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Spyros Galanis† Christos A. Ioannou‡ Stelios Kotronis§
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Abstract

We study information aggregation in a dynamic trading model with partially in-
formed and ambiguity averse traders. We show theoretically that separable securities,
introduced by Ostrovsky (2012) in the context of Subjective Expected Utility, no longer
aggregate information if some traders have imprecise beliefs and are ambiguity averse.
Moreover, these securities are prone to manipulation, as the degree of information ag-
gregation can be influenced by the initial price, set by the uninformed market maker.
These observations are also confirmed in our experiment, using prediction markets. We
define a new class of strongly separable securities which are robust to the above con-
siderations, and show that they characterize information aggregation in both strategic
and non-strategic environments. We derive several theoretical predictions, which we
are able to confirm in the lab.

JEL Classification Numbers: D82, D83, D84, G14, G41.

Keywords: Information Aggregation, Ambiguity Aversion, Financial Markets, Informa-
tion Markets, Prediction Markets.

1 Introduction

When do financial markets aggregate information, which is dispersed among individual
traders? The mechanism, through prices, is intuitive. If the price is low (high) and some
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traders have private information that the real value of the security is high (low), they will
increase (decrease) their demand and the price. Moreover, these price movements could
reveal to a trader information that others might have, prompting her to update her beliefs
and either buy or sell, thus further revealing some of her own private information.

This intuition is largely correct. Starting from Hayek (1945), there is an extensive liter-
ature showing that under various settings, information gets aggregated. For instance, Os-
trovsky (2012) shows that even if there are few large and strategic traders, information gets
aggregated for a large class of securities, called separable, which includes the Arrow-Debreu
securities.

In recent years, many firms and institutions have leveraged this property of information
aggregation by designing prediction markets, as a tool to better forecast political events,
sales of products and box office successes, among others (O’Leary (2011)). Google, Microsoft,
Ford, General Electric and HP, to name a few, run internal prediction markets as a corporate
governance and prediction’s tool, whereas Cultivate Labs, Inkling Markets, Consensus Point,
Crowdcast and Iowa Electronic Markets are examples of Internet-based prediction markets.1

These markets are usually implemented using a Market Scoring Rule (MSR) (Hanson (2003,
2007)), which, in turn, is based on proper scoring rules (e.g. Brier (1950)).2

In several cases, prediction markets perform significantly better than other conventional
forecasting methods, such as polls. Berg et al. (2008) compared the predictions, for the five
presidential elections between 1988 and 2004 of the Iowa Electronic Markets and those of
964 polls. They found that 74% of the time, the prediction market was closer to the truth,
whereas for forecasts 100 days in advance it outperformed the polls at every election.

In other cases, however, where the question is less common, the performance of prediction
markets is mixed. On the one hand, Dreber et al. (2015) show that a prediction market,
populated by researchers, was better at predicting the reproducibility of 44 studies published
in prominent psychological journals, as compared to the pre-trade average of the market
participants’ individual forecasts. On the other hand, Camerer et al. (2016) show that the
two methods are equally capable of predicting the reproducibility of economics studies.

Interestingly, in the case of a “once in a lifetime” event, prediction markets fared signifi-
cantly worse. For instance, Cultivate Labs designed a prediction market on the outcome of
the Brexit referendum. It ran for 10 days prior to the polling day but failed spectacularly,
as the closing prediction was a 20% probability of voting for Brexit.3 On the other hand, an
average of all polls, reported by the Financial Times on the day of the referendum, found
48% in favour of remain and 46% in favour of leave. The actual result was 51.9% and 48.1%,
respectively.4

Our motivation for this paper stems from trying to understand when prediction (and
more generally financial) markets are efficient at aggregating information. In particular,
are they efficient at aggregating information for events that are rare or uncommon and for

1Such an implementation is described at https://www.cultivatelabs.com/prediction-markets-guide/how-
does-logarithmic-market-scoring-rule-lmsr-work.

2McKelvey and Page (1990) were the first to use a proper scoring rule to aggregate information in a
market.

3The market can be found at https://alphacast.cultivateforecasts.com/questions/1311-will-the-uk-vote-
to-leave-the-eu-in-the-june-2016-referendum.

4The details can be found at https://ig.ft.com/sites/brexit-polling/.
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which beliefs are imprecise? Up to our awareness, the literature has so far only focused on
traders who have precise probabilities about events and Subjective Expected Utility (SEU)
preferences. But is this always a valid assumption, especially for events, like the outcome of
the Brexit referendum or the recent financial crisis, which occur once in a generation?

Using a simple theoretical example, we show that separable securities may fail to aggre-
gate information if traders are ambiguity averse and have imprecise beliefs. Moreover, these
securities are prone to manipulation, as the degree of information aggregation is greatly in-
fluenced by the initial price, set by an uninformed market maker. These observations are
also confirmed in the lab, where we run an experiment using prediction markets.

Our main contribution is to propose a new class of strongly separable securities, which
are robust to the above considerations. In particular, we show that they are necessary and
sufficient for information aggregation, in both strategic and non-strategic environments with
ambiguity averse traders, in a prediction market which implements the MSR. Moreover, they
are not prone to manipulation, as the initial price does not influence the degree of information
aggregation. We derive several theoretical predictions, which we are able to confirm in the
lab.

The economic value of getting better predictions is difficult to estimate, however a bench-
mark is the revenues of the forecasting industry, at around $300 billion (Atanasov et al.
(2016)). Our results, however, are not restricted to the case of prediction markets. We fur-
ther show that there does not exist a security that is strongly separable for all information
structures.5 This is in contrast to the case of separable securities where, for example, Arrow-
Debreu securities are separable for all information structures. Because strongly separable
securities are both sufficient and necessary for information aggregation, we have the follow-
ing negative result. With ambiguity aversion and imprecise beliefs, there is no security that
aggregates information for all information structures. If we cannot find such a security in the
special case of prediction markets, we cannot hope to find one in the case of general financial
markets. In other words, imprecise beliefs can severely constrain the ability of markets to
generically aggregate information.

To build some intuition, consider an example with a unique common prior and SEU,
which shows how prices aggregate information in the simple case of two myopic, or non-
strategic, traders. The formal treatment of this example, in the case of imprecise beliefs,
is presented in Section 2. In Section 6, we use the same example to run an experiment
with prediction markets and compare information aggregation across separable and strongly
separable securities.

The prediction market concerns the 2016 Brexit referendum in the UK. Suppose there are
three possible states: the referendum takes place and the result is in favour of Brexit, it takes
place but the outcome is against Brexit, or the referendum is cancelled. Let Arrow-Debreu
security X, which pays 1 if Brexit occurs and 0 otherwise.

After an initial announcement by the market maker, the two traders take turns in an-
nouncing a value for the security X. If Trader i announces a low value whereas j announces
in the next round a high value, it is as if j buys the security from i through the market
maker. Payoffs are determined using the MSR. For non-strategic traders, who only care

5Strongly separable securities, just like separable ones, only depend on the information structure and
not on the specific scoring rule.
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Outcome Trader 1’s signal Trader 2’s signal
Brexit Referendum not cancelled Either Brexit or cancelled

No Brexit Referendum not cancelled No Brexit
Referendum cancelled Referendum cancelled Either Brexit or cancelled

Figure 1: Private signals

about their current payoff, MSR ensures that the trader’s optimal strategy is to announce
the expected value of the security given her posterior beliefs.

The private information of each trader is depicted in Figure 1. In particular, Trader 1 is
informed whether the referendum is cancelled or not, whereas if the referendum does take
place Trader 2 then knows its outcome. As a result, their pooled information always reveals
the true state.

Suppose that Brexit is the true state and the two traders have a common prior which
assigns strictly positive probability to that state. Then, by announcing sequentially their
expectations about the value of security X, information gets aggregated. To see this, note
that, in the first round, the announcement of Trader 1 about X is strictly positive, hence
Trader 2 realizes that Trader 1 assigns probability 0 to the state that the referendum is
cancelled, as this would imply an announcement of 0. The public information revealed is
that the referendum will take place. In the second round, Trader 2, by combining this extra
information with her own private signal, realizes that Brexit will happen and announces 1.
In the third round, Trader 1 realizes as well that Brexit is the true state, hence she also
announces 1 and the prediction market aggregates all information.

This result of information aggregation relies heavily on the assumption that each trader’s
belief is a unique prior.6 However, Brexit is a once in a lifetime event for which no historical
data of similar events exist. How can we be sure that the traders have precise probabilities
for such a hard-to-quantify event? If we cannot maintain the hypothesis of a unique prior
and SEU, it is no longer the case that markets aggregate information, even if the traders’
(multiple) priors are common. More importantly, even a slight departure from a unique prior
could result in the traders agreeing on a value of the security that is very far from the true
one.

To show this, consider the ambiguity aversion model of Gilboa and Schmeidler (1989),
where a decision maker acts as if having multiple priors over the states and chooses the
prediction that maximizes the minimum expected utility over these priors. An important
insight, which we prove in Lemma 1 and use heavily is that, with multiple priors, MSR
ensures that the optimal announcement of a myopic trader is still unique and the expectation
of security X according to one of her beliefs. The choice of the belief depends on the previous
announcement, thus introducing path-dependence (which is absent if the prior is unique).
However, if the previous announcement happens to be the expectation of X according to
some of i’s beliefs, then i’s optimal myopic strategy is to repeat it.

Trader 1’s private information is such that she does not distinguish between states Brexit
and No Brexit, because her signal only informs her whether the referendum is cancelled or

6More generally, the assumption we need is that of a common prior.
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not. What is the announcement that she makes at these two states? Suppose that the market
maker’s initial announcement is 0. Unlike the SEU framework, this initial announcement
is important for the result because of path-dependence. For instance, suppose that at least
one prior (but not all) assigns zero probability to Brexit. When Trader 1 learns that either
Brexit or No Brexit are true, she updates her beliefs so that one of her posteriors assigns 0
probability to Brexit. Because the expectation of X according to that belief is also 0, from
the argument of the previous paragraph we conclude that Trader 1 will also announce 0.7

If the referendum was cancelled, Trader 1 would know this and announce 0. Because
the same announcement of 0 would be made in all possible states, no public information
is revealed from her announcement. As a result, Trader 2 does not learn anything from
1’s announcement and her announcement is, for similar reasons, 0. In turn, Trader 1 also
announces 0. The market fails to aggregate information, because no one learns that Brexit
will happen, hence no one learns that the true value of the security is 1. The traders agree
on their announcements, but on a value for the security that is very far from the truth.

Section 2 provides the formal treatment and we confirm the following observations. First,
the result of no information aggregation with separable securities and imprecise beliefs does
not depend on having a prior which assigns probability 0 to the true state. As we show in
Example 1 of Appendix C, separable securities may not aggregate information also in the case
of full support priors. Moreover, these results hold for all proper scoring rules. Second, the
initial announcement by the market maker matters. If the announcement was 1, there would
be information aggregation, so there is path-dependence and the possibility of manipulation
by the uninformed market-maker. Although in the current example information aggregation
fails for a unique initial announcement, it is easy to construct examples where this is not
the case, as we argue in Appendix C. Finally, even if the imprecision of beliefs is vanishingly
small, there is still no information aggregation.

To accommodate the case of imprecise probabilities, consider security Y that pays 3 if
Brexit occurs, 2 if there is No Brexit and 1 if the referendum is cancelled. In states Brexit
and No Brexit, Trader 1 considers only these states to be possible. Whatever are her beliefs,
she announces an expected value of Y between 3 and 2. If the referendum is cancelled, she
knows this and she announces 1. In other words, the announcement about Y differs with
respect to whether the referendum takes place, because 1 is not a convex combination of
2 and 3. Since the possible announcements are different, in the next round Trader 2 can
infer that Trader 1’s signal cannot be that the referendum is cancelled. Combining this piece
of information with her own signal, Trader 2 concludes that Brexit is the true state, hence
announces 3. In the next round, Trader 1 can infer as well that Trader 2 knows that Brexit
will happen, therefore information gets aggregated.

Note that security Y aggregates information for any initial announcement of the market
maker and irrespective of whether market participants have precise probabilities, or they are
ambiguity averse and have multiple priors. Hence, it is robust as compared to the separable
securities of Ostrovsky (2012). Moreover, security Y is immune to manipulation by the
market maker. We call such securities strongly separable and show that they are always
separable, but the converse is not true. Theorem 1 characterizes information aggregation in

7In Section 2, we provide the formal details for the case of a quadratic scoring rule. However, the
argument works for any proper scoring rule.
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terms of strongly separable securities, for the case of myopic or non-strategic players.
For the strategic case, the trading procedure is an infinite horizon game with incomplete

information. Given that traders are ambiguity averse, they might be dynamically inconsis-
tent. This means that Trader i might devise an optimal continuation strategy at time t which
will not be optimal for the same trader at a later time. This feature is absent in the SEU
framework of Ostrovsky (2012) and further complicates our analysis. Theorem 2 shows that
strongly separable securities are both necessary and sufficient for information aggregation
for all interim equilibria. Theorem 3 provides the same result using the revision-proof equi-
librium, which has been studied by Asheim (1997) and Ales and Sleet (2014), in the context
of infinite horizon and complete information games with time-inconsistent preferences.

We conclude by emphasizing that even though we restrict attention to prediction markets,
our results are more general. In particular, prediction markets can be reinterpreted in order to
correspond to the classic approach with an inventory-based market maker who continuously
adjusts the price of the securities depending on the orders she receives. Ostrovsky (2012)
establishes such a justification and Example 2 in Appendix C provides the details for the
case of ambiguity aversion.

1.1 Related literature

There is a large literature related to information aggregation and information revelation
in dynamic markets, starting with Hayek (1945). Grossman (1976) showed that, in equi-
librium, prices aggregate information. Radner (1979) introduced the concept of Rational
Expectations Equilibrium (REE) and proved that generically prices aggregate information
dispersed among traders. Several results regarding the convergence of REE in dynamic set-
tings have been shown by Hellwig (1982), Nielsen (1984), McKelvey and Page (1986), Dubey
et al. (1987), Wolinsky (1990), Nielsen et al. (1990) and Golosov et al. (2014), among others.
Siga and Mihm (2018) provide microfoundations for REE, using common-value auctions,
and study when prices aggregate information.

The no trade theorems stem from Aumann (1976) and Milgrom and Stokey (1982).
Geanakoplos and Polemarchakis (1982), Cave (1983), Sebenius and Geanakoplos (1983),
Nielsen (1984), Bacharach (1985) and Nielsen et al. (1990) study information communica-
tion in a non-strategic setting, where agents announce posterior beliefs or other aggregate
statistics. However, they do not fully characterize under what conditions the consensus
yields the true posterior or expectation of the security, a gap which is filled by DeMarzo and
Skiadas (1998, 1999).

Ostrovsky (2012) and Chen et al. (2012) show that in a market with either myopic
or strategic traders, separable securities are both necessary and sufficient for information
aggregation. Their models are based on MSR and hence their results are directly applicable
to prediction markets. Similar approaches can be found in Chen et al. (2010) and Dimitrov
and Sami (2008), where the focus is on considering whether information gets aggregated when
traders are strategic, under various assumptions regarding the signal structure. Galanis and
Kotronis (2019) study the information aggregation properties of separable securities in an
environment with unawareness.

Ostrovsky (2012) provides similar results for separable securities, using the model of Kyle
(1985) which includes noise traders and competitive market makers. However, in this model,
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the question of information aggregation is intertwined with the question of information rev-
elation, so that even with one informed trader, it is not straightforward that her information
will be revealed eventually. As pointed out by Ostrovsky (2012), the MSR focuses on the
issue of information aggregation. Lambert et al. (2018) study trading in informationally
complex environments, using the single-period version of Kyle (1985). They show that there
is always a unique linear equilibrium and, under some conditions, prices in large markets
aggregate all available information. Information aggregation has been studied in several
other settings, for example in elections (e.g. Barelli et al. (2017), Ekmekci and Lauermann
(2019)).

Dominiak and Lefort (2013, 2015), Carvajal and Correia-da Silva (2010) and Kajii and
Ui (2005, 2009) extend the result of Aumann (1976) in an environment with ambiguity
aversion. Finally, within a REE setting with ambiguity averse preferences, the existence
and robustness of partially-revealing rational expectations equilibria is shown in Condie and
Ganguli (2011).

In dynamic choice problems under uncertainty, agents who violate the sure-thing prin-
ciple of Savage (1954) may be dynamically inconsistent. One way of dealing with dynamic
inconsistency is the concept of consistent planning, which was introduced by Strotz (1955)
and further developed by Peleg and Yaari (1973) and Goldman (1980). Siniscalchi (2011)
provides behavioural foundations in a single-agent setting. In an environment with Maxmin
Expected Utility (MEU) preferences, Epstein and Schneider (2003) show that prior by prior
updating of a rectangular set of priors preserves dynamic consistency.

Few papers study equilibrium notions in general dynamic games under ambiguity, such
as Hanany et al. (2018), Eichberger et al. (2017), Pahlke (2018) and Battigalli et al. (2019).
Specific applications with MEU preferences, prior-by-prior updating and some form of Con-
sistent Planning are provided, among others, by Bose and Daripa (2009), Bose and Renou
(2014), Kellner and Le Quement (2017, 2018) and Beauchêne et al. (2019).

Prediction markets have been studied extensively, both experimentally and with real data.
An overview of the literature is provided by Wolfers and Zitzewitz (2004) and Snowberg et al.
(2013). One of the main questions is whether prediction markets can be manipulated. Most
of the literature finds very little evidence of price manipulation, both in actual markets
(Camerer (1998), Rhode and Strumpf (2004), Wolfers and Leigh (2002)) and in the lab
(Hanson et al. (2006), Hanson and Oprea (2009)). However, Zitzewitz (2007) and Snowberg
et al. (2013) describe one case where a manipulator was able to sustain an artificially high
price on the contract that paid if Hillary Clinton became the next U.S. President. Veiga and
Vorsatz (2010) show experimentally that, under some conditions, prices can be manipulated
by an uninformed trader. We also find evidence of price manipulation, but through the
completely different channel of imprecise beliefs and the actions of the market maker, that
has not been studied before in the literature. Ottaviani and Sørensen (2007) provide the first
formal analysis of outcome manipulation in corporate prediction markets, where traders are
able to influence the outcome.

Atanasov et al. (2016) compare prediction markets with prediction polls, in one of the
first large-scale experimental tests, using the forecasts on 261 events, of more than 2400
participants. They find that prediction markets outperform the simple means of prediction
polls, but they fare worse when compared with forecasts from prediction polls that are
statistically aggregated, using criteria such as past performance. The experiment of Jian
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and Sami (2012) on prediction markets is the closest to our experimental design. However,
there are several differences. First, it only specifies an environment with SEU, as all other
papers that we are aware of. Second, it does not directly test the effect of the initial price
on the degree of information aggregation.

Healy et al. (2010) compare the effectiveness of prediction markets with other trading
mechanisms, such as double actions, finding that no mechanism performs best under all
conditions. In such a setting, Alfarano et al. (2019) study the effect of the connectivity
of the market on trading. They find experimentally that information aggregation does not
depend on whether a market is more connected or not.

The paper is organized as follows. Section 3 describes the model, whose components
are the ambiguity averse preferences, the MSR trading environment, the decision function
for the myopic case and the properties for the strategic case. In Section 4, we characterize
information aggregation for the case of myopic traders, whereas in Section 5 we examine
the strategic case. In Section 6, we describe our experiment and discuss the support for
our theory. We conclude in Section 7. All proofs are included in the appendices. The
experimental instructions are included in the Online Appendix.

2 Example

We illustrate our approach by providing the formal details of the example discussed in
the Introduction. The same example is used in our experiment, which we discuss in Section
6.

The dynamic trading mechanism begins with an initial public announcement about the
value of the security by the market maker and with nature choosing a state. Then, each
trader sequentially announces, in public, her prediction, which may reveal some of her private
information. A score for each prediction, based on a strictly proper scoring rule, is calculated
after trading ends and the true state is revealed. The per-period utility of a trader is
calculated by subtracting, from the score of her prediction, the score of the prediction made
by the previous trader. This can be interpreted as if, each time a trader makes a prediction,
she “buys out” the previous one.

The state space has three states, Ω = {ω1, ω2, ω3}, which correspond to Brexit, No
Brexit and Referendum cancelled, respectively. Trader 1’s information partition is Π1 =
{{ω1, ω2}, {ω3}}, whereas 2’s is Π2 = {{ω1, ω3}, {ω2}}. They trade an Arrow-Debreu security
X that pays 1 at ω1 and 0 otherwise.

The two traders share a common set of priors P , which is the convex hull of p1 = (0, 1
2
, 1

2
)

and p2 = (1
3
, 1

3
, 1

3
). Their preferences are represented by Maxmin Expected Utility (MEU)

with beliefs P and u(x) = x, x ∈ R. If trader i’s announcement is y, the true value of the
security is x∗ = X(ω) and the announcement of the previous trader (or the market maker)
is y−1, i’s utility is s(y, x∗)− s(y−1, x

∗), where s(y, x∗) = −(y− x∗)2 is the quadratic scoring
rule (or more generally a proper scoring rule).

Because i does not know what the true state is, her utility (in the current period) from
announcing y is

U i(y) = min
q∈P

∑
ω∈Ω

[s(y,X(ω))− s(y−1, X(ω))]q(ω).
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Proper scoring rules have the attractive property in the SEU framework that a myopic
trader, who only cares about her current period utility, will truthfully announce her ex-
pectation of X. Formally, if P = {p} ∈ ∆(Ω), then argmax

y∈Y
U i(y) = Ep[X]. Note that

this announcement is independent of the previous announcement, y−1. With MEU prefer-
ences, Lemma 1 establishes that argmax

y∈Y
U i(y) = Ep[X] for some p ∈ P , which depends

on y−1, thus introducing path-dependence. Moreover, if y−1 = Ep[X] for some p ∈ P , then
argmax

y∈Y
U i(y) = y−1.

Suppose that the true state is ω1, so that the correct price to be inferred is x∗ = X(ω1) =
1. Moreover, suppose that the initial price of the security is y0 = 0, set by the market
maker. Trader 1 is informed that E1 = {ω1, ω2} has occurred and maximises her util-
ity myopically. Using Lemma 1 and letting pE1 be the conditional of p given E1, she
solves min

p∈P
EpE1

[s(EpE1
[X], X(ω)) − s(0, X(ω))] = min

p∈P
[pE1(ω1)2(2 − pE1(ω1) − pE1(ω2))] =

min
p∈P

pE1(ω1)2. We conclude that the solution is p1 with p1(ω1) = 0 and her prediction is

y1 = 0. If the true state was ω3, she would know that the true value of X was 0 and she
would announce 0.

The above imply that Trader 2 cannot learn anything from 1’s announcement, hence
can only rely on her private signal E2 = {ω1, ω3}. Maximising myopically her utility, she
solves min

p∈P
EpE2

[s(EpE2
[X], X(ω)) − s(0, X(ω))] = min

p∈P
[pE2(ω1)2(2 − pE2(ω1) − pE2(ω3)] =

min
p∈P

pE2(ω1)2. The solution is again p1, with p1(ω1) = 0, and her prediction is y2 = 0.

Each trader learns nothing from the other’s announcement, which is always 0. Because
the true value of the security is 1, there is no information aggregation through the announce-
ments, even though their pooled information would reveal state ω1 and the true value, 1.

We make the following observations. First, the same result of no aggregation can be
obtained if the common set of priors is the convex hull of p1 = (0, 1

2
, 1

2
) and p2 = (ε, 1−ε

2
, 1−ε

2
),

where 0 < ε ≤ 1
3
. Hence, even if belief imprecision is vanishingly small, a prediction market

may fail to aggregate information. Second, in this example there is a belief p that assigns
probability zero to the true state ω1. However, this is not necessary. Example 1 in Appendix
C shows that information aggregation can also fail when all priors have full support.

Third, the initial announcement by the market maker is crucial. An announcement of
1 when the true state is ω1 leads to information aggregation. The reason is that Trader 1
would announce 1 at ω1 or ω2, and 0 at ω3, thus revealing information to Trader 2. However,
it is impossible for an uninformed market maker to know whether 1 or 0 is the “correct”
initial announcement. More importantly, information aggregation fails only when the initial
announcement is 0. However, this is due to the simplicity of the model. In Appendix C,
we show how to easily construct examples where information aggregation fails for multiple
initial announcements. Finally, the result of no aggregation does not depend on the quadratic
scoring rule, but it is true for all proper scoring rules. The third claim of Lemma 1 shows
that as long as the market maker’s announcement is 0 and the expectation of X according
to one of Trader 1’s beliefs is 0, then 1 will also announce 0.
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3 Model

In this section, we first describe the ambiguity averse preferences of the traders and the
market scoring rule (MSR) trading environment. We then distinguish between two cases.
First, all traders are myopic, so that they only care about the current period’s payoff. Second,
all traders act strategically and care about the future.

3.1 Preferences and updating

Consider a finite state space Ω = {ω1, ..., ωl} and let the powerset P(Ω) be the σ-algebra
over Ω. Traders are ambiguity averse and have Maxmin Expected Utility (MEU) preferences
(Gilboa and Schmeidler (1989)). In particular, each trader evaluates act f : Ω→ R as

V (f) = min
p∈P

∫
u(f(s))dp(s),

where P is a convex and closed subset of ∆(Ω), endowed with the weak* topology. We assume
that P is common among all traders and, without loss of generality,

⋃
p∈P

Supp(p) = Ω, so

that each state is considered possible by some p ∈ P . Traders are risk-neutral, so u(x) = x.
The set of traders is I = {1, . . . , n}. Trader i’s initial private information is represented

by partition Πi of Ω. Without loss of generality, we assume that the join (the coarsest
common refinement) of partitions Π = {Π1, . . .Πn} consists of singleton sets. This implies
that, for any two states ω1 6= ω2, there exists Trader i such that Πi(ω1) 6= Πi(ω2), so that
the traders’ pooled information always reveals the true state.8

When a trader learns event E, her beliefs are PE, the prior by prior updating of P .9

This rule is well-defined, as long as each prior assigns positive probability to E. We say that
measures p1, p2 ∈ P are mutually absolutely continuous with respect to a collection of events
E if, for all E ∈ E , p1(E) = 0 if and only if p2(E) = 0. Compact and convex set P ⊆ ∆(Ω)
is regular with respect to E if all p1, p2 ∈ P are mutually absolutely continuous with respect
to E .

3.2 Trading environment

Trading is organized as follows. At time t0 = 0, nature selects a state ω∗ ∈ Ω and the
uninformed market maker makes a prediction y0 about the value of security X : Ω → R.
At time t1 > t0, Trader 1 makes a revised prediction y1, at t2 > t1 trader t2 makes her
prediction, and so on. At time tn+1 > tn, Trader 1 makes another prediction yn+1. Let a(t)
be the trader that makes a prediction at time t. All predictions are observed by all traders.
Each prediction yk is required to be within the set Y = [min

ω∈Ω
X(ω),max

ω∈Ω
X(ω)].

The process repeats until time t∞ = limk→∞ tk. At time t∗ > t∞ the true value x∗ =
X(ω∗) is revealed. The traders’ payoffs are computed using a scoring rule, s(y, x∗), where

8This is without loss of generality because, if the conjunction of the traders’ private information does
not reveal the state, we cannot expect that trading a security will reveal its true value.

9This rule is axiomatised by Pires (2002).
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x∗ is the true value of the security and y is a prediction. A scoring rule is proper if, for
any probability measure p and any random variable X, the expectation of s is maximised at
y = Ep[X]. It is strictly proper if y is unique. We focus on continuous strictly proper scoring
rules. Examples are the quadratic, where s(y, x) = −(x − y)2, and the logarithmic, where
s(y, x) = (x− a)ln(y − a) + (b− x)ln(b− y) with a < min

ω∈Ω
X(ω), b > max

ω∈Ω
X(ω).

Under the basic MSR (McKelvey and Page (1990), Hanson (2003, 2007)), a trader is
paid for each revision she makes. In particular, her payoff, from announcing yt at t, is
s(yt, x

∗) − s(yt−1, x
∗), where yt−1 is the previous announcement and x∗ is the true value of

the security. We then say that the trader “buys out” the previous trader’s prediction.10

We examine trading in two settings. The myopic or non-strategic is analyzed in Section
4, where each trader does not care about future payoffs when making an announcement. We
denote this setting by ΓM(Ω, I,Π, X,P , y0, Y, s).

The strategic setting is studied in Section 5. Following Dimitrov and Sami (2008),
we focus on the discounted MSR, which specifies that the payment at tk is βk(s(yt, x

∗) −
s(yt−1, x

∗)), where 0 ≤ β ≤ 1. The total payoff of each trader is the sum of all payments for
revisions. Denote this setting by ΓS(Ω, I,Π, X,P , y0, Y, s, β).

3.3 Properties of scoring rules

In the SEU framework, the optimal (myopic) choice of yt that maximises Ep[s(yt, x
∗) −

s(yt−1, x
∗)] does not depend on the previous announcement yt−1, because p is fixed. This is

no longer the case with MEU preferences and multiple priors P , further complicating our
analysis. However, the following Lemma establishes three properties that we use heavily.11

First, the optimal (myopic) announcement is still unique for continuous strictly proper scor-
ing rules. Second, the announcement is the expectation of X according to some belief in P .
Third, the announcement coincides with the previous one if the latter is the expectation of
X according to some belief in P .

Lemma 1 Let s be a continuous strictly proper scoring rule on Y = [a, b], a, b ∈ R, and
z ∈ Y be an announcement. Then,

• y∗ ≡ argmax
y∈Y

min
p∈P

Ep
[
s(y,X)− s(z,X)

]
is unique,

• y∗ = Ep[X] for some (not necessarily unique) p ∈ argmin
p∈P

max
y∈Y

Ep
[
s(y,X)− s(z,X)

]
,

• if z = Ep[X] for some p ∈ P, then y∗ = z.

3.4 Information aggregation

We say that information gets aggregated if the traders’ predictions converge to the true
value of the security, X(ω).

10A trader can guarantee a payoff of zero by repeating the previous announcement, or by abstaining from
the market. It would be interesting to separate the two by providing an explicit outside option to the traders.
However, such direction is outside the scope of this study and is thus deferred for future research.

11Lemma 1 is related to a result in Chambers (2008). The proofs are closely related, too.
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Definition 1 Under a profile of strategies in ΓM or ΓS, information gets aggregated if se-
quence {yk}∞k=1 converges in probability to random variable X(ω), for all ω ∈ Ω.

Since Ω is finite, this is equivalent to requiring that, for any ε > 0 and δ > 0, there exists
K such that, for any k > K, for all states ω ∈ Ω, the probability that |yk−X(ω)| > ε is less
than δ. Note that the finiteness of Ω does not necessarily imply that yk will deterministically
converge to some value, because non-myopic players might use mixed strategies. As we do
not model strategic ambiguity, however, each trader mixes with a unique probability.

3.5 Strong separability

Ostrovsky (2012) introduced the notion of separable securities, which are sufficient for
aggregating information in an environment with SEU.

Definition 2 A security X is called non-separable under partition structure Π if there exists
probability p and value v ∈ R such that:

(i) X(ω) 6= v for some ω ∈ Supp(p),

(ii) Ep[X|Πi(ω)] = v for all i = 1, ..., n and ω ∈ Supp(p).

Otherwise, it is called separable.

A security X is non-separable if, for some belief p that assigns positive probability to
a state where X does not pay v, all traders agree on its conditional expected value to
be v, irrespective of which private signal they have received. In such a case, even if all
traders truthfully and repeatedly announce v, no new information is revealed. However, their
pooled information reveals the state, hence information aggregation fails.12 To avoid this,
the security must be separable. The most common example is the Arrow-Debreu security,
which pays 1 at some state and 0 otherwise. Unfortunately, with ambiguity aversion even
separable securities may not aggregate information, as shown in Section 2. The result of
no information aggregation does not rely on p1 assigning 0 to the true state. Example 1 in
Appendix C obtains the same result by assuming that all priors have full support.

In order to maintain information aggregation in an environment with ambiguity aversion,
we need to strengthen the notion of separability. Treating security X as given, let

dP(E, v) = argmax
y∈Y

min
p∈PE

Ep
[
s(y,X)− s(v,X)

]
be the (unique from Lemma 1) myopic announcement that maximises the trader’s current
period’s utility if her beliefs are PE and the previous announcement was v. Note that if
P = {p} is a singleton, so we are back to the SEU case, dP(E, v) = Ep[X|E] for any v and
proper scoring rule s. Hence, the myopic announcement dP(E, v) under ambiguity is a direct

12An example of a non-separable security is provided by Ostrovsky (2012). Let Ω = {ω1, ω2, ω3, ω4}
and suppose X(ω1) = X(ω4) = 1, X(ω2) = X(ω3) = −1. Partitions are Π1 = {{ω1, ω2}, {ω3, ω4}} and
Π2 = {{ω1, ω3}, {ω2, ω4}}. For p that assigns 1/4 at each state, both players always have an expectation of
0, although their pooled information always reveals the true value of X, which is never 0.
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generalization of the myopic announcement under SEU, Ep[X|E]. Below, we generalise the
notion of separability by substituting Ep[X|E] with dP(E, v). To save on notation and since
security X is fixed throughout the paper, we omit it.

Definition 3 A security X is called not strongly separable under partition structure Π and
proper scoring rule s if there exist a regular P ⊆ ∆(Ω) with respect to each Πi, i = 1, ..., n,
and v ∈ R such that:

(i) X(ω) 6= v for some ω ∈
⋃
p∈P

Supp(p),

(ii) dP(Πi(ω), v) = v for all i = 1, ..., n and ω ∈
⋃
p∈P

Supp(p).

Otherwise, it is called strongly separable.

The interpretation of a not strongly separable security is similar to that of a non-
separable security. The only difference is that P is not a singleton and, as a result, the
myopic announcement Ep[X|Πi(ω)] = v under SEU is replaced by the myopic announce-
ment dP(Πi(ω), v) = v under MEU. However, in both definitions, each trader announces v,
given that the previous announcement was v and irrespective of the private signal that she
has received. We also require that P is regular, so that prior by prior updating is well-defined.

A potential issue about the definition of strong separability is that it depends on the
particular scoring rule, because dP(E, v) = argmax

y∈Y
min
p∈PE

Ep
[
s(y,X) − s(v,X)

]
. This is not

the case for separability, which only depends on the information structure. Proposition 2
later in this section establishes that strong separability is also independent of the particular
continuous strictly proper scoring rule.

In Section 2, the Arrow-Debreu security is not strongly separable given the information
structure and quadratic scoring rule. To see this, note that condition (ii) in the definition
is satisfied for all states with v = 0. Since some priors put positive probability to ω1 and
X(ω1) = 1 6= v, condition (i) is also satisfied.

Observe that if a security is non-separable (for some prior p), then it is not strongly
separable as well (for P = {p}). This means that strong separability implies separability.
Moreover, the converse is not true, as shown in Section 2. Finally, the class of strongly sepa-
rable securities is not empty, in general. For example, consider state space Ω = {ω1, ω2, ω3}
and security X with X(ω1) = X(ω2) = 1, X(ω3) = 0. Under the partition structure
Π1 = {{ω1, ω2}, {ω3}},Π2 = {{ω1, ω3}, {ω2}} and any continuous proper scoring rule, X
is strongly separable. This is a direct consequence of Proposition 2.

Ostrovsky (2012) proposes a useful characterization of separable securities. It specifies
that X is separable if and only if for any possible announcement v, we can find numbers
λi(Πi(ω)), for each i and ω, such that the sum over all traders has the same sign as the
difference of X(ω)− v. Intuitively, for any v and at each ω, all traders “vote” and the sign
of the sum of the votes has to agree with the difference between the value of the security
and v.
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Proposition 1 (Ostrovsky (2012)) Security X is separable under partition structure Π
if and only if, for every v ∈ R, there exist functions λi : Πi → R for i = 1, . . . , n such that,
for every state ω with X(ω) 6= v,

(X(ω)− v)
∑
i∈I

λi(Πi(ω)) > 0.

We provide a similar but stronger condition, which characterizes strong separability. It
specifies that given any v and conditional on any event E where X is never equal to v, there
is a trader who knows at some state in E that X is either always above or always below v.

Proposition 2 Security X is strongly separable under partition structure Π if and only if
for any v ∈ R, for any E ⊆ {ω ∈ Ω : X(ω) 6= v}, there exists Trader i, state ω ∈ E and
λ ∈ R such that for all ω′ ∈ Πi(ω) ∩ E,

(X(ω′)− v)λ > 0.

The following Lemma shows that there is no security which is strongly separable for all
information structures. This is in contrast to the case of separable securities, where, for
example, Arrow-Debreu securities are separable for all information structures.

Lemma 2 If Ω has at least three states, there is no (non-constant) security X which is
strongly separable under all partition structures Π = {Π1, . . .Πn}, where the join of Π consists
of singleton sets.

As we show in subsequent sections (Theorems 1, 2 and 3), strong separability is not only
sufficient but also necessary for information aggregation under ambiguity. This suggests
a negative result, that there is no security that aggregates information for all information
structures. In other words, if the analyst does not know the traders’ information structure,
there is no way of being sure that a particular security is strongly separable and therefore
will aggregate information. More interestingly, a security which has been successful at aggre-
gating information (because of the particular information structure), may subsequently fail
to aggregate information once the composition of the traders and their information changes.
Although this negative result is shown for the specific case of prediction markets, it is also
a negative result for financial markets in general.

4 Myopic traders

Let ΓM(Ω, I,Π, X,P , y0, Y, s) be an environment with myopic traders, who only care
about their period t payoff when making an announcement at t. Suppose ω∗ is the true state
and y0 is the market maker’s initial announcement. Then, Trader 1 announces her prediction
y1 ∈ Y , where y1 ∈ dP(Π1(ω∗), y0) = argmax

y∈Y
min

p∈PΠ1(ω∗)
Ep
[
s(y,X) − s(y0, X)

]
. As mentioned

above, y1 depends on the market maker’s announcement y0, which is not the case with SEU.
The prediction of any trader is public, therefore the new information revealed refines the

information partitions of all other traders. In particular, the initial public information at
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t0 is F0(ω∗) = Ω. At t1, Trader 1 announces y1 = dP(F0(ω∗) ∩ Π1(ω∗), y0). The updated
public information is F1(ω∗) = {ω′ ∈ F0(ω∗) : dP(F0(ω∗) ∩ Π1(ω′), y0) = y1}. Note that
from Lemma 1, the announcement is unique, hence F1(ω∗) is well-defined. Trader i’s new
private information is F1(ω∗) ∩ Πi(ω

∗).
Trader 2 is next to make a public announcement and her private information is F1(ω∗)∩

Π2(ω∗). At t2, she announces y2 = dP(F1(ω∗) ∩ Π2(ω∗), y1) and the updated public infor-
mation is F2(ω∗) = {ω′ ∈ F1(ω∗) : dP(F1(ω∗) ∩ Π2(ω′), y1) = y2}. Trader 3 updates her
private information to F2(ω∗) ∩ Π3(ω∗), makes an announcement and the process goes on.
More generally, player a(tk) = i at time tk has private information F = Fk−1(ω∗) ∩ Πi(ω

∗)
and announces yk = dP(F, yk−1) = argmax

y∈Y
min
p∈PF

Ep
[
s(y,X)− s(yk−1, X)

]
.

Let E = {Fk(ω) ∩ Πa(tk)(ω)}k≥0,ω∈Ω be the collection of all events on which the traders
update their beliefs, given that it is their turn to make an announcement. We say that ΓM

is regular if P is regular with respect to E .

4.1 Information aggregation

Our first main result is to fully characterize information aggregation in terms of strongly
separable securities, in an environment with myopic and ambiguity averse traders.

Theorem 1 Fix security X, information structure Π and continuous strictly proper scoring
rule s. Information gets aggregated for any regular ΓM(Ω, I,Π, X,P , y0, Y, s) if and only if
X is strongly separable.

To provide some intuition about the result, consider the following Lemma, which is a
generalisation of “reaching a consensus”, first studied in Geanakoplos and Polemarchakis
(1982).

Lemma 3 Let regular ΓM(Ω, I,Π, X,P , y0, Y, s). At any state ω, there exists time tk such
that

(i) Public information is no longer updated, so that Fk′(ω) = Fk(ω) for every tk′ ≥ tk,

(ii) No trader i changes her prediction yi after time tk+2n,

(iii) The traders reach an agreement, so that y = yi for all i ∈ I.

The first result, that the public (and therefore private) information is no longer updated
after some time tk, is a direct consequence of the finiteness of the state space. The second
result specifies that, at most two rounds of predictions after tk, no trader changes her pre-
diction any more. This result is not straightforward, because the myopic prediction depends
not only on the private information, as in the SEU case, but also on the previous prediction.
Since there are many possible myopic predictions, it could be the case that traders engage
in a never-ending cycle of revised predictions, even though their private information does
not change. This does not occur, partly because of a monotonicity property of the scoring
rule, adjusted for the case of multiple priors, that the further away the prediction is from the
true expected value, the lower is the expectation of the score. The third result states that
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traders eventually agree on the prediction. Again, this is not straightforward because, with
MEU, there is no longer separability across states, as a different belief might be picked at
each partition cell, hence we cannot apply the law of iterated expectations.13 Nevertheless,
separability is indirectly imposed by the scoring rule and the fact that each trader’s (constant
across partition cells) prediction is tied to another trader’s (constant across partition cells)
prediction, hence allowing us to derive the result.

5 Strategic traders

Consider a game ΓS(Ω, I,Π, X, {Pi}i∈I , y0, Y, s, β), where I is the set of n players, s is
a strictly proper scoring rule, y0 is the market maker’s initial announcement at time t0,
Y = [y, y] is the set of possible announcements that a player can make and β is the common
discount rate. For simplicity, we assume that each trader has the same set Pi = P of priors.
Alternatively, we could assume that each i has beliefs Pi and there is a common prior, so
that

⋂
i∈I
Pi 6= ∅.

Let Hk = (y1, . . . , yk) be a history of announcements up to time tk and H0 be the empty
history. Given any two histories Hk = (y1, ..., yk) and H l = (y′1, ..., y

′
l), let (Hk, H l) be their

concatenation. An important element of the game is that there is no strategic ambiguity.
Although traders have multiple priors over Ω, a mixed strategy consists of randomising using
a unique probability distribution. Player i trades at periods ti+nk, k ∈ N, hence a(ti+nk) = i.
Her mixed strategy at time tk is a measurable function σi,k : Πi × [y, y]k−1 × [0, 1] −→
[y, y]. It specifies an announcement yk, given the element of her partition, the history of
announcements (y1, . . . , yk−1) up to time tk and the realisation of random variable ιk ∈ [0, 1],
which is drawn from the uniform distribution. These draws are independent of each other and
of the true state ω. The “full state” is φ = (ω, ι1, ι2, . . .), describing the initial uncertainty
and the randomisations of the players. Let Φ = Ω × [0, 1]N be the full state space. Player
i’s strategy, denoted σi, is a set of strategies at all times where it is her turn to make an
announcement. Let σ = (σ1, . . . , σn) be a profile of strategies.

A profile of strategies σ and a full state φ determine a sequence of predictions “on-
path”, which we denote y1(σ, φ), y2(σ, φ), . . .. Let Hk(σ, φ) = (y1(σ, φ), . . . , yk(σ, φ)) be the
history at tk generated by σ and φ, on-path. Given a history Hk−1, which may not be
on-path, let yk−1+m(σ, φ|Hk−1) be the announcement at time tk−1+m if traders play accord-
ing to strategy profile σ and full state φ, from tk onwards, where m ≥ 0. We denote by
Hk−1+m(σ, φ|Hk−1) =

(
Hk−1, yk(σ, φ|Hk−1), . . . , yk−1+m(σ, φ|Hk−1)

)
the history that is gen-

erated by these announcements.
Let ω(φ) and ιk(φ) be the first and k + 1 components of full state φ = (ω, ι1, . . .),

respectively. At time tk, Trader i knows component ιl(φ), which denotes the realisation of
the random variable at tl, if a(tl) = i and l ≤ k. Her private information at time tk and state
φ is Πk

i (φ) = Πi(ω(φ)) × [0, 1]k
⋂

[φ′ : ιl(φ
′) = ιl(φ) for all l ≤ k with a(tl) = i]. Trader i’s

information set at decision node (Hk−1, φ) is denoted I(Hk−1, φ) = Πk
i (φ). Let I k

i be the
collection of all information sets for i at time tk and I be the collection of all information

13Equivalently, dynamic consistency is violated. See Galanis (2019) for a discussion of dynamic consistency
in a general framework with multiple beliefs and convex preferences.
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sets.
The public information revealed at time tk+m, m ≥ 0, after history Hk and given that

traders play from tk+1 according to σ at full state φ is

Fk+m(σ, φ|Hk) = {φ′ ∈ Φ : Hk+m(σ, φ|Hk) =
(
yk+1(σ, φ′|Hk), . . . , yk+m(σ, φ′|Hk)

)
}.

If k = 0, then we denote by Fm(σ, φ|H0) = Fk+m(σ, φ) the public information at tm that is
revealed when everyone plays on-path.

Player a(tk+m) = i, who makes an announcement at tk+m, can combine the public in-
formation Fk+m(σ, φ|Hk) with her private information Πk+m

i (φ) ⊆ Φ in order to form her
updated private information. We denote the player’s updated private information given
strategy σ, state φ and history Hk, by

Fk+m
i (σ, φ|Hk) = Πk+m

i (φ)
⋂
Fk+m(σ, φ|Hk).

A system of beliefs is a collection of compact and convex sets of beliefs, one for each
information set.

Definition 4 A system of beliefs is a tuple P = {P(I)}I∈I such that each P(I) is compact
and convex.

To save on notation, we denote the beliefs P(I(Hk, φ)) at an information set as P(Hk, φ).
We now define the continuation payoff of player a(tk) at decision node (Hk−1, φ). Note

that we define this payoff also in nodes that are not reached given strategy profile σ.

Definition 5 The continuation payoff of player a(tk) = i at time tk and state φ, given
strategy profile σ, history Hk−1 and system of beliefs P is

V (Hk−1, φ, σ,P) =

min
p∈P(Hk−1,φ)

Ep

[
∞∑
m=0

βnm
(
s
(
yk+nm(σ, φ|Hk−1), X(φ)

)
− s
(
yk+nm−1(σ, φ|Hk−1), X(φ)

))]
.

The expectation is taken over Φ and we set X(φ) = X(ω(φ)), where ω(φ) ∈ Ω is the
first component of φ. To save on notation, we denote Vi with V , as it is clear in each time
tk who is making the announcement. There is one exception at period 0, after each player
has received her private information but before player 1 has made the first announcement,
so the history H0 is empty. In that case, we denote i’s ex-ante payoff as Vi(H

0, φ, σ,P).

5.1 Ex-ante and interim equilibria

One of the main issues in incomplete information games with ambiguity averse players
is that their preferences may not be dynamically consistent. This means that an ex-ante
optimal plan may be considered suboptimal by the same player at a subsequent period,
therefore choosing not to follow it. Ostrovsky (2012) shows that with SEU preferences and
for any Nash equilibrium, separable securities characterize information aggregation. Due
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to dynamic inconsistency, a similar result with MEU preferences is not true. However, we
show that strongly separable securities characterize information aggregation with interim
equilibria. In an interim equilibrium, the strategy profile is optimal at each time tk, when
everyone plays on-path and there is prior by prior updating. We are able to provide a
stronger result, as we only require that optimality holds for each tk ≥ tk′ , for some k′.
We call this an interim equilibrium at the limit. We also argue that if we impose dynamic
consistency, for example using rectangular priors (Epstein and Schneider (2003)), then an
ex-ante equilibrium is also interim. In such a case, strongly separable securities characterize
information aggregation in an ex-ante equilibrium, thus generalizing the result of Ostrovsky
(2012).

Definition 6 A strategy profile σ∗ is an ex-ante equilibrium if Vi(H
0, φ, σ∗,P) ≥ Vi(H

0, φ, σ′i, σ
∗
−i,P),

for all φ ∈ Φ, σ′i and i ∈ I.

Before defining the notion of an interim equilibrium, we specify that pair (σ,P) is con-
sistent if there is prior by prior updating on-path, given the information that is revealed in
each period.

Definition 7 Pair (σ,P) is consistent if, for any φ ∈ Φ, k ≥ 0 and player a(tk) = i,

(i) P(Hk(φ, σ), φ) is regular with respect to F = Fk+n
i (σ, φ|Hk),

(ii) P(Hk+n(φ, σ), φ) is the prior by prior updating of P(Hk(φ, σ), φ) given F .14

Consistent pair (σ,P) is an interim equilibrium at the limit if, after some time tk′ , σ is
optimal at each subsequent period. It is an interim equilibrium if tk′ is the initial period.
Note that we require that at tk, player a(tk) best responds given the equilibrium strategy
σ∗.

Definition 8 Consistent pair (σ,P) is an interim equilibrium at the limit if, for some
k′ ≥ 0 and all k ≥ k′, V (Hk(σ, φ), φ, σ∗,P) ≥ V (Hk(σ, φ), φ, σ′a(tk), σ

∗
−a(tk),P), for all σ′a(tk)

and φ. It is an interim equilibrium if k′ = 0.

Our first result is that if X is strongly separable, then for any interim equilibrium at the
limit, there is information aggregation. Conversely, if X is not strongly separable, then for
some interim equilibrium at the limit there is no information aggregation.

Theorem 2 Fix information structure Π and bounds Y .

(i) If security X is strongly separable under Π, then for any ΓS and any interim equilibrium
at the limit, information gets aggregated.

(ii) If security X is not strongly separable under Π, then there exist game ΓS and interim
equilibrium at the limit, such that information does not get aggregated.

14If k = 0 then we are at the initial time t0, so that a(t0) denotes each i ∈ I and P(H0, φ) = P.
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We now present an informal discussion on the issue of existence of equilibrium. As with
Ostrovsky (2012), standard existence results do not apply, because the action spaces are
infinite. He resolves this problem by considering a discrete version of the game, so that
each player can only choose from a finite set of predictions and then shows that, as the
grid becomes sufficiently fine, information gets approximately aggregated. An additional
problem we encounter in our setting is that we employ an interim, instead of an ex-ante,
equilibrium, due to dynamic inconsistency. However, we argue that in the special case where
beliefs are rectangular and therefore there is dynamic consistency, an ex-ante equilibrium is
also interim. We could then extend the result of Pahlke (2018), who shows that there always
exists an ex-ante equilibrium with rectangular beliefs, in a setting with finite actions and
finitely many periods.

Rectangularity, examined by Epstein and Schneider (2003), is a generalisation of the law
of iterated expectations, which specifies that a (full support) prior can be decomposed by the
marginals and the Bayesian updates given a partition Π of Ω, so that p(ω) =

∑
E∈Π

p(E)pE(ω)

for all ω ∈ Ω, where pE = p(·)
p(E)

is the Bayesian update of p given E.
Let P be a set of priors and Π be a partition of Ω. For each partition element E ∈ Π,

let pE = p(·)
p(E)

, p ∈ P , be the Bayesian update of some prior p ∈ P , given E. We say that P
is rectangular with respect to Π if the following condition holds. Consider any collection of
Bayesian updates pE, one for each E ∈ Π, noting that pE and pE′ may not be the Bayesian
updates of the same prior p′ ∈ P . Then, for any prior p′ ∈ P , the reconstructed prior
p(·) =

∑
E∈Π

p′(E)pE(·) is also an element of P . Although we define rectangularity in the case

of finite state space Ω, this is easily extended in the case of Φ.
Epstein and Schneider (2003) show that rectangular priors and prior by prior updating

imply dynamic consistency.15 Suppose that σ∗ is an ex-ante equilibrium and beliefs P are
such that each Pi is rectangular given the sequence of partitions {Fki (σ, φ) : φ ∈ Φ}, that are
generated by the revealing of information, at each time tk where i makes an announcement.
Then, dynamic consistency implies that i plays a best response at each time tk, so that
(σ,P) is also an interim equilibrium. We therefore have the following result.16

Corollary 1 Fix information structure Π and bounds Y . Consider a consistent pair (σ∗,P)
and suppose that each Pi is rectangular with respect to i’s partition {Fki (σ, φ) : φ ∈ Φ}, for
each tk where i makes an announcement.

(i) If security X is strongly separable under Π and σ∗ is an ex-ante equilibrium, then
information gets aggregated.

(ii) If security X is not strongly separable under Π, then there exist game ΓS and an ex-ante
equilibrium such that information does not get aggregated.

15Other rules that imply dynamic consistency are updating only a subset of priors, as in Hanany and
Klibanoff (2007) for MEU preferences, a generalisation for uncertainty averse preferences in Hanany and
Klibanoff (2009), including the smooth rule for the smooth model of Klibanoff et al. (2005), and the Bayesian
updating of subjective beliefs in Galanis (2019) for general convex preferences.

16We do not prove this Corollary formally, as (i) is straightforward, whereas the proof of part (ii) is the
same as the proof for Theorem 2.
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Pahlke (2018) shows that an ex-ante equilibrium is also an interim equilibrium with
rectangular priors, but her result can be extended in our setting with infinite periods, as
the proof is inductive.17 She also shows that an ex-ante equilibrium with rectangular beliefs
always exists. Ellis (2018) argues that in games with incomplete information and MEU
preferences, that satisfy dynamic consistency, consequentialism and a common set of priors
P , players act as if they have SEU preferences. We avoid such a criticism in the case of
rectangular priors, because the proof of Theorem 2 allows for different priors Pi, with a non-
empty intersection. Bade (2016) argues that the behavior of dynamically consistent players,
who follow an ex ante optimal plan, cannot be distinguished from the behavior of players
with SEU preferences.18 However, our result of information aggregation only requires an
interim equilibrium at the limit, not an ex ante equilibrium.

5.2 Revision-proof equilibrium

The interim equilibrium at the limit imposes dynamic consistency “eventually”. How-
ever, another way of solving the issue of dynamic inconsistency is by imposing a solution
concept similar to the consistent planning of Strotz (1955), which is a refinement of backward
induction. Effectively, the decision maker takes into account the constraint that her future
selves might have different preferences and may not follow through a plan that is optimal
now. Since in our environment there are infinitely many periods we cannot impose backward
induction, so the generalisation would be to check for one-shot deviations.

Before defining the notion of consistent planning, we strengthen Definition 8 to off-path
consistency, by additionally imposing prior by prior updating at all decision nodes, whenever
possible.19

Definition 9 Tuple (σ,P) is consistent off-path if, for any full state φ ∈ Φ, history Hk,
k ≥ 0 and player a(tk) = i,

(i) P(Hk, φ) is regular with respect to F = Fk+n
i (σ, φ|Hk),

(ii) If
⋃

p∈P(Hk,φ)

Supp(p)
⋂
F 6= ∅, then P(Hk+n(σ, φ|Hk), φ) is the prior by prior updating

of P(Hk, φ) given F .20

At decision node (Hk, φ), the beliefs of player a(tk) = i are P(Hk, φ). Given that every-
one plays according to σ and φ for one round of n announcements, i’s private information
is updated using new information F = Fk+n

i (σ, φ|Hk). Consistency requires that beliefs
P(Hk, φ) are regular with respect to F and that there is prior by prior updating, whenever
possible.

17Using the smooth rule and the smooth model, Hanany et al. (2018) show the existence of a Sequential
Equilibrium with Ambiguity, in a setting with finite actions and periods.

18She proposes the notion of semi-consistency, which allows for different sets of equilibria and predictions.
19Off-path consistency adapts the standard definition of consistency in a Perfect Bayesian Equilibrium

(Fudenberg and Tirole (1991)). Bonanno (2013, 2016) examines the relationship between Perfect Bayesian
Equilibrium and Sequential Equilibrium, by providing a qualitative notion of AGM-consistency, which is
based on the theory of belief revision introduced by Alchourrón et al. (1985).

20If k = 0 then we are at the initial time t0, so that a(t0) denotes each i ∈ I and P(H0, φ) = P.
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Definition 10 Consistent off-path tuple (σ∗,P) is a consistent-planning equilibrium if there
is no decision node (Hk−1, φ), player a(tk) = i and alternative strategy σ = (σi, σ

∗
−i), with

σi,k′ = σ∗i,k′ for all k′ 6= k, such that

V (Hk−1, φ, σ,P) > V (Hk−1, φ, σ∗,P).

This concept (for infinitely many periods) has not yet been studied in games with in-
complete information and ambiguity averse preferences. However, in complete information
games with time-inconsistent preferences, Asheim (1997) and Ales and Sleet (2014) argue
against such a solution concept and provide a refinement, revision-proofness, which we adapt
in our setting.21

A consistent off-path tuple (σ∗,P) is a revision-proof equilibrium if it is immune to any
“collective” deviations by a trader and her future selves, where every future self evaluates the
deviation given her updated beliefs and preferences. This latter condition is crucial because
of dynamic inconsistency. Even if Trader i considers a deviation profitable at time tk, it does
not mean that her future self, after r rounds, will also find it profitable at tk+nr. Note that
we only check initial deviations from each on-path decision node (Hk−1(φ, σ∗), φ), not from
any history.

Definition 11 Consistent off-path pair (σ∗,P) is a revision-proof equilibrium if there is no
decision node (Hk−1(φ, σ∗), φ), player a(tk) = i and alternative strategy σ = (σi, σ

∗
−i) such

that for all r ≥ 0 and Hnr,

V ((Hk−1(φ, σ∗), Hnr), φ, σ,P) ≥ V ((Hk−1(φ, σ∗), Hnr), φ, σ∗,P),

with the inequality strict for at least one Hnr.

Our concept has three differences from that of Asheim (1997) and Ales and Sleet (2014).
First, they only consider complete information games, hence they do not specify how beliefs
are updated. Second, they consider deviations from any set of subsequent players, whereas
we only check deviations of a single player and her future selves. Third, they check deviations
from any history, not just the one that is followed on-path.

Our second main result in a strategic environment shows that strongly separable securities
aggregate information in all revision-proof equilibria.

Theorem 3 Fix information structure Π and bounds Y .

(i) If security X is strongly separable under Π, then for any ΓS and any revision-proof
equilibrium, information gets aggregated.

(ii) If security X is not strongly separable under Π, then there exist game ΓS and a revision-
proof equilibrium such that information does not get aggregated.

21Note that, as is the case with complete information games, revision-proof equilibria may not always
exist.
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6 Experiment

Our experimental design focuses on three dimensions. The first is whether beliefs about
events are precise or not. In particular, we either inform subjects about the exact composition
of the urn, so that they formulate precise beliefs and have Subjective Expected Utility (SEU)
preferences, or we provide partial information about the composition, so that they formulate
multiple priors that give rise to Maxmin Expected Utilty (MEU) preferences. The second
dimension relates to the type of security that is traded: separable securities, such as an
Arrow-Debreu security, or strongly separable securities.

The third dimension relates to the initial value or price of the security, which is provided
by the uninformed market maker. We allow for two initial values: 0 and 50 (more details on
the choices are provided below). We therefore examine the impact on information aggregation
when the market maker announces an initial value of 0, and when he announces an initial
value of 50. In summary, we apply a 2 × 2 × 2 experimental design to examine the impact
on information aggregation of the market type, security type and initial value.

6.1 Experimental design

Our theory generates several testable implications, which we test in the lab. We also com-
pare the information aggregation properties of separable and strongly separable securities.
In this section we describe our experimental design.

Initially, subjects were endowed with 6,000 Experimental Currency Units (ECUs) as a
show-up fee. The conversion was 2,000 ECUs for e1. There were 3 parts in the experimental
instructions. In the first part, we measured subjects’ risk attitudes. Specifically, we used a
variant of the Eckel-Grossman test (Eckel and Grossman (2002, 2008)), where subjects were
presented with five gambles of varying riskiness and were required to select the one they
prefer. In the second part, the game play took place. The instructions here accommodated
the underlying assumptions about the nature of beliefs, type of security and initial value.
The second part was the only part that differed across the treatments conducted. In the
third part, subjects were asked to complete a questionnaire about their demographic char-
acteristics. With the conclusion of the experimental session, subjects were paid in cash by
the experimenter.

In the game play stage, subjects were recruited to play the role of traders forecasting
the value of stock, which is either high or low. The stock value was randomly determined,
based on the color of a ball drawn from an urn with 90 colored balls. The information
on the color composition of the urn as well as the mapping of colors to high or low stock
values were treated variables, reflecting the market type (unique versus multiple priors) and
security type (separable versus strongly separable), respectively. In addition, before making
a decision, subjects would receive a signal about the color of the drawn ball. The information
about the composition of the urn, the structure of the signals, the payoff functions as well
as the initial value (also a treated variable) were explicitly explained in the experimental
instructions. The experimental instructions are reported in the Appendix.

To ensure that the subjects understood the environment, before the actual game play,
they had to complete a 15-question quiz. After the quiz, subjects were asked to take part in
12 rounds of prediction markets. In each round, traders made sequential predictions about
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the value of the security (this was an integer from 0 to 100). Specifically, Trader 1 would
make a prediction in the first trading period, then Trader 2 would provide her prediction in
the second trading period, then, Trader 1, and so on and so forth.

Although the number of rounds was common knowledge, the number of trading periods
within each round was unknown. However, subjects were informed that there was a 95%
chance of having an extra trading period within a given round.22 Whether or not there would
be an extra period was thus determined by a random draw. Furthermore, trading pairs were
fixed for the duration of the round, but new pairs were formed in every new round. This
information was also common knowledge.

At the beginning of each round, traders were given an endowment of 1,500 ECUs (recall
the conversion was 2,000 ECUs for e1). Payoffs were calculated based on the Market Scoring
Rule (MSR) at the end of each trading period. Thus, the trader’s payoff was a function of (a)
the stock value (high or low), (b) the trader’s own prediction, and (c) the previous trader’s
reported prediction. When the value of the stock was high, the trader’s payoff was given by
the formula:

0.01[(100− previous trader′s reported prediction)2 − (100− trader′s prediction)2].

When the value of the stock was low, the trader’s payoff was calculated by the formula:

0.01[(previous trader′s reported prediction)2 − (trader′s prediction)2].

The round payoff was then the summation of all the payoffs of the trading periods in the
round. Crucially, the round payoff was determined at the end of the round, when the stock
value was revealed to the traders. It was possible that based on the payoffs of a subject’s
predictions in the round that her funds would go down to zero or even negative.23 In that
case, we would zero their round payoff. Specifically, subjects were told that “if your round
payoff is a negative number, then, we will zero your round payoff for that round. In the new
round, you will be given once again your starting 1,500 ECUs.” The final payoffs were the
summation of all the round payoffs of the trader in the 12 rounds played. We describe next
the treatments.

In the treatments with unique priors, subjects were given the exact composition of the
urn. Specifically, they were told that there are 90 balls in the urn, where 30 of those are
red, 30 are green and 30 are blue. This information allowed subjects to formulate precise
beliefs about events and have Subjective Expected Utility (SEU) preferences. Henceforth,
this market is referred to as SEU.

In the treatments with multiple priors, subjects were not given the exact composition
of the urn. In the treatment with multiple priors and separable securities, subjects were
informed that the urn contains 90 balls, where between 0 and 30 are red balls, between
20 and 70 are green balls, and between 20 and 70 are blue balls. This setting mirrors the
example of Section 2, where one belief puts probability 0 on the first state, which we call
red in the experiment.

In the treatment with multiple priors and strongly separable securities, subjects were

22This assumption is similar to that made in Roth and Murnighan (1978), Fréchette and Yuksel (2017),
Cabral et al. (2014) and Vespa (2011). It is necessary in order to simulate the infinitely-many-periods
assumption of the theoretical setting and avoiding subjects implementing backward induction reasoning.

23In the actual experiments, no subject lost the entire endowment given in the beginning of the round.
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informed that the urn contains 90 balls, where between 1 and 30 are red balls, between 20
and 69 are green balls, and between 20 and 69 are blue balls. Notice that we change the
composition, so that no belief puts zero probability on the red state. The reason is that since
our theory predicts that there will be information aggregation on the red state, we need to
apply prior by prior updating given that red is revealed, and therefore all beliefs must assign
positive probability on red.

Providing partial information about the composition of the urn enables ambiguity averse
subjects to formulate multiple priors that give rise to the Maxmin Expected Utilty (MEU)
preferences. Henceforth, this market is referred to as Amb.

In the case of separable securities, we informed subjects that if the red ball was drawn,
then, the stock value would be high (i.e. 100), otherwise the stock value would be low (i.e.
0). In the case of strongly separable securities, we informed subjects that if the red ball or
green ball was drawn, then, the stock value would be high (i.e. 100), otherwise the stock
value would be low (i.e. 0).

The initial value of the security was also a treated variable. The two security types
exhibit the same information aggregation, in every single state, for all initial values with
the exception of 0. At the 0 initial value, the information aggregation should still be the
same across the two security types in the green and blue states, but worse in the red state
for the separable security with ambiguity.24 We thus chose to investigate experimentally
information aggregation at the initial value of 0, as well as at an initial value where the two
security types perform the same. We chose 50, as the midpoint between 0 and 100.

Finally, all treatments included identical information structure about traders’ signals.
The structure was common knowledge and was presented to subjects in a tabular form
as shown in Table 1, though the signal was private. This information was also explicitly
discussed in the instructions. For instance, subjects were told that “if the drawn ball is
red (hence the value of the stock is high), Trader 1 will be informed that the drawn ball is
not blue, whereas Trader 2 will be informed that the drawn ball is not green.” Analogous
descriptions were provided for the other colors as well.

Table 1: Information Structure

Private Information

Ball Drawn Trader 1 Trader 2

Red Not Blue Not Green

Green Not Blue Green

Blue Blue Not Green

Notes: The table displays the information that was provided to the two traders. Even though the structure

was common knowledge, the trader’s signal in each round was private.

24Note that the failure of information aggregation in the Amb setting with a separable security is special
to the particular example we use. In general, information aggregation can fail at multiple initial values.

24



Recall that there were 12 rounds of predictions where the probability of having another
trading period within a given round was 95%. The draws for the number of trading periods
within each round was done ex ante to ensure that all treatments had the same number of
trading periods. The states were also drawn ex ante and hard coded. We did so to enable
a consistent comparison across treatments without invoking variability in learning effects.
The actual numbers of trading periods in each round were {4,16,17,12,9,15,12,8,17,16,21,5}.
Thus, the round with the highest number of trading periods was round #11 with 21 trading
periods, and the round with the lowest number was round #1 with 4 trading periods. The
realized states were {Red,Blue,Blue,Blue,Red,Blue,Red,Green,Red,Green,Blue,Blue}.25 The
realized color of the ball was revealed to the subjects at the end of the respective round.
Recall that depending on the type of security, the green color could reflect a low stock value
(in the case of separable securities) or a high stock value (in the case of strongly separable
securities).

The experimental sessions took place in February of 2019 at the Laboratoire d’Économie
Expérimentale de Paris (LEEP). We conducted two sessions per treatment. The 288 subjects
were recruited from the database of the Université Paris 1 Panthéon - Sorbonne. We sent
emails publicizing the experiment, and interested individuals replied by email. We had
participants from a variety of majors, such as business, computer science, economics, history,
political science, engineering, biology, finance, art, physics and mathematics. Participants
were allowed to participate in only one session. The sessions lasted around an hour and a half.
Average earnings per participant were e12.90. The experimental codes were programmed
using the experimental software z-Tree (Fischbacher (2007)). Some general characteristics of
the sessions are shown in Table 2. Note that each treatment is denoted by an acronym. In
particular, the acronym (market type, security type, initial value) consists of the market type
(SEU for the market with SEU preferences or Amb for the market with MEU preferences),
the security type (S for separable securities or StS for strongly separable securities) and the
initial value (0 or 50).

6.2 Theoretical predictions

Recall that we investigate the impact on information aggregation of three dimensions.
The first is the market type (unique priors and SEU preferences versus multiple priors and
MEU preferences). The second relates to the type of security that is traded (separable versus
strongly separable). The third relates to the initial announcement of the uninformed market
maker (0 or 50).

To measure the degree of information aggregation in a market, we use the true value of
the security as a benchmark. This is the most natural candidate to serve as a benchmark
for several reasons. First, by construction, the true value of the security is always revealed if
the private information of the two traders is aggregated. Second, Ostrovsky (2012) showed
that in any environment with SEU preferences, the predictions of Bayesian traders always
converge to the true value for separable securities. The same holds true in environments with

25The respective signals (i, j), where i is the signal of Trader 1 and j is the signal of Trader 2, were {(Not
Blue, Not Green),(Blue, Not Green),(Blue, Not Green),(Blue, Not Green),(Not Blue, Not Green),(Blue,
Not Green),(Not Blue, Not Green),(Not Blue, Green),(Not Blue, Not Green),(Not Blue, Green),(Blue, Not
Green),(Blue, Not Green)}.
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Table 2: Characteristics of the Experimental Sessions

Initial Value is 0

# of Subj. # of Ses. Market Type Security Type Acronym

36 2 SEU Separable SEUS0

36 2 Amb Separable AmbS0

36 2 SEU Str. Separable SEUStS0

36 2 Amb Str. Separable AmbStS0

Initial Value is 50

# of Subj. # of Ses. Market Type Security Type Acronym

36 2 SEU Separable SEUS50

36 2 Amb Separable AmbS50

36 2 SEU Str. Separable SEUStS50

36 2 Amb Str. Separable AmbStS50

Notes: In the first column, we provide the total number of participants in each treatment. In the second

column, we provide the number of sessions per treatment. In every session, we had 18 participants. Treat-

ments differed in the market type, the type of securities traded, and the initial value. The acronyms in the

last column consist of the market type (SEU for the market with SEU preferences or Amb for the market

with MEU preferences), the security type (S for separable securities or StS for strongly separable securities)

and the initial value (0 or 50).

MEU preferences and strongly separable securities (Theorems 1, 2 and 3). We therefore use
the true value of the security as our baseline and measure its absolute distance from the
final prediction.26 We call this measure, for brevity, AD (absolute difference). We say that
the information aggregation in market B is not as good as that in market A, if the AD in
market B is significantly larger than that in market A.

We now formulate our conjectures, which refer to separable securities in an environment
with ambiguity, and theoretical predictions, which refer to the testable implications of our
theory of strongly separable securities. Conjecture 1 interprets the main result of Ostrovsky
(2012) in an environment with ambiguity aversion. It specifies that separable securities
aggregate information irrespective of whether traders have a unique belief and SEU, or
imprecise beliefs and ambiguity aversion.

26Our criterion is one of many. For example, we could have used the last predictions of both traders,
instead of the final prediction, in our distance measure. The results are almost identical. However, to
maintain consistency between the theory and the statistical analysis, we chose to measure the distance
between the true value of the security and the final trader’s prediction. Another example would be the
Euclidean distance. Our results are not sensitive to similar distance measures. For our purposes, the
simplest suffices.

26



Conjecture 1 Assuming an initial value of 0 and separable securities, information aggre-
gation across the SEU and Amb markets is the same, regardless of the color of the drawn
ball.

Prediction 2 is a direct implication of Theorems 1, 2 and 3, which show that strongly
separable securities always aggregate information, in both SEU and Amb markets, with
myopic or strategic traders.

Prediction 2 Assuming an initial value of 0 and strongly separable securities, information
aggregation across the SEU and Amb markets is the same, regardless of the color of the
drawn ball.

We now test whether the market maker’s initial announcement has an impact on the
degree of information aggregation. Ostrovsky (2012) specifies that the initial price does not
influence the information aggregation in an environment with SEU. Since his theory does
not extend to an environment with ambiguity aversion, we again state this as a conjecture.
In the case of strongly separable securities, we state this as a testable prediction. In both
cases, we examine whether information aggregation is influenced when the initial value is 50.

Conjecture 3 For separable securities and assuming an initial value of 50, information
aggregation across the SEU and Amb markets is the same regardless of the color of the
drawn ball.

Prediction 4 For strongly separable securities and assuming an initial value of 50, infor-
mation aggregation across the SEU and Amb markets is the same regardless of the color of
the drawn ball.

Finally, we test whether, holding the Amb market constant, changing the initial value
from 0 to 50 has any impact on the degree of information aggregation.

Conjecture 5 In the Amb market with separable securities and for any color of the drawn
ball, the information aggregation under an initial value of 0 is not significantly different than
under an initial value of 50.

Prediction 6 In the Amb market with strongly separable securities and for any color of
the drawn ball, the information aggregation under an initial value of 0 is not significantly
different than under an initial value of 50.

6.3 Results

Each hypothesis is matched with the corresponding result; that is, result i is a report on
the test of conjecture or prediction i.
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6.3.1 Descriptive statistics

In this section, we report some descriptive statistics about the absolute difference (AD)
in distance of the trader’s final prediction from the true value of the security. On one hand,
when the stock value is low (i.e. in the green and blue states of the separable securities,
and in the blue state of the strongly separable securities), the median AD also indicates the
median last reported prediction. On the other hand, when the stock value is high (i.e. in the
red state of the separable securities, and in the red or green states of the strongly separable
securities), one needs to subtract the median AD from 100 to get the median last reported
prediction.

Looking at the median ADs, typically the red state had the largest value, then the green
state, and finally the blue state. For instance, in the treatment SEUS0, the median AD for
the red state was 30 (i.e. the median last reported prediction was 70), the median AD for
the green state was 15 and for the blue state it was 10. The last two values were also the
median last reported predictions. There was also one treatment where the median AD of
the red state was equal to that of the green state; specifically, in the treatment AmbStS0,
the red and green states had a median AD of 20. In another treatment, SEUStS0, the green
state and the blue state both had a median AD of 5.

The highest median AD was 50 in treatments AmbS0 and AmbS50 for the red states.
The fact that subjects consistently had trouble aggregating information with the red state
should not be surprising given that it was the only state that did not explicitly reveal the
color of the drawn ball to at least one trader, in contrast to the green and blue states. For
better visualisation of the results, we display in Figure 2 the box plots of the ADs across the
market types when the initial value is 0, and in Figure 3, we display the box plots when the
initial value is 50. It is evident from the box plots that there was a lot of variability in the
reports of the subjects. Again, this is not surprising as the nature of the game allows for
strategic behavior, which results in noisier predictions.

6.3.2 Information aggregation

In this section, we perform statistical analysis to investigate the impact on information
aggregation of the treated variables. For the analysis, we use the Mann-Whitney test, where
the H0 states that the AD in the SEU market is greater or equal to the AD in the Amb
market when fixing the realized state. The p-values are displayed in Table 3.

The first conjecture dealt with the case of separable securities and initial value of 0. The
first result is formalized next.

Result 1 For an initial value of 0, information aggregation across the SEU and Amb mar-
kets for separable securities is the same when the drawn balls are green or blue. When the
drawn ball is red, information aggregation in the Amb market is not as good.

Support. Contrary to our conjecture, we find that in the red state, information aggregation
in the Amb market is not as good (p-value is 0.001) as that in the SEU market. Therefore,
the H0 can be rejected at the conventional 5% level of statistical significance.
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Figure 2: Box Plots for Initial Value of 0
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Notes: We display the box plots of the absolute difference across the market types conditional on the realized

state (red, green, blue), when the initial value is 0.

The second prediction also dealt with an initial value of 0, though this time, the informa-
tion aggregation in the strongly separable securities is investigated. Our second result sheds
light to the strength of the strong separability condition.

Result 2 For an initial value of 0, information aggregation across the SEU and Amb mar-
kets for strongly separable securities is the same regardless of the color of the drawn ball.

Support. The prediction is confirmed in the red, green and blue states, where the p-values
are 0.107, 0.140 and 0.195, respectively.

Conjecture 3 and Prediction 4 test the effect on information aggregation of the market
maker’s announcement of the focal value of 50, for separable and strongly separable securities,
respectively.

Result 3 For an initial value of 50 and given a separable security, information aggregation
across the SEU and Amb markets is the same regardless of the color of the drawn ball.

Support. The conjecture is confirmed for all three states (p-values are 0.392, 0.342 and
0.265 in the red, green and blue states, respectively).

Result 4 For an initial value of 50 and given a strongly separable security, information
aggregation across the SEU and Amb markets is the same regardless of the color of the
drawn ball.
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Figure 3: Box Plots for Initial Value of 50
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Notes: We display the box plots of the absolute difference conditional on the realized state (red, green, blue)

when the initial value is 50.

Support. The prediction is confirmed for all three states (p-values are 0.316, 0.168 and 0.262
in the red, green and blue states, respectively). Therefore, our results, here, are entirely in
line with the theoretical prediction in the strongly separable securities.

Conjecture 5 and Prediction 6 test the degree of information aggregation in an environ-
ment with ambiguity, when the initial value changes from 0 to 50. For the analysis, we again
use the Mann-Whitney test, where the H0 states that the AD in the Amb market is the
same across 0 and 50 initial values when fixing the realized state.

Result 5 In the Amb market with a separable security, information aggregation across the
0 and 50 initial values is the same in the red and green states, but not in the blue state.

Support. None of the p-values is statistically significant in the red and green states (the
p-values are 0.143 and 0.195, respectively). However, in the blue state, the p-value is 0.068;
thus, we reject the H0 at the 10% level of statistical significance.

Result 6 In the Amb market with a strongly separable security, information aggregation
across the 0 and 50 initial values is the same, regardless of the color of the drawn ball.

Support. The prediction is confirmed all three states ( red, green and blue states, where
the p-values are 0.111, 0.184 and 0.231, respectively). Therefore, our results, here, are again
entirely in line with the theoretical prediction in the strongly separable securities.
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Table 3: Mann-Whitney Tests on Information Aggregation

Panel A
Initial Value is 0

Separable Strongly Separable

Alternative hypothesis: ADi < ADj

p-values

Red State
SEU vs. Amb 0.001 0.107

Green State
SEU vs. Amb 0.479 0.140

Blue State
SEU vs. Amb 0.447 0.195

Panel B
Initial Value is 50

Separable Strongly Separable

Alternative hypothesis: ADi < ADj

p-values

Red State
SEU vs. Amb 0.392 0.316

Green State
SEU vs. Amb 0.342 0.168

Blue State
SEU vs. Amb 0.265 0.262

Notes: We utilize the Mann-Whitney tests to determine whether the absolute difference (AD) in the SEU

market is greater or equal to the AD in the Amb market when fixing the realized state. In Panel A, we

report the p-values of the comparisons in the ADs when the initial value is 0. In Panel B, we report the

p-values of the comparisons in the ADs when the initial value is 50.

7 Concluding remarks

The main purpose of the paper is to study the information aggregation properties of
markets, and in particular prediction markets with ambiguity averse traders. We find that
separable securities, which aggregate information in environments with precise probabilities
and SEU, are no longer sufficient when probabilities are imprecise. We confirm this result also
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in an experimental setting with subjects trading in a prediction market. This implies that
utilizing prediction markets to get a better prediction for events that are hard to quantify
might backfire, as traders could converge to the wrong price of the security.

We introduce a new class of strongly separable securities and show that they aggregate
information in an environment with ambiguity, irrespectively of whether traders play strate-
gically or not. We provide several testable implications of our theory, which we are able to
confirm in the lab. However, we also show that there is no security that is strongly separable
for all information structures. This is a negative result, because strong separability is nec-
essary for information aggregation, hence we find that there is no security that aggregates
information for all information structures. This is not only a negative result for the ability
of prediction markets to aggregate information with ambiguity, but of financial markets in
general.

A Proofs for the non-strategic environment

In this section we present the proofs for the characterization of strongly separable secu-
rities and the information aggregation in the non-strategic environment.

Proof of Lemma 1. Where convenient, we use the notation s(y)(.) ≡ s(y,X(.)). We
first show that argmax

y∈Y
min
p∈P

Ep
[
s(y) − s(y−1)

]
does, in fact, exist. This is true because s is

continuous function, therefore min
p∈P

Ep
[
s(y) − s(y−1)

]
is upper semi continuous (as infimum

of continuous functions) as a function of y. Since Y is compact, a maximum exists and the
set argmax

y∈Y
min
p∈P

Ep
[
s(y)− s(y−1)

]
is not empty.

Next, we define Z to be the convex hull of {s(y)}y∈Y . The set {s(y)}y∈Y is compact in Rl

because s is continuous in y and Y is compact, hence Z is compact. Consider the function
G : P × Z −→ R defined by G(p, z) = Ep[z − s(y−1)]. The function is linear in p and affine
in z. Moreover, it is continuous both in p and in z. The first is because of the definition of
weak∗ convergence and the second applying Lebesgue’s dominated convergence theorem.

By Sion’s minimax Theorem (Berge (1963), p. 210), there exists p∗ ∈ P and z∗ ∈ Z such
that for all (p, z) ∈ P ×Z it is Ep∗

[
z − s(y−1)

]
≤ Ep∗

[
z∗− s(y−1)

]
≤ Ep

[
z∗− s(y−1)

]
. Then

we get that min
p∈P

max
z∈Z

Ep
[
z − s(y−1)

]
= max

z∈Z
min
p∈P

Ep
[
z − s(y−1)

]
and it is achieved at p = p∗,

z = z∗.
For a fixed p, and becauseG(p, z) is affine in z, the unique maximiser of Ep

[
z−s(y−1)

]
over

z is s(Ep[X]) (since s is a proper scoring rule, by definition of Z), so that z∗ = s(Ep∗ [X]).
Hence we may conclude min

p∈P
max
y∈Y

Ep
[
s(y) − s(y−1)

]
= max

y∈Y
min
p∈P

Ep
[
s(y) − s(y−1)

]
and it is

achieved at p = p∗, y = Ep∗ [X].
We claim that y = Ep∗ [X] is a unique element of argmax

y∈Y
min
p∈P

Ep
[
s(y,X(ω))−s(y−1, X(ω))

]
.

To see that, let y′ 6= Ep∗ [X]. Then,

min
p∈P

Ep
[
s(y′, X(ω))− s(y−1, X(ω))

]
≤ Ep∗

[
s(y

′
, X(ω))− s(y−1, X(ω))big] <
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Ep∗
[
s(Ep∗ [X], X(ω))− s(y−1, X(ω))

]
= max

y∈Y
min
p∈P

Ep
[
s(y,X(ω))− s(y−1, X(ω))

]
.

Hence, the maximiser is unique.
For the third claim, note thatEp

[
s(z,X)−s(z,X)

]
= 0 for all p ∈ P , hencemax

y∈Y
min
p∈P

Ep
[
s(y,X)−

s(z,X)
]
≥ 0. Because z = Ep[X] for some p ∈ P , we have that p ∈ argmin

p∈P
max
y∈Y

Ep
[
s(y,X)−

s(z,X)
]

and y∗ = z.

Proof of Proposition 2. Suppose that X is not strongly separable for P and v. Then,
from Lemma 1 we have that for each ω ∈

⋃
p∈P

Supp(p) = E, for each i ∈ I, we have

Ep[X(ω) − v|Πi(ω)] = 0, for some p ∈ P , ignoring without loss of generality states ω′ for
which X(ω′) = v. Because Supp(p) ⊆ E, it cannot be that for some Trader i, state ω ∈ E
and λ ∈ R, (X(ω′)− v)λ > 0 for all ω′ ∈ Πi(ω) ∩ E.

Conversely, suppose that for some v ∈ R and E ⊆ {ω ∈ Ω : X(ω) 6= v}, for any
Trader i and state ω ∈ E, we have both (X(ω′) − v) > 0 and (X(ω′′) − v) < 0 for some
ω′, ω′′ ∈ Πi(ω)∩E. Then, for each i there exists p′′ with Supp(p′′) = E such that Ep′′ [X(ω)−
v|Πi(ω)] = 0. To see this, let E1 = {ω′ ∈ Πi(ω) : X(ω′) > v} with k1 elements and
E2 = {ω′ ∈ Πi(ω) : X(ω′) < v} with k2 elements. Then, k

∑
ω′∈E1

X(ω′) + (1− k)
∑

ω′∈E2

X(ω′) is

strictly above v for big enough k ∈ (0, 1) and strictly below v for small enough k. From the
Intermediate Value Theorem, for some k we have Ep′ [X(ω)− v] = 0, where p′ assigns k

k1
to

each state ω′ ∈ E1 and k
k2

to each state ω′ ∈ E2. We can then extend p′ to a belief p′′ with
full support on E, such that its conditional given Πi(ω) is p′.

Collect all these beliefs p′′ for each i and ω ∈ E, letting P be their convex hull. Note
that P is regular with respect to each Πi. From the third result of Lemma 1, given that the
previous announcement is v, every trader at each state ω will also announce v. Hence, X is
not strongly separable for v and P , a contradiction.

Proof of Lemma 2. Take any (non-constant) security X and consider the partition X
generated by its values: for each ω ∈ Ω, ω′ ∈ X (ω) if X(ω) = X(ω′). The partition X has
at least two partition cells. Let A be the partition cell generated by the lowest value of X,
call it vA, and B the partition cell generated by the highest value of X. Since Ω has at least
three states, we assume, without loss of generality, that the complement of A, denoted Ac,
has at least two states (if not, then the complement of B must have at least two states and
the same argument applies).

Consider an information structure with two traders. Trader 1’s partition cell at state
a ∈ A also includes state b ∈ Ac, so that Π1(a) = {a, b}. For any other state ω 6= a, b,
Π1(ω) = {ω}. Trader 2’s partition cell at a ∈ A also contains state c ∈ Ac, so that
Π2(a) = {a, c}, with b 6= c. For any other state ω 6= a, c, Π2(ω) = {ω}. Hence, the join of
the two traders’ partitions consists of singleton sets.

Let v be strictly higher than vA and strictly lower than all other values ofX. If we let event
E = {a, b, c} ⊆ {ω ∈ Ω : X(ω) 6= v} = Ω, then Π1(a) ∩ E = {a, b} and Π2(a) ∩ E = {a, c}.
For v, E and state ω = a, we have that for i = 1, 2, there is no λ ∈ R such that for all
ω′ ∈ Πi(ω) ∩E, (X(ω′)− v)λ > 0. The reason is that both traders consider possible a state
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where X has a value strictly higher than v, and a state where X has a value strictly lower
than v. Applying Proposition 2, we have that X is not strongly separable.

Proof of Lemma 3.
For (i), by construction, F0(ω) ⊇ F1(ω) ⊇ ... ⊇ Fk(ω). Because Ω is finite, there exists

tk such that Fk′(ω) = Fk(ω) for every tk′ ≥ tk.
For (ii), observe that the function Φ(p) = Ep[s(Ep[X], X) − s(z,X)], with p ∈ ∆(Ω) is

convex in p, for any z ∈ [a, b], with a = min{Ep[X] : p ∈ ∆(Ω)} and b = max{Ep[X] : p ∈
∆(Ω)}. Define the function g(Ep[X]) = Φ(p). Note that g is convex in {Ep[X] : p ∈ ∆(Ω)}
and because its unique minimiser is at z we get that g is decreasing at [a, z] and increasing at
[z, b].27 From Lemma 1, the myopic announcement of Trader i at time tk, when the previous
announcement is z, is given by dP(Fk−1(ω)∩Πi(ω), z) = Ep∗ [X] for some p∗ ∈ PFk−1(ω)∩Πi(ω),
hence dP(Fk−1(ω) ∩ Πi(ω), z) = arg min

x∈{Ep[X]:p∈PFk−1(ω)∩(Πi(ω))
}
g(x).

If z (the unique minimiser of Ep[X] for all p ∈ ∆(Ω)) is on the left hand side of A =
{Ep[X] : p ∈ PFk−1(ω)∩Πi(ω)}, then the left hand side extreme point of A is the minimising
value, and similarly if z is on the right hand side of A. This is due to the convexity of Φ,
therefore of g, and the fact that z is the global minimum.

Define Aiω′ = {Ep[X|Πi(ω
′)] : p ∈ PFk(ω)} for every i = 1, ..., n and ω′ ∈ Fk(ω) =

{ω1, . . . , ωl}.
Step 1: If there is no information revelation after tk, A

i =
⋂

ω′∈Fk(ω)

Aiω′ 6= ∅ for every

i = 1, ..., n.
If Ai = ∅, then Aiω′ ∩ Aiω′′ = ∅, for two states ω′, ω′′ ∈ Fk(ω). The second property of

Lemma 1 shows that at ω′, the trader can only make an announcement in Aiω′ , and similarly
for ω′′. Since Aiω′ ∩Aiω′′ = ∅, either ω′ or ω′′ is revealed not to be the true state, hence there
is further information revelation, a contradiction.

Step 2: If
⋂

j∈{1,...,n}
Aj = ∅, then no trader changes her prediction after tk+2n.

Define i0 = min{i :
⋂

j∈{1,...,i}
Aj = ∅}. Therefore, Ai0 has an empty intersection with⋂

j∈{1,...,i0−1}
Aj, and without loss of generality suppose that Ai0 is on the left hand side of⋂

j∈{1,...,i0−1}
Aj. Because

⋂
j∈{1,...,i0−1}

Aj is an interval, we can conclude that there are Ai1 and

Ai2 such that one of them define the left hand side extreme point of the interval and the
other one the right hand side extreme point.

From the second property of Lemma 1, each trader j makes an announcement in Aj.
Hence, for any value yk−1, trader i3 = max{i1, i2} makes a prediction belonging in the set⋂
j∈{1,...,i0−1}

Aj. For the same reason, any subsequent announcement up to i0 − 1 also belongs

to
⋂

j∈{1,...,i0−1}
Aj. From the convexity of g and the fact that Ai0 is to the left of that interval,

the prediction of i0 is always the right hand side extreme point of Ai0 , which we denote by
vi0 .

27We can observe that there exists p ∈ ∆(Ω) such that Ep[X] = z. In addition, the set {Ep[X] : p ∈ P}
is an interval, as a convex and closed set of the real numbers.
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For the next round, the announcement of the last trader potentially triggers different
announcements for traders j = 1, ..., i0 − 1. However, the same argument as before shows
that the announcement of i0 − 1 belongs to

⋂
j∈{1,...,i0−1}

Aj and i0 announces vi0 . Hence, the

announcements of all subsequent traders after i0 remain the same, implying that for the next
round, the announcements of every trader do not change anymore.

Step 3: If
⋂

j∈{1,...,n}
Aj 6= ∅, then no trader changes her prediction after tk+2n.

There are Ai1 and Ai2 such that one defines the left hand side extreme point of the
interval and the other defines the right hand side extreme point. Using similar arguments
as before, for any yk−1, trader i3 = max{i1, i2} gives a prediction belonging in the set⋂
j∈{1,...,n}

Aj. We denote the corresponding announcement with vi3 . From the second and

third properties of Lemma 1, we conclude that for j = i3, ..., n their announcements are
vi3 . Because vi3 ∈

⋂
j∈{1,...,n}

Aj we conclude that at the next round the announcement of each

trader 1, ..., i3 − 1 is vi3 , too. Hence we get v1 = ... = vn = vi3 .
For (iii), denote, for simplicity, Fk(ω) = F . Let vi be trader i’s permanent (from (ii))

prediction. Since vi is the myopically optimal answer and i can always get 0 by repeating
the previous announcement, we have that min

p∈P
Ep|F∩Πi(ω′)

[
s(vi, X) − s(vi−1, X)

]
≥ 0 for all

ω′ ∈ F and i ∈ I.28 This implies that p(F ∩ Πi(ω
′))Ep|F∩Πi(ω′)

[
s(vi, X) − s(vi−1, X)

]
≥ 0

and p(F ∩ Πi(ω
′)) > 0, for every ω′ ∈ F and p ∈ P .29 Summing over Ci = {Πi(ω) : ω ∈ F}

we get p(F)Ep|F
[
s(vi, X)− s(vi−1, X)

]
≥ 0. By summing over i and ignoring p(F), we have

Ep|F
[
s(v1, X)− s(vn, X)

]
+ Ep|F

[
s(v2, X)− s(v1, X)

]
+ . . .+

+Ep|F
[
s(vn, X)− s(vn−1, X)

]
= 0.

For all i ∈ I, because each term is non negative, we have Ep|F
[
s(vi, X)− s(vi−1, X)

]
= 0

for every p ∈ P . For the same reason, Ep|F∩Πi(ω′)

[
s(vi, X) − s(vi−1, X)

]
= 0 for all ω′ ∈ F

and p ∈ P . One solution to this equation is vi = vi−1. However, it is also the unique solution.
The reason is that the left hand side is a strictly concave function of vi, so it achieves the
maximum at unique vi. From Lemma 1, this maximum is achieved when vi is the myopically
optimal announcement. By assumption, vi is the myopically optimal announcement, hence
the only vi that solves this equation is vi = vi−1. As this is true for all i ∈ I, we have vi = vj
for all i, j and agreement is reached.

It is important to note that this result is true for any p ∈ P . In fact, even if we no longer
have common priors, so that each player j has a set Pj of priors, but there is a nonempty
intersection

⋂
i∈I
Pi 6= ∅, we still get the result that there is agreement.

Proof of Theorem 1. (⇐) Suppose X is strongly separable. By Lemma 3 (i), there exists
time tk such that Fk′(ω) = Fk(ω) for every tk′ ≥ tk. We denote this set by FT ≡ Fk.

From Lemma 3 (iii), traders reach an agreement, hence there exists v ∈ R such that

28By v0 we denote, when appropriate, the vn.
29It is p(F ∩ Πi(ω

′)) > 0 for every p ∈ P. This is because for every ω′ ∈ F there exists p ∈ P with
p(ω′) > 0, by its definition. Regularity then implies p(F ∩Πi(ω

′)) > 0 for every p ∈ P.
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for every i = 1, ..., n it is dP(Πi(ω) ∩ FT , v) = v for every ω ∈ FT , with p(ω|FT ) > 0 for
some p ∈ P (this last property is trivially satisfied by the construction of F). By defining
PFT = {p(·|FT ) : p ∈ P}, we can observe that for every i = 1, ..., n it is dPFT

(Πi(ω), v) = v
for every ω ∈ Ω, with q(ω) > 0 for some q ∈ PFT .

In Definition 3 of not strong separability, we observe that (ii) is satisfied for v and
PF . Because X is strongly separable, (i) should be violated, so that X(ω) = v for all
ω ∈

⋃
p∈PF

Supp(p). This implies that information gets aggregated.

(⇒) Suppose that for any regular ΓM , information gets aggregated, so that yk(ω) =
dP(Πa(tk)(ω) ∩ Fk−1(ω), yk−1) −→ X(ω), for every ω ∈

⋃
p∈P

Supp(p). We show that, for any

regular P and v ∈ R, if (ii) in Definition 3 is satisfied, then (i) is violated.
Suppose there exist regular P and v ∈ R such that dP(Πi(ω), v) = v for all i = 1, ..., n

and ω ∈
⋃
p∈P

Supp(p). Consider regular ΓM(Ω, I,Π, X,P , y0, Y, s) with initial announcement

y0 = v. Then, the predictions ytk(ω), k = 0, 1, ..., are equal to v, for all ω ∈
⋃
p∈P

Supp(p).

If we have X(ω) 6= v for some ω ∈
⋃
p∈P

Supp(p), then at ω all traders agree on v, which is

the wrong value for the security. This implies that there is no information aggregation, a
contradiction. Hence, condition (i) in Definition 3 is violated and X is strongly separable.

B Proofs for the strategic environment

Proof of Theorem 2. For (i), the proof closely follows that of Ostrovsky (2012) and
proceeds in four steps. The main innovations are in Step 1, where the arguments for estab-
lishing the lower bound of the instant opportunity are very different, and in Step 4, where
we need to account for the multiplicity of beliefs.

Step 1: We first show that if the security is strongly separable and its value is not
constant for each state in the support of the set of beliefs, at least one trader can achieve a
strictly positive payoff at some state and a weakly positive payoff at all other states, what-
ever the previous announcement.

Let D be the collection of regular sets of beliefs P that describe some uncertainty about
the value of the security. That is, for each P ∈ D, there exist ω, ω′ ∈

⋃
p∈P

Supp(p) such that

X(ω) 6= X(ω′).
From Lemma 1, we know that given beliefs P ∈ D and at any state ω ∈

⋃
p∈P

Supp(p),

each agent j can achieve a weakly positive payoff by making the myopic announcement
argmax

y∈Y
min

p∈PΠj(ω)

Ep
[
s(y,X)− s(z,X)

]
, where z is the previous announcement.

Generalizing the notion of Ostrovsky (2012), we define the instant opportunity of Trader
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i given regular beliefs P and previous announcement z to be

min
q∈P

∑
ω∈Ω

q(ω)

[
min

p∈PΠi(ω)

∑
ω′∈Πi(ω)

p(ω′)

(
s
(
dP(Πi(ω), z), X(ω′)

)
− s
(
z,X(ω′)

))]
.

Note that at each partition cell Πi(ω), the agent chooses a possibly different p ∈ PΠi(ω)

that minimises her expected utility. The instant opportunity is the ex ante (minimal over
P) expected utility, aggregating over all partition cells.

The following Lemma shows that if the security X is strongly separable and beliefs P ∈ D
describe some uncertainty about X, then the instant opportunity of some agent i is strictly
positive, irrespective of what the previous announcement is.

Lemma 4 If security X is strongly separable, then for every P ∈ D there exist χ > 0 and
i ∈ {1, . . . , n} such that, for every z ∈ R, the instant opportunity of i given P and z is
greater than χ.

Proof.
Note that the expression for the instant opportunity inside the brackets,

min
p∈PΠi(ω)

∑
ω′∈Πi(ω)

p(ω′)

(
s
(
dP(Πi(ω), z), X(ω′)

)
− s
(
z,X(ω′)

))
, (1)

is i’s expected payoff given Πi(ω), when making the myopic announcement and the previous
announcement is z. From Lemma 1, this is weakly positive for all ω ∈

⋃
p∈P

Supp(p). Moreover,

because P is regular, each p ∈ P assigns positive probability to each Πi(ω), where ω ∈⋃
p∈P

Supp(p) = E. Therefore, we only need to show that there exists some trader i ∈ I, such

that for any z, there is some Πi(ω) for which the expression in (1) is above a strictly positive
lower bound. Note that the lower bound must be the same for all z.

For each ω, define Aiω = {Ep[X|Πi(ω)] : p ∈ P}. From the second point of Lemma 1,
this is the set of possible myopically optimal announcements by i at ω, for any previous
announcement z. Let Ai =

⋂
ω∈E

Aiω.

We now show that for some i, Ai = ∅. Suppose not, so that Ai 6= ∅ for all i. Since P ∈ D
describes some uncertainty about security X, so that condition (i) of Definition 3 is satisfied,
the definition of strong separability implies that for each xr ∈ R, there exists Trader i, such
that dP(Πi(ω), xr) 6= xr for some ω ∈

⋃
p∈P

Supp(p) = E. This implies that there does not

exist xr such that xr ∈ Ai for all i, hence
⋂
i∈I
Ai = ∅.

In part (ii), Step 2 of the proof of Lemma 3, we show that if each Ai 6= ∅ and
⋂
i∈I
Ai = ∅,

then we can find a list of announcements vj, one for each j ∈ I, such that vk is agent k’s
myopic best response given a previous announcement of vk−1, for k ≥ 0, where v0 = vn.
Hence, each agent j makes the same announcement at all states in E. In part (iii) of the
proof of Lemma 3, we show that v1 = . . . = vn. Because each vi ∈ Ai, we have

⋂
i∈I
Ai 6= ∅,
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a contradiction. Note that, as we note in part (iii), the proof also works when each i has
beliefs Pi, with a non-empty intersection.

Let i be such that Ai = ∅. Because each Aiω is a convex set, there exist states a, b ∈ E with
Aia = [c, d], Aib = [c′, d′] such that c′ > d. Let k = (c′− d)/2 and z be the previous announce-
ment. If z > k then min

p∈PΠi(a)

max
y∈Y

Ep
[
s(y,X)−s(z,X)

]
≥ min

p∈PΠi(a)

max
y∈Y

Ep
[
s(y,X)−s(k,X)

]
≡

χ1 > 0, whereas if z ≤ k then min
p∈PΠi(b)

max
y∈Y

Ep
[
s(y,X)− s(z,X)

]
≥ min

p∈PΠi(b)

max
y∈Y

Ep
[
s(y,X)−

s(k,X)
]
≡ χ2 > 0. The lower bound χ > 0 is just the minimum of χ1 and χ2. Moreover, it

is independent of the previous announcement z.

Step 2: We construct a stochastic process describing how the beliefs of an outside
observer about the realized state φ are updated and establish its martingale properties. Let
P be the common set of priors given a (possibly mixed) strategy σ. Consider the following
stochastic process, which is the same as in step 2 of the proof of Theorem 1 of Ostrovsky
(2012), with the only difference that it is applied to each p ∈ P , instead of the unique p.
Nature draws a state φ ∈

⋃
p∈P

Supp(p) and each player i observes Πi(ω(φ)). Based on her

private information and her strategy, player 1 announces y1. An outside observer, who shares
the same set of beliefs P and knows strategy σ but has no private information about the
state ω, updates each p ∈ P using Bayes’ rule. Note that the regularity of P implies that
all elements of P are updated. Denote this set as P1.

At time tk, the outside observer updates these beliefs, denoted Pk, using the public an-
nouncements up to tk and the equilibrium strategies. Note that from the regularity of P ,
each Pk is compact and convex. As explained in Ostrovsky (2012), the process Q of updat-
ing p ∈ P at each time t is a martingale, due to the law of iterated expectations. Because
it is also bounded (as it is between 0 and 1), the martingale convergence theorem implies
that each Q converges to some random variable q∞. Since this is true for all p ∈ P and all
corresponding martingales, we denote the set of the limits of all convergent beliefs by Q∞.

Step 3: We show that if the statement of Theorem 2 does not hold for this equilibrium,
then we can identify a “non-vanishing arbitrage opportunity”: there is a player, i∗, and a
positive number, η∗, such that the expected instant opportunity of player i∗ exceeds η∗ at
infinitely many trading times tk.

Step 3, Case 1: Suppose that for some φ ∈
⋃
p∈P

Supp(p), there is positive probability that

some random variable q ∈ Q∞ assigns positive likelihoods to two states a and b with X(a) 6=
X(b), where qk converges to q. As shown by Ostrovsky (2012), there exists probability
distribution r assigning positive probability to both a and b, such that the following is true.
For any ε > 0, there exist K and ζ > 0 such that, for any k > K, the probability that qk is
in the ε-neighbourhood of r is greater than ζ. This can be done for every q ∈ Q∞, and in
that case the K can be selected uniformly because it is affected only by the uncertainty due
to mixed strategies.30

30Indeed, the beliefs about Ω will be updated until some t, and subsequently the only change in them is
because they are weighted by the belief about the mixed strategy. Therefore, because the convergence to q
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Any compact and convex set of beliefs P which contains these limit probability distri-
butions describes some uncertainty about X, hence it belongs to D. Lemma 4 shows that
there is player i and χ > 0, such that i’s instant opportunity is greater than χ given P and
any previous announcement z.

Because the definition of instant opportunity minimises over all available beliefs, there is
player i and χ > 0 such that i’s instant opportunity (using any combination of q and p in
the definition of instant opportunity) is greater than χ for any previous announcement z. By
continuity we can conclude that this is true for any combination of qt and pt (of the definition
of instant opportunity) and hence we get that the instant opportunity at t (for t big enough)
is greater than χ > 0 for any previous announcement for some ζ > 0 probability.31

Concluding, for some i, χ > 0, tK and ζ > 0, i’s instant opportunity at any time
tnk+i > tK is greater than χ with probability at least ζ, and thus for i, tK and η = χζ > 0,
the expected instant opportunity of player i at any time tnk+i > tK is greater than η.

Step 3, Case 2: Suppose that there is zero probability that some q ∈ Q∞ assigns
positive likelihoods to two states a and b with X(a) 6= X(b). That is, at the limit, the
outside observer believes with certainty that the value of the security is equal to some x. As
shown in Section A.2.4 of Ostrovsky (2012), almost surely (with probability 1),

⋃
p∈Q∞

Supp(p)

contains the true state h. Hence, with probability 1, all q ∈ Q∞ assign probability 1 to the
value of the security being X(h) = x. In other words, the outside observer’s belief about the
value of the security converges to the true value.

Suppose that yk does not converge in probability to the true value of the security. Then,
there exist state h, numbers ε, δ > 0 such that when h is the true state and for any K, there
exists k > K such that the probability that |yk −X(ω′)| > ε is greater than δ. Because all
players have more information than the outside observer, also their beliefs about the value of
the security converges to the true value. This implies that for some player i and some η > 0,
for any K, there exists tnk+i > tK such that her expected instant opportunity is greater than
η.

As a conclusion, in both Case 1 and Case 2, there exist player i∗ and value η∗ > 0 such
that there is an infinite number of times tnκ+i∗ in which the expected instant opportunity of
player i∗ is greater than η∗. Fix i∗ and η∗.

Step 4: This step concludes the proof, by showing that the presence of a “non-vanishing
arbitrage opportunity” is impossible in equilibrium.

Let P(Hk) be the set of updated beliefs for the outside observer at time tk, given the
mixed equilibrium, the set of prior beliefs P and history Hk. Note that with mixed strategies,
Hk occurs with some probability. Moreover, because the equilibrium profile may consist of
mixed strategies, P(Hk+1) may not be the same as P(Hk), however for big enough tk, they
will have the same support on the state space Ω, as it is finite. Consider such a big enough
tk0 .

Fix tk, history Hk and suppose i makes an announcement. Her continuation payoff given

is dictated only by that belief, it is uniform for any belief about Ω.
31A proper scoring rule may not be continuous. However, Ostrovsky (2012) shows, in footnote 19 of page

2620, that his instant opportunity is continuous. This implies that our instant opportunity is also continuous.
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history Hk and state φ, divided by βk, is V (Hk, φ) = min
p∈Pi(Hk,φ)

Ep
∞∑
κ=0

βκ (snκ(φ
′)− snκ−1(φ′)),

where snκ(φ
′) is the score at state φ′ and time tnκ.

We now argue that her continuation payoff V (Hk, φ) is greater than the one-period payoff
from playing the myopic strategy at tk. The trader can guarantee such a payoff by playing
the myopic strategy at tk and then repeating the previous announcement at each subsequent
period where she makes an announcement. Such a strategy guarantees the one-period myopic
payoff, irrespective of how the other traders play. Because the strategy profile is sequentially
rational after some period tk, i’s strategy is a best response at each information set and in
particular given the beliefs Pi(Hk, φ). Hence, it must provide a weakly better payoff than
the one-period payoff of playing the myopic strategy at tk.

32

Because V (Hk, φ) is greater than the one-period payoff of the myopic strategy at tk, we
have that min

p∈P(Hk)
EpV (Hk, φ) is greater than i’s instant opportunity given P(Hk) and the

previous announcement at tk−1, determined by history Hk.
A similar argument shows that the continuation payoff at tk of each agent j 6= i, who

announces after tk, is weakly positive at each state ω and history Hk. As before, the
reason is that she can guarantee a zero payoff by instructing all future selves to repeat
the previous announcement. Since this is true for all states φ ∈

⋃
p∈P(Hk)

Supp(p), we have

that min
p∈P(Hk)

EpV (Hk, φ) ≥ 0.

Since min
p∈P(Hk)

EpV (Hk, φ) is weakly positive for each i ∈ I, we have that
∑
i∈I
EpV (Hk, φ) is

weakly positive, for any q ∈ P(Hk). Moreover, it is strictly positive if i’s instant opportunity
is strictly positive given P(Hk) and the previous announcement at tk−1. Since this is true
for all q ∈ P(Hk) and any previous announcement, by fixing p ∈ P and considering the
(unique) probability over histories Hk that can arise at tk, generated by the (possibly)
mixed equilibrium, we can let Ψk be the sum of all players’ expected continuation payoffs at
tk, divided by βk as

Ψk = (sk − sk−1) + β(sk+1 − sk) + β2(sk+2 − sk+1) + . . .

The sk is the expected score of prediction yk, where the expectation is over all φ, given the
fixed p ∈ P and the moves of players according to the mixed equilibrium. We keep p ∈ P
constant for all tk. We then have that Ψk is weakly positive. Additionally, it is strictly
positive if i’s expected instant opportunity is strictly positive and it is i’s turn to make
an announcement. That is, with some probability, some history Hk occurs and i’s instant
opportunity is strictly positive.

The last step is identical to that of Ostrovsky (2012), because all Ψk are calculated using

the same p ∈ P . Consider lim
K→∞

K∑
k=1

Ψk. From Step 3, this limit must be infinite because each

Ψk is weakly positive and an infinite number of them is greater than η∗. However, for any

32For the case of a revision-proof equilibrium, the analogous argument is presented in Proposition 3.
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K, we have

K∑
k=1

Ψk = (s1 − s0) + β(s2 − s1) + β2(s3 − s2) + . . .

= (s2 − s1) + β(s3 − s2) + β2(s4 − s3) + . . .

=
...

= (sK − sK−1) + β(sK+1 − sK) + β2(sK+2 − sK+1) + . . .

= (sK − s0) + β(sK+1 − s1) + β2(sK+2 − s2) + . . .

≤ 2M/(1− β),

where M = max
y∈[y,y],ω∈Ω

|s(y,X(ω))|. Hence, both cases of Step 3 are impossible and yk

must converge to the true value of security X.
For part (ii), suppose X is not strongly separable under Π and s. Then, there exist

P ⊆ ∆(Ω), regular with respect to each Πi, and v ∈ R, such that (a) X(ω) 6= v for some
ω ∈

⋃
p∈P

Supp(p) and (b) dP(Πi(ω), v) = v for all i = 1, ..., n and ω ∈
⋃
p∈P

Supp(p).

Consider game ΓS(Ω, I,Π, X,P , y0, Y, s, β), where the initial announcement of the market
maker is y0 = v. We will show that for some interim (and also ex-ante) equilibrium (σ∗,P),
information does not get aggregated. Define tuple (σ∗,P), where σ∗ specifies that each
Trader i announces v after any history. At each information set I of Trader i, set P(I) =
PΠi(ω). Any player, if she wants to deviate, she will deviate at some period tk by not
announcing the myopic best response, which is v. But all other players continue announcing
v, hence in any subsequent period she will not gain anything, because no information is
revealed, the beliefs are the same and her best response would be the myopic announcement,
v. Note that this is both an ex-ante and interim equilibrium.

Proof of Theorem 3. The proof for (i) is identical to the proof of Theorem 2 (i). The only
difference is that we need to show (in Step 4) that the continuation value of the revision-proof
equilibrium is weakly greater than the player’s instant opportunity, for each time tk′ ≥ tk,
for some k. We show that below.

Proposition 3 In a revision-proof equilibrium, there is time tk such that for all k′ ≥ k, the
continuation value for player i who plays at tk′ is at least as much as her one-period payoff
from playing the myopic strategy.

Proof. We construct a deviation strategy that guarantees for the continuation game at least
as much as the one-period payoff from playing the myopic strategy. Since the payoff relevant
state space Ω is finite, there exists time T such that no more public information about Ω
is revealed. We will prove the claim for t > T . We will show that for each t0 > T , the
continuation payoff is weakly more than η, which is i’s one-period payoff from playing the
myopic strategy.

Suppose that at t0, player i makes an announcement. We define a deviation strategy
σ = (σi, σ

∗
−i), where all j 6= i follow the equilibrium strategy σ∗ and σi is identical to σ∗i up
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to time t0 − 1. At t0, σi specifies that Trader i plays the myopic best response. Given that
i deviates and all other traders stick to the equilibrium strategy σ∗, let H1, ..., Hm be the
possible paths of announcements by all other traders j 6= i, from t0 to t0 + n − 1, together
with the common history of announcements up to t0 − 1. They are finitely many, because
we consider mixing over finite actions. At t0 + n, σi specifies that:

(a) If V (Hm, φ, σ,P) ≥ 0, then σi coincides with σ∗,

(b) If V (Hm, φ, σ,P) < 0, then σi repeats the previous trader’s prediction.

If (a) occurs, then σi coincides with σ∗ in every succeeding information set. If (b) occurs,
then in every succeeding information set, σi is determined using the two cases (a) and (b).
For every other information set not specified by the above procedure, σi is identical to σ∗i .

The deviation strategy σ′i is feasible for i because each future self will either be indifferent
or strictly prefer it over σ∗i . Moreover, the continuation value of σ′i is weakly above the one-
period myopic payoff. The reason is that when player i deviates, every one of her future
selves will get a which is weakly positive continuation payoff. The future self of i evaluates
her continuation payoff using some posterior q, whereas the current i evaluates her own
continuation payoff using p, and it may not be that the Bayesian update of p is q. However,
because there is prior by prior updating and the future i minimises given q, her continuation
payoff given the Bayesian update of p is also weakly positive. Since this is true for all possible
paths, the current i has a weakly positive continuation payoff, plus the myopic payoff she
gets at t0. Since σ′i is a feasible deviation which was not chosen by i, it must be that the
continuation value of σ∗i is weakly greater than the one-period myopic payoff.

For part (ii), consider the same pair (σ∗,P) that was described in part (ii) of Theorem
2, where everyone announces the myopically optimal v. Since v is announced also in the
case a player deviates, there is never any information revealed, hence (σ∗,P) is off-path
consistent. To show that (σ∗,P) is revision-proof, we need to argue that it is not possible
to find an alternative strategy that will make i’s future selves weakly better off and at least
one strictly better off. Once player i deviates, everyone else plays v and there is no updating
of information, so her future selves have the same beliefs as i. Since the myopically optimal
is to play v for every future self, then it is not possible for such a deviation to exist.

C Examples

In this section, we provide two examples and an argument in order to illustrate the
robustness of our results. We first show that the negative result that separable securities
may not aggregate information under ambiguity does not depend on some priors assigning
probability zero to the true state, as in the example of Section 2. Such a case is illustrated
in Example 1, where all priors have full support.
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Example 1 Consider state space Ω = {ω1, ..., ω6} and information structure with Π1 =
{{ω1, ω3}, {ω2, ω4}, {ω5, ω6}}, Π2 = {{ω1, ω2, ω6}, {ω3, ω4, ω5}} and Π3 = {{ω1, ω2}, {ω3, ω5}, {ω4, ω6}}.
The security is X(ω1) = X(ω5) = 0, X(ω2) = X(ω6) = 2, X(ω3) = 1 and X(ω4) = −1.

To show that the security is separable, we show that the condition of Proposition 1 is
always satisfied. In particular, for each v ∈ R, we specify λi : Πi → R for i = 1, 2, 3 such
that, for every state ω with X(ω) 6= v,

(X(ω)− v)
∑
i∈I

λi(Πi(ω)) > 0.

Whenever λi(Πi(ω)) is not specified, it is implicitly set to 0.

• For v ≥ 2, set λ1(Π1(ω)) < 0 for all ω ∈ Ω,

• For v ∈ [1, 2), set λ1(Π1(ω1)) = −2, λ2(Π2(ω1)) = 1, λ2(Π2(ω3)) = −1,

• For v ∈ [0, 1), set λ1(Π1(ω1)) = 1.4, λ1(Π1(ω2)) = 1.6, λ1(Π1(ω5)) = 1, λ2(Π2(ω1)) =
−0.5, λ2(Π2(ω3)) = −4, λ3(Π3(ω1)) = −1, λ3(Π3(ω3)) = 2.7, λ3(Π3(ω4)) = 2,

• For v ∈ [−1, 0), set λ1(Π1(ω1)) = 1, λ1(Π1(ω2)) = 1, λ1(Π1(ω5)) = 1, λ2(Π2(ω3)) =
−1.5, λ3(Π3(ω3)) = 1,

• For v < −1, set λ1(Π1(ω)) > 0 for all ω ∈ Ω.

However, the security is not strongly separable. To see this, suppose that the mar-
ket maker’s initial announcement is y0 = 0.5 and consider any strictly proper scoring
rule. Given y0, consider any compact and convex set of priors that includes the priors
p1 = (1

8
, 1

8
, 1

8
, 1

8
, 3

8
, 1

8
), p2 = ( 6

18
, 1

18
, 7

18
, 2

18
, 1

18
, 1

18
) and p3 = (3

8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

8
). It is easy to check

that the expectation of X, conditioning p1 on Trader 1’s information, is 0.5 at all states.
The same is true for Trader 2 with p2 and trader 3 with p3. Using the third claim of Lemma
1, the myopic announcement is 0.5. This is true for all states and all traders. Because X
is not constant on Ω, it is not strongly separable and there is no information aggregation at
any state.

The previous example, together with that of Section 2, show that information aggrega-
tion can fail for separable securities, when there are multiple priors. However, in both cases
the failure occurs for a (potentially) unique announcement of the market maker. An inter-
esting question is whether there are examples where the failure occurs for several different
announcements from the market maker. We show here how such examples can easily be
constructed.

Consider two examples, A and B, with the same set of traders I, state spaces ΩA,ΩB,
prior beliefs PA,PB, securities XA, XB which are separable, information structures ΠA =
{ΠA

i }i∈I ,ΠB = {ΠB
i }i∈I and suppose there is failure of information aggregation for initial

announcements xA 6= xB, at states ωA, ωB, respectively. We can then create a new example,
C, which is just the concatenation of the previous two, where the information aggregation
failure occurs at both xA and xB. In particular, let ΩC = ΩA ∪ ΩB and ΠC

i (ω) = ΠA
i (ω) if

ω ∈ ΩA, otherwise ΠC
i (ω) = ΠB

i (ω). The set of priors PC consists of all priors pC , constructed
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as follows. For each pA ∈ PA, pB ∈ PB, construct pC = 1/2pA + 1/2pB. Note that PC is
compact, convex and regular with respect to ΠC .

Construct security XC such that XC(ω) = XA(ω) if ω ∈ ΩA, otherwise XC(ω) = XB(ω).
From Proposition 1 and using the same λi, if XA and XB are separable, then so is XC .
Moreover, since ΩC consists of two disjoint common knowledge events, ΩA and ΩB, there
is no information aggregation for initial announcements xA 6= xB, at states ωA, ωB ∈ ΩC ,
respectively. By concatenating more examples like that, one can construct examples with
multiple announcements where information aggregation fails at some state.

Finally, Example 2 illustrates how the MSR model can be re-interpreted as an inventory-
based market. In addition, we show that, in the inventory-based interpretation, information
does not get aggregated always in the presence of ambiguity averse traders. The exam-
ple is interesting because, in practice, prediction markets might not implement sequential
announcements but an interface of selling and buying securities, as in Inkling Markets.

Example 2 Consider the state space Ω = {ω1, ω2, ω3, ω4}, the price function to be the q(z) =
e−z where z is the market maker’s net inventory. The security is given by X(ω1) = 2,
X(ω2) = X(ω3) = X(ω4) = 1 and the information structure is Π1 = {{ω1, ω2}, {ω3, ω4}}
and Π2 = {{ω1, ω3}, {ω2, ω4}}. The set of priors is the P = conv{(0, 1

3
, 1

3
, 1

3
), (1

4
, 1

4
, 1

4
, 1

4
)}.

Consider that initially the market maker holds zero inventory of the security (i.e. z=0).
Firstly, Trader 1 makes a myopic decision about how much shares of the security to buy

or sell. We assume, for consistency, that the amount of shares belong to Z = p−1(Y ), which
is compact. Thus it is implied that trader solves (for the true state to be either ω1 or ω2)
max
z∈Z

min
p∈P

Ep[
∫ z

0
q(z) − X(ω)dz] = min

p∈P
max
z∈Z

Ep[
∫ z

0
q(z) − X(ω)dz]. We have the equality by

applying the same argument as in the proof of Lemma 1.33

As in Ostrovsky (2012), given the price function we can define the strictly proper scoring

rule s(X(ω), y) =
∫ q−1(y)

0
q(z)−X(ω)dz. We have that the price function p is 1-1 continuous

with continuous inverse function. Therefore we can conclude that in the MSR market, based

on that strictly proper scoring rule, the trader solves max
y∈Y

min
p∈P

Ep[
∫ q−1(y)

0
q(z) − X(ω)dz] =

min
p∈P

max
y∈Y

Ep[
∫ q−1(y)

0
q(z) − X(ω)dz].34 We shall show that if z∗ solves the first optimisation

problem and y∗ the second one, then it is p(z∗) = y∗ and that the revenue or losses are the

same, i.e. max
z∈Z

min
p∈P

Ep[
∫ z

0
q(z)−X(ω)dz] = max

y∈Y
min
p∈P

Ep[
∫ q−1(y)

0
q(z)−X(ω)dz]. The conclusion

is that the purchase of the optimal amount of shares and the announcement of the myopic
prediction are related with a one to one relation using the pricing function and that the two
markets are equivalent in terms of revenues and losses.

We can observe that for every p ∈ P the amount z′p that solves the max
z∈Z

Ep[
∫ z

0
q(z) −

X(ω)dz] is unique and such that p(z′p) = Ep[X]. Similarly, for every p ∈ P the prediction

y′p that solves the max
y∈Y

Ep[
∫ q−1(y)

0
q(z)−X(ω)dz] is the y′p = Ep[X], hence q−1(y′p) = z′p.

Therefore, for every p ∈ P we have that Ep[
∫ z′p

0
q(z) − X(ω)dz] = Ep[

∫ q−1(y′p)

0
q(z) −

33We use that F (z) =
∫ z

0
q(z)−X(ω)dz is continuous and we follow the arguments of Lemma 1.

34Similarly, we follow the arguments of Lemma 1 with the continuous function F (y) =
∫ q−1(y)

0
q(z) −

X(ω)dz.
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X(ω)dz]. We can conclude that min
p∈P

Ep[
∫ z′p

0
q(z)−X(ω)dz] = min

p∈P
Ep[
∫ q−1(y′p)

0
q(z)−X(ω)dz]

and it is achieved in the same p∗.
We conclude that the optimal quantity of shares z∗ for the ambiguity averse trader is such

that q(z∗) = Ep∗ [X] and the optimal prediction y∗ is such that y∗ = Ep∗ [X] and thus we get
the conclusion.35

Finally, the first trader finds the belief that achieves the minimum gives at state ω1 zero
probability. From the previous paragraph we conclude that the optimal amount to purchase,
z∗, is such that p(z∗) = 0∗2+1∗1 = 1 or equivalently (as long as p is 1-1) z∗ = 0. Hence she
neither buy or sell any shares (equivalently she would have announced 1 as her prediction,
i.e. the price). It is easy to see that the same would happen for every state in the partition
{ω3, ω4} and for the Trader 2 for symmetry reasons. The conclusion is that both traders does
not purchase shares from the market maker and no one can infer the true state, even if that
would be the case if they pooled their information.
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