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ABSTRACT 

The emergence and rapid development in complexity and popularity of Android mobile phones has created 
proportionate destructive effects from the world of cyber-attack. Android based device platform is experiencing 
great threats from different attack angles such as DoS, Botnets, phishing, social engineering, malware and others. 
Among these threats, malware attacks on android phones has become a daily occurrence.  This is due to the fact 
that Android has millions of user, high computational abilities, popularity, and other essential attributes. These 
factors influence cybercriminals (especially malware writers) to focus on Android for financial gain, political 
interest, and revenge. This calls for effective techniques that could detect these malicious applications on android 
devices. The aim of this paper is to provide a systematic review of the malware detection techniques used for 
android devices. The results show that most detection techniques are not very effective to detect zero-day malware 
and other variants that deploy obfuscation to evade detection. The critical appraisal of the study identified some of 
the limitations in the detection techniques that need improvement for better detection.  
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1. INTRODUCTION 

Android has become the most popular operating system in the world of mobile telephony with largest 
users in different parts of the world. Vast amount of financial applications such as mobile banking and 
online banking run on this most popular mobile OS. Other sensitive information like health records, 
passwords and usernames are stored on android phones. The technological progression in Android has 
created proportionate attraction by malware writers who are advancing daily to gain financial roots by 
creating malware applications which can directly break into android mobile device security and snip 
victims’ personal data or request for ransom usually inform of bitcoin after a successful attack is 
implemented.  Malware attack on android has generated critical issues in mobile and security industry at 
large. According to Symantec report [41], apart from the openness which existed in Android platform, the 
mobile OS is also discovered to being ubiquitous. These factors increased the occurrence of mobile 
malware especially on Android planform. This research provides a systematic review by formulating and 
answering research questions using a methodology provided in section 3. This helps to identify relevant 
works that are carried out on android malware detection techniques with their strengths and limitations.  

1.2 Malware 

Different definitions of malware are given by different scholars and researchers depending on the attack 
vector deployed or the harm caused. Though these definitions may be different, but all converged to same 
meaning as malicious applications with evil intent.  

The research of [1-3] defined malware as simply as malicious codes. This definition considers 
malware as any piece of program segment which is developed with harmful intents. This definition does 
not encompass many attack and harm trajectory followed by malware. Looking at information harvest and 

li2106
Text Box
International Journal of Cyber-Security and Digital Forensics, Volume 8, Issue 3, 2019, pp. 177-187
http://sdiwc.net/digital-library/analysis-of-android-malware-detection-techniques-a-systematic-review




2

data leakage, the study of [4-6] defined malware as any computer program that leaks users’ private data 
without their consent. The research cogitate malware as programs that do not necessary cause harm to a 
device but gathers information about the activities of such a device and thereafter create disclosure of 
them to third parties for future attack (s). In the literature survey on SOA project [7] looked at malware as 
any suspicious program that affects organizational database.  Kaspersky [8] looks at malware as a 
developed computer program which contaminates and exacts damage on users’ computers. As wonderful 
as the above definitions might be, their coverage is limited when looking at the broad spectrum of 
malware attacks and effects. This research therefore defines malware as any computer code written with 
evil motives to get unauthorized access into IT infrastructures and digital devices by breaking their 
security defense parameters and exploiting their vulnerabilities leading to information harvest, data loss, 
information leakage, file infections, buffer overflow, interruption of computational operations and leading 
to subsequent physical or operational damage or both.  

1.3 Malware Attacks on Android Phones  

Malicious programs that are basically designed to attack android Dalvik virtual machine (DVM) and java 
core libraries respectively can be described as Android malware. Majority of Android users download 
free applications without critically considering whether such applications are genuinely provided by 
Google or not. Many do not turn on their Android device application permission monitor [9, 47] to help 
confirm Apps checked and guaranteed by Google bouncer [10] before installation even when such 
application over request permission to different resources of the device.  The study of [11, 42-43] asserted 
that application download from unknown sources constitutes one of the major attack vectors through 
which mobile devices get infected with malware.  Besides, vigilance when given permission privileges 
[44-46] to applications with is a good security practice. Some Android malicious applications exploit 
vulnerability in the system when such permissions are granted at installation stage after the application 
download.   

Evasion and obfuscation techniques [48-49] deploy by malware to elude detection has made Google 
play store insecure despite the tremendous effort of Google and the associated companies to review 
Android applications to avoid malware distribution. Android malware keep emerging daily. On August 
7th, 2018, a security network called Palo Alto [12] again identified about 145 malicious applications on 
the Google play store which appear to be genuine but are not. There are a lot of detection techniques used 
by many researchers and security companies to detect and prevent this threat (malware) but none of these 
seem to be perfect.  

For knowledge contribution, this study will provide general knowledge on mobile malware and some 
of the attack tactics malware deploy to execute their payloads and exploit Android vulnerabilities. This 
knowledge will help to develop further security parameters and tools that will improve Android mobile 
security. Evaluation of the detection techniques will give an idea on which is more efficacious in 
detecting malwares on android platforms and which needs to be improved for better detection of 
sophisticated malware variants. The study provides some of the challenges that digital forensics and cyber 
security investigators may encounter when working on Android malware.   

The remaining part of this paper is organized into the following sections: Section 2 provides the 
related work. The methodological approach to the research is provided in section 3. Section 4, 5, 6 and 7 
are for detection technique, discussion, evaluation and conclusions.  

2. RELATED WORK 

Research in Mobile security has become a thing of concern. A range of research in mobile technologies 
from design, vulnerability, threats and detection techniques is ongoing. Many security industries are 
spending billions of funds in this field.  This paper examined some of them as building blocks. The study 
of [14] x-rayed dynamic detection and analysis approach on how malware can be detected on 
Gingerbread Android version. DroidScope detected DroidKungFu and DroidDream android malware 
where the major malware investigated in this research. Detection features obtained by the research 
indicated that while DroidDream encrypted IMSI and IMEI numbers into XML String, DroidKungFu 
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carried cage exploit to gain unpermitted access to the mobile device security. The outcome of the study 
demonstrated efficiency of the technique used was resistant to malware code obfuscation. The observed 
limitation was that the research did not consider analyzing mobile RAM for forensics artefact after 
executing the malware. In addition, fundamental features such as core logic, exploit binaries and native 
libraries were failed to be analyzed by the technique approach.     

The research of [15,] made comparative analysis of static, dynamic and machine learning detection 
techniques used for malware detection on android applications. Market Centralization in mobile platform 
applications has made malware detection a very tedious task for most detection techniques even for 
machine learning and AI techniques. For instance, Google play central market for Android Google 
bouncer [50] to verify the legality of many apps. This security monitoring is insufficient because of 
millions of android developers associated with Google who’s their Apps are not properly scrutinized 
before been permitted on the play store.  This is similar to phone store and App store for Windows and 
Apple respectively. This made the security of mobile devices especially Android based not to be 100% 
absolute. The detection approached considered was based mainly on misuse and anomaly with 
application, untrusted data and system state as main objectives of analysis. None of the techniques 
provided 100% detection rate for mobile malware, based on the result obtained.   

Anusha [16] dynamically compared malicious and mobile application behavior using mobile API for 
malware detection. The developed detection system (WMMD) detected obfuscated mobile malware 
which anti-virus software failed to detect. The detection approach used Finite State Automata (FSA) for 
malware code sampling and pattern checking. Using analysis by run-time, the model detected viruses 
both before and after packing. All the six (6) anti-virus software used, none was able to detect those 
mobile viruses after packing with UPX. It is then perceived that most anti-virus programs are not reactive 
to malware detection because they are signature based. This result was similar to [17] which is based on 
behavioural analysis for detecting malware on Android applications. The study mined 216 and 278 for 
normal and malicious Android applications separately. A variety of trained mathematical algorithms were 
applied on both the benign and malicious data set. Using correlational analysis, the research realized 
97.16% detection accurateness.  

Looking at advance malware artefacts in the mobile memory, [18] performed analysis of malware 
detection in mobile memory using memory forensics methodology. The research detected with 90% 
accuracy a self-replicating Trojan with 20% unclassified samples. The research observed that significant 
malware information can be mined from memory dump analysis of android mobile devices. Hidden codes 
waiting to explode at favorable conditions are easily exposed. The research how ever could not provide 
any investigation on searching malware attributes which are significant for forensic and security analysis. 
There has been elaborate work on detection techniques but there has not been a research that identifies 
and listed the limitations and strengths that existed in those techniques. By identifying both the limitations 
and the strength will help improve the efficiency of those techniques and enhance better detection of 
malware on Android devices.  

3.  METHODOLOGY 

An organized appraisal with reference to the comprehensive malware detection framework outlined by 
[13] will be applied in this paper. The analysis targets to investigate recent studies on android malware 
detection techniques. The subsequent methodological subheadings expound on the research questions, 
criteria for paper selection, source of data and research keywords, summary of the research interpretation 
were presented in Table 1.     

3.1 Research Questions (RQs) 

Based on the review in section two in order to identify potential research gaps, the following research 
questions were formulated: What are the techniques used for detecting malware attacks on android 
devices? What are the key limitations when that exist when using those techniques? Are there some areas 
of strengths that are found in those techniques?  
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3.2 Criteria for Papers Selection  

In selecting papers for this study, some standards were set. Only papers that matched and met these 
criteria were selected. The selection criteria are as follows:   

 The paper must be written in English Language.  
 The paper must be published within three years (2016 to 2018) apart from frameworks  
 It must discuss android malware and detection techniques using “OR” or “AND” operators. The 

operators here mean a paper can discuss one or both phrases.  
 The selected paper must reflect the research experimental evidence on android malware detection 

in its content and results.    

3.3 Justification for the Selection Criteria 

English was selected as the language for the study to allow wide coverage for readers. Papers written in 
native languages are limited to a particular tribe of people with little impact. The choice to go for three 
years publications is to produce a research with current trend in malware and their detection techniques 
paradigms. Frameworks could be from any year since they form bedrocks for any study.  

The operators “OR” and “AND” means that the selected paper must discuss either android malware, 
mobile malware detection techniques or both. Finally, the paper must show the experimental results with 
the approach used for such detection technique.   

3.4 Source of Data 

To get reliable data source, reputable academic research databases encompassing computational 
disciplines with high publication reputation. Such databases included but not limited to IEEE, Springer, 
ACM, Wiley and Inderscience. Conference papers and journals from those sources formed the primary 
source of data for the study. Papers from untrusted sources such as Wikipedia were not considered since 
they are rated unreliable. 

However, data could be sourced from dependable blog such as SAN blog because of its reputation. As 
stated in the paper selection criteria above, basic search operators which includes ‘OR’ and ‘AND’s will 
be enforced so as to get request data within the defined research objectives. The main data which we 
intend to mine are the technical challenges, limitations, strengths of detection techniques used for android 
malware. Experimental results and the approach deployed by each research will not also be discarded.  

4. ANDROID MALWARE DETECTION TECHNIQUES 

For the purpose of this survey, the following malware detection techniques will be examined: 

4.1 Dynamic Detection Techniques 

Android based applications correlates with the device OS via system calls which makes it possible to 
monitor what transpire between them. Dynamic detection technique monitors android malware in a 
controlled environment at runtime by taking cognizance of the malware pointers which detection 
signatures can be modelled using them. It inspects malware interaction with mobile resources and 
services such as location, network, package, OS activities. For safety of the experimental equipment 
(physical device), it is recommended that the code execution be carried out in a cybernetic environment.  

The study of [19] applied this detection technique on 4034 and 10024 malware and benign dataset 
respectively. Using ServiceMonitor approach, the random forest classification algorithm detected with 
96% accuracy of malwares on those applications. Using k-fold validation and Markov chain, the classifier 
module was coached to extract the sample features.  Information retrieved such as phone IMEI by 
malware was detected to be 67% accurate. Among the detected malware, 17% of the applications   were 
observed to have attached their payload on the device for premium service rating. The mobile utilities 



5

such as CPU and Memory were observed to be infected with an overhead device performance of o.8% 
and 2% respectively.  

Some malware remain dormant on the device after download and installation until an action is 
triggered. While some do so, others execute their payload at download, installation and runtime. This was 
demonstrated in [28]. Access authorisation habitually permitted by Android users during application 
download and installation creates a large space in the device attack vector even though default 
permissions are always encountered during download and installation sessions. Malicious code attaches 
with the benign applications during those exercise. Critical monitoring at these stages is required for 
better security of mobile platforms.    

4.2 Static Detection Techniques 

Static detection technique for malware detection does not execute or run the malware code but solely 
depends on the malware abstraction features. For malware detection using this technique, the dependable 
features for detection come from the application byte code or its manifest file; unlike dynamic method 
which focuses on the system calls and application program padding. Android applications are in APK 
format or archive. This is usually in a zip package. All the Android files, folders and other resources are 
included. For meaning detection, reverse engineering is mostly applied to the apk files for features 
mining.  When looking for relevant features’ extraction, the manifest file “AndroidManifest.xml” is first 
to be considered. This manifest file contains permission vector features for access to installation, 
locations, battery optimization, phone state permissions. This study is similar to [38].  

Ankita [20] used 103 and 97 malware and benign applications dataset respectively and detected 
malware on Nexus 5 with API level 19 detected high unauthorized permission attacks by malware. 
Reverse engineering was used as the experimental approach while applying Naïve Bayes, simple logic, 
RF 100, RF 10, J.48, Sequential minimal optimization and IBK algorithms. The xml parser extracted the 
permission request which generated binary features of the malware which was stored in Attribute 
Relation File Format (ARFF). Result provided 96.6% detection rate when random forest algorithm was 
used with 0.069% marginal different with the worst detection algorithm.  

Malicious applications appearance cannot be easily seen until the code running the application is 
thoroughly inspected using trained systems. To analyse the raw data which is been processed as a Dalvik 
byte-code [26], concatenation of the opcode by disassembling the apk files constitutes a good practice.  
De-compilation of this file provides convolutional direction for extracting and analysing further Android 
applications files such as xml and other resource files. This approach is similar when using n-gram 
procedure in detecting malware. To ascertain and validate experimental result obtained in terms of 
detection accuracy, [27] used four different detection algorithms to detect android malware with large 
dataset of 5,560 malware sample. Bytecode dichotomize CFGs from the object node at initialization. 
Different detection obtained by the trained algorithms characterised the power of DSA when applied at 
the input and extraction layer of the model. Random forest algorithm obtained a detection accuracy of 
97% higher than the rest.   

4.3 Hybrid Detection Techniques 

This technique combines both the features of dynamic and static techniques to provide a more robust 
detection result when analysing malware. Hybrid detection approach to malware detection involves 
basically training and detection phases which could be done by dynamic and static techniques 
respectively. This seems to give a better detection rate than dynamic and static techniques since the 
strengths in both methods are synergised. Using deep learning aspect of the artificial intelligence, [21] 
developed and trained a DroidDetector [51] model with some algorithms for android malware detection. 
The hybrid technique collected a total of 192 android malware and benign samples for training. The 
model yielded detection result accuracy of 96.60% with 0.0021% disparity amongst the algorithms used.  

In some complicated cases were the malware sample is unknow, training and detection may not be 
done simultaneous to avoid features meddling. Hidden Markov Models proves to have high performance 
features when it comes to bisectional improvement in malware detection.  Hybrid technique helps to 
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make a comparative analysis of static and dynamic detection rate accuracy. Through semantic approach 
of this technique, [22] opcode and API call malware sample sequence were extracted using Hidden 
Markov Models. Recall, precision and specificity determined the threshold of the ROC curve. To define 
and establish the maliciousness and benignity of an application, Android Buster Sandbox was used as an 
analyser. Android malware detection by applying API call sequence could not however overcome the 
problem of malware obfuscation.  In additional, the observational sequence of the malware features does 
not produce a relational correspondence to the HMMs distinct states, this approach cannot generate the 
initial malware distribution state in the call graph and sequence respectively. Similar to this was the 
research of [23] which using API call graphs extracted malware smali files. Out of the 1,216 suspicious 
Android applications, a total of 1022 extraction was made. The resultant detection accuracy was found to 
be 96.12%. Though evasion attacks in Android malware was overcome by this approach, android 
poisoning attack could not be addressed using Machine learning. Focusing at API block calls, the study of 
[24] designed a detective tool (Droiddelver) with Deep Belief Network algorithm mined asemantic traces 
of both known and unknown malware. Boltzmann generated a restricted bipartite graph at the model input 
layer during malware probabilistic distribution. The malware print tack most at times in such a scenario 
provides indices of the smali program the malware might be intending to carve on the Android mobile 
kernel. The unzipping and decompiling of Android applications before extraction the API call layer 
requires a smali code to stand between the Dalvik VM and the App interface.  

Some Android malware are basically designed to harvest information related to system calls, 
filesystems, mobile location and images captured by the device camera. Malicious app with this target 
makes the user of the device physically and informationally vulnerable. He can be easily tracked down 
and attacked or his system files could be exploited for financial gain or otherwise. This was demonstrated 
in the study of [25] with a relatively small Android malware dataset.  

4.4 Permission-Based Detection Techniques 

This technique involves detail analysis of the all the network traffic packets coming from the http server. 
The analysis of such packets indicates the nature of data which an application or device is sending to or 
receiving from an isolated server. some categories of mobile malware do not execute a visible and 
noticeable harm to the host device but only leak PII information such as list of apps, address, photos, 
IMEI and IMSI, location and mac address to malicious URL especially when insecure channel of 
communication is used. When this traffics are captured by software like Wireshark and are analysed, 
information leaked might be obtained.   

It is observed that when a proper approach is deployed, sniffed data by such malware could be 
detected. When analysing malware with this method, features such as communication protocol and apk 
files [29] should be the target. In addition, a check can be performed to see if PII data is involved in the 
captured traffic. However, some Android malware do not generate network traffic to http url. This then 
becomes very difficult to detect malware conducting premium rate to contact numbers. This research is 
similar to [30], [31] and [32] respectively.  

4.5 Emulation Based Detection 

This technique requires providing a simulated ecosystem by an emulator for running of malware samples 
to separate them from the actual physical resources of the device. Simulation can be done on the Android 
OS or hardware. However, detection becomes much more tough when the execution of malware is done 
in the mobile real OS. This technique requires building of sandboxes and configuring virtual machines in 
a systematic and secure manner to avoid infecting other devices on the network. This technique is 
effective especially when the Dalvik file (.dex) [33] are properly monitored.  

Malicious applications can be detected in the sandbox system by obtaining the dex file and converting 
into a form that can be understood by humans. Zero-day malware [34] and malware that escalate 
privileges [35] are effectively captured with this technique. However, some malware become aware of the 
virtual nature of the environment and tend to evade detection.  
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5. DISCUSSION 

From the comparative analysis of this study, basic observations where made regarding the detection 
techniques. Use of small malware dataset was the one of the basic limitations observed in the investigated 
techniques. This hinders true evaluation of the detection efficiency since the sample size could not cut 
across different edges of malware families. With such sample size, the technique might have seemed to 
perform proficiently but when implemented on a larger dataset, the opposite of the result is the case.  This 
could produce lopsided ratio with little optimization. 

Another pragmatic observation was the execution of malware in the sandbox without disabling the 
Android supervisory calls. This is clear that some malware would likely evade detection by detecting the 
presence of a sandbox environment by comparing different pieces of information from the system with 
strings such as “VMware” or “QEMU.” Malware families or samples with the ability to test sys_vendor 
files will be able to detect the sandbox analysis environment especially when the analysis is performed 
with root privileges. According to the research of [39, 40], some of the malware can detect chroot by 
matching /proc/1/mountinfo with the PID of the malicious application information. This can be seen in 
the case when a known Linux malware known as Handofthief tried to evade IBM virtual machinery.          
When a virtual environment is perceived, dangerous malware can delay their execution while in the 
environment and wait at the suitable time to resurface, thus escaping detection. It therefore means that 
some of the detection techniques whose detection rate amounted to over 90% without disabling the 
Android supervisory call during malware analysis in the sandbox might be questionable.  

Variation in detection rate by same algorithm in different detection scenarios is worrisome. For 
instance, in the study of [27], Naïve algorithm was implemented for detection using CFG approach. The 
detection rate was found to be 87.0%. In the same manner, 67.64% detection accuracy was witnessed in 
[28] when CFG was used. It is significant investigating into this wide variation.  

6. EVALUATION 

Analysis of android malware detection techniques is significant to building an efficient detection tool by 
applying both the strengths and limitations identified in all the studied approaches. The static detection 
methodology mined android metadata and other artefacts from Android malicious applications. Malicious 
interaction with the dex files at the Dalvik layer provides a dynamic approach to detection. A combination 
of static and dynamic techniques constitutes a hybrid method which provides a better detection accuracy. 
Other techniques studied are content and emulation-based detection.  Worthy to note in this study is fact 
that both dynamic and static techniques can be approached in different ways by applying diverse set of 
trained algorithms (see Appendix). Dynamic technique can overcome strings of detection issues such as 
malware fitting and oligomorphism. The observed limitation is its susceptibility to transformation attacks, 
vulnerability to mimicry attacks and its inability to run on unrooted android devices.  

When opcode sequence approached overcomes the need for hand-engineering. This could not 
however address the problem of malware encryption. Malware Obfuscation to escape detection is tranquil 
when this approach is used. Some elements of human interference could lead to unreliable outcome by 
using CFG. CFG is Susceptible to malware loading and replication, though highly scalable. Content-
based approach provides speedy execution of large malware dataset. This approach achieves virtually no 
tangible detection result when apk file is not generating network traffic to http, TCP and UDP servers. As 
observed by [36, 37], there are a number of challenges confronting android mobile forensic including 
malware detection. 

The detection challenges range from known to unknown, simple to sophistication. Transformation of 
the designed behavioural model could lead to malware obfuscation when the trained algorithm(s) and 
mutation approach are known by hackers or malware writers. Mutation and obfuscation make detection 
very difficult.  Malware sandboxing is observed to be a delicate exercise. Little mistake to put the 
physical device at risk. From this research, it is clear that no detection technique developed and used by 
industries and individuals is 100% efficient in malware detection. As a result, occurrence of android 
malware has become a daily attack threat to the users. The comparative analysis of each detection 
technique studied in this research is summarized in Table 1.  
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Table 1 

A Comparative Analysis of the Studied papers 

S/No Research Detection 
technique 

Detection 
Approach  

Algorithms Detection 
accuracy 

Strength limitations 

19 (Salehi and 
Morteza, 
2017) 

Dynamic ServiceMonitor Random forest, 
Markov chain 

86% Overcame fitting 
problem  

Susceptible to 
transformation 
and mimicry 
attacks 

20 
(Kapratar 
et al., 
2017)

Static  Reverse 
engineering 

Naïve Bayes, 
simple logic 

96.6% Overcomes issues 
of Bytecode 
Encryption

Fail to execute 
using Monkey 
Runner  

21 
(Yuan et 
al, 2016)

Hybrid  AI, Deep 
learning 
DroidDetector 

Multi-layer 
perceptron, Naïve 
Bayes and Logistic 
regression 

94.60%  High-level 
learning 
representation 

Lopsided ratio, 
Little 
optimization 

22 
(Damodara
n et al, 
2017)

Hybrid Hidden 
Markov 
Models 
(HMMs) 

N/A  N/A Known and 
unknown malware 
samples were 
detection  

Problem of 
imbalance and 
obfuscation  

24 
(Hou et al., 
2016)

Hybrid  Deep learning 
framework 

Neural Network  92.66 % Malware image 
recognition  

Malware depth 
features were 
not extracted, 
assembly 
language is 
required  

25 
(Leeds et 
al., 2016)

Hybrid  Permissions 
data flow 

Machine learning 
algorithm  

80% N/A Sample was 
not streamed-
lined 

26 
(McLaughl
in et al, 
2017)

Static  Opcode 
sequence 

Convolutional 
neural network 
(CNN) 

87% The need for 
hand-engineered 
was removed 

This could not 
address the 
problem of 
malware 
encryption  

27 
(Meng et 
al, 2016) 

static CFG and 
Bigram using 
DSA 

Random Forest, 
Naïve Bayes, 
AdaBoost, Linear 
SVM 

87.0% Efficiency and 
scalability can be 
achieved with this 
approach 

Susceptible to 
malware 
loading and 
replication  

28 
(Mahindu 
and 
Paramvir, 
2017) 

Dynamic  Machine 
learning and 
CFG 

Naive Bayes, 
Decision Tree 
(J48), RF, Simple 
Logistic, and k-star 

Simple 
Logistic 
84.08%,  
Baiyes 
67.64%  

Overcame 
malware 
oligomorphism 

Some samples 
evaded 
detection  

29 
(Malik and 
Rishabh, 
2016) 

Content 
based 

CREDROID 
and Web of 
Trust 

N/A  63% Fast execution  Fails when 
APK is not 
generating 
network traffic. 

33 
(Costa and 
Hamidre,2
017)  

Emulation 
Based  

Machine 
learning  

Random forest 
Decision tree 
Nearest neighbours 
AdaBoost 

Random 
forest 
98.7%, 
Nearest 
neighbour 
96.1% 
AdaBoost 
99% 

Detects Zero-
day,privilege 
escalation 
malware 

Cannot 
determine how 
malware 
processes the 
data affected, 
detected virtual 
environment 

38 (Zhu et al., Static  Support vector Random forest 89.9% Very fast and cost Bias and 
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2017) machine  effective variance in 
features 
detection  

7. CONCLUSION  

In this paper, a comparative examination of different Android mobile malware detection techniques was 
presented. The study was able to identify each of the limitations and strengths in each of the studies 
detection techniques through critical evaluation procedure. The results obtained from this study reinforce 
the assertion that detection approaches designed for Android malware do not produce 100% efficient 
detection accuracy. This segment of the research presents a critical evaluation of the reviewed papers. The 
rationale behind making this comparative analysis is to give a well-defined  
understanding on the strengths and weaknesses that were identified during the study in the selected 
detection techniques.  A comparative survey on detection techniques focusing primarily on identifying 
Android malware detection techniques with their respective detection approaches, detection accuracy, and 
their corresponding strengths and limitations has not been explored before. For further research, we 
intend to carry out a study how to provide a security perimeter defence around Google bouncer for 
efficient Android applications review from third parties before uploading to the play store.  

8. FUTURE WORK

There are many prospects and opportunities to further the work presented in this research as some of the 
future gaps have been identified. 

First, hybrid and dynamic detection frameworks can be improved with better detection simulation 
using AI techniques and deep learning tools rather than just applying machine learning algorithms. As 
identified in section 6 (see Table 1), improvement on hybrid detection solutions can help increase 
efficiency in code coverage and sample streamline. 

Furthermore, the integration of hybrid detection emulators and physical Android phones will help 
solve the problem of VM-ware detection and evasion by sophisticated malware such as polymorphic 
malware that can detect virtual environment. This future gap when closed will improve the accuracy of 
this solution. 

Finally, further research should be carried out on investigating and evaluating detection parameters 
optimization when comparing Android detection techniques.  
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