a curing group for the epoxy; thereby 

showing evidence for an autocatalytic model 19. Therefore, the two parameter Sestak-

Berggren equation (representing an autocatalytic model) was chosen to model the cure 

kinetics of the materials in the present study. The equation, introduced by Sestak & Berggren 

24, is shown in Equation 6 

��

��
=  ���(1 − �)�

Equation 6 

To identify n and m for each batch, the method outlined in 19, 25, 26 was utilised wherein, the 

GRG Nonlinear solver in Microsoft Excel 2010 was used to maximise the correlation of the 

plot between ln((dα/dt))/((αm)*((1-α)n)) vs 1000/T by changing the values of n and m. The 

values for the 4 heating rates and conversion factors between 0.3≤α≤0.7 for an individual 

batch were populated in a single plot to deduce the coefficients (as shown in Figure 7). The 

slope was used to calculate the activation energy (Equation 2) and ln(Asb) was the y-intercept. 

The values of n, m, activation energies and pre –exponential factors are shown in Table 4. 
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The absolute value of r2 (Pearson’s correlation coefficient) in the table is the value of the 

maximising objective function whose maximum value was set to 1. 

The model was simulated using Equation 7 where the values for Asb, Easb, m and n are 

obtained from Table 4 for each batch. 

��

��
= �����

����� ��⁄ ∗ ��[(1 − �)�]�

Equation 7 

The results are shown and compared with the experimental data for batches 1, 2 and 3 in 

Figure 8, Figure 9 and Figure 10 respectively. For the sake of clarity, the smoothened dα/dt 

values were used as the experimental data. Although a good fit between the model and 

experiment is observed, there is some deviation at higher temperatures (representing higher α 

values). This is due to the selection of α between 0.3 and 0.7 for the model parameterisation 

as discussed in the previous section. Nevertheless, it is believed that the truncated Sestak-

Berggren model 24 using the parameters identified in Table 4 can adequately model the cure 

kinetics of the materials in the present study especially, in the mid cure range. 

4 Discussion 

Table 5 shows the activation energies and the frequency/pre-exponential factors determined 

by the various methods used in the present study. It must be noted that the value used for the 

isoconversional method for each batch was the average in the interval 0.3≤α≤0.7 and the 

frequency factors for the Sestak-Berggren model were calculated using Equation 3. When 

comparing the individual results for each method, it is seen that the activation energy of batch 

1 (pure resin) is consistently lower than batches 2 and 3 which contain aerogel. This could be 

explained by the lower viscosity of pure resin that has a lower activation energy 19.  Arabli 
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and Aghili 27 observed a catalytic effect of silica nanoparticles during the cure of epoxy resin 

when silica nanoparticles were added (which resulted in a lower activation energy). However 

in the present study, this effect is not seen because it is believed that the larger aerogel 

particles (100-700μm) resulted in a more viscous material and inhibited the cross-linking 

reaction more than the smaller silica nanoparticles used in 27 (average diameter of 12nm); 

thereby negating the catalytic effect and increasing the activation energies in batches 2 and 3.    

When comparing the results of batch 2 with batch 3, the activation energy determined by the 

isoconversional method and the Sestak-Berggren model are similar. The Kissinger method, 

on the other hand, shows a much greater difference particularity for batches 1 and 3. This 

could perhaps be explained by the nature of the Kissinger equation, which only utilised the 

parameters at the peak of cure rather compared to the other two methods that accounted for 

more of the cure cycle (0.3>α>0.7 in the present case). However, the results from the former 

methods are preferred since they consider more of the cure reaction as compared to only peak 

parameters in the Kissinger method resulting in greater accuracy. Finally because the addition 

of a wetting agent into the aerogel/epoxy composite has a minimal effect on the cure kinetics 

of the resin, its use is recommended due to its influence on the interface of the aerogel and 

the resin. It is thought that the wetting agent would increase the strength at the boundary and 

hence, positively influence the mechanical properties of the composite. A link between the 

efficiency of fibre/filler wetting and mechanical properties is seen in the study by Ellakwa et 

al 28 where, a higher flexural strength was observed in Kevlar fibres wetted with a filled 

bonding agent which, according to the authors, could be the result of improved fibre wetting 

due to this type of bonding agent.  

It is seen that the Sestak-Berggren equation models the experimental data quite accurately 

and can be used to represent the respective materials in the present study. Once again, there is 

a difference in the model parameters between the epoxy (batch 1) and the aerogel/epoxy 
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(batches 2 and 3). However, batches 2 and 3 do not show much deviation from each other 

thereby reiterating previous statements about similarities in the cure kinetics of both 

aerogel/epoxy samples. Hence, the use of a wetting agent is advocated for reasons identified 

previously.   

5 Conclusion  

The present work considered the non-isothermal cure kinetics of an aerogel/epoxy composite 

with and without a wetting agent. A sample made of pure resin was also subjected to similar 

analysis to aid the comparison. The activation energy and the pre-exponential factors 

(frequency factors) of all three materials were determined using the Kissinger and 

isoconversional methods. The parameters were then used to model the cure of the materials 

using the Sestak- Berggren equation. The theoretical model showed good agreement with the 

experiment data. The activation energy and frequency factors from all three methods showed 

a higher value for the aerogel composites when compared to the pure resin thereby suggesting 

an increased viscosity in the former. Additionally, the results also showed similarities in the 

cure kinetic parameters between aerogel/epoxy composites with and without the wetting 

agent. Therefore, the addition of a wetting agent to increase the wettability of the aerogel and 

hence, improve the interface between it and the resin system is recommended.  
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List of Tables:

Table 1 Peak model parameters 

Batch 
Rate 

(⁰C/min) 

Peak 

Temperature 

(⁰C) 

Kissinger Parameters 

r2

Activation 

Energy 

(Eak) 

(kJ/mol) 

ln(Ak) 

Pure Resin 

(Batch 1) 

5 100.95 

0.9921 41.49 11.59 
10 121.08 

15 130.41 

20 137.57 

Resin + 

Aerogel 

(Batch 2) 

5 104.19 

0.9997 60.03 17.77 
10 116.98 

15 125.08 

20 130.42 

Resin + 

Wetting 

Agent + 

Aerogel 

(Batch 3) 

5 104.65 

0.9542 51.05 14.82 

10 113.76 

15 127.67 

20 134.44 
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Table 2 Isoconversion activation energies at various values of α 

Conversion 
Activation Energies (Eai) (kJ/mol) 

Batch 1 Batch 2 Batch 3 

0.3 50.33 58.67 54.93 

0.4 52.65 58.90 58.32 

0.5 54.07 58.28 59.56 

0.6 53.25 58.65 61.97 

0.7 54.08 61.27 62.99 

Mean 52.87 59.15 59.55 

Table 3 Isoconversion frequency factors at various values of α 

Conversion 
Frequency factors (ln(Ai)) 

Batch 1 Batch 2 Batch 3 

0.3 22.48 25.45 24.14 

0.4 23.06 25.28 25.01 

0.5 23.23 24.76 25.08 

0.6 22.56 24.43 25.39 

0.7 22.27 24.63 25.06 

Mean 22.72 24.91 24.93 
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Table 4 Model Parameters 

Batch n m 
Easb

(kJ/mol) 

ln(Asb) 

(min-1) 

r2

1 1.86 0.16 53.04 15.51 0.997 

2 1.98 0.03 59.45 17.61 0.997 

3 1.99 0.03 59.54 17.56 0.997 

Table 5 Comparison of the parameters from the different methods used in the study; 1-

Kissinger Method, 2-Isoconversion method, 3- Sestak-Berggren model 

Parameter 
Batch 1 Batch 2 Batch 3 

1 2 3 1 2 3 1 2 3 

Activation 

Energy 

(Ea) (kJ/mol) 

41.49 52.87 53.04 60.03 59.15 59.45 51.05 59.55 59.54

Frequency 

Factor 

(lnA) 

11.59 22.72 24.27 17.77 24.91 26.48 14.82 24.93 26.44
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List of Figures: 

Figure 1 Dynamic runs of the samples in the present study at different heating rates; 

(Clockwise from the top) 5⁰C/min, 10⁰C/min, 20⁰C/min and 15⁰C/min  
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Figure 2 Kissinger plot for Batch 3 
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Figure 3 Peak and Running Integral for Batch 3 at 10⁰C/min 
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Figure 4 Degree of cure with respect to temperature for different heating rates (Batch 3) 
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Figure 5 Raw and smoothened signal of dα/dt for batch 3 10⁰C/min 

Figure 6 Arrhenius plots for constant degrees of cure (Batch 3) 
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Figure 7 n and m value calculation for batch 3 

Figure 8 Comparison of model and experimental data for Batch 1 
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Figure 9 Comparison of model and experimental data for Batch 2 
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Figure 10 Comparison of model and experimental data for Batch 3 




