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Abstract 

Thiol-modified rice straw biochar (RS) was prepared by an esterification reaction with β-

mercaptoethanol and used for the remediation of Cd and Pb polluted soils. Modified biochar 

was characterized through elemental analysis, BET analysis, FE-SEM, FT-IR and XPS. These 

analyticalcharacterizations confirmed that the thiol groups were successfully grafted onto the 

surface of the biochar and were involved in the metal ion complexation. The batch sorption 

experiments showed that Cd2+ and Pb2+ sorption onto RS followed a pseudo second order 

kinetic model and a Langmuir isotherm. The maximum adsorption capacities for Cd2+ and 

Pb2+were 45.1 and 61.4 mg g-1, respectively in the single-metal systems. In contrast, Cd2+ was 

selectively adsorbed over Pb2+ by RS in the binary-metal systems. Both Cd2+ and Pb2+ were 

mainly removed through surface complexation. The soil incubation experiments further 

showed that RS reduced the available Cd concentrations up to 40% while available Pb 

concentrations was reduced up to 11%. Overall, this study demonstrates thiol-modified biochar 

can effectively enhance the remediation of heavy metal polluted soils. 

Keywords: Thiol-modification, Rice straw biochar, Heavy metal pollution, Surface 

complexation, Soil remediation.
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1 Introduction 

Cd and Pb contamination of soil throughout the world has become a priority environmental 

concern [1, 2]. As typical heavy metals, Cd and Pb are identified as priority pollutants by the US 

Environmental Protection Agency. Anthropogenic activities such as mining, smelting, 

chemical production and factory emissions dispose large amounts of Cd and Pb into soil, and 

cause widespread soil contamination[3, 4]. A recent soil survey in China reported approximately 

19% of farmland soils to be polluted, and Cd and Pb were identified as the two main 

pollutants[5]. Shi et al. (2019) reported that Cd concentrations in soils in China gradually 

increase between 1981 and 2016 due to mining activities, sewage irrigation, and fertilizer 

application into agricultural soils[6]. 

Considerable research effort has been devoted to developing methods for the remediation of 

heavy metal contaminated soils. Soil remediation technologies currently being used include 

chemical immobilisation[7,8], chemical washing[9], physical technologies[10], 

phytoremediation[11, 12] and microbial remediation[13, 14]. Although different efficiency, costs 

and drawbacks have been reported for these technologies, chemical immobilisation has been 

reported to be a superior choice due to its simplicity, low cost and high efficiency[15]. Chemical 

immobilisation can decrease mobility and bioavailability of heavy metals through a series of 

reactions, including ion exchange, adsorption, complexation and precipitation, by adding either 

organic or inorganic amendments into soil[16-18]. To date, a wide range of novel materials have 
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been proposed as immobilization agents, including biochar materials, phosphates-containing 

materials and Si-rich minerals[19-21].

Biochar is a carbon-rich material produced by pyrolysis of organic matter, such as agricultural 

bio-waste, under an oxygen-limited environment[22]. Biochars have been reported to 

immobilize heavy metals in soil[22, 23]. However, practical applications at field scale have not 

consistently shown high levels of success[24, 25]. Thus, there is a need to optimize biochar 

materials to obtain better remediation outcomes. To date, a number of modification methods 

have been developed, including acid/base treatment[26, 27], loading with minerals[28, 29] and/or 

nano-particles[30, 31], and addition of organic functional groups[32-34]. Further to this, surface 

modification by grafting thiol functional groups, has been proposed as a potentially effective 

strategy; as thiol groups have a high affinity for heavy metal ions such as Hg2+, Cu2+, Cd2+, 

Zn2+ and Pb2+ [35-37]. For example, Liang et al. [38, 39] applied thiol-functionalized sepiolite and 

palygorskite to enhance the immobilisation of Cd and successfully reduced the bioavailability 

of Cd through plant physiological and soil chemistry mechanisms. In another study, Huang et 

al.[40] successfully reduced by more than 90% extractable Hg using thiol-functionalized 

graphene oxide/Fe-Mn composite.  

Several studies concerning biochar modified with thiol groups have been published. Xia et al. 

(2019) produced thiol modified biochar using 3-mercaptopropyltrimethoxysilane(3-MPTS), 

and reported thiol modification to increase adsorption capacity for Hg[41, 42]. However, this 

adsorption capacity was lower than that of thiol modified active carbon or thiol modified 
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graphene oxide. Huang et al. (2019) reported that thiol-functionalized biochar effectively 

removed Hg2+ and CH3Hg+ from solution, and that natural organic matter (NOM), glucose and 

humic acid (up to 24 mg/L) had little effect on the adsorption[41, 42].  

However, most of these studies on thiol-functionalized biochar are still limited, particularly for 

typical soil metal pollutants such as Cd2+ and Pb2+. In addition, previous research has mainly 

focus on the performance of thiol-functionalized biochar on metal adsorption in solution rather 

than under genuine soil conditions. Here we adopt a simple and novel path, using β-

mercaptoethanol, to prepare a thiol-modified rice biochar and assess its efficacy for enhancing 

the remediation of soils contaminated with Cd and Pb. Specifically, the properties of thiol 

modified biochar (RS) were characterized to investigate their influence on the adsorption of 

Cd and Pb present in water and in soil (both individually and as binary mixtures). 

2 Materials and methods 

2.1 Rice straw biochar and thiol-modified biochar production and characterization 

Before charring, rice straw was collected, air-dried and cut to lengths less than 2cm. Rice straw 

biochar (RB) was produced by slowly pyrolysis under N2 in a muffle furnace (KSL, Kejing 

Inc., China). The furnace was heated to 500°C at a heating rate of 20°C min-1 and held at this 

temperature for 5 h. Then biochar samples were collected, crushed and ground to pass through 

a 60-mesh sieve.  
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In brief, thiol-modification was achieved as follows: 1 g of RB was placed in a brown glass 

bottle with 4 mL of β-mercaptoethanol (>99%, AR), acetic anhydride (>98.5, AR, 2.8 mL) and 

concentrated sulphuric acid (>95.0%, AR, 0.2 mL) were then added. The bottle was then sealed 

and shaken for 18 h at 80 °C. After filtration, the product was washed thoroughly with ultrapure 

water and then dried in a vacuum oven for 12 h at 35 °C. Thereafter, the product (RS) was 

crushed and ground to pass through a 60-mesh sieve. 

pH was measured using a pH meter (STARTER 3100/F, Ohaus Inc., China) at the ratio of 1 g 

biochar: 20 mL ultrapure water. The content of thiol group on biochar was analyzed using 

Ellman reagent[43]. Briefly, biochar (2 mg) was suspended in ethanol (0.2 mL) using ultrasound. 

Thereafter, 0.2 mol L-1 phosphate buffered solution (PBS, pH 7.8, 1 mL) and 5,5’-dithiobis-(2-

nitrobenzoic acid) solution (2g L-1 in PBS, 0.2 mL) were added to the biochar suspension. After 

5 min of incubation, the solution was filtered and the absorbance at 412 nm was measured. 

Carbon, nitrogen, and sulphur content were determined using a CNS elemental analyzer (Vario 

Max, Elementar Analysensysteme GmbH Inc., German). The pHpzc was measured according 

to the protocol reported by Mohan et al[44]. The morphologies and surface features were 

characterized by a field emission scanning electron microscope (FE-SEM) (S-4800, Hitachi 

Inc., Japan). The specific surface area and pore size distribution were determined by Brunauer-

Emmett-Teller (BET) and Barret-Joyner-Halenda (BJH) methods with N2 adsorption isotherms, 

respectively. Fourier transform infrared (FT-IR) (Thermo Scientific Nicolet iS10, Thermo 

Fisher Scientific Inc., USA) analysis was carried out over a range of 400 - 4000 cm-1 using the 
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KBr pellet technique. X-ray photoelectron spectroscopy (XPS) analysis was determined using 

a spectrophotometer (K-Alpha+, Thermo Fisher Scientific Inc., USA) with an Al Kα source 

(1486.6 eV of photons). 

2.2 Batch sorption experiment 

Batch adsorption experiments were conducted to investigate the adsorption characterization of 

RB and RS. Both single- (either Cd2+ or Pb2+) and binary- (both Cd2+ and Pb2+) metal 

adsorption experiments were conducted to determine the sorption capacities of RB and RS in 

a buffered aqueous system (pH 5, 0.05 mol L-1 acetic acid). Briefly, 25 mg of RB or RS were 

added to centrifuge tubes containing 10 mL of single metal ion (Cd2+ or Pb2+) solutions or 

binary metal ion solutions (the mass ratio of Cd2+ to Pb2+ was 1:1) of various initial 

concentrations (50 - 600 mg L-1). The centrifuge tubes were shaken (180 rpm for 24 h) and the 

suspension was filtered through a 0.22 μm membrane filter. After filtration, the concentrations 

of heavy metals in the filtrate were determined by an inductively coupled plasma optical 

emission spectrometer (ICP-OES) (Optima, Perkin Elmer Inc., America). Sorption kinetic 

experiments of Cd2+ and Pb2+ on RB and RS were carried using 250 mL conical flasks, 

containing 100 mL of 200 mg L-1 single metal ions (Cd2+ or Pb2+) solutions buffered to pH 5 

(0.05 mol L-1 acetic acid), and flasks were sampled periodically (0 - 24h). The effect of pH on 

sorption of metal ion (Cd2+ or Pb2+) was determined using solutions of 50 mg L-1 concentrations 
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of metal ion adjusted to the desired pH (2 - 7). All the adsorption experiments were conducted 

in triplicate. 

2.3 Soil incubation experiments 

A soil sample from the surface layer (0 - 20 cm) was collected from a contaminated vegetable 

field in Longyan (Fujian Province, China). The soil sample was air dried and passed through a 

2-mm sieve. Soil physicochemical properties are reported in Table 1. The concentration of soil 

Cd and Pb were 9.18 and 1182 mg kg-1, respectively. Both metals were present in soil above 

the risk intervention values published by the government of China[45] for agricultural land (3.0 

mg kg-1 for Cd and 700 mg kg-1 for Pb).  

The soil incubation experiments were performed with soil (30 g) enclosed in the 50 mL 

centrifuge tube. Dosages of 0, 1%, and 3% RB or RS were homogenously mixed into the soil. 

Thus, the incubation experiment included five treatments: Soil (CK), Soil + 1% RB (RB-1%), 

Soil + 3% RB (RB-3%), Soil + 1% RS (RS-1%) and Soil + 3% RS (RS-3%). All the mixtures 

were incubated at 80% water holding capacity at 25 °C. Two batches of samples were prepared 

for destructive sampling after incubation time of 7 and 28 days. At the designated time, soil 

samples were air dried, and passed through a 2-mm sieve. Three replicates of each treatment 

were performed. Soil pH, cation exchange capacity (CEC) and organic matter (O.M) were 

measured. The available Cd and Pb concentrations of soil samples were estimated by 

diethylenetriaminepentaacetic acid (DTPA) solution extraction[46, 47]. Chemical fractionation 
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of Cd and Pb were determined using a sequential extraction procedure[48]. The fractions 

included exchangeable fraction (EX), carbonate-bound fraction (CB), Fe/Mn oxides-bound 

fraction (OX), organic matter-bound fraction (OM) and residual fraction (RES). The metal 

concentrations in the extracts were detected using ICP-MS (Agilent 7500cx, Agilent, America). 

3 Results and discussion

3.1 Physicochemical properties 

Physicochemical properties of RB and RS are presented in Table 2. The elemental analysis 

revealed that the composition of RS was markedly changed after thiol-modification. The 

nitrogen content and carbon content of RS were lower than RB. The sulphur content of RS was 

24.04% (while it was only ~1% in RB). The accessible thiol contents, putatively available for 

heavy metal adsorption, were 0.83 and 0.01 mmol g-1 for RS and RB, respectively. The 

increased sulphur content and accessible thiol contents of RS confirmed that thiol groups had 

been successfully introduced. After thiol-modification, the pH and pHpzc of RS decreased 

dramatically with respect to RB. As the pH of biochar is mainly affected by surface functional 

groups[49], the decrease of pH of RS indicated that thiol-modification increased acidic 

functional groups on the surface of RS. The low pHpzc of RS suggested that the incorporation 

of thiol groups led to an enhancement of surface negative charges (these will have likely 

influenced adsorption of metal cations favorably[50]).  
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The surface area of RS decreased from 7.82 m2 g-1 to 0.34 m2 g-1 and pore diameter of RS 

decreased from 20.8 nm to 16.7 nm due to infilling of the pores with thiol groups[43]. Fig. S1 

shows typical FE-SEM images of RB and RS. RB had regular pore structure with rough surface 

and some particles attached. After thiol-modification, the surface of RS was covered with a 

layer of smooth membranous material and the pores were visually observed to be blocked. 

These observations are consistent with previous reports that pore blockage caused by grafting 

of the thiol groups[43, 51]. 

To identify the chemical changes of the functional groups on the adsorbent surface, FT-IR 

spectra were obtained (Fig. 1). In the RB spectrum, the peaks at 1573, 1419, 1066, 617 and 459 

cm-1 were attributed to the vibration of C=O/C=C, C-OH (phenolic), C–O (carboxylic), C-O 

(alkyl), and C-C, respectively[52-57]. Comparing the spectra before and after thiol-modification, 

the spectrum of RS changed obviously. In the RS spectrum, the broad adsorption peak at 3446 

cm-1 was ascribed to the O-H stretching vibrations. New peaks observed at 1233 cm−1 and 1028 

cm−1 were attributed to the lactones and the stretching vibration of C–O[58, 59], respectively. The 

peaks observed at 2929 and 2560 cm-1 corresponded to the -CH2- vibrations of β-

mercaptoethanol and thiol group, respectively[35, 60]. These results confirmed that the β-

mercaptoethanol was successfully introduced on the biochar support. The adsorption band at 

1739 cm-1 was assigned to ester carbonyl stretching[61], while the peak at 1066 cm−1 belonging 

to carboxylic acids markedly reduced[55]. These results confirmed the β-mercaptoethanol 

grafting had been achieved via ester linkages. The peak at 671 cm−1 was assigned to C–S [62]. 
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It also confirmed the presence of β-mercaptoethanol. Additionally, the FT-IR spectra showed 

that sulfonic groups were not formed during thiol-modification of RS although there was 

concentrated H2SO4 addition during the preparation. The vibration band at 1040 cm-1

(attributed to S=O symmetric stretching) indicating the presence of sulfonic groups, was not 

visible in the FT-IR spectrum. The absence of this band in the FT-IR spectra confirmed the 

absence of -SO3H groups on thiol-modified RS[63]. In summary, the β-mercaptoethanol was 

successfully introduced onto RS by esterification (see reaction route presented in Fig. 2)[35, 64]. 

3.2 Sorption of Cd and Pb from aqueous solution 

3.2.1 Sorption kinetics 

The adsorption of Cd2+ on RB was observed to be slow. The equilibrium was achieved after 

approximately 24 h (Fig. 3a). The adsorption rate of Cd2+ on RS initially increased rapidly, and 

then decreased to reach an equilibrium within 2 h. The equilibrium adsorption capacity of RS 

was three times higher than that of RB.  

In order to probe the sorption mechanisms, the sorption kinetics data were fitted using a 

pseudo-first-order kinetic model and a pseudo-second-order kinetic model (Table 3). Cd2+

sorption kinetics on RB was better described by the pseudo-first-order kinetic model. This 

suggested that mononuclear sorption of Cd2+ was underpinning sorption by RB[65]. In contrast, 

the pseudo-second-order kinetic model better fitted the kinetic data of Cd2+ on RS, suggesting 
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that the rate-limiting step was chemical sorption. As shown in Fig. 3b, the adsorption of Pb2+

on RB was initially more rapid than its adsorption on RS, and thereafter decreased considerably 

with the extension of time until equilibrium was achieved. Pb2+ adsorption by RB and RS was 

better described by the pseudo-second-order kinetic models, suggesting that the rate-limiting 

step was chemical sorption. These results demonstrated that, in comparison to RB, RS had a 

large affinity for Cd2+ and relatively low affinity to Pb2+, while RB had a high affinity for Pb2+ 

and a far lower affinity for Cd2+. 

3.2.2 Sorption isotherms of Cd and Pb in single- and binary-metal systems 

The adsorption isotherms of Cd2+ and Pb2+ on RB and RS in the single-metal systems are 

provided in Fig. 4, and the model parameters fitted by the Langmuir and Freundlich models 

are listed in Table 4. The adsorption capacities of RB for Cd2+ were greatly enhanced, while 

the adsorption capacities of RB for Pb2+ were slightly decreased after thiol-modification. 

For Cd2+, the maximum adsorption capacity on RS was 45.1 mg g-1, 3-fold higher than that of 

RB. For Pb2+, the maximum adsorption capacities on RB and RS were 67.4 and 61.4 mg g-1, 

respectively. Correlation coefficients indicated that the Langmuir model fitted adsorption 

isotherms of Cd2+ and Pb2+ on RB and RS better than the Freundlich model. This observation 

suggests that metal ion adsorption occurred at a homogeneous surface by monolayer sorption 

without interaction between the adsorbed ions[66].  

The increase in adsorption capacity of RS for Cd2+ was ascribed to the incorporation of thiol 
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groups on RS. The characteristic band of thiol groups at 2560 cm-1 in the FT-IR spectra of RS-

Cd2+ disappeared after adsorption (Fig. S2); this indicated the interactions between thiol groups 

and Cd2+ or Pb2+[67]. The lone pair of electrons on the sulphur atoms of the thiol groups have 

been reported to coordinate with heavy metals, thus promoting their adsorption[35].  

However, the adsorption capacity of RS for Pb2+ was slightly decreased when compared to RB. 

This result might be attributed to the significant reduction in carboxylic groups remaining on 

RS following thiol groups; these carboxylic groups act as reaction sites for the esterification 

(Fig. 2). It can be inferred that in the adsorption of heavy metals, the main adsorption sites on 

RB were oxygen-containing functional groups (such as carboxyl groups), while the thiol groups 

on RS played a great role. Comparing the FT-IR spectra of RB before and after Cd2+ or Pb2+ 

adsorption (Fig. S2), the shift of carboxylic group related band at 1066 cm-1 suggest the binding 

of metal ions with carboxylic groups on RB[55]. In addition, the disappearance of O1s peaks at 

534.2 eV (Fig. S3) and the shift of C1s peak at 288.0 eV (Fig. S4) also indicate that the carboxyl 

groups on RB were involved in adsorption[68, 69]. However, the carboxyl groups were markedly 

reduced after thiol-modification, as confirmed by FT-IR spectra (Fig. 1) and XPS O1s spectra 

(Fig. S3)[70]. According to Lewis’ HSAB (hard and soft acids and bases) theory, soft acids 

(acceptors) tend to form strong bonds with soft bases (donors), but bind reluctantly or weakly 

to harder bases, while hard acids (acceptors) tend to form strong bonds with hard bases (donors), 

but bind reluctantly or weakly to softer bases[71]. Carboxyl groups (a hard base) are more 
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favorable to adsorb Pb2+ (Pb2+ is a borderline acid while Cd2+ is a soft acid) [72]. In contrast, the 

interaction between thiol groups (soft base) and Cd2+ is more favorable compared to Pb2+ [69]. 

Therefore, although the content of thiol groups on RS was increased, the loss of carboxylic 

groups during the thiol-modification lead to the slight decrease of adsorption capacity of Pb2+.  

As shown in Fig. 5, the maximum adsorption capacity of Cd2+ and Pb2+ on RB and RS 

decreased considerably in the binary-metal system compared to in the single-metal system. 

Competition between Cd2+ and Pb2+ in the binary-metal systems was well fitted by the 

Langmuir model (Table 5). The decreasing amplitude of Cd2+ adsorption on RB caused by 

competition was larger than the decreasing amplitude of Pb2+ adsorption. The decreases in 

adsorption capacities of RB for Cd2+ and Pb2+ were 52% and 6%, respectively. In contrast, the 

decreases in adsorption capacities of RS for Cd2+ and Pb2+ were 10% and 51%, respectively. 

Furthermore, the distribution coefficient (Kd) illustrated clearly the adsorption preference for 

Cd2+ and Pb2+ on RB and RS (Table 6). RB showed more prominent selectivity for Pb2+ over 

Cd2+. On the contrary, RS had adsorption selectivity for Cd2+ over Pb2+. The adsorption 

preference for Pb2+ by biochar has been reported in other studies. Park[72] found that sesame 

straw biochar adsorbed more Pb2+ from a multi-metal system (of Pb2+, Cu2+, Cr2+, Zn2+ and 

Cd2+). This might be attributed to the lower hydrated radius of Pb2+ and greater affinity of Pb2+

for most functional groups, including phenolic and carboxylic groups (hard Lewis bases), on 

the sesame straw biochar. A reasonable explanation for the observation in our experiments is 

that thiol groups (soft Lewis bases) had higher affinity for cadmium ions (soft Lewis acids)[73].  
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3.2.3 Effects of pH on sorption 

pH is a crucial parameter in adsorption processes as it can affect the surface charge of 

adsorbents and metal speciation[74]. Changes in the initial pH of the adsorbent/solution systems 

affected Cd2+ and Pb2+ adsorption by RB and RS (Fig. S5). In general, the removal efficiency 

of the metals by RB and RS increased with increasing pH until reaching a plateau. The removal 

of Cd2+ by RS was much higher than RB with the increase of pH from 2 to 4. The removal of 

Cd2+ by RS remained constant above pH 5 while it continued to increase with RB. In contrast, 

the removal of Pb2+ by both RB and RS increased with increasing pH. These phenomena were 

likely due to the presence of a large number of H+ and H3O+ ions in aqueous solution at low 

pH (these ions competing with the metal ions for adsorption sites). With increasing pH, the 

competition between metal ions and protons for binding sites decreased and more binding sites 

were released[75]. Furthermore, the surface charge of the adsorbent would be positive below the 

pHPZC or be negative above the pHPZC. While solution pH exceeds pHPZC, the negative surface 

charge on adsorbent increase with the increase of solution pH and therefore shows better heavy 

metal removal efficiency at higher pH[76]. These observations suggest that ion exchange 

mechanisms underpin the adsorption of Cd2+ and Pb2+ on RB and RS[55]. 

3.2.4 Sorption mechanism  

To further elucidate the mechanism of Cd2+ and Pb2+ adsorption onto RS and RB, XPS data 
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were collected (Fig. 6). Fig. 6a showed S2p spectrum of sulphur of RS before and after 

adsorption of Cd2+ and Pb2+. The S2p binding energy of RS at 162.9 eV and 164.0 eV were 

ascribed to the grafted thiol monolayers and thiol group[77]. For Cd2+- and Pb2+-laden RS, the 

decrease in thiol groups from 42% to 29% and 27%, were ascribed to the interactions between 

thiol groups and Cd2+ or Pb2+, respectively. Similarly, Huang et al. (2019) found that thiol 

groups on thiol-functionalized graphene oxide/Fe-Mn composite decreased by 30% and 10%, 

respectively, after Hg2+ and CH3Hg+ adsorption, indicating surface complexation[78]. Fig. 6b 

indicates Cd3d3/2 (412.3 eV) and Cd3d5/2 (405.5 eV) binding energies that suggest the 

formation of precipitates, such as cadmium hydroxide and carbon oxides, associated with the 

adsorption of Cd2+[79]. From Fig. 6c, two peaks at 411.4 and 404.6 eV of RS, assigned to Cd3d3/2

and Cd3d5/2 of Cd2+ in CdS[80], indicated that cadmium species were adsorbed via binding 

reactions between cadmium ions and thiol groups. For the spectrum of Pb4f of Pb loaded RB 

(Fig. 6d), the binding energies of 144.7 eV for Pb4f5/2, and 139.8 eV for Pb4f7/2 suggest the 

complexation of PbO[81]. From Fig. 6e it can be seen that the Pb4f spectrum of Pb loaded RS 

had Pb4f7/2 binding energy at 137.4 eV and Pb4f5/2 binding energy at 142.3 eV; these are in 

good agreement with data obtained for PbS[82]. The interactions between thiol groups and metal 

ions played an important role in the adsorption of Pb2+ onto RS. Collectively, these results 

showed that after thiol-modification surface complexation reactions involving grafted thiol 

groups and metal ions facilitated their adsorption/precipitation[42, 83]. 
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3.3 Remediation of Cd and Pb in soil 

3.3.1 Effects on soil pH, O.M and CEC 

The influence of RB and RS on soil pH, O.M and CEC was assessed (Fig. S6). These attributes 

are important influencers of heavy metal behaviour in soil.  

Compared with the control soil (pH 7.42), RB addition to soil resulted in a significant (p < 0.05) 

increase in pH (Fig. S6a). In contrast, RS addition significantly decreased soil pH (p < 0.05). 

Across all the incubation times, RB increased the pH of soil by 0-0.49 units and the addition 

of RS decreased the pH of soil by 0.07-0.36 units across all the incubation times. No time-

related trends in pH were observed over the 28 days. However, significant (p < 0.05) 

relationships between pH and increasing RB/RS application doses were observed. The high pH 

RB (pH = 10.2) likely underpinned increases in soil pH[84]. The decrease of soil pH after 

addition of RS was likely caused by the acidity of RS (pH = 2.4).  

With increasing application, RB and RS significantly increased soil O.M compared to the CK 

(Fig. S6b) (p < 0.05). The soil O.M increased respectively by 28-115% and 33-130% following 

RB and RS addition (28 days). There was no significant difference observed between RB and 

RS on soil O.M (p > 0.05). The addition of biochar to soil has previously been reported to 

significantly increase the content of soil O.M due to its high carbon content[85].  

The addition of RB and RS, across all incubation periods, resulted in a slight but insignificant 

enhancement of CEC compared with the control (Fig. S6c) (p > 0.05). As the effect of biochar 
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on soil CEC has been reported to related to the incubation time[86], the insignificant effect of 

RB/RS on soil CEC may be linked to the short period of incubation used in this study. 

3.3.2 Effects on availability of Cd and Pb    

The effect of RB/RS on the concentration of available Cd and Pb in the soil was determined by 

DTPA extraction (Fig. 7). These results revealed that available Cd in RB treated soils and RS 

treated soils were lower than in CK soil. The influence of RB treatment on available Cd content 

were not significant (p > 0.05), except RB-3% at day 28. In comparison, RS had a greater 

immobilization effect than RB; available Cd content in all RS treated soils decreased 

significantly (p < 0.05) by 17.5-27.7% (day 7) and 34.8-39.2% (day 28), respectively. The 

available Pb content in soil fluctuated with the addition of RB and RS at day 7. After day 28, 

the available Pb decreased between 10 and 19% in RB treated soils) and between 9 and 11% 

in RS treated soils. There was however no significant difference compared with CK (p > 0.05).  

Biochar has been reported to mainly influences the mobility of heavy metals by changing CEC 

and pH of soil[87]. In this study, RB had no significant effect on soil CEC. On the other hand, 

RB significantly increased soil pH (but by less than 0.5 pH units). It has been reported that the 

pH changes of biochar added to alkaline soil (as is the case in this research) had no significant 

correlation with the availability of heavy metals[25]. These two reasons might lead to poor 

immobilization effect of RB on Cd and Pb. Unlike other pH-regulating immobilization agents 

such as biochar and lime, RS addition decreased the soil pH. The thiol groups grafted onto RS 
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enhanced the retention of Cd in soil through the formation of metal complexes and thus the 

availability of heavy metals was decreased[18]. Similarly, He et al.(2018) suggested thiol groups 

grafted onto palygorskite (MP) decreased available Cd in soil by 90%, and reduced Cd 

concentrations in pak choi[88]. Thiol groups on MP were reported to directly adsorb metal ions 

from soil. In addition, MP also changed soil properties including surface zeta potential, which 

increased the chemical reaction between soil and Cd. Lian et al.(2019) reported that thiol 

functionalized reactive nanosilica reduced soil bioavailable-Cd from 12.46 mg/kg to 0.22 

mg/kg, and most Cd was transformed into more stable species due to the chemical reaction 

between Cd and thiol groups[89]. In this study, the addition of RS shifted the phytoavailable Cd 

fractions (EX and CB fractions) to the less available fractions (OX and OM fractions) (see 

section 3.3.3). For Pb, there was limited immobilization effect for RS or RB. This was likely 

due to the high concentration of Pb in the soil. 

3.3.3 Influence of RB and RS on Cd and Pb speciation in soils 

The speciation of Cd and Pb in soils are shown in Fig. 8. Cd was mainly bound to exchangeable, 

carbonate-bound and Fe/Mn oxides-bound fractions, the sum of the three fractions accounted 

to more than 90% of total Cd in CK. Pb mainly existed in Fe/Mn oxides-bound and residual 

fractions, and the sum of the two fractions accounts for more than 80% of total Pb in CK. In 

the CK soil, 57-62% of Cd and 7-14% of Pb were found in the exchangeable and carbonate-
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bound fractions. These fractions have previously been reported as the phytoavailable fractions 

of heavy metal in soil[90, 91]. 

Over the 28-day period, the application of RB did not have any obvious influence on Cd 

speciation in soil. RB decreased phytoavailable Cd of total Cd by 2 and 5%, respectively. In 

contrast, additions of RS shifted Cd species from the carbonate fraction to the Fe/Mn oxide 

fraction. Carbonate-bound fractions of Cd decreased by 5 and 13% following RS application, 

while the percentages of Fe/Mn oxides-bound fractions of total Cd increased by 9 and 16%. 

Thus, RS treatment decreased phytoavailable Cd between 10 and 14%. The RB and RS 

treatment did not have a significant influence on Pb speciation during the incubation. The 

percentages of phytoavailable Pb of total Pb decreased between 1 and 4%, 1 and 6% after RB 

and RS application, respectively.  

Biochar can not only directly reduce the available content of heavy metals in soil by means of 

adsorption or precipitation, but it can also indirectly reduce the available content of heavy 

metals in soil by altering pH, electrical conductivity and other soil properties[92, 93]. However, 

in this study, RB had limited immobilization effect on both Cd and Pb in the soil. Addition of 

thiol-modified sepiolite to Cd contaminated farmland soil has been reported transform the 

exchangeable fraction and carbonate-bound fraction of Cd into the Fe/Mn oxides-bound 

fraction, organic matter-bound fraction and residual fraction[38]. The increase of Fe/Mn oxides-

bound fractions of Cd have been reported to be underpinned by the adsorption of Cd on Fe/Mn 

oxides-bound indirectly promoted by thiol-modified sepiolite; while the increase of organic 
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matter-bound fractions of Cd have been reported to be due to the adsorption of Cd by thiol 

functional groups directly. In this study, RS had a better immobilization effect on Cd in the soil 

and the addition of RS transformed carbonate-bound fraction of Cd into Fe/Mn oxides-bound 

fractions. A reasonable explanation is that the carbonate-bound fraction of Cd, which may have 

been solubilize under acidic conditions[94], released Cd into the soil solution as the pH 

decreased following RS addition; and, these released Cd ions were re-adsorbed by thiol 

functional groups on RS[40]. In contrast to Cd, RS had negligible impacts on the chemical 

fraction of Pb in the soil. This contrast in fractionation outcome likely influenced the adsorption 

selectivity of RS for Cd over Pb. However, the extreme high level of Pb contamination (1182 

mg kg-1) in soil might be the main reason for the limited immobilization effect observed. 

4 Conclusions 

Thiol-modified biochar was successfully prepared by esterification with β-mercaptoethanol. 

The kinetics of adsorption of Cd2+ and Pb2+ on RS were found to be rapid, and the experimental 

data was well described by pseudo-second order kinetics; indicating that the adsorption was 

controlled by chemisorption. The thiol-modification tripled the sorption capacity for Cd2+ and 

slightly decrease the sorption capacity for Pb2+. Cd2+ and Pb2+ were removed mainly via surface 

complexation. The RS exhibited an adsorption preference for Cd2+ over Pb2+ in binary-metal 

systems. The laboratory-scale incubation test showed that RS had better performance than RB 
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in immobilizing Cd and shifting Cd to less phytoavailable fractions in the soil. Both RB and 

RS significantly increased the organic matter content of soil and slightly increase cation 

exchange capacity in the soil. These results suggest RS could be a useful material for the 

remediation for heavy metal contamination in water and soil. Further studies should be 

conducted to provide more understanding of the interaction between thiol groups on RS and 

metal ions. Furthermore, the effects of RS on metal mobility under field conditions, with crops 

present, need to be established. 

Acknowledgements 

The current study was supported by the National key R&D Project (2018YFC1802703), the 

Natural Science Foundation of China (41501525), the Science and Technology Project of 

Fujian province (2018N0033) and the Science and Technology Project of Xiamen city 

(3502Z20182001). 

References 

[1] Huang Y, Wang L, Wang W, et al. Current status of agricultural soil pollution by heavy 

metals in China: a meta-analysis. Science of the Total Environment, 2019, 651, 3034-

3042. https://doi.org/10.1016/j.scitotenv.2018.10.185 

[2] Gasperi J, Ayrault S, Moreau-Guigon E, et al. Contamination of soils by metals and 

organic micropollutants: case study of the Parisian conurbation. Environmental Science 

and Pollution Research, 2018, 25(24), 23559-23573. https://doi.org/10.1007/s11356-016-

8005-2 



23 

[3] Yang Q, Li Z, Lu X, et al. A review of soil heavy metal pollution from industrial and 

agricultural regions in China: pollution and risk assessment. Science of the Total 

Environment, 2018, 642: 690-700. https://doi.org/10.1016/j.scitotenv.2018.06.068 

[4] Cai L M, Wang Q S, Luo J, et al. Heavy metal contamination and health risk assessment 

for children near a large Cu-smelter in central China. Science of the Total Environment, 

2019, 650: 725-733. https://doi.org/10.1016/j.scitotenv.2018.09.081  

[5] China's Ministry of Environmental Protection. National soil pollution survey bulletin. 

China's Ministry of Environmental Protection, 2014. 

http://www.mee.gov.cn/gkml/sthjbgw/qt/201404/t20140417_270670.htm. 

[6] Shi T, Ma J, Zhang Y, et al. Status of lead accumulation in agricultural soils across China 

(1979–2016). Environment international, 2019, 129: 35-41. 

https://doi.org/10.1016/j.envint.2019.05.025 

[7] Abad-Valle P, Álvarez-Ayuso E, Murciego A, et al. Assessment of the use of sepiolite 

amendment to restore heavy metal polluted mine soil. Geoderma, 2016, 280: 57-66. 

http://dx.doi.org/10.1016/j.geoderma.2016.06.015  

[8] Sun Y, Sun G, Xu Y, et al. Evaluation of the effectiveness of sepiolite, bentonite, and 

phosphate amendments on the stabilization remediation of cadmium-contaminated soils. 

Journal of Environmental Management, 2016, 166: 204-210. 

http://dx.doi.org/10.1016/j.jenvman.2015.10.017  

[9] Chu W. Remediation of contaminated soils by surfactant-aided soil washing. Practice 

Periodical of Hazardous, Toxic, and Radioactive Waste Management, 2003, 7(1): 19-24. 

https://doi.org/10.1061/(ASCE)1090-025X(2003)7:1(19) 

[10] Sierra M J, Millan R, Lopez F A, et al. Sustainable remediation of mercury contaminated 

soils by thermal desorption. Environmental Science and Pollution Research International, 

2016, 23(5): 4898-4907. https://doi.org/10.1007/s11356-015-5688-8 

[11] Tauqeer H M, Ali S, Rizwan M, et al. Phytoremediation of heavy metals by 



24 

Alternanthera bettzickiana: growth and physiological response. Ecotoxicology and 

Environmental Safety, 2016, 126: 138-146. 

http://dx.doi.org/10.1016/j.ecoenv.2015.12.031 

[12] Rizwan M, Ali S, Zia Ur Rehman M, et al. Cadmium phytoremediation potential of 

Brassica crop species: a review. Science of the Total Environment, 2018, 631-632: 1175-

1191. https://doi.org/10.1016/j.scitotenv.2018.03.104  

[13] Peng W, Li X, Song J, et al. Bioremediation of cadmium- and zinc-contaminated soil 

using Rhodobacter sphaeroides. Chemosphere, 2018, 197: 33-41. 

https://doi.org/10.1016/j.chemosphere.2018.01.017 

[14] Mishra J, Singh R, Arora N K. Alleviation of heavy metal stress in plants and 

remediation of soil by rhizosphere microorganisms. Frontiers in Microbiology, 2017, 8: 

1706. https://doi.org/10.3389/fmicb.2017.01706  

[15] Liang Y, Cao X, Zhao L, et al. Biochar- and phosphate-induced immobilization of heavy 

metals in contaminated soil and water: implication on simultaneous remediation of 

contaminated soil and groundwater. Environmental Science and Pollution Research 

International, 2014, 21(6): 4665-4674. https://doi.org/10.1007/s11356-013-2423-1 

[16] Barbosa B, Boléo S, Sidella S, et al. Phytoremediation of heavy metal-contaminated 

soils using the perennial energy crops Miscanthus spp. and Arundo donax L. BioEnergy 

Research, 2015, 8(4): 1500-1511. https://doi.org/10.1007/s12155-015-9688-9 

[17] Wuana R A, Okieimen F E. Heavy metals in contaminated soils: a review of sources, 

chemistry, risks and best available strategies for remediation. ISRN Ecology, 2011, 2011: 

1-20. https://doi.org/10.5402/2011/402647 

[18] Zhang L, Shang Z, Guo K, et al. Speciation analysis and speciation transformation of 

heavy metal ions in passivation process with thiol-functionalized nano-silica. Chemical 

Engineering Journal, 2019, 369: 979-987. https://doi.org/10.1016/j.cej.2019.03.077 

[19] Wang L, Chen L, Cho D W, et al. Novel synergy of Si-rich minerals and reactive MgO 

for stabilisation/solidification of contaminated sediment. Journal of Hazardous Materials, 



25 

2019, 365: 695-706. https://doi.org/10.1016/j.jhazmat.2018.11.067 

[20] O'connor D, Peng T, Zhang J, et al. Biochar application for the remediation of heavy 

metal polluted land: a review of in situ field trials. Science of the Total Environment, 

2018, 619-620: 815-826. https://doi.org/10.1016/j.scitotenv.2017.11.132  

[21] Liu L, Li W, Song W, et al. Remediation techniques for heavy metal-contaminated soils: 

principles and applicability. Science of the Total Environment, 2018, 633: 206-219. 

https://doi.org/10.1016/j.scitotenv.2018.03.161 

[22] Bian R J, Chen D, Liu X Y, et al. Biochar soil amendment as a solution to prevent Cd-

tainted rice from China: results from a cross-site field experiment. Ecological 

Engineering, 2013, 58: 378-383. http://dx.doi.org/10.1016/j.ecoleng.2013.07.031 

[23] Lu K, Yang X, Gielen G, et al. Effect of bamboo and rice straw biochars on the mobility 

and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. Journal of 

Environmental Management, 2017, 186: 285-292. 

http://dx.doi.org/10.1016/j.jenvman.2016.05.068 

[24] Cui H, Fan Y, Fang G, et al. Leachability, availability and bioaccessibility of Cu and Cd 

in a contaminated soil treated with apatite, lime and charcoal: a five-year field 

experiment. Ecotoxicology and Environmental Safety, 2016, 134: 148-155. 

http://dx.doi.org/10.1016/j.ecoenv.2016.07.005 

[25] Zhang G, Guo X, Zhao Z, et al. Effects of biochars on the availability of heavy metals to 

ryegrass in an alkaline contaminated soil. Environmental Pollution, 2016, 218: 513-522. 

http://dx.doi.org/10.1016/j.envpol.2016.07.031 

[26] Peng H, Gao P, Chu G, et al. Enhanced adsorption of Cu(II) and Cd(II) by phosphoric 

acid-modified biochars. Environmental Pollution, 2017, 229: 846-853. 

http://dx.doi.org/10.1016/j.envpol.2017.07.004 

[27] Jin H, Capareda S, Chang Z, et al. Biochar pyrolytically produced from municipal solid 

wastes for aqueous As(V) removal: adsorption property and its improvement with KOH 



26 

activation. Bioresource Technology, 2014, 169: 622-629. 

http://dx.doi.org/10.1016/j.biortech.2014.06.103 

[28] Zhang M, Gao B, Varnoosfaderani S, et al. Preparation and characterization of a novel 

magnetic biochar for arsenic removal. Bioresource Technology, 2013, 130: 457-462. 

http://dx.doi.org/10.1016/j.biortech.2012.11.132  

[29] Liang J, Li X, Yu Z, et al. Amorphous MnO2 modified biochar derived from aerobically 

composted swine manure for adsorption of Pb(II) and Cd(II). ACS Sustainable Chemistry 

& Engineering, 2017, 5(6): 5049-5058. https://doi.org/10.1021/acssuschemeng.7b00434 

[30] Zuo W Q, Chen C, Cui H J, et al. Enhanced removal of Cd(II) from aqueous solution 

using CaCO3 nanoparticle modified sewage sludge biochar. RSC Advances, 2017, 7(26): 

16238-16243. https://doi.org/10.1039/c7ra00324b 

[31] Yu J, Jiang C, Guan Q, et al. Enhanced removal of Cr(VI) from aqueous solution by 

supported ZnO nanoparticles on biochar derived from waste water hyacinth. 

Chemosphere, 2018, 195: 632-640. https://doi.org/10.1016/j.chemosphere.2017.12.128 

[32] Xue Y W, Gao B, Yao Y, et al. Hydrogen peroxide modification enhances the ability of 

biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove 

aqueous heavy metals: batch and column tests. Chemical Engineering Journal, 2012, 200: 

673-680. http://dx.doi.org/10.1016/j.cej.2012.06.116  

[33] Zhou Y, Gao B, Zimmerman A R, et al. Sorption of heavy metals on chitosan-modified 

biochars and its biological effects. Chemical Engineering Journal, 2013, 231: 512-518. 

https://doi.org/10.1016/j.cej.2013.07.036 

[34] Yang G X, Jiang H. Amino modification of biochar for enhanced adsorption of copper 

ions from synthetic wastewater. Water Research, 2014, 48: 396-405. 

http://dx.doi.org/10.1016/j.watres.2013.09.050 

[35] Chai L, Li Q, Zhu Y, et al. Synthesis of thiol-functionalized spent grain as a novel 

adsorbent for divalent metal ions. Bioresource Technology, 2010, 101(15): 6269-6272. 

https://doi.org/10.1016/j.biortech.2010.03.009 



27 

[36] Zhang C, Sui J H, Li J, et al. Efficient removal of heavy metal ions by thiol-

functionalized superparamagnetic carbon nanotubes. Chemical Engineering Journal, 

2012, 210: 45-52. http://dx.doi.org/10.1016/j.cej.2012.08.062 

[37] Jiang L, Li S, Yu H, et al. Amino and thiol modified magnetic multi-walled carbon 

nanotubes for the simultaneous removal of lead, zinc, and phenol from aqueous solutions. 

Applied Surface Science, 2016, 369: 398-413. 

http://dx.doi.org/10.1016/j.apsusc.2016.02.067 

[38] Liang X F, Qin X, Huang Q Q, et al. Mercapto functionalized sepiolite: a novel and 

efficient immobilization agent for cadmium polluted soil. RSC Advances, 2017, 7(63): 

39955-39961. https://doi.org/10.1039/c7ra07893e 

[39] Liang X, Qin X, Huang Q, et al. Remediation mechanisms of mercapto-grafted 

palygorskite for cadmium pollutant in paddy soil. Environmental Science and Pollution 

Research International, 2017, 24(30): 23783-23793. https://doi.org/10.1007/s11356-017-

0014-2 

[40] Huang Y, Wang M, Li Z, et al. In situ remediation of mercury-contaminated soil using 

thiol-functionalized graphene oxide/Fe-Mn composite. Journal of Hazardous Materials, 

2019, 373: 783-790. https://doi.org/10.1016/j.jhazmat.2019.03.132 

[41] Xia S, Huang Y, Tang J, et al. Preparation of various thiol-functionalized carbon-based 

materials for enhanced removal of mercury from aqueous solution. Environmental 

Science and Pollution Research, 2019, 26(9): 8709-8720. https://doi.org/10.1007/s11356-

019-04320-0 

[42] Huang Y, Xia S, Lyu J, et al. Highly efficient removal of aqueous Hg2+ and CH3Hg+ by 

selective modification of biochar with 3-mercaptopropyltrimethoxysilane. Chemical 

Engineering Journal, 2019, 360: 1646-1655. https://doi.org/10.1016/j.cej.2018.10.231 

[43] Liang X F, Xu Y M, Sun G H, et al. Preparation and characterization of mercapto 

functionalized sepiolite and their application for sorption of lead and cadmium. Chemical 



28 

Engineering Journal, 2011, 174(1): 436-444. https://doi.org/10.1016/j.cej.2011.08.060 

[44] Mohan D, Singh P, Sarswat A, et al. Lead sorptive removal using magnetic and 

nonmagnetic fast pyrolysis energy cane biochars. Journal of Colloid and Interface 

Science, 2015, 448: 238-250. http://dx.doi.org/10.1016/j.jcis.2014.12.030 

[45] China's Ministry of Environmental Protection. Chinese environmental quality standard 

for soils (GB 15618-2018). China's Ministry of Environmental Protection, 2018. 

http://kjs.mee.gov.cn/hjbhbz/bzwb/trhj/trhjzlbz/201807/t20180703_446029.shtml. 

[46] Lindsay W L, Norvell W A. Development of a DTPA soil test for zinc, iron, manganese, 

and copper 1. Soil Science Society of America Journal, 1978, 42(3): 421-428. 

https://doi.org/10.2136/sssaj1978.03615995004200030009x  

[47] Dai J. Heavy metal accumulation by two earthworm species and its relationship to total 

and DTPA-extractable metals in soils. Soil Biology and Biochemistry, 2004, 36(1): 91-

98. https://doi.org/10.1016/j.soilbio.2003.09.001  

[48] Tessier A, Campbell P G, Bisson M. Sequential extraction procedure for the speciation 

of particulate trace metals. Analytical Chemistry, 1979, 51(7): 844-851. 

https://doi.org/10.1021/ac50043a017 

[49] Yakout S M. Monitoring the changes of chemical properties of rice straw–derived 

biochars modified by different oxidizing agents and their adsorptive performance for 

organics. Bioremediation Journal, 2015, 19(2): 171-182. 

https://doi.org/10.1080/10889868.2015.1029115 

[50] Mahlangu T, Das R, Abia L K, et al. Thiol-modified magnetic polypyrrole 

nanocomposite: An effective adsorbent for the adsorption of silver ions from aqueous 

solution and subsequent water disinfection by silver-laden nanocomposite. Chemical 

Engineering Journal, 2019, 360: 423-434. https://doi.org/10.1016/j.cej.2018.11.231 

[51] Bagheri S, Amini M M, Behbahani M, et al. Low cost thiol-functionalized mesoporous 

silica, KIT-6-SH, as a useful adsorbent for cadmium ions removal: a study on the 

adsorption isotherms and kinetics of KIT-6-SH. Microchemical Journal, 2019, 145: 460-



29 

469. https://doi.org/10.1016/j.microc.2018.11.006 

[52] Tsai W T, Liu S C, Chen H R, et al. Textural and chemical properties of swine-manure-

derived biochar pertinent to its potential use as a soil amendment. Chemosphere, 2012, 

89(2): 198-203. https://doi.org/10.1016/j.chemosphere.2012.05.085 

[53] Wang P, Yin Y, Guo Y, et al. Removal of chlorpyrifos from waste water by wheat 

straw-derived biochar synthesized through oxygen-limited method. RSC Advances, 

2015, 5(89): 72572-72578. https://doi.org/10.1039/c5ra10487d  

[54] Mandal A, Singh N, Purakayastha T J. Characterization of pesticide sorption behaviour 

of slow pyrolysis biochars as low cost adsorbent for atrazine and imidacloprid removal. 

Science of the Total Environment, 2017, 577: 376-385. 

http://dx.doi.org/10.1016/j.scitotenv.2016.10.204 

[55] Liang S, Guo X, Feng N, et al. Adsorption of Cu2+ and Cd2+ from aqueous solution by 

mercapto-acetic acid modified orange peel. Colloids and Surfaces B: Biointerfaces, 2009, 

73(1): 10-14. https://doi.org/10.1016/j.colsurfb.2009.04.021 

[56] Purakayastha T J, Kumari S, Pathak H. Characterisation, stability, and microbial effects 

of four biochars produced from crop residues. Geoderma, 2015, 239-240: 293-303. 

http://dx.doi.org/10.1016/j.geoderma.2014.11.009 

[57] Li B, Yang L, Wang C Q, et al. Adsorption of Cd(II) from aqueous solutions by rape 

straw biochar derived from different modification processes. Chemosphere, 2017, 175: 

332-340. http://dx.doi.org/10.1016/j.chemosphere.2017.02.061 

[58] Ozgenc O, Durmaz S, Boyaci I H, et al. Determination of chemical changes in heat-

treated wood using ATR-FTIR and FT Raman spectrometry. Spectrochimica Acta. Part 

A: Molecular and Biomolecular Spectroscopy, 2017, 171: 395-400. 

http://dx.doi.org/10.1016/j.saa.2016.08.026  

[59] Sun J, Gu X, Dong Q, et al. Durable flame-retardant finishing for polyamide 66 fabrics 

by surface hydroxymethylation and crosslinking. Polymers for Advanced Technologies, 



30 

2013, 24(1): 10-14. https://doi.org/10.1002/pat.3041 

[60] Zhang X H, Wang S F. Voltametric behavior of noradrenaline at 2-mercaptoethanol self-

assembled monolayer modified gold electrode and its analytical application. Sensors, 

2003, 3(3): 61-68. https://doi.org/10.3390/s30300061 

[61] Matuana L M, Balatinecz J J, Sodhi R N S, et al. Surface characterization of esterified 

cellulosic fibers by XPS and FTIR spectroscopy. Wood Science and Technology, 2001, 

35(3): 191-201. https://doi.org/10.1007/s002260100097 

[62] Pham C V, Eck M, Krueger M. Thiol functionalized reduced graphene oxide as a base 

material for novel graphene-nanoparticle hybrid composites. Chemical Engineering 

Journal, 2013, 231: 146-154. http://dx.doi.org/10.1016/j.cej.2013.07.007 

[63] Aldana-Pérez A, Lartundo-Rojas L, Gómez R, et al. Sulfonic groups anchored on 

mesoporous carbon Starbons-300 and its use for the esterification of oleic acid. Fuel, 

2012, 100: 128-138. https://doi.org/10.1016/j.fuel.2012.02.025 

[64] Desroches M, Caillol S, Auvergne R, et al. Biobased cross-linked polyurethanes 

obtained from ester/amide pseudo-diols of fatty acid derivatives synthesized by thiol–ene 

coupling. Polym. Chem., 2012, 3(2): 450-457. http:// doi.org/10.1039/c1py00479d 

[65] Tan G, Sun W, Xu Y, et al. Sorption of mercury (II) and atrazine by biochar, modified 

biochars and biochar based activated carbon in aqueous solution. Bioresource 

Technology, 2016, 211: 727-735. http://dx.doi.org/10.1016/j.biortech.2016.03.147 

[66] Febrianto J, Kosasih A N, Sunarso J, et al. Equilibrium and kinetic studies in adsorption 

of heavy metals using biosorbent: a summary of recent studies. Journal of Hazardous 

Materials, 2009, 162(2-3): 616-645. https://doi.org/10.1016/j.jhazmat.2008.06.042 

[67]Sun Q, Aguila B, Perman J, et al. Postsynthetically modified covalent organic 

frameworks for efficient and effective mercury removal. Journal of the American 

Chemical Society, 2017, 139(7): 2786-2793. https://doi.org/10.1021/jacs.6b12885 

[68]Zhang F, Wang X, Yin D, et al. Efficiency and mechanisms of Cd removal from aqueous 

solution by biochar derived from water hyacinth (Eichornia crassipes). Journal of 



31 

Environmental Management, 2015, 153: 68-73. 

https://doi.org/10.1016/j.jenvman.2015.01.043 

[69]Srinivasan P, Sarmah A K, Smernik R, et al. A feasibility study of agricultural and 

sewage biomass as biochar, bioenergy and biocomposite feedstock: production, 

characterization and potential applications. Science of the Total Environment, 2015, 512: 

495-505. https://doi.org/10.1016/j.scitotenv.2015.01.068 

[70] Niu Q, Luo J, Xia Y, et al. Surface modification of bio-char by dielectric barrier 

discharge plasma for Hg0 removal. Fuel Processing Technology, 2017, 156: 310-316. 

https://doi.org/10.1016/j.fuproc.2016.09.013 

[71] Pearson R G. Hard and soft acids and bases. Journal of the American Chemical society, 

1963, 85(22), 3533-3539. https://doi.org/10.1021/ja00905a001 

[72] Park J H, Ok Y S, Kim S H, et al. Competitive adsorption of heavy metals onto sesame 

straw biochar in aqueous solutions. Chemosphere, 2016, 142: 77-83. 

http://dx.doi.org/10.1016/j.chemosphere.2015.05.093 

[73] Deng S, Wang P, Zhang G, et al. Polyacrylonitrile-based fiber modified with 

thiosemicarbazide by microwave irradiation and its adsorption behavior for Cd (II) and 

Pb (II). Journal of hazardous materials, 2016, 307, 64-72. 

https://doi.org/10.1016/j.jhazmat.2016.01.002 

[74] Pehlivan E, Yanik B H, Ahmetli G, et al. Equilibrium isotherm studies for the uptake of 

cadmium and lead ions onto sugar beet pulp. Bioresource Technology, 2008, 99(9): 

3520-3527. https://doi.org/10.1016/j.biortech.2007.07.052 

[75] Tan X, Liu Y, Zeng G, et al. Application of biochar for the removal of pollutants from 

aqueous solutions. Chemosphere, 2015, 125: 70-85. 

http://dx.doi.org/10.1016/j.chemosphere.2014.12.058 

[76] Fan L, Zhou A, Zhong L, et al. Selective and effective adsorption of Hg (II) from 

aqueous solution over wide pH range by thiol functionalized magnetic carbon nanotubes. 



32 

Chemosphere, 2019, 226: 405-412. https://doi.org/10.1016/j.chemosphere.2019.03.154 

[77] Liu Z, Ling X Y, Guo B, et al. Pt and PtRu nanoparticles deposited on single-wall 

carbon nanotubes for methanol electro-oxidation. Journal of Power Sources, 2007, 

167(2): 272-280. https://doi.org/10.1016/j.jpowsour.2007.02.044 

[78] Huang Y, Gong Y, Tang J, et al. Effective removal of inorganic mercury and 

methylmercury from aqueous solution using novel thiol-functionalized graphene 

oxide/Fe-Mn composite. Journal of hazardous materials, 2019, 366: 130-139. 

https://doi.org/10.1016/j.jhazmat.2018.11.074 

[79] Huang Q, Chen Y, Yu H, et al. Magnetic graphene oxide/MgAl-layered double 

hydroxide nanocomposite: One-pot solvothermal synthesis, adsorption performance and 

mechanisms for Pb2+, Cd2+, and Cu2+. Chemical Engineering Journal, 2018, 341: 1-9. 

https://doi.org/10.1016/j.cej.2018.01.156 

[80] Wu A, Tian C, Jiao Y, et al. Sequential two-step hydrothermal growth of MoS2 /CdS 

core-shell heterojunctions for efficient visible light-driven photocatalytic H2 evolution. 

Applied Catalysis B: Environmental, 2017, 203: 955-963. 

http://dx.doi.org/10.1016/j.apcatb.2016.11.009 

[81] Sharma A S, Biswas K, Basu B. Fine scale characterization of surface/subsurface and 

nanosized debris particles on worn Cu–10 % Pb nanocomposites. Journal of Nanoparticle 

Research, 2013, 15(5): 1675. https://doi.org/10.1007/s11051-013-1675-5  

[82] Zheng X, Lei H, Yang G, et al. Enhancing efficiency and stability of perovskite solar 

cells via a high mobility p-type PbS buffer layer. Nano Energy, 2017, 38: 1-11. 

https://doi.org/10.1016/j.nanoen.2017.05.040 

[83] Wang L, Shi Y, Yao D, et al. Cd complexation with mercapto-functionalized attapulgite 

(MATP): adsorption and DFT study. Chemical Engineering Journal, 2019, 366: 569-576. 

https://doi.org/10.1016/j.cej.2019.02.114 

[84] Houben D, Evrard L, Sonnet P. Beneficial effects of biochar application to contaminated 

soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed 



33 

(Brassica napus L.). Biomass & Bioenergy, 2013, 57: 196-204. 

https://doi.org/10.1016/j.biombioe.2013.07.019 

[85] Lei O, Zhang R D. Effects of biochars derived from different feedstocks and pyrolysis 

temperatures on soil physical and hydraulic properties. Journal of Soils and Sediments, 

2013, 13(9): 1561-1572. https://doi.org/10.1007/s11368-013-0738-7 

[86] Cheng C H, Lehmann J, Engelhard M H. Natural oxidation of black carbon in soils: 

Changes in molecular form and surface charge along a climosequence. Geochimica et 

Cosmochimica Acta, 2008, 72(6): 1598-1610. https://doi.org/10.1016/j.gca.2008.01.010  

[87] Lucchini P, Quilliam R S, Deluca T H, et al. Does biochar application alter heavy metal 

dynamics in agricultural soil?. Agriculture, Ecosystems & Environment, 2014, 184: 149-

157. https://doi.org/10.1016/j.agee.2013.11.018  

[88] He L, Li N, Liang X, et al. Reduction of Cd accumulation in pak choi (Brassica 

chinensis L.) in consecutive growing seasons using mercapto-grafted palygorskite. RSC 

Advances, 2018, 8(56): 32084-32094. https://doi.org/10.1039/C8RA04952A 

[89] Lian M, Feng Q, Wang L, et al. Highly effective immobilization of Pb and Cd in 

severely contaminated soils by environment-compatible, mercapto-functionalized 

reactive nanosilica. Journal of Cleaner Production, 2019, 235: 583-589. 

https://doi.org/10.1016/j.jclepro.2019.07.015 

[90] Liang X F, Han J, Xu Y M, et al. In situ field-scale remediation of Cd polluted paddy 

soil using sepiolite and palygorskite. Geoderma, 2014, 235: 9-18. 

https://doi.org/10.1016/j.geoderma.2014.06.029 

[91] Li X, Peng W, Jia Y, et al. Bioremediation of lead contaminated soil with Rhodobacter 

sphaeroides. Chemosphere, 2016, 156: 228-235. 

https://doi.org/10.1016/j.chemosphere.2016.04.098 

[92] Yang X, Lu K, Mcgrouther K, et al. Bioavailability of Cd and Zn in soils treated with 

biochars derived from tobacco stalk and dead pigs. Journal of Soils and Sediments, 2017, 



34 

17(3): 751-762. https://doi.org/10.1007/s11368-015-1326-9 

[93] Park J H, Choppala G K, Bolan N S, et al. Biochar reduces the bioavailability and 

phytotoxicity of heavy metals. Plant and Soil, 2011, 348(1-2): 439-451. 

https://doi.org/10.1007/s11104-011-0948-y 

[94] Galvez-Cloutier R, Dubé J-S. An evaluation of fresh water sediments contamination: the 

Lachine Canal sediments case, Montréal, Canade. Part II: heavy metal particulate 

speciation study. Water, Air, and Soil Pollution, 1998, 102(3-4): 281-302. 

https://doi.org/10.1023/A:1004900624880 



35 

Figure caption 

Fig. 1 FT-IR spectra of RB and RS.  

Fig. 2 Overview of the RS preparation 

Fig. 3 Sorption kinetic of (a) Cd2+ and (b) Pb2+ onto RB and RS (initial concentration of 

metal ions: 200 mg L-1, adsorbent dosage: 2.5 g L-1, pH 5, buffered by 0.05 mol L-1 acetic 

acid). 

Fig. 4 Sorption isotherms of (a) Cd2+ and (b) Pb2+ on RB and RS in the single-metal systems 

(adsorbent dosage: 2.5 g L-1, pH 5, buffered by 0.05 mol L-1 acetic acid). 

Fig. 5 Sorption isotherms of Cd2+ and Pb2+ on RB and RS in the binary-metal systems 

(adsorbent dosage: 2.5 g L-1, pH 5, buffered by 0.05 mol L-1 acetic acid, contact time: 24 h). 

Fig. 6 XPS spectra of (a) S2p for RS before and after cadmium and lead uptake, (b) Cd3d for 

RB-Cd2+, (c) Cd3d for RS-Cd2+, (d) Pb4f for RB-Pb2+ and (e) Pb4f for RS-Pb2+.  

Fig. 7 Effect of RB and RS on availability of (a) Cd and (b) Pb. Different lower case and capital 

letters above the column indicate significant difference between treatments at p < 0.05. 

Fig. 8 Influence of RB and RS on species distribution of (a) Cd and (b) Pb. 
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Table 1 Soil properties 

pH 
CEC     

（cmol kg-1）

O.M.

（%）

Clay 

（%）

Silt  

（%）

Sand

（%）

Cd     

（mg kg-1）

Pb     

（mg kg-1）

7.42 13.53 2.15 0.76 18.74 80.50 9.18 1182 
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Table 2 Physicochemical properties of RB and RS. 

CNS elements -SH content 

（mmol g-1）
pH pHPZC

surface 

area  

(m2 g-1)

pore diameter 

(nm)N (%) C (%) S (%) 

RB 1.54 48.18 0.98 0.01 10.20 9.92 7.82 20.82 

RS 0.59 43.71 24.04 0.83 2.36 2.26 0.34 16.69 
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Table 3 Sorption kinetic parameters of Cd2+ and Pb2+ sorption on RB and RS (initial 

concentration of metal ions: 200 mg L-1, adsorbent dosage: 2.5 g L-1, pH 5, buffered by 0.05 

mol L-1 acetic acid) 

Ions Sorbent 

1st order kinetics 2nd order kinetics 

qm1

(mg g-1) 

k1

 (h-1 ) 
R2

qm2

 (mg g-1) 

k2

(g mg-1 h-1 ) 
R2

Cd2+ RB 9.9 0.15 0.9963 11.3 0.01 0.9074 

Cd2+ RS 45.2 14.49 0.7221 46.1 0.60 0.9993 

Pb2+ RB 55.4 32.60 0.0246 55.6 1.90 0.9998 

Pb2+ RS 53.2 22.93 0.9750 54.3 1.13 0.9998 
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Table 4 Isotherm parameters of Langmuir and Freundlich for the sorption of Cd2+ and Pb2+

onto RB and RS in the single-metal systems (adsorbent dosage: 2.5 g L-1, pH 5, buffered by 

0.05 mol L-1 acetic acid, contact time 24 h) 

Isotherm Parameters 
Cd2+ Cd2+ Pb2+ Pb2+

RB RS RB RS 

Langmuir 

Qm (mg g-1) 14.2 45.1 67.4 61.4 

KL (L mg-1) 0.01 0.22 0.09 0.03 

R2 0.8143 0.9993 0.9965 0.9982 

Freundlich 

KF (mg g-1) 1.8 24.0 20.3 9.5 

1/n 0.31 0.12 0.25 0.31 

R2 0.4154 0.9899 0.9168 0.9248 
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Table 5 Isotherm parameters of Langmuir and Freundlich for the sorption of Cd2+ and Pb2+

onto RB and RS in the binary-metal systems (adsorbent dosage: 2.5 g L-1, pH 5, buffered 

by 0.05 mol L-1 acetic acid, contact time: 24 h) 

Isotherm Parameters 
RB RS 

Cd2+ Pb2+ Cd2+ Pb2+

Langmuir 

Qm (mg g-1) 6.8 63.3 40.4 30.0 

KL (L mg-1) 0.02 0.14 0.22 0.03 

R2 0.8410 0.9854 0.9956 0.9824 

Freundlich 

KF (mg g-1) 0.5 20.5 19.0 5.2 

1/n 0.44 0.17 0.14 0.29 

R2 0.4314 0.4102 0.8272 0.9763 
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Table 6 Distribution and selectivity coefficient of competitive adsorption 

Kd（Cd） Kd（Pb） Kd（Cd）/ Kd（Pb） Kd（Pb）/ Kd（Cd）

RB 14.39 119.59 0.12 8.31 

RS 90.66 52.35 1.73 0.58 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6
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Fig. 7 
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Fig. 8


