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Abstract

We investigate the use of stochastic approximation as a method of identifying condi-

tions necessary to facilitate condensation and coexistence. We did this for a variety

of preferential attachment models which are growing by way of some predetermined

selection criteria.

The main results presented in this thesis concern the choice of r model. This growth

method uses preferential attachment to select r vertices from a graph at time n.

These r vertices are subsequently ranked according to �xed location assigned at

each of their creations and used as an extra level of comparison between vertices.

A new vertex is then attached to one of these r selected vertices according to a

predetermined vector of probabilities corresponding to this ranking. We have shown

that condensation can occur for any of these vectors, if we can �nd at least two

stable �xed points to the corresponding set of stochastic approximation equations.

Following this we investigate the degree distribution and complexity associated to

the introduction of a higher dimensional location coe�cient.

Our concluding chapter investigates the coexistence between vertices in preferential

attachment networks where vertices posses di�erent types and locations. Using sim-

ilar methods as in the choice of r model we have shown that coexistence can occur

in location type models with phase transitions helping to classify di�erent cases.
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1. INTRODUCTION

Large scale networks are observable in many di�erent aspects of society, from inter-

net pages connected via hyperlinks, friends or followers in social networks, or even

publication networks whereby articles form directed edges to others via citations.

Preferential attachment networks are stochastic models used to simulate complex net-

works involving noise. Gaining particular notoriety in the early 2000's, the Barabási

and Albert [BA99] model of preferential attachment forms the basis for many ex-

tensions and adaptations devised to study a multitude of di�erent phenomena. An

example which many of these networks exhibit is that of a scale free property present

in the distribution of degrees. That is there are a small proportion of high degree

vertices which typically possess a larger potential for growth than the more common

low degree vertices.

There are a number of standard assumptions which are made when using preferen-

tial attachment as a model throughout this thesis. Some of these hold in general

whereas some are elsewhere in the literature. The �rst of these we discuss is that

vertices arrive one by one in discrete time with increments between any two vertices

being ignored and assumed not in�uential to the overall network growth. A further

assumption we discuss is that the attractiveness of the vertex joining the network has

no impact on where it will form edges to. The validity of this assumption depends on

the network being modelled. In the Twitter social network, for example, the forma-

tion of a (directed) edge can be modelled as one sided based on the attractiveness of

existing vertices in the network. The same could be said about the citation network

but not so much about some other social networks such as Facebook where an edge
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is two sided. The third and �nal assumption involves the formation of edges. We

de�ne P(vn+1 ∼ v) as the conditional probability on the graph Gn at time n + 1 an

edge is formed between the new vertex vn+1 and a pre-existing vertex in the network

v ∈ V (Gn), as preferential attachment models grow by way of a new vertex vn+1 join-

ing Gn. It follows from this that P(vn+1 ∼ v) > 0, however, in our models an edge

between two existing vertices in Gn cannot be formed, i.e. P(vi ∼ vj) = 0 such that

vi, vj ∈ V (Gn). This quality is included in other models in various ways. Similarly to

the previously discussed assumption two, whether this condition is met is dependent

on the type of network we are trying to model. If we consider the citation network,

the formation of edges between pre-existing vertices is rare and can be ignored. This

assumption is somewhat unrealistic when considering some networks such as social

networks though entirely plausible when considering others including the citation

network. The fourth and �nal assumption, more speci�c to models discussed in this

thesis, is that we do not include death in our network, vertex or edge.

The chapter following this explores the background of preferential attachment, rele-

vant models and introduces important techniques we use to conduct our analysis. We

outline general notation used throughout subsequent chapters. In particular we de-

�ne vertex location as a �xed coe�cient assigned at birth allowing for the comparison

between vertices in the network disjoint of degree.

During this thesis we discuss two particular models of preferential attachment whereby

new vertices make a choice where to form edges based on a sample of existing ver-

tices taken from Gn. The model discussed in Chapters 3-5, evolves in discrete time

by sampling r vertices from Gn by way of a generalised preferential attachment ker-

nel. An edge is then formed between the new vertex and a member of this sample

according to a predetermined selection criterion based on a ranking on locations of

sampled vertices. The �rst iteration of this model, outlined in Chapter 3, explores

a family of models for conditions which we can impose on model parameters which

allow for condensation to occur. Condensation occurs when there is asymptotically

linear growth in the degree of a vertex (or subset of vertices of size o(n).) Conden-

sation is important in the study of networks for a number of reasons; an interesting
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one is in securing the popularity of a vertex as a network grows. From a marketing

point of view, investors are interested in the longevity of a product or personality

(vertex). Using methods outlined in Section 2.3 we give conditions on whether or not

condensation can occur based on the strength of the preferential attachment kernel

and model parameters. We show the existence of phase transitions in our model,

most notably in relation to the occurrence or lack of condensation.

Chapter 4 explores the degree distribution associated to the model discussed in Chap-

ter 3 in the non-condensation phase. We cannot identify a speci�c distribution for

the condensation phase due to a discontinuity in the limit caused by the condensate.

The degree distribution here indeed follows a power law distribution whereby the

mass found in the tail correlates directly with the predetermined selection rule.

The model described in chapter 3 is based around the growth of networks by choice

based on one dimensional location values. In reality it is fairly unrealistic to as-

sume that a real world network grows wholly based on a choice involving a single

attribute. Chapter 5 explores extending the location assigned to each vertex at birth

to a multidimensional vector. Due to the complexity of this model we reduced the

complexity in order to prove the existence of a phase transition existing between the

condensation and non-condensation phases.

The concluding chapter, Chapter 6, explores a di�erent model to that discussed in

Chapters 3-5. We have vertices occupying two locations, decided at birth; vertices

are then assigned one of two types based on a predetermined classi�cation rule. This

classi�cation rule involves the m edges formed between the new vertex and vertices

in Gn selected using preferential attachment involving a biasing coe�cient where

relevant. We detail conditions we can implement on the strength of the biasing coef-

�cient to allow for coexistence between subsets of the four combinations of types and

locations; identifying phase transitions between the coexistence and non-coexistence

phases. Coexistence is where a positive proportion of the edge mass exists at sets of

vertices possessing di�erent types in the limit as n→∞.



2. BACKGROUND

2.1 Preferential attachment

The late 1950's saw the publication of the �rst notable random graph models by

Erd®s and Rényi [ER59, ER60] and Gilbert [Gil59]. A description of the Erd®s-

Rényi random graph model is as follows. We have an undirected graph Gn,N on

n labelled vertices {v1, v2, . . . , vn} and a subset of N edges contained in the edge

set E(Gn,N). Here E(Gn,N) contains exactly one copy of all n(n−1)
2

possible edges

in Gn,N . Concisely, the Erd®s-Rényi model explores the probability of the graph

Gn,N occurring whereby each of the
((n2)
N

)
possible graphs are equally likely to occur.

Soon after the publication of the Erd®s-Rényi random graph model Gilbert [Gil59]

proposed the Binomial random graph model. Here Gilbert examines graphs on n

vertices and N edges denoted by Gn,p. The probability p is assigned to the event

of each of the
(
n
2

)
edges existing in Gn,p. An alternative de�nition could be starting

with the edge-less graph on n vertices and forming an edge between each pair of

vertices independently of each other according to a Bernoulli random variable with

probability p. Gilbert [Gil59] fails to specify the the independence of the appearance

of eadges

There is no question both the Erd®s-Rényi and Binomial random graph models are

inaccurate representations of growing networks, �rstly because they both model static

(non-growing) random graphs and secondly because they treat the existence of every

edge as equally likely. It is observable in most growing networks that this simply

isn't true; moreover vertices with higher degree tend to have a greater potential

for growth. An example of this is the Twitter social network where those members



2. Background 5

with the highest number of followers tend to remain in the top spots as time passes,

sometimes regardless of activity. We show this type of behaviour in Figure 2.1 which

depicts the current highest �ve followed people on the social network. Looking

back over seven years we can see they have remained in similar positions. This

is particularly interesting when considering the other 320 million members of the

network, many of which are more active than those depicted in Figure 2.1.
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Fig. 2.1: A graph depicting the rankings of the current �ve most fol-
lowed members of Twitter over the past seven years. Data
collected from the following sites: friendorfollow.com/

twitter/most-followers/,thenewdaily.com.au/entertainment/

celebrity/2018/03/29/instagram-twitter-most-followers,

/buytwitterfollowersreview.org/10-followed-accounts-twitter,

time.com/4591951/top-twitter-celebrities-2016,

www.forbes.com/sites/maddieberg/2015/06/29/

twitters-most-followed-celebrities-retweets-dont-always-mean-dollars,

blog.twitter.com/en_gb/a/en-gb/2014/2014-the-year-on-twitteranddavidpapp.

com/2013/10/16/top-10-twitter-accounts-by-most-followers-as-of-october-16-2013.

It is clear the vertex degree distribution associated to a growing networks such as

social networks, sexual networks or citation networks should approximately follow a

Pareto �Power law� distribution. Though these preferential attachment based net-

works should follow a power law distribution, suggested by [Arn15], showing evidence

friendorfollow.com/twitter/most-followers/, thenewdaily.com.au/entertainment/celebrity/2018/03/29/instagram-twitter-most-followers, /buytwitterfollowersreview.org/10-followed-accounts-twitter, time.com/4591951/top-twitter-celebrities-2016, www.forbes.com/sites/maddieberg/2015/06/29/twitters-most-followed-celebrities-retweets-dont-always-mean-dollars, blog.twitter.com/en_gb/a/en-gb/2014/2014-the-year-on-twitter and davidpapp.com/2013/10/16/top-10-twitter-accounts-by-most-followers-as-of-october-16-2013
friendorfollow.com/twitter/most-followers/, thenewdaily.com.au/entertainment/celebrity/2018/03/29/instagram-twitter-most-followers, /buytwitterfollowersreview.org/10-followed-accounts-twitter, time.com/4591951/top-twitter-celebrities-2016, www.forbes.com/sites/maddieberg/2015/06/29/twitters-most-followed-celebrities-retweets-dont-always-mean-dollars, blog.twitter.com/en_gb/a/en-gb/2014/2014-the-year-on-twitter and davidpapp.com/2013/10/16/top-10-twitter-accounts-by-most-followers-as-of-october-16-2013
friendorfollow.com/twitter/most-followers/, thenewdaily.com.au/entertainment/celebrity/2018/03/29/instagram-twitter-most-followers, /buytwitterfollowersreview.org/10-followed-accounts-twitter, time.com/4591951/top-twitter-celebrities-2016, www.forbes.com/sites/maddieberg/2015/06/29/twitters-most-followed-celebrities-retweets-dont-always-mean-dollars, blog.twitter.com/en_gb/a/en-gb/2014/2014-the-year-on-twitter and davidpapp.com/2013/10/16/top-10-twitter-accounts-by-most-followers-as-of-october-16-2013
friendorfollow.com/twitter/most-followers/, thenewdaily.com.au/entertainment/celebrity/2018/03/29/instagram-twitter-most-followers, /buytwitterfollowersreview.org/10-followed-accounts-twitter, time.com/4591951/top-twitter-celebrities-2016, www.forbes.com/sites/maddieberg/2015/06/29/twitters-most-followed-celebrities-retweets-dont-always-mean-dollars, blog.twitter.com/en_gb/a/en-gb/2014/2014-the-year-on-twitter and davidpapp.com/2013/10/16/top-10-twitter-accounts-by-most-followers-as-of-october-16-2013
friendorfollow.com/twitter/most-followers/, thenewdaily.com.au/entertainment/celebrity/2018/03/29/instagram-twitter-most-followers, /buytwitterfollowersreview.org/10-followed-accounts-twitter, time.com/4591951/top-twitter-celebrities-2016, www.forbes.com/sites/maddieberg/2015/06/29/twitters-most-followed-celebrities-retweets-dont-always-mean-dollars, blog.twitter.com/en_gb/a/en-gb/2014/2014-the-year-on-twitter and davidpapp.com/2013/10/16/top-10-twitter-accounts-by-most-followers-as-of-october-16-2013
friendorfollow.com/twitter/most-followers/, thenewdaily.com.au/entertainment/celebrity/2018/03/29/instagram-twitter-most-followers, /buytwitterfollowersreview.org/10-followed-accounts-twitter, time.com/4591951/top-twitter-celebrities-2016, www.forbes.com/sites/maddieberg/2015/06/29/twitters-most-followed-celebrities-retweets-dont-always-mean-dollars, blog.twitter.com/en_gb/a/en-gb/2014/2014-the-year-on-twitter and davidpapp.com/2013/10/16/top-10-twitter-accounts-by-most-followers-as-of-october-16-2013
friendorfollow.com/twitter/most-followers/, thenewdaily.com.au/entertainment/celebrity/2018/03/29/instagram-twitter-most-followers, /buytwitterfollowersreview.org/10-followed-accounts-twitter, time.com/4591951/top-twitter-celebrities-2016, www.forbes.com/sites/maddieberg/2015/06/29/twitters-most-followed-celebrities-retweets-dont-always-mean-dollars, blog.twitter.com/en_gb/a/en-gb/2014/2014-the-year-on-twitter and davidpapp.com/2013/10/16/top-10-twitter-accounts-by-most-followers-as-of-october-16-2013
friendorfollow.com/twitter/most-followers/, thenewdaily.com.au/entertainment/celebrity/2018/03/29/instagram-twitter-most-followers, /buytwitterfollowersreview.org/10-followed-accounts-twitter, time.com/4591951/top-twitter-celebrities-2016, www.forbes.com/sites/maddieberg/2015/06/29/twitters-most-followed-celebrities-retweets-dont-always-mean-dollars, blog.twitter.com/en_gb/a/en-gb/2014/2014-the-year-on-twitter and davidpapp.com/2013/10/16/top-10-twitter-accounts-by-most-followers-as-of-october-16-2013
friendorfollow.com/twitter/most-followers/, thenewdaily.com.au/entertainment/celebrity/2018/03/29/instagram-twitter-most-followers, /buytwitterfollowersreview.org/10-followed-accounts-twitter, time.com/4591951/top-twitter-celebrities-2016, www.forbes.com/sites/maddieberg/2015/06/29/twitters-most-followed-celebrities-retweets-dont-always-mean-dollars, blog.twitter.com/en_gb/a/en-gb/2014/2014-the-year-on-twitter and davidpapp.com/2013/10/16/top-10-twitter-accounts-by-most-followers-as-of-october-16-2013
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of this property in data via a log-log scale is not enough evidence to conclude this

de�nitively. Moreover, it is not true that a network growing by preferential attach-

ment is necessarily a good model for growing networks. This power law distribution

takes into consideration the rarity of vertices with high degree compared with the

more common vertices with lower degrees. The general form of power law distri-

bution governing the proportion of degree k vertices in Gn denoted by pk is given

by

pk ∼ βk−γ (2.1)

as k → ∞, here the degree k ∈ N. Both β and γ are constants approximated by

way of an algorithm such as maximum likelihood or MCMC to �t a Yule-Simon

distribution to observed data. Figure 2.2 below depicts the typical power law trend

observable in real world networks.

Fig. 2.2: The proportion of vertices of degree k plotted both using the Barabási-Albert
models degree distribution given by (2.3) for m = 1 and as approximated by the
power law distribution given by (2.1).

A number of studies have been conducted into the power law index of real world
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networks. Typically they found that γ ∈ (2, 3) such as [CDMG06] where it was found

that the income distribution in Australia and Italy follows a power law distribution

with approximately γ = 2.3 ± 0.2 and γ = 2.5 ± 0.1 respectively. The name �scale-

free� was given to networks which possesses a degree distribution following a power

law.

Shortly before the turn of the millennium the �rst widely used model of scale-free

networks was devised. The Barabási-Albert [BA99] preferential attachment model

which has similarities to models devised by Yule [Yul25] and Simon [Sim55], gave

birth to a whole new way of describing network growth. Here, authors proposed a

model of evolving networks where edges were formed by new vertices at time n + 1

and existing vertices in the graph based on the state of the graph at time n, Gn.

Networks growing in this way favour vertices possessing higher degree at time n.

More formally the preferential attachment process starts with a graph G0 on n0

vertices labelled {v−(n0−1), v−(n0−2), . . . , v−1, v0}. We de�ne preferential attachment

by way of a growing tree, i.e. m = 1, where m is the number of edges each new

vertex brings to the network. Let Yn+1,i be the event that the edge vn+1 ∼ vi is

formed such that vi ∈ V (Gn). The next graph in the sequence, Gn+1, is constructed

by the addition of vertex vn+1 by way of preferential attachment (independently with

replacement if extended to m > 1) according to

P(Yn+1,i) =
degGn(vi)∑n

j=1−n0
degGn(vj)

. (2.2)

conditionally independent on previous additions to the graph. We have expressed

the preferential attachment kernel here as if it were only applicable to growing trees.

It is simple to extend this to include a �xed m ∈ N whereby we rede�ne Y
(j)
n+1,i to

be the event the jth new edge of the m edges adjacent to vn+1 at time n+ 1 follows

v
(j)
n+1 ∼ vi. Here, edges vn+1 forms with Gn are not included in calculations related

to probabilities until vn+2 joins the network.

Let Wn be the event a vertex chosen from the graph where each vertex in Gn is
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equally likely to be selected. It is shown by Bollobás, Riordan, Spencer and Tusnády

in [BRST01] that the degree distribution of the Barabási-Albert model is expressed

by

lim
k→∞

P(Wn = k)→ 2m(m+ 1)

k(k + 1)(k + 2)
. (2.3)

We see, as k →∞ that
limk→∞ P(Wn = k)

k−3
→ β.

When considering these networks it is typically more common to study the tail index

as the approximation is more accurate for large k (this is observable in Figure 2.2)

and it gives an insight into the frequency of higher degree vertices. Examples of

where the study into degree distributions of complex networks is important include

the growth of online networks [KBM13] and the spread of diseases [JH03,JCLX15].

Shortly after the formalization of the Barabási-Albert model an adaption to equation

(2.2) was introduced by Dorogovtsev, Mendes and Samukhin in [DMS00] whereby a

constant α ∈ (−1,∞) was introduced to form

P(Yn+1,i) =
degGn(Vi) + α∑n

j=1−n0

(
degGn(Vj) + α

) (2.4)

allowing for greater �exibility in the model. Here α allows us to inhibit or suppress

the e�ect the addition a new edge has on the probabilities used to calculate where

future edges form. It can be seen that Barabási-Albert preferential attachment model

is the Dorogovtsev, Mendes and Samukhin model if α = 0. Figure 2.3 depicts three

simulations of the preferential attachment model each with di�erent values of α.
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(a) α = 1
2 (b) α = 0 (c) α = −1

2

Fig. 2.3: Three simulations of preferential attachment on 100 vertices with di�erent values
of α.

It is observable from Figure 2.3 that as α ↓ −1 the number of hubs become fewer and

more dominant. It can be seen that a change in α results in a change of the overall

degree distribution by way of changes to β and γ in equation (2.1). An adaptation

to (2.1) was found by [DMS00] to include this value α describing how γ varies with

α e�ects the overall degree distribution.

In subsequent chapters, when referring to preferential attachment we are referring to

the form given by equation (2.4).

Early 2006 in [RTV07] saw a further extension of [BA99] whereby the preferential

attachment mechanism governing growth given by equation (2.2) was modi�ed to

become

P(Yn+1,i) =
w
(
degGn(Vi)

)∑n
j=1−n0

w
(
degGn(Vj)

) . (2.5)

Here w(·) is a predetermined nonlinear function associated to the attachment rule.

It is a clear that equation (2.2) is a special case of (2.5) such that w(x) = x. The

authors prove a number of results in regards to the limiting distribution of this

model [RTV07] in both the sub-tree generated by selecting a random vertex and the

network as a whole. For this selection rule, the asymptotic degree distribution was

found for a randomly selected vertex.
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2.2 Fitness, choice and condensation

Though the Barabási-Albert model of preferential attachment was found to be an

appropriate basis for some real world systems it failed to capture important aspects

of network growth. As discussed in Section 2.1, evolution in a network growing by

way of preferential attachment favours vertices with higher degree. This implies older

vertices have a greater potential to attract new edges than new ones. Though this

assumption is appropriate in regards some networks this is not entirely true for others

such as social networks. Many observable networks are comprised of vertices which

have an inherent growth potential disjoint of their degrees. Some examples where

old vertices do not necessarily have an advantage over new ones include: citation

networks, social media followers and elections.

At the turn of the millennium Bianconi and Barabási [BB01] proposed a model which

allows for an extra level of competition between vertices. Here the authors combined

the Barabási-Albert [BA99] model with the concept of vertex �tness. The model

begins with an initial graph G0 on n0 vertices where each of the n0 vertices are

coupled with a �tness drawn from some distribution ρ(η). In other words a vertex

vi has �tness ηi drawn independently from ρ(η). Similarly to in the Barabási-Albert

model [BA99] with m = 1, let Yn+1,i be the event that the edge vn+1 ∼ vi is formed

where vi ∈ {v−(n0−1), v−(n0−2), ..., v0, v1, ...vn}. For the Bianconi-Barabási [BB01] we
modify equation (2.2) to become

P(Yn+1,i) =
ηi degGn(Vi)∑n

j=1−n0
ηj degGn(Vj)

. (2.6)

For this model Gn+1 is formed by way of a new vertex vn+1 joining Gn with its

own �tness ηn+1 ∼ ρ(η). A size m = 1 sample of vertices are taken from Gn with

replacement according to equation (2.6) to form edges with vn+1. Which of this

sample is chosen as the candidate for attachment is based on a model attachment

rule.

We see from equation (2.6) that vertices which have high degree combined with high
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�tness have greater probability of attaching new edges. Using this method of growth

the authors found the time dependence of the vertex's connectivity depends on the

�tness of the vertex. This is to be expected as the time needed for a vertex with

lower �tness to grow to a certain size will be longer than if the vertex was to have

higher �tness. It should be clear that if every vertex had the same �tness (i.e. ρ(η)

is a Dirac mass) then no vertex has an advantage over another in this regard, as a

consequence these cases reduce to the Barabási-Albert model discussed earlier.

Long term behaviour has always been of interest to those studying growing networks,

in particular what phenomena can be observed as the number of vertices n → ∞.

One of these phenomena we study is that of condensation, in the sense of growing

networks condensation is where a subset of vertices attracts a positive proportion

of new edge ends as n → ∞. There exists Sn ⊂ V (Gn) for all ε > 0 such that

|Sn| = o(n), as n→∞ and E
(∑

v∈Sn degGn(v) ≥
)
εn for su�ciently large n.

The existence of condensation in a network is useful in predicting the longevity of a

vertex's potential to attract new edges. If we consider a social network whereby a

vertex gaining a new edge represents a new follower, condensation at a vertex rep-

resents a member gaining a constant proportion of new followers as time progresses.

This concept is attractive from a marketing point of view as the non-existence of

condensation implies that eventually a new, more attractive vertex joins the graph

causing the rate of edges attaching to previously �t vertices to decline.

Much analysis has been conducted in the area of preferential attachment with �t-

ness. Notable articles include Borgs, Chayes, Daskalakis and Roch [BCDR07] where

authors de�ne phases categorising the growth dynamics of a model for di�erent

distributions generating �tness coe�cients. More speci�cally authors showed that

the asymptotic �tness distribution is absolutely continuous in the non-condensation

phase however does include a discontinuity in the condensation phase. In the limit

of the condensation phase a positive proportion of mass is centred on vertices whose

�tness falls into a speci�c region allowing for condensation to occur. Further analysis

by Dereich and Ortgiese in [DO14] looked into the connection between degree and
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the �tness distribution of a uniformly chosen vertex in the network. Condensation

has been studied further in relation to a number of more applied network models,

for example the Kingman model of genetic variation by [DM13].

Condensation is observable in two important forms; non-extensive and extensive.

Non-extensive as seen in [DMM17] is where the set of vertices which condensation

is orientated around |Sn| → ∞ for any choice of Sn. Extensive condensation is

where for some choice of |Sn| does not follow this de�nition. Vertices attracting

extensive condensation can change over time. A clear example of this is [FJ18]

where condensation occurs at the vertex in Gn with the highest �tness which clearly

changes over time as new, more �t vertices arrive. Persistent hub condensation is

a special case of extensive condensation whereby the condensate occurs at a single

vertex which does not change as n→∞.

Much work has been conducted on the topic of preferential attachment networks

with �tness where the �tnesses are used to scale the preferential attachment kernel.

We introduce the notion of choice. By this we mean, that as a new vertex joins

the network a two-step process is started. Step one, the vertex chooses a sample of

vertices using preferential attachment typically given by equation (2.4). Step two, a

selection criterion is imposed on this set of vertices to decide which vertex/vertices

our new vertex will attach to. This selection criterion is typically predetermined

before the graph begins to grow and remains �xed for the duration of the process.

We �rst explore some models which incorporate choice into their selection process

however do not contain a �tness aspect. The �rst we discuss is that of Krapivsky

and Redner [KR14]. This model evolves as follows: begin with a graph G0 on n0

vertices, V (Gn+1) = V (Gn) ∪ {vn+1}. As a new vertex joins the graph and uses

a linear preferential attachment kernel as expressed by equation (2.4) to sample a

subset of vertices from Gn with repetition. After this step, an edge is formed between

the vertex in the sample with the highest degree and vn+1. This `greedy' algorithm

for deciding on new edge connections e�ectively doubles down on the rich-get-richer

mentality hiding behind preferential attachment. We see the parameters of this model
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can be con�gured to match that of the Barabási-Albert model by setting α = 0 and

the size of the sampled vertices from Gn to be one. As one might expect from this

model, the authors found there are a number of di�erent outcomes dependent on

the selected preassigned attachment rule, though there exists one scenario whereby

a single dominant hub forms with degree of size order n. This implies the existence

of both the condensation phenomena and a phase transition in the model. A phase

transition π for a given parameter Π occurs in a model when the behaviour of a model

is qualitatively di�erent when Π > π as opposed to when Π < π. For example, in the

Krapivsky and Redner model [KR14] it was found that this critical value αc = s− 2

where s vertices are sampled to form a potential edge to. This means if α ≥ αc,

there is no presence of a single macroscopic hub, however if α < αc a hub forms

in the network with probability 1. Clearly as s increases, the likelihood of a hub

forming similarly increases. This is logical as it means our sample size increases the

likelihood of selecting the vertex of highest degree.

Similar variations of the Krapivsky and Redner model have been studied, in partic-

ular by Malyshkin and Paquette in [MP15,MP14]. The �rst of these two, [MP15],

adapts [KR14] in that as a new vertex joins Gn two vertices are sampled. An edge

is formed from the new vertex to the member of the pair with the smallest degree.

This method of growth, though di�erent to [KR14] continues to value older vertices

over newer vertices. Though it is highly plausible that the highest degree vertex is

selected twice the authors found that the highest degree vertex in the network is

max
i

(degGn(vi)) =
ln
(
ln
(∑n

1−n0
degGn(vi)

))
ln (2)

+ Θ(1) (2.7)

with high probability. Comparing this with [KR14] who calculated

max
i

(degGn(vi)) =
n

ln (n) ln (n)
+ Θ(1) (2.8)

we can generate Table 2.1.
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103 104 105 106

equation (2.7) 2.93 3.31 3.61 3.86
equation (2.8) 21 118 754 5239

Tab. 2.1: A comparison of the expected highest degree vertices in the Malyshkin and Pa-
quette [MP15] and Krapivsky and Redner [KR14] models.

We see from Table 2.1 this alteration from attaching to the highest of a sample [KR14]

to attaching to the lowest of two [MP15] is dramatic. A further adaptation by

Haslegrave and Jordan [HJ16] looked into the evolution of graphs whereby for a

�xed r and s, a sample of r vertices is taken from Gn. The new edge is formed

between the new vertex and the member of the sample with the sth highest degree.

The authors here found that if s = 1 a condensation like behaviour can be observed

which could be seen for s > 1 for large enough r.

We have discussed many methods of choice which utilize a two-step method both of

which involve the degree of vertices to decide on new attachments. In later chapters

we discuss models whereby new vertices have a competitive edge against older vertices

with higher degrees.

2.3 Stochastic approximation

There are many techniques used in the analysis of growing networks; a key method we

utilize is that of stochastic approximation. Derived by Robbins and Monro in [RM51]

and analysed further by Kiefer and Wolfowitz in [KW52] stochastic approximation is

a method of proving convergence of a sequence of random variables occuring in a noisy

environment [Sim55]. Stochastic approximation as a method is one in which takes in

a noisy process and approximates it to a di�erential equation [RM51,KW52]. This

iterative process operates in a discrete setting using the current state of a dynamical

system to approximate the next step. The aim of this process is to force the �ow of

the dynamical system towards a stable equilibrium.

A crude example of a dynamical system converging to a stable equilibrium is that
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of a pendulum. The notion of stable and unstable equilibria can be expressed using

�gure 2.4. Here weights are attached to rigid rods �xed to a rotation plate suspended

on a wall.

L

R L′ R′

Fig. 2.4: (Left) two pendulums in equilibrium labeled L and R prior to a perturbation.
(Right) two pendulums in equilibrium labeled L′ and R′ after a small perturbation.

Figure 2.4 shows that both diagrams are in equilibrium. Upon applying a small

perturbation of equal size to each of pendulums L and R. Pendulum R will begin

swinging until becoming stationary in the same state as before the perturbation

given by R′. Pendulum L on the other hand will swing out of equilibrium and begin

converging to L′ which is at the same position as R′. We describe pendulum L in

Figure 2.4; state of equilibrium as unstable whereas pendulums R, R′ and L′ are in

states of stable equilibrium.

We formalize the notation needed for stochastic approximation using notation in

Pemantle [Pem07]. Let the n dimensional vector Xn be a random process in Rn and

Fn be the �ltration generated by the process up to time n. Suppose that

Xn+1 −Xn = γn(F (Xn) + ξn+1 +Rn), (2.9)

where the remainder term Rn and noise ξn+1 satisfy both
∑∞

n=1 γn|Rn| < ∞ and

E(ξn+1|Fn) = 0 respectively. The value γn is a normalization constant satisfying
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both ∑
n

γn =∞ and
∑
n

γ2
n <∞.

The function F (·) is a vector �eld evaluated at a random points Xn, controlling the

�ow of the dynamical system.

Due to theory summarized in [Pem07] we have a collection of su�cient conditions

to classify the roots of F (Xn) as stable or unstable. Pemantle [Pem07] outlines

results which, if satis�ed, tell us whether our dynamical system converges to a stable

point or not. Theorem 2.8 of [Pem07] outlines conditions in which a dynamical

system converges to a stable equilibrium with probability one. Similarly Theorem

2.9 of [Pem07] proves non-convergence to unstable equilibria.

2.3.1 Example of stochastic approximation: Pólya's Urn

A classic example of where stochastic approximation equations can be applied are

generalised Pólya urn processes as detailed in [CCL13,Dri08,Pol14] which explores

calculating limiting proportion of balls in urns. For this example, consider a simple

urn process whereby an urn contains b0 blue, g0 green and r0 red balls at time 0. At

each time step we select a ball from the urn, observe its colour, placing it back in the

urn along with a ball of the same colour with probability p or a ball of a di�erent

colour with probability 1−p
2

each. Let us de�ne three random variables: let Bk be

the proportion of blue balls in the urn at time k and a similar de�nition for Gk and

Rk. Clearly we have that

Bk =
bk

bk + gk + rk
, Gk =

gk
bk + gk + rk

and Rk =
rk

bk + gk + rk
.

We de�ne the �ltration Fn as the natural σ-algebra generated by the sequence of

balls removed and added up to time n. Using our model description we formulate

three approximation equations describing the proportion of balls of each type at time
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k + 1 as

Bk+1 = γn+1

(
γ−1
k Bk + pBk +

(1− p)
2

(Rk +Gk) + ξ
(B)
k+1

)
Gk+1 = γn+1

(
γ−1
k Gk + pGk +

(1− p)
2

(Bk +Rk) + ξ
(G)
k+1

)
Rk+1 = γn+1

(
γ−1
k Rk + pRk +

(1− p)
2

(Bk +Gk) + ξ
(R)
k+1

)

where γ−1
n+1 = bk+1 + gk+1 + rk+1 and ξ

(B)
k+1, ξ

(G)
k+1, ξ

(R)
k+1 are the associated noise dis-

tributed with zero expectation. We �rst rearrange these into the form outlined

in [Pem07] given in equation (2.9)Bk+1

Gk+1

Rk+1

−
Bk

Gk

Rk

 = γn+1


1
2
(1− p)(−2Bk +Rk +Gk)
1
2
(1− p)(Bk − 2Rk +Gk)

1
2
(1− p)(Bk +Rk − 2Gk)

+ γn+1

ξ
(B)
k+1

ξ
(G)
k+1

ξ
(R)
k+1

 .

This can be simpli�ed using Bk +Rk +Gk = 1 to formBk+1

Gk+1

Rk+1

−
Bk

Gk

Rk

 = γn+1


1
2
(1− p)(1− 3Bk)

1
2
(1− p)(1− 3Rk)

1
2
(1− p)(1− 3Gk)

+ γn+1

ξ
(B)
k+1

ξ
(G)
k+1

ξ
(R)
k+1

 .

From here we calculate the stationary points of this system by solving

1

2
(1− p)(1− 3Bk) =

1

2
(1− p)(1− 3Rk) =

1

2
(1− p)(1− 3Gk) = 0

to get

Bk = Rk = Gk =
1

3

for p ∈ [0, 1) and any viable combination of Bk, Gk and Rk for p = 1. Pemantle

[Pem07] states that a solution to a system of stochastic approximation equations is

stable if all the eigenvalues of the Jacobian matrix of partial derivitives describing

the �ow are strictly negative when evaluated at that solution. The three eigenvalues
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of our system are all equal given by

λ =
3

2
(p− 1)

which is negative for any value p ∈ [0, 1) which allows us to conclude that Bk = Rk =

Gk = 1
3
is the only stable equilibrium. In order for this argument to hold we must

check conditions on the noise outlined in Section 2 of [Pem07]; though we ommitted

these here.

2.4 Vertex types and coexistence

Graph theory, more speci�cally, evolutionary graph theory is studied as a model of

real world systems. The inclusion of vertex �tness was an important step in devel-

oping these models, allowing for inherent growth potential among vertices despite

vertex age. However, this method of growth only works under the assumption that a

vertex in Gn is perceived equally attractive to each new vertex when forming Gn+1.

This is not necessarily true in many real world systems. It is clear in a two party

voting system, the distribution of votes when plot on a graph is not uniform. Figure

2.5 depicts a colour map representing the way states voted in a US bipartisan pres-

idential elections from 1972-2016. There is clear non-uniformity among the voting

patterns; a general trend is the middle states vote republican (red) and the coastal

states vote democrat (blue).
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Fig. 2.5: US presidential election timeline depicting how states voted by colour,
red represents Republican and blue Democrat. Image 2016 from
https://www.realclearpolitics.com/elections/live_results/2016_

general/president/map.html and images from 1972-2012 are from
http://metrocosm.com/us-presidential-elections/.

Figure 2.5 gives evidence to support the notion of where someone is born correlating

with their political a�liation. This does not mean people in a state which historically

votes Republican (Alaska) or Democrat (Minnesota) will not vote for the opposing

party. We can translate this macro observation to a micro observation and model

these networks using graphs.

The idea of vertices possessing `types' which behave di�erently to one another is

one which has been studied recently. Austin and Rodgers [AR03] looked at the

case where vertices are allocated one of two growth rates; type A with probability

P(t) and type B with probability 1 − P(t) where P(t) is either constant or variable

based on initial input parameters. The authors discuss two models in [AR03]; the

�rst where di�erent types evolve by way of preferential attachment with di�erent

rates. The second, only one type grows by way of preferential attachment, the other

at a constant rate. Austin and Rodgers were interested in the behaviour of the

degree distribution of the model, moreover whether the models followed power law

distributions as in [BA99]. They found that both models considered adhered to a

power law distribution in their degree sequences in the limit.

https://www.realclearpolitics.com/elections/live_results/2016_general/president/map.html
https://www.realclearpolitics.com/elections/live_results/2016_general/president/map.html
http://metrocosm.com/us-presidential-elections/.
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2.4.1 Coexistence tri-colour example

The following, along with Figures 2.6a-2.6d, depict a crude example of coexistence.

This model evolves as follows: vertices join a network with a two dimensional �tness(
X1

X2

)
chosen according to some distribution. At time n + 1 a new vertex joins the

network evaluating its surroundings and uses a predetermined selection rule to decide

its type. This could be something with low complexity such as nearest neighbour or

it could be decided based on a sampling of the network favouring closer vertices. In

this example we use the colours red, blue and purple to visualise the three vertex

types.

We de�ne the proportion of the n vertices of colour j by Y
(j)
n so that both Y

(j)
n ∈ [0, 1]

and
∑

j Y
(j)
n = 1. As n→∞ the proportion of vertices of each colour satis�es

lim
n→∞

Y (j)
n = Y (j).

Coexistence is where 1 > Y (j) > 0 for at least two di�erent colours. Figure 2.6a

shows example initial conditions for this model where n = 1750 split into three

groups (red, blue and purple.) Vertices are placed according to one of three bivariate

normal distributions; a new vertex joins the network using one of these distributions

to generate its location. A nearest neighbour algorithm is then used to sample a

subset of existing vertices; the new vertex's colour is then assigned based on the

colours of these sampled vertices using a predetermined attachment rule.
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(a) Model initial conditions: 250 red ver-
tices, 1000 blue and 1000 purple

(b) Evidence of coexistence between the
three colours.

(c) Evidence of purples domination in the
network.

(d) Evidence of coexistence between the
purple and red and domination over
blue.

Fig. 2.6: Three sets of data where points are denoted by Zi,j where j ∈ {R,B, P} and
i ∈ {1, 2, . . . }. Points distributed according to Zi,j ∼ N2 (µj ,Σj).

We clearly see in Figure 2.6a a dense population of purple vertices, a sparse number

of red vertices and a moderate density of blue vertices with evidence of regional

hubs. In the following Figures we explore a number of di�erent outcomes which

arise when we let the number of vertices in this model grow. Figure 2.6b gives

evidence of coexistence between vertices of each of the three colours. This doesn't

necessarily mean they are equal proportions but moreover limn→∞ Y
(R)
n = Y (R),

limn→∞ Y
(B)
n = Y (B) and limn→∞ Y

(P )
n = Y (P ) such that 1 > Y (R), Y (B), Y (P ) > 0

and Y (R) + Y (B) + Y (P ) = 1. Figure 2.6c shows dominance of purple vertices over

the other two colours, i.e. Y (R) = Y (B) = 0 and Y (P ) = 1 providing evidence of

domination over red and blue. Finally, Figure 2.6d provides evidence of coexistence

between vertices of red and purple in that Y (R) = k, Y (B) = 0 and Y (P ) = 1 − k
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where |k|+ |1− k| = 1.

2.4.2 Coexistence results

Section 2.4.1 outlines key signs which point towards the emergence of coexistence in

a preferential attachment network. Similarly to the search for condensation, we use

stochastic approximation techniques [Pem07] to derive conditions on model param-

eters to allow for coexistence to occur in a network.

The Antunovi¢, Mossel and Rácz model [AMR16] begins with an initial graph G0

on n0 vertices where each vertex has a preassigned type. In this model we specify

there are two types which are both represented in G0. To form Gn+1 a new vertex

vn+1 joins Gn selecting m vertices independently from Gn using standard preferential

attachment. Our new vertex then is assigned a type based on those of the vertices

it has formed edges to. This is done in a number of di�erent ways. Given the two

type case we de�ne k ∈ Z+ such that 0 ≤ k ≤ m as the number of type 1 vertices

adjacent to vn+1 and ρk as the probability vn+1 selects type 1. A few interesting

selection criteria include:

1. The majority wins model; here ρk = 1 if k > m
2
and ρk = 0 if k < m

2
. In the

event of a tie a fair coin is �ipped.

2. The linear model; here ρk = k
m
.

3. The coin �ip model; here ρ0 = 0, ρm = 1 and ρk = c for k 6∈ {0,m}.

Let us de�ne the proportion of vertices of each type at time n by An and Bn and

the proportion of edge ends adjacent to vertices of each type at time n be denoted

by Xn and Yn respectively. Using these the authors formulated a two dimensional

system of stochastic approximation equations. The authors studied these models

and found the possible limiting proportions of vertices of each types. They found

that often competing types can coexist and occupy a positive proportion of the

total number of vertices in the network. The work of [AMR16] was extended by

Jordan [Jor18] to include vertex �tness in order to verify whether or not the results
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of [AMR16] extended. Jordan [Jor18] proved that coexistence can occur in these

�tness models. Further work by Haslegrave and Jordan [HJ18] was conducted to

explore how an increased number of types changed the behaviour of the network and

provide detailed examples showing behaviour which could not occur in the two type

case. This extension increases the models complexity as it is no longer true that

vn+1 takes on type one with probability ρk and type two with probability 1− ρk. It
is straightforward to see how increasing the types above three as in [HJ18] increases

the model complexity dramatically by creating a more complex set of stochastic

approximation equations which would require solving. They found in this case that

the limit of the type proportions does not converge, moreover behaving in a cyclic

motion where each type takes turns to dominate.



3. LOCATION BASED CHOICE MODEL: CONDENSATION

This chapter focuses on a new model of preferential attachment which could be

described as a generalization of [FJ18]. The network described in [FJ18] grows by

selecting a varying number of vertices denoted by r using preferential attachment

(2.4). The new vertex then forms an edge between itself and the member of the

selection which is categorized as the �ttest. Though our model is thought of as a

generalization of a special case of [FJ18] (why will become clear shortly) we maintain

that exactly r vertices are sampled at each time step with replacement.

The contents of this chapter are as follows. We start by describing the model and

de�ning key notation in Section 3.1. Section 3.2 discusses our methods, results

relating to condensation in this model and outlining our proofs. Finally section

3.3 outlines four speci�c examples which showcase these results and relate them to

relevant other models in the literature.

The content for this chapter has been adapted into [HJY19] which has been accepted

to appear in Random Structures and Algorithms.

3.1 Model description

Fix an initial model parameter r ∈ N such that r ≥ 2, a vector Ξ ∈ Rr such that

Ξi ∈ [0, 1] and
∑r

i=1 Ξi = 1, and a real number α > −1. We specify an initial

graph G0 on n0 ≥ 2 vertices where each vertex vi ∈ V (G0) has its own distinct i.i.d.

location generated according to xi ∼ Uni(0, 1). Though we place this condition on

our network it is noted that this is done to tidy up calculations using the known
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structure of trees. The results are not expected to be di�erent if we were to remove

this condition.

A new graph Gn+1 is formed from Gn at time n+ 1 by the addition of a new vertex

vn+1 via a single edge as to maintain the tree structure. This new vertex joins

with its own i.i.d. uniform random variable denoted by xn+1 ∼ Uni[0, 1]. Where

vn+1 attaches to is decided by selecting a sample of r vertices with replacement by

preferential attachment according to equation (2.4). We denote the r selected vertices

sampled from Gn as
{
v

(n+1)
1 , v

(n+1)
2 , . . . , v

(n+1)
r

}
reordering appropriately such that

the locations of these r selected vertices x
(n+1)
1 , . . . , x

(n+1)
r follow x

(n+1)
1 ≥ · · · ≥ x

(n+1)
r .

Speci�cally let vertex v
(n+1)
k be the vertex with the kth highest location of the r

sampled vertices from Gn.

For completeness, if two vertices or more are sampled with the same location we rank

them in the order they were sampled. Note that with probability 1 the only way

this occurs is if the same vertex is selected multiple times. The probability that vn+1

forms an edge between itself and v
(n+1)
i is given by Ξi; this choice is made irrespective

of vertices selected in this or any previous step.

An example of this model which we revisit in Section 3.3.3 is the middle of three

model described by the vector Ξ = (0, 1, 0). Here our network grows by new vertices

sampling a subset r = 3 of existing vertices from Gn with replacement by prefer-

ential attachment forming an edge between itself and the vertex in the selected set

corresponding to the median location/rank 2.

3.2 Results

We begin by de�ning notation describing aspects of this model we would like to track.

Let the random variable Ψn(x) be the probability under preferential attachment

according to equation (2.4) that vertex vn+1 selects a vertex for attachment from Gn
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which has location less than or equal to x, that is

Ψn(x) =
1

(n+ n0 − 1)(2 + α) + α

∑
vi∈V (Gn)

1{xi≤x}
(
degGn(vi) + α

)
.

We see the normalisation constant used is the sum of weighted degree mass in Gn

n∑
j=1−n0

(
degGn(vj) + α

)
= (n+ n0 − 1)(2 + α) + α.

We have that Ψn(0) = 0 as there is probability 0 of a vertex at location 0 and

Ψn(1) = 1. We think of Ψn as being the distribution function of the normalised

empirical measure on the location space given by weighting the location of each

vertex of the graph by its degree plus α; we label this measure νn. Let Fn be the

σ-algebra generated by the graphs Gn and the locations of the vertices contained

within up until time n, Fn = σ(Gi, xj; i, j ≤ n).

We de�ne ek,r as the situation when Ξk = 1 and Ξi = 0 for all i ∈ {1, 2, . . . , k−1, k+

1, . . . , r}. Upon selecting r vertices using preferential attachment the probability of

attaching to a vertex in Gn with location in [0, x] is equal to

gk(Ψn(x); ek,r) =
r∑
i=k

(
r

i

)
Ψn(x)i(1−Ψn(x))r−i.

The equation gk(Ψn(x); ek,r) leads to a more general equation describing the proba-

bility of vn+1 attaching to a vertex which has location at most x with respect to any

attachment vector Ξ

g(Ψn(x); Ξ) =
r∑

k=1

Ξkgk(Ψn(x); ek,r). (3.1)

We formulate a stochastic approximation equation associated to our model. If G0

has n0 vertices and e0 edges, Gn has n0 + n vertices and e0 + n edges, giving the

normalising constant γn = (2 (e0 + n) + α (n0 + n))−1. Assuming G0 is a tree, which
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we do, we have the simpler form γn = ((n+ n0 − 1) (2 + α) + α)−1.

Lemma 3.2.1. For a �xed α ∈ (−1,∞), x ∈ [0, 1] and Ξ ∈ Rr, it follows that

Ψn+1(x)−Ψn(x) = γn+1 (F1(Ψn(x);x, α,Ξ) + ξn+1) , (3.2)

where

F1(y;x, α,Ξ) = x(1 + α)− (2 + α)y + g(y; Ξ),

for y ∈ [0, 1]. Here g(y; Ξ) is de�ned in equation (3.1) and ξn+1 is given by ξn+1 =

γ−1
n+1 (Ψn+1(x)− E(Ψn+1(x)|Fn)) and satisifes E(ξn+1|Fn) = 0.

Proof. We begin by �xing x ∈ [0, 1]. Let us say that vn+1 attaches to wn+1 which has

location at most x with probability g(Ψn(x); Ξ) from equation (3.1) as the probability

of attaching to each of the r selections. We note that at time n the total weighted

edge mass in the interval [0, x] is given by

n∑
j=1−n0

1{xj≤x}
(
degGn(vj) + α

)
= γ−1

n Ψn (x) .

We wish to calculate the total change to γ−1
n Ψn (x) when vn+1 joins Gn. The expected

addition to the system arising from the location of the new vertex is x(degGn(vn+1)+

α) = x(1 + α). The total expected addition is given by

E(γ−1
n+1Ψn+1 (x) |Fn) = γ−1

n Ψn (x) + x (1 + α) + g (Ψn (x) ; Ξ)

= γ−1
n+1Ψn (x) + x (1 + α)− (2 + α) Ψn (x) + g (Ψn (x) ; Ξ)

= γ−1
n+1Ψn (x) + F1 (Ψn (x) ;x, α,Ξ) .

Stochastic approximation, as speci�ed in [Pem07] allows for a remainder term Rn

provided it satis�es speci�c convergence criteria; in our case we have that Rn = 0

which indeed satis�es these. Our function maps y to F1(y;x, α, ek,r); clearly γn

possesses the properties required to allow for convergence therefore it is required to
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show ξn+1 is suitably de�ned. This information leads to

E(Ψn+1 (x) |Fn) = Ψn(x) + γn+1F1 (Ψn (x) ;x, α,Ξ)

which is in the same form as equation (3.2.1). We de�ne

ξn+1 = γ−1
n+1 (Ψn+1(x)− E(Ψn+1(x)|Fn)) . (3.3)

It is clear from equation (3.3) that E(Ψn+1(x)|Fn) = 0.

As a summary of what was discussed in Chapter 2 we outline necessary and su�cient

conditions in order for a system of random variables Xn to converge to a stable point

or touchpoint of the vector �eld in which Xn is embedded. We say that a root

p ∈ [0, 1] of F1(y;x, α,Ξ) is stable if F1(p;x, α,Ξ) = 0 and there exists an ε > 0

such that for y ∈ (p − ε, p) then F1(y;x, α,Ξ) > 0 and when y ∈ (p, p + ε) we have

F1(y;x, α,Ξ) < 0. Alternatively we say a root p ∈ [0, 1] of F1(y;x, α,Ξ) is unstable

if F1(p;x, α,Ξ) = 0 for some ε such that for y ∈ (p− ε, p) then F1(y;x, α,Ξ) < 0 and

when y ∈ (p, p + ε) we have F1(y;x, α,Ξ) > 0. Finally, if a root p of F1(y;x, α,Ξ)

is strictly positive or strictly negative on both (p− ε, p) and (p, p+ ε) it is classi�ed

as a touchpoint. Given our function F is bounded and continuous, E(ξn+1|Fn) ≤ K

must be satis�ed for some �nite K, and say that Xn converges almost surely to a

root of F and that any stable root or touchpoint has a positive probability of being

a limit. Furthermore [Pem07] requires both E(ξ+
n+1|Fn) and E(ξ−|Fn) be bounded

above and below by positive numbers around a neighbourhood of an unstable root

p; in this case we conclude that p is almost surely not the limit.

Remark 3.2.2. Since F1 (y;x, α,Ξ) is a polynomial, every root in [0, 1] is either a

stable root, an unstable root or a touchpoint. Also, for x ∈ (0, 1) we have

F1 (0;x, α,Ξ) > 0 > F1 (1;x, α,Ξ)

, so 0 and 1 are not roots.
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Theorem 3.2.3. For a �xed x ∈ (0, 1) the sequence of random variables Ψn(x)

converges almost surely to a stable root p of F1(y;x, α,Ξ). Any stable root p ∈ [0, 1]

has a positive probability of being the limit. An unstable root has probability root of

being the limit. We denote the limit of Ψn(x) as Ψ.

Proof. First we note that F1(0;x, α,Ξ) = x(α + 1) > 0 and F1(1;x, α,Ξ) = (1 +

α)(1 − x) < 0. Therefore there must be at least one root of F1(y;x, α,Ξ) in the

interval [0, 1].

Since F1 (y;x, α,Ξ) is a polynomial in y, it is continuously di�erentiable on [0, 1]. We

therefore only need check that ξn+1 satis�es.

The results for stable and unstable roots follow from Corollary 2.7, Theorem 2.8

and Theorem 2.9 of Pemantle [Pem07], as we have that F1(y;x, α,Ξ) is continuous

and γ−1
n linear in n. To apply Corollary 2.7 and Theorem 2.8 we must to check

that there exists a value C ∈ R+ such that E(ξ2
n+1|Fn) ≤ C. For Theorem 2.9 we

require the noise components E(ξ+
n+1|Fn) and E(ξ−n+1|Fn) are bounded above and

below by positive numbers. Recall that ξn+1 is the di�erence between γ−1
n+1Ψn+1(x)

and γ−1
n+1 E(Ψn+1(x)|Fn). We �rst bound the variance of the noise.

We have the vertex vn+1 with location xn+1 and the vertex wn+1 such that vn+1 ∼
wn+1 in Gn+1 has location zn+1. Given the �ltration Fn the total increase in weight

depends entirely on vn+1 and wn+1 resulting in γ
−1
n+1Ψn+1(x) ∈ [γ−1

n Ψn(x), γ−1
n Ψn(x)+

2+α] thus γ−1
n+1 E(Ψn+1(x)|Fn) is in this interval. Clearly it is true that E(|ξn+1||Fn) ≤

2 + α.

We consider bounds on the noise. Since |ξn| = ξ−n +ξ+
n we know that both components

are bounded above. For an unstable root p ∈ (0, 1) we let ε satisfy 0 < p−ε < p+ε <

1. If Ψn(x) ∈ (p− ε, p+ ε) then it is true that P(xn+1, zn+1 ≤ x|Fn) = xg(Ψn(x); Ξ)

which is bounded away from 0, similarly for P(xn+1, zn+1 > x|Fn)

It follows that γ−1
n+1 E(Ψn+1(x)|Fn) is bounded away from γ−1

n Ψn(x) but remaining

the same value with positive probability, this gives a lower bound on E(ξ−n+1|Fn); a

similar bound can be found for ξ+
n .
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All the results described above apply in this setting, giving almost sure convergence

to the root set, positive probability of convergence to each stable root or touchpoint,

and zero probability of convergence to each unstable root.

Lemma 3.2.4. Let x ∈ (0, 1) and Ξ be selected such that there exists a touchpoint p

satisfying

F1(p;x, α,Ξ) = F ′1(p;x, α,Ξ) = 0

Then there exists a positive probability Ψn(x) converges to p.

Proof. As an extension of Theorem 3.2.3 in the case when p is a touchpoint, we apply

the result stated as Theorem 2.5 in Antunovi¢, Mossel and Rácz [AMR16] based on

work by Pemantle in [AR03]; the bounds on our noise immediately given in the proof

of Theorem 3.2.3 imply that the conditions needed are met, and so convergence to

the touchpoint happens with positive probability.

Corollary 3.2.5. The sequence of measures de�ned by Ψn converges weakly, almost

surely, to a limit de�ned by a (possibly random) distribution function Ψ : [0, 1] →
[0, 1].

Proof. By de�nition, we have that for each n, Ψn is a non-decreasing cadlag function

with Ψn(1) = 1 and, almost surely, Ψn(0) = 0. We apply Theorem 3.2.3 to a

countably dense set of x ∈ (0, 1) and for x in this set we de�ne Ψ̂(x) = limn→∞Ψn(x).

Then de�ne a cadlag function Ψ by Ψ(x) = infy>x Ψ̂(y) for x ∈ [0, 1), Ψ(x) = 0 for

x < 0 and Ψ(x) = 1 for x ≥ 1. By this construction, the probability measure with

distribution function Ψ is a weak limit of the sequence of probability measures with

distribution functions Ψn.

We have shown it is possible our process converges to a stable root or touchpoint of

F1(y;x, α,Ξ). The next step is to examine whether condensation can occur in our

model. This happens when our process �jumps� from converging from one stable
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root to another. This jump represents a discontinuity in the limit caused by the

condensate which otherwise would not have been there based on initial distributions.

Dependent on the parameters of the speci�c model (α and x) the limit to which

our sequence of random variables Ψn(x) converges can either be continuous or dis-

continuous. A discontinuity in the limit Ψ of Ψn(x) corresponds to a condensation

phenomena occurring in the graph. As discussed in Section 2.2, this is where a

proportionally small number of vertices Sn ⊂ V (Gn) have a positive probability of

attracting an approximately constant proportion of new neighbours as n→∞.

This �jump� in the convergence represents a discontinuity in the limit of Ψn(x) and

could be down to a single vertex; though this is not necessarily the case. Referring

back to the middle of three example discussed further in Section 3.1 when Ξ =

(0, 1, 0). The function F1(y;x, α,Ξ) is a cubic polynomial allowing for a maximum

of three real roots dependent on di�erent input values of α and x. If three distinct

real roots exist then there exist exactly two stable roots. We will talk more about

this case in Section 3.3.3.

In order to examine whether a limit discontinuity is down to a single vertex becoming

a persistent hub we introduce a second random variable tracking the evolution of a

speci�c vertex; namely v1. Without loss of generality, we study the vertex v1 as it is

present in the graph from the start of the process. We denote the location of v1 as

z in order to distinguish it from the others. For a graph Gn on n + n0 vertices and

a �xed value α ∈ (−1,∞), the probability of selecting v1 for attachment is derived

from equation (2.4) as

Dn =
α + degGn(v1)∑n

i=1−n0
(α + degGn(vi))

,

by conditioning on the location of vertex one being equal to z. To do this we form

a two dimensional stochastic approximation for (Ψn(z), Dn) and consider whether

vertex v1 shows qualities of a persistent hub by attracting linear growth; alternatively

whether Dn → 0 as n→∞ as this indicates the degree of vertex one not growing at
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a linear rate.

Let χn be the location of a selected vertex under preferential attachment from Gn.

Assuming vertex one is the only vertex at location z, which is true almost surely, we

have

P(χn = z|Fn) = Dn, P(χn < z|Fn) = Ψn(z)−Dn and P(χn > z|Fn) = 1−Ψn(z).

The probability of selecting this vertex at location z for attachment conditional on

the vertex being of rank k is given by

hk(Ψn(z), Dn; ek,r) =

(
k−1∑
j=0

r∑
i=k

(
r

i

)(
i

j

)
(Ψn(z)−Dn)jDi−j

n (1−Ψn(z))r−i

)
. (3.4)

This is the sum of all of the combinations of the probabilities P(χn = z), P(χn > z)

and P(χn < z) which, when ranked by their locations ensures a vertex in the kth

position with location z.

Lemma 3.2.6. For a �xed α ∈ (−1,∞), the stochastic approximation equation

related to Dn is given by

Dn+1 −Dn = γn+1 (F2(Ψn(z), Dn;α,Ξ) + ζn+1) , (3.5)

where

F2(y, d;α,Ξ) = −(2 + α)d+
r∑

k=1

Ξkhk(y, d; ek,r)

and ζn+1 is the noise incurred such that E(ζn+1|Fn) = 0.

Proof. Similarly to how we found equation (3.2) we use (3.4) to obtain the form

outlined in Pemantle [Pem07].

E(γ−1
n+1Dn+1|Fn) = γ−1

n Dn +
r∑

k=1

Ξkhk(y, d; ek,r)
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= γ−1
n+1Dn − (2 + α)Dn + x (1 + α) + h (Ψn (x) , Dn; Ξ)

= γ−1
n+1Dn + F2 (Ψn (x) , Dn; Ξ) ,

We therefore have the stochastic approximation equation for Dn in the form

Dn+1 −Dn = γn+1 (F2(Ψn(z), Dn; Ξ) + ζn+1) .

We de�ne ζn+1 as

ζn+1 = γ−1
n+1 (Dn+1 − E(Dn+1|Fn)) .

It follows immediately that E(ζn+1|Fn) = 0.

We have formed a two dimensional system of stochastic approximation equations

represented by(
Ψn+1(z)

Dn+1

)
−

(
Ψn(z)

Dn

)
= γn+1

(
F1(Ψn(z); z, α,Ξ)

F2(Ψn(z), Dn;α,Ξ)

)
+ γn+1

(
ξn+1

ζn+1

)
.

The following relationship between F1 and F2 is useful in solving our two dimensional

set of stochastic approximation equations to �nd the stationary points of our vector

�eld.

Theorem 3.2.7. We have that

F1(y − d;x, α, ek,r) = F1(y;x, α, ek,r)− F2(y, d;α, ek,r). (3.6)

Proof. In order to prove this result we use induction on k. For k = 1

F1(y − d;x, α, e1,r) =1− (1− y + d)r − (2 + α)(y − d) + x(α + 1)

−

(
−(2 + α)d+

r∑
i=1

(
r

i

)
di(1− y)r−i

)

=

(
−(2 + α)y + x(α + 1) +

r∑
i=1

(
r

i

)
yi(1− y)r−i

)
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=F1(y;x, α, e1,r)− F2(y, d;α, e1,r)

We show that the statement holds true for F1(y − d;x, ek+1,r) using equation (3.6)

as the assumption step.

F1(y − d;x, α, ek+1,r) = x(α + 1)− (2 + α)(y − d) +
r∑

i=k+1

(
r

i

)
(y − d)i(1− y + d)r−i

=F1(y − d;x, α, ek,r)−
(
r

k

)
(y − d)k(1− y + d)r−k

=F1(y;x, α, ek,r)− F2(y, d;α, ek,r)−
(
r

k

)
(y − d)k(1− y + d)r−k, (by the induction

hypothesis.)

=F1(y;x, α, ek+1,r)− F2(y, d;α, ek,r)

−
(
r

k

)
(y − d)k(1− y + d)r−k +

(
r

k

)
yk(1− y)r−k

=F1(y;x, α, ek+1,r)− (2 + α)d−

(
k−1∑
j=0

r∑
i=k

(
r

i

)(
i

j

)
(y − d)jdi−j(1− y)r−i

)

−

(
r∑
i=k

(
r

i

)(
i

k

)
(y − d)kdi−k(1− y)r−i

)

+

(
k∑
j=0

(
r

k

)(
k

j

)
(y − d)jdk−j(1− y)r−k

)

=F1(y;x, α, ek+1,r)−

(
k−1∑
j=0

r∑
i=k

(
r

i

)(
i

j

)
(y − d)jdi−j(1− y)r−i

)
− (2 + α)d

−

(
k∑
j=k

r∑
i=k

(
r

i

)(
i

j

)
(y − d)jdi−j(1− y)r−i

)

+

(
k∑
j=0

k∑
i=k

(
r

i

)(
i

j

)
(y − d)jdi−j(1− y)r−i

)

=F1(y;x, α, ek+1,r)−

((
k∑
j=0

r∑
i=k+1

(
r

i

)(
i

j

)
(y − d)jdi−j(1− y)r−i

)
+ (2 + α)d

)
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=F1(y;x, α, ek+1,r)− F2(y, d;α, ek+1,r)

completing the proof.

Corollary 3.2.8. Given the probability vector Ξ = (Ξ1,Ξ2, . . . ,Ξr) associated to our

model where Ξk is the probability associated with forming an edge between vn+1 and

vk we deduce from Theorem 3.2.7 that

F1(y − d;x, α,Ξ) = F1(y;x, α,Ξ)− F2(y, d;α,Ξ)

Proof. By de�nition

F1(y − d;x, α,Ξ) =
r∑

k=1

F1(y − d;x, α, ek,r)

=
r∑

k=1

(F1(y;x, α, ek,r)− F2(y, d;α, ek,r))

=
r∑

k=1

(F1(y;x, α, ek,r))−
r∑

k=1

(F2(y, d;α, ek,r))

=F1(y;x, α,Ξ)− F2(y, d;α,Ξ)

It follows from Theorem 3.2.8 that if F1 (yi; z, α,Ξ) = F1 (yj; z, α,Ξ) = 0 then

F2 (yi, yi − yj; z, α,Ξ) = 0 and the solutions to F1 (y; z, α,Ξ) = F2 (y, d;α,Ξ) = 0

all take the form (y, d) = (yi, yi − yj) where i, j ∈ {1, 2, . . . , r}.

We investigate the stability conditions of our two dimensional system by way of the

Jacobian matrix given by

M =

[
∂
∂y
F1 (yi; z, α,Ξ) ∂

∂d
F1 (yi; z, α,Ξ)

∂
∂y
F2 (y, d;α,Ξ) ∂

∂d
F2 (y, d;α,Ξ)

]
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We observe thatM is an upper triangular matrix as F1(y;x, α,Ξ) does not vary with

Dn. We have that the eigenvalues of our system are given by

λ
(k)
1 (y;α, ek,r) =

(
r∑
i=k

(
r

i

)
yi−1(1− y)r−i−1(i− r)

)
− (2 + α),

λ
(k)
2 (y, d;α, ek,r) =

(
k−1∑
j=0

r∑
i=k

(
r

i

)(
i

j

)
Qi,j(y, d)yj−1di−j−1(1− y)r−i−1

)
− (2 + α),

where Qi,j(y, d) = (y − d)(i − iy + rd − id) + j(1 − y)(2d − y). The eigenvalues

associated to our full model with respect to Ξ are given by

λ1(y;α,Ξ) =
r∑

k=1

Ξk
∂

∂y
F1(y;x, α, ek,r) =

r∑
k=1

Ξkλ
(k)
1 (y;α, ek,r)

and

λ2(y, d;α,Ξ) =
r∑

k=1

Ξk
∂

∂d
F2(y, d;α, ek,r) =

r∑
k=1

Ξkλ
(k)
1 (y − d;α, ek,r).

Here y ∈ {y1, y2, . . . , yr} which is the set of solutions to equation F1(y;x, α,Ξ) = 0.

If F1(yi;x, α,Ξ) = 0 then by using equation (3.6) and equating terms we see that

F2(yi, yi − yj;α,Ξ) = 0.

It follows from Theorem 3.2.7 that if

F1(yi;x, α, ek,r) = F1(yj;x, α, ek,r) = 0

then

F2(yi, yi − yj;x, α,Ξ) = 0. (3.7)

We see from (3.7) that the solutions of F1(y;x, α,Ξ) = F2(y, d;α,Ξ) = 0 take the

form (yi, yi − yj) where i, j ∈ {1, 2, . . . , r}. Using intuition we deduce that some of

these solutions are not feasible. For example, solutions where yj > yi are clearly

infeasible as they cause Dn to be negative which is impossible based on its de�nition.
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Lemma 3.2.9. If both yi − yj > 0 such that

F1(yi;x, α, ek,r) = F1(yj;x, α, ek,r) = 0

and
∂

∂y
F1(y;x, α,Ξ) = λ1(y;α,Ξ) < 0

are satis�ed then for both yi,yj (yi, yi − yj) is a stable stationary point of the vector

�eld described by equations (3.2) and (3.5).

Proof. By rearranging equation (3.6) we see that

F2(y, d;α,Ξ) = F1(y;x, α,Ξ)− F1(y − d;x, α,Ξ)

and deduce that λ2(y, d;α,Ξ) = ∂
∂d

(F1(y;x, α,Ξ)− F1(y − d;x, α,Ξ)), here because

F1(y;x, α,Ξ) does not depend on d it follows that ∂
∂y
F1(y;x, α,Ξ) = 0. It is ob-

servable that λ2(y, d;α,Ξ) = − ∂
∂d
F1(y − d;x, α,Ξ) = λ1(y − d;α,Ξ). All roots of

F1(y;x, α,Ξ) = F2(y, d;α,Ξ) = 0 are of the form (yi, yi−yj). If we evaluate our eigen-
values at this point we get λ1(yi;α,Ξ) and λ2(yi, di;x, α,Ξ) = λ1(yj;α,Ξ), which by

referring to our initial conditions are both negative. Therefore the pair yi and yj

form the possible limit (yi, yi − yj).

Corollary 3.2.10. As a direct consequence of Lemma 3.2.9; if we have two stable

�xed points in the one dimensional system yi, yj ∈ {y1, y2, . . . , yr} such that yi ≥ yj

then there is a positive probability that (Ψn(x), Dn)→ (yi, yi−yj) is a limit as n→∞
of the stochastic process resulting in the potential for condensation to occur at vertices

which have a location in the region which produced yi and yj.

Proof. Lemma 3.2.9 states that (yi, yi − yj) is a stationary point of the vector �eld

given by (F1(·), F2(·)). It follows from Theorem 2.16 of [Pem07] that it su�ces

to show convergence to this stable point cannot happen if there is no t for which

(Ψn+t(z), Dn+t)n≥0, as (F1(·), F2(·)) almost surely avoids some neighbourhood of



3. Location Based Choice Model: Condensation 39

(yi, yi − yj). It is true that both degGt+n(v0) ∈ (degG0
(v0), degG0

(v0) + t + n) and

Dt+n ∈
[
0, 1

2+α

]
for su�ciently large n. We can use similar arguments for Ψn+t(z), to

show (Ψn+t(z), Dn+t)n≥0 approaches (yi, yi−yj) arbitrarily close so long as 0 ≤ yi ≤ 1

and 0 ≤ yi−yj ≤ 1
2+α

. Both of these conditions hold assuming yi ≥ yj as yi−yj = di

satisfying di ∈
[
0, 1

2+α

]
and noting that

(1 + α)x

2 + α
≤ y ≤ 1

2 + α
+

(1 + α)x

2 + α
.

A natural question to discuss is whether there could be more than one point of

condensation in the model corresponding to more than one discontinuity in the limit

Ψ. The following result outlines that in the situation when vn+1 always attaches to

the member of the seleced r vertices with the kth highest location (ek,r = 1) then it

is impossible to have two (or more) points of condensation.

Theorem 3.2.11. When we sample r vertices using preferential attachment forming

an edge between the new vertex vn+1 and the vertex in the sample with rank k with

probability 1, it is impossible to have more than one point of condensation.

Proof. Note that

∂

∂y
g(y; ek,r) =

∂

∂y

r∑
i=k

(
r

i

)
yi(1− y)r−i

=
r∑
i=k

i

(
r

i

)
yi−1(1− y)r−i −

r−1∑
i=k

(r − i)
(
r

i

)
yi(1− y)r−i−1

=
r∑
i=k

r

(
r − 1

i− 1

)
yi−1(1− y)r−i −

r−1∑
i=k

r

(
r − 1

i

)
yi(1− y)r−i−1

=r

(
r − 1

k − 1

)
yk−1(1− y)r−k,
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by way of a teloscopic sum. Therefore

∂

∂y
F1(y;x, α, ek,r) = r

(
r − 1

k − 1

)
yk−1(1− y)r−k − (2 + α) .

If k = r then ∂2

∂y2F1(y;x, α, ek,r) is positive on (0, 1), and if k = 1 then it is negative

on (0, 1). Otherwise,

∂2

∂y2
F1(y;x, α, ek,r) =r

(
r − 1

k − 1

)(
(k − 1)(1− y)− (r − k)y

)
yk−2(1− y)r−k−1

=r

(
r − 1

k − 1

)
yk−2(1− y)r−k−1

(
(k − 1)− (r − 1)y

)
,

which is positive for y ∈ (0, k−1
r−1

) and negative for y ∈ (k−1
r−1

, 1). It follows that the

equation ∂
∂y
F1(y;x, α, ek,r) = 0 has at most two roots in (0, 1), and further that if it

has exactly two roots z1 < z2 then ∂
∂y
F1(y;x, α, ek,r) > 0 in the range z1 < y < z2.

Consequently, the equation F1(y;x, α, ek,r) = 0 has at most three roots in [0, 1]. By

Theorems 3.2.9 the two dimensional system associated to a vertex with location z in

which condensation can occur has the form (yi, yi−yj) such as yi−yj > 0; here yi, yj

are roots of F1(y;x, α, ek,r) = 0 and ∂
∂y
F1(yi;x, α, ek,r),

∂
∂y
F1(yj;x, α, ek,r) < 0.

3.3 Examples

During this section we outline four cases that occur from di�erent attachment vectors

Ξ = (Ξ1,Ξ2, . . . ,Ξr) which highlight di�erent traits of results proved in Section 3.2.

All four of the following examples follow the same initial process as outlined in Section

3.1. Starting with a tree G0 on n0 vertices, at each step we add one vertex to Gn, in

order to maintain the tree property we have set the number of edges the new vertex

brings to Gn to one. To obtain Gn+1 we use preferential attachment on Gn to select

r vertices from V (Gn) with replacement according to equation (2.4). Our new vertex

then attaches based on a �xed vector of probabilities Ξ.

If we choose r = 1 we have regular preferential attachment as outlined in Section 3.1.
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If we chose r = 2 the options are Ξ = (0, 1) and Ξ = (1, 0) which fall into the highest

of r case by de�nition or symmetry, likewise for the highest and lowest case when

r = 3. The general case for r = 2 is explored in Section 3.3.2 where Ξ = (Ξ1,Ξ2).

The simplest case where attachment is always to a particular ranked vertex (Ξk = 1)

in which we expect di�erent results from the highest of r case is the middle of three

denoted by the vector Ξ = (0, 1, 0) explored in section 3.3.3. Finally in Section 3.3.4

we discuss the situation where Ξ =
(
0, 1

2
, 0, 0, 0, 1

2
, 0
)
as this case exhibits interesting

properties.

3.3.1 Largest of r

This case corresponds to the vector Ξ = (0, . . . , 0, 1) where the new vertex vn+1

attaches to the member of the r selected vertices which corresponds to the highest

location. By using equation (3.1) to attain g(y; er,r) = yr we formulate the stochastic

approximation equation

F1(y;x, α, er,r) = yr − (2 + α)y + x(1 + α).

Figure 3.1 below shows the behaviour of this model at a �xed α = −1
2
for four values

of r. Each �gure is evaluated at three values of x namely
{

0, 1
2
, 1
}
, (bottom, middle,

top lines of each respectively.)
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(a) r = 3
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(b) r = 6
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(c) r = 9
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(d) r = 12

Fig. 3.1: A depiction of how an increase in r varies the stochastic approximation equation
for a �xed value of α = −1

2 evaluated at each of x ∈ {0, 1
2 , 1}.

Here we observe that as r increases the turning point inside y ∈ [0, 1] increases while

its vertical component decreases. Figure 3.2 plot below gives the behaviour of our

stochastic approximation equation as α decreases for a �xed value of r. (Again all

�gures are evaluated at x ∈ {0, 1
2
, 1}.)
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(a) α = −1
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(b) α = −1
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(d) α = −19
20

Fig. 3.2: Graphs to show how a decrease in α e�ects the stochastic approximation equation
for a �xed value of r = 5.

Here we see that as α decreases towards −1, the turning point is tending towards(
r−

1
r−1 , (r − 1)r−

1
r−1

)
.

In order to analyze this model we �rst �x x ∈ (0, 1). We see that F1(0;x, α, er,r) =

x(α + 1) > 0 and F1(0;x, α, er,r) = (x − 1)(α + 1) < 0 for all α ∈ (−1,∞). We

calculate the turning points as y ∈
{
± r−1

√
2+α
r

}
and disregarding the negative value
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as it is never satis�es y ∈ [0, 1]. We can see that

∂2

∂y2
F1

((
2 + α

r

) 1
r−1

;x, α, er,r

)
= r(r − 1)

(
2 + α

r

) r−2
r−1

is positive and strictly monotonic for all integers r ≥ 2 and α ∈ (−1,∞). There

exists exactly one solution of F1(y;x, α, er,r) = 0 for y ∈ [0, 1]. The turning point of

which is at y =
(

2+α
r

) 1
r−1 satisfying 0 ≤

(
2+α
r

) 1
r−1 ≤ 1 when −2 ≤ α ≤ r − 2 which

we can re�ne to −1 < α ≤ r − 2 to include the de�nition of α.

Pulling all of this together we study how F ′1(y;α, er,r) behaves in the region y ∈ [0, 1].

It is easy to show that y = 0 and y = 1 are roots of F1(y;x, α, er,r) = 0 for all r ∈ N
when evaluated at x = 0 and x = 1 respectively. The gradient of F ′1(0;α, er,r) =

−(2+α) < 0, is always negative for any values of r and α. Whereas F ′1(1;α, er,r) > 0

for each r ∈ N when r > (2 + α).

When α ∈ (−1, r−2] there exists a turning point when y ∈ [0, 1] implying F1(1;x, er,r)

is an increasing function which allows for condensation. When α > r− 2 there is no

turning point in [0, 1] therefore F1(1;x, α, er,r) is a decreasing function. If

∂

∂y
F1(y;x, α, er,r)

∣∣
y=0

< 0,

then r ≤ 2 + α. When satis�ed, there is no discontinuity in the limit, hence no

condensation. Further results on this model can be found in [FJ18] where the authors

explore this model further allowing for an r of random size.

3.3.2 Choice of two

In this section we look at the natural extension of the highest/lowest of two model

which both follow the structure of the highest of r case previously discussed. We

examine the selection vector Ξ = (Ξ1,Ξ2) where neither Ξ1 or Ξ2 equal 1. An example

of when a model like this might be used is a binary voting system, speci�cally when

the attractiveness to one candidate is higher than the other. Here we want to study
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whether two candidates could gain a positive proportion of votes in the limit.

The associated stochastic approximation equations are found using Lemmas 3.2.1

and 3.2.6 to be:

F1(y;x, α,Ξ) = (1− 2Ξ1)y2 − (2 + α− 2Ξ1)y + x(α + 1) (3.8)

and

F2(y, d;α,Ξ) = d(2dΞ1 − d+ 2y − 4Ξ1y − 2− α + 2Ξ1).

Figure 3.3 displays how F1

(
y; 1

2
, α,Ξ

)
behaves as α decreases. Here we see an initial

(a) α = −1
4 (b) α = −1

2

(c) α = −3
4 (d) α = −1

Fig. 3.3: The function F1

(
y; 1

2 , α,Ξ
)
evaluated at four di�erent values of α.

bias towards values of y on the lower end of its range. This bias clearly weakens as

α→ −1. As equation (3.8) is a quadratic we solve it attaining the solutions

ψ+(x), ψ−(x) =
(2 + α− 2Ξ1)

2(1− 2Ξ1)
±
√

(2 + α− 2Ξ1)2 − 4x(α + 1)(1− 2Ξ1)

2(1− 2Ξ1)
, (3.9)
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for Ξ1 6= 1
2
. The case where Ξ = 1

2
is uninteresting as it reduces the model to regular

preferential attachment as the ranking of the sampled vertex's locations pays no part

in the formation of edges. This statement remains true in the general case where

each entry of the length r vector Ξ is equal to 1
r
. For either solution of equation (3.9)

we solve F2(ψi(x), dj;α,Ξ) for d as

d1 = 0 and d2 = 2ψi(x)− 1− α + 1

1− 2Ξ1

.

We look for the stable roots of this model using the Jacobian matrix or the general

form found in Section 3.2 to �nd the eigenvalues

λ1 = 2y(1− 2Ξ1)− (2 + α− 2Ξ1) (3.10)

and

λ2 = 4dΞ1 − 2d+ 2y − 4yΞ1 − 2− α + 2Ξ1 = 4d(Ξ1 − 1) + λ1 = −4d(1− Ξ1) + λ1.

It is clear that if λ1 is negative then λ2 must also be negative. By rearranging

equation (3.10) we see that λ1 is negative if

y <
2 + α− 2Ξ1

2(1− 2Ξ1)

which is the �rst term of equation (3.9). We therefore need only solve

0 =

√
(2 + α− 2Ξ1)2 − 4x(α + 1)(1− 2Ξ1)

2(1− 2Ξ1)
(3.11)

in order to �nd a critical point in the stability of the �rst eigenvalue. Equation (3.11)

is satis�ed when

x =
(2 + α− 2Ξ1)2

4(α + 1)(1− 2Ξ1)

which we denote by xcrit. If x < xcrit it follows that ψ+(x) is stable. We conclude

that ψ−(x) is stable when x > xcrit. We look into necessary conditions on α and Ξ1
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to ensure xcrit ∈ (0, 1),

0 <xcrit < 1

0 <
(2 + α− 2Ξ1)2

4(α + 1)(1− 2Ξ1)
< 1

0 <1 +
(α + 2Ξ1)2

4(α + 1)(1− 2Ξ1)
< 1.

Which we rearrange to formulate expressions based on whether Ξ1 <
1
2
or Ξ1 >

1
2
.

We �rst look at the case when Ξ1 <
1
2
:

0 < 1 +
(α + 2Ξ1)2

4(α + 1)(1− 2Ξ1)
< 1

−4(α + 1)(1− 2Ξ1) < (α + 2Ξ1)2 < 0.

We see that there are no combinations of α > −1 and Ξ1 ∈ (0, 1) which satisfy

(α + 2Ξ1)2 < 0. We look at the situation when Ξ1 >
1
2
:

0 < 1 +
(α + 2Ξ1)2

4(α + 1)(1− 2Ξ1)
< 1

0 < 1− (α + 2Ξ1)2

4(α + 1)(2Ξ1 − 1)
< 1

−4(α + 1)(1− 2Ξ1) < −(α + 2Ξ1)2 < 0.

We see that −(α+ 2Ξ1)2 < 0 is always true for α > −1 and Ξ1 ∈ (0, 1). We examine

the lower limit of this which is never satis�ed.

−4(α + 1)(1− 2Ξ1) < −(α + 2Ξ1)2

(2Ξ1 − α− 2)2 < 0.

As our one dimensional stochastic approximation equation given by equation (3.8) is

a degree two polynomial we cannot have two distinct stable roots, therefore cannot

attract condensation occurring in this model for any x ∈ (0, 1).
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For completeness we examine the cases where x = 0 and x = 1 to see if condensation

could occur at vertices with these locations. It remains true that if λ1 < 0 then

λ2 < 0. We look at the x = 0 case. We use equation (3.9) to show that

ψ−(x) = 0

and

ψ+(x) =
2 + α− 2Ξ1

1− 2Ξ1

.

When we evaluate the eigenvalues of our system at each of these points we get that

ψ−(x) is stable when Ξ1 <
2+α

2
and ψ+(x) is stable when Ξ1 >

2+α
2
. This means we

have a phase transition occurring at Ξ1 = 2+α
2
.

For the case when x = 1 we �nd the roots of the �rst stochastic approximation

equation to be

ψ+(x) = 1

and

ψ−(x) =
1 + α

1− 2Ξ1

.

Similarly we evaluate λ1 at these points and �nd that ψ+(x) is stable when −α
2
< Ξ1

and ψ−(x) when −α
2
> Ξ1 meaning this phase transition occurs when Ξ1 = −α

2
.

These two results are interesting as if we let α = −1 (which is not possible as α > −1)

then both of these phase transitions equal 1
2
. Therefore as α > −1 a bias occurs in

our model. If the new vertex favours attachment to vertices with lower locations

then ψ+(x) is stable and if higher locations are more favourable then ψ−(x) is stable.

This can be seen in Figure 3.3. Condensation can occur at x = 0 if α < −2(1− Ξ1)

and at x = 1 if α < −2Ξ1.

3.3.3 Middle of three

In previous examples we have examined simple cases where it is bene�cial for a vertex

to have a location close to 0 or 1. We will now explore a situation where this is not



3. Location Based Choice Model: Condensation 49

the case. This section characterizes the behaviour of the simplest case in which we

expect di�erent results to previous sections. In this middle of three model it is no

longer bene�cial to have a location close to 0 or 1. This model behaves as follows; the

new vertex vn+1 joins the graph Gn selecting three (r = 3) vertices using preferential

attachment. An edge is formed between itself and the selected vertex which has the

median location of the three with probability 1. Using notation described in Section

3.1 we describe this as Ξ = (0, 1, 0) = e2,3.

Using the setting we described in Lemmas 3.2.1 and 3.2.6 we express our functions

F1(y;x, α, ek,r) and F2(y, d;α, ek,r) as

F1(y;x, α, e2,3) = −2y3 + 3y2 − (2 + α)y + x(α + 1)

and

F2(y, d;α, e2,3) = −2d3 + 6d2y − 3d2 − 6dy2 + 6dy − d(2 + α).

Figure 3.4 shows the behaviour of F1(y;x, α, e2,3) as α decreases for x, y ∈ [0, 1].

This Figure gives us an indication of the general structure of the solution set of this

system for four di�erent values of x. Figure 3.5 displays a cross sectional view of

Figure 3.3c for x = 1
2
in which there exist three real roots. Otherwise there exists

exactly one real root.
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(a) α = −1
4

(b) α = −1
2

(c) α = −3
4 (d) α = −1

Fig. 3.4: The function F1(y;x, α, e2,3) evaluated at di�erent values of α and x.
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Fig. 3.5: F1

(
y;x,−3

4 , e2,3

)
evaluated at both x = 1

2 ±
√

6
18 .

Using Figure 3.5 we create a new diagram that depicts the frequency of roots of

F1(y;x, α, e2,3) as x increases from 0 to 1. The vertical axis expresses the value of

the root or roots at any given x ∈ [0, 1].
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Fig. 3.6: Frequency plot of the roots of F1(y;x, 3/4, e2,3) = 0 against x.

It is clear to see from Figures 3.5 and 3.6 that there exists exactly one real root when

x ∈
{[

0, 9+
√

6
18

)
∪
(

9−
√

6
18

, 1
]}

and three real roots when x ∈
[

9−
√

6
18

, 9+
√

6
18

]
.

For x ∈ (0, 1) F1(y;x, α, e2,3) = 0 is a cubic; let us denote {ψ1(x), ψ2(x), ψ3(x)} such
that ψ1(x) ≤ ψ2(x) ≤ ψ3(x) as the three real roots of F1(y;x, α, e2,3) = 0 when three

exist and ψ(x) as the single real root when exactly one exists.

Theorem 3.3.1. For a �xed location x ∈ (0, 1), the random variable Ψn(x) converges

pointwise as n→∞ almost surely to the following limits.

lim
n→∞

Ψn(x) =



ψ(x), if α ≥ −1
2

ψ(x), if α ∈ (−7
8
,−1

2
) and x 6∈

[
1
2
− s, 1

2
+ s
]

ψ1(x) or ψ3(x), if α ∈ (−7
8
,−1

2
) and x ∈

[
1
2
− s, 1

2
+ s
]

ψ1(x) or ψ3(x), if α ≤ −7
8
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where s =
√
−(1+2α)3

108(α+1)2 .

Proof. By observation we see a phase transition at α = −1
2
. By solving ∂

∂y
F1(y;x, α, e2,3) =

0 we calculate the turning points to be(
1

2
+

√
−1− 2α

12
, (α + 1)

(
x− 1

2

)
+

(−1− 2α)
3
2

6
√

3

)
,(

1

2
−
√
−1− 2α

12
, (α + 1)

(
x− 1

2

)
− (−1− 2α)

3
2

6
√

3

)
.

The product of the vertical components of these turning points is negative if and

only if there exists exactly three real roots.

0 >

(
(α + 1)

(
x− 1

2

)
− (−1− 2α)

3
2

6
√

3

)(
(α + 1)

(
x− 1

2

)
+

(−1− 2α)
3
2

6
√

3

)

0 >(α + 1)2

(
x− 1

2

)2

+
(1 + 2α)3

108

by rearranging we deduce √
− (1 + 2α)3

108(α + 1)2
>

∣∣∣∣x− 1

2

∣∣∣∣
which the desired critical points of 1

2
±s are concluded. In the situation when α ≥ −1

2
,

F1(y;x, α, e2,3) = 0 does not possess turning, points therefore there exists exactly

one real root to converge to which was previously de�ned to be ψ(x). Therefore

Ψn(x) is almost surely continuous. As we have restricted x to the interval [0, 1] if

α ≤ −7
8
that for every x ∈ [0, 1] our function has exactly three real roots. By solving√

−(1+2α)3

108(α+1)2 = 1
2
we see that when α ∈

(
−7

8
,−1

2

)
there exists a value s =

√
−(1+2α)3

108(α+1)2

such that F1(y;x, α, e2,3) = 0 has three real roots when x ∈
[

1
2
− s, 1

2
+ s
]
and one

real root when x ∈ {[0, s) ∪ (1 − s, 1]}. When our function satis�es the conditions

outlined after Lemma 3.2.1 we conclude convergence almost surely to one of the
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stationary points given by ψ1(x) and ψ3(x).

For the associated phase transition α = −1
2
, it is true that when α ≥ −1

2
, Ψ is

almost surely continuous as there are no discontinuities in the limit (as required for

condensation.) When α < −1
2
we observe that Ψn is a function following the lower

root ψ1(x) until a random point in
[

1
2
− s, 1

2
+ s
]
at which a jump happens before

following the upper root ψ3(x). This represents a discontinuity in the limit giving

us a point of condensation. If α ≤ −7
8
then s ≥ 1

2
which means the location of the

�jump� has full support on (0, 1).

Figure 3.7 below shows two simulations which under the same initial conditions,

namely α = −3
4
∈ (−7

8
,−1

2
). These two simulations provide evidence of two di�erent

types of condensation.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0 Ψ102(x)

Ψ104(x)

Stable roots

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

Ψ102(x)

Ψ104(x)

Ψ106(x)

Ψ108(x)

Stable roots

Fig. 3.7: Results from simulations for α = −3
4 . Diagrams here generated by simulations

run by J.Haslegrave found in [HJY19].

Corollary 3.2.10 implies that if α ∈ (−7
8
,−1

2
) then there is a positive probability

that condensation could exist at a random location in the network and is caused

by a persistent hub at a random location having full support on (1
2
− s, 1

2
+ s).

Evidence of this extensive condensation can be seen in Figure 3.7 (left). On the other

hand, Lemma 3.2.4 tells us that there exists a non-zero probability of condensation
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occurring at a touchpoint, though there is probability zero that a vertex joins the

network (or is present from the start) which has location equal to this touchpoint.

Therefore there is a positive probability condensation in the network is not down

to a persistent hub. Evidence for this (slower convergence) can be seen in �gure

3.7 (right) where new �tter vertices are joining the network with locations tending

towards the upper touchpoint in this case at approximately x ≈ 0.62. In the case

wherer x is a touchpoint, there is a positive probability of a jump at the touch

point. However there is probability zero of a vertex with this location. Therefore

condensation cannot be down to a persistent hub.

By implementing conditions on F1(y;x, α, e2,3) using x and α to control whether one

or three roots exist, we solve

F1(y;x, α, e2,3) = F2(y, d;α, e2,3) = 0 (3.12)

by assuming F1(y;x, α, e2,3) = 0 has three real roots ψ1(x) ≤ ψ2(x) ≤ ψ3(x). We

solve F2(ψi(x), d;α, e2,3) = 0 for d to attain the solutions given by

δj ∈

{
0,

3

4
(2ψi(x)− 1)±

√
3

2

√
ψi(x)− ψi(x)2 − 7− 8α

12

}
.

We form solutions to equation (3.12) of the form (ψi(x), δj) where i, j ∈ {1, 2, 3}.
By combining these components we form Figure 3.8. Figure 3.8 depicts the curve

F1(y;x, α, e2,3) in the domain y ∈ [0, 1] at two di�erent values of x producing touch-

points at ψ1(x) and ψ3(x). The upper solid curve is the higher limit of the region

in which ψ2(x) = ψ3(x), the lower solid curve is the lower value of x which pro-

duces ψ1(x) = ψ2(x). In this same region we plotted λ1(y;α, e2,3) (the parabola),

λ2(y, δ2;α, e2,3) and λ2(y, δ3;α, e2,3) (dashed and dotted lines respectively). It is clear

the two regions where the eigenvalues are both negative simultaneously overlap with

where the roots of F1(y;x, α, ek,r) would be as x increases from its lower limit to its

upper limit.
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Fig. 3.8: Plot of eigenvalue domains evaluated at α = − 7
10 .

From Theorem 3.2.11 we know that condensation can only occur at one location in

the graphs and not in both regions where our eigenvalues are negative simultaneously.

Lemma 3.3.2. Fix x ∈ [0, 1] and α < −1
2
such that ψ1(x), ψ2(x) and ψ3(x) are

solutions to F1(y;x, α, e2,3) = 0. There exists a positive probability of condensation

occurring at only the stable point (ψ3(x), δ3) = (ψ3(x), ψ3(x)− ψ1(x)).

Proof. As δj = ψi−ψj > 0 we see from Lemma 3.2.9 that of the nine initial candidates

for points of condensation only (ψ3(x), ψ3(x) − ψ2(x)), (ψ3(x), ψ3(x) − ψ1(x)) and

(ψ2(x), ψ2(x) − ψ1(x)) are viable. From Lemma 3.2.9 we see that (ψi, ψi − ψj) is

stable if F ′1(·) < 0 for both yi and yj which is the gradient of F1(·). Therefore the

only viable candidate for condensation is (ψ3(x), ψ3(x) − ψ1(x)) as Theorem 2.16

of [Pem07] states our process can only converge to a stable �xed point or touchpoint.

Therefore our sequence of random variables must converge to (ψ3(x), ψ3(x)−ψ1(x))

with positive probability.
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3.3.4 Second or sixth of seven

The �nal example we discuss utilizes the vector notation (Ξ) introduced in Section

3.1. In the middle of three and largest of r models we select the kth from r for

attachment. Theorem 3.2.11 proves there exists exactly one point of condensation in

models of this type. The question we consider here is whether there can exist more

than two stable roots for a given x ∈ [0, 1] or indeed two disjoint ranges in which there

exist a point of condensation in each. This corresponds to multiple discontinuities

in the limit of Ψn(x) allowing for multiple points of condensation.

The vector notation indeed allows for multiple points of condensation to occur si-

multaneously in the network. In this context an example of when two points of

condensation may be observed in the real world is that of a bipartisan election when

two di�erent candidates both attract an approximately constant proportion of the

votes from di�erent regions of the locations domain. Maybe if x represented the

amount a candidate (vertex) cares for people who need governmental support. It

is observable that a political party aligning itself with a caring (x = 1) or a lack

of caring (x = 0) approach to supporting welfare programs can both attract votes

(new edges) at a constant rate without dying out. A remark which we should make

is that the vertices contained within the two condensates do not need to be growing

at the same rate nor do they need to converge to the same limiting proportion. We

consider a set of models asking questions relating to vertices of di�erent types further

in Chapter 6.

We chose the vector Ξ = (0, 1
2
, 0, 0, 0, 1

2
, 0) as it is the simplest example we found

which allows for two points of condensation. In short this states that from a sample

of seven vertices, vn+1 forms an edge to the member of the sample with the second

highest or second lowest locations each with probability 1
2
. We use this setting to

construct an expression for F1(y;x, α,Ξ) using Lemma 3.2.1 as

F1(y;x, α,Ξ) =
1

2
F1(y;x, α, e2,7) +

1

2
F1(y;x, α, e6,7)
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=
1

2

(
7∑
i=2

(
7

i

)
yi (1− y)7−i

)
+

1

2

(
7∑
i=6

(
7

i

)
yi (1− y)7−i

)
− (2 + α)y + x(α + 1)

=− 6y7 + 21y6 − 42y5 +
105

2
y4 − 35y3 +

21

2
y2 − (2 + α)y + x(α + 1)

After plotting F1(y;x, α,Ξ) in Figure 3.9 for four varying α values we see a similar

behaviours as to Figure 3.4.

(a) α = −1
4 (b) α = −1

2

(c) α = −3
4

(d) α = −1

Fig. 3.9: The function F1(y;x, α,Ξ) evaluated at four di�erent values of α and x.

In the middle of three model discussed in section 3.3.3 we noticed that there were two

phase transitions, one at α = −1
2
and one at α = −7

8
. There exist phase transitions

in this model too, however they are harder to calculate precisely due to the order

seven polynomial. However, we show there exist four distinct phase transition points

α1, α2 ≈ −0.876, α3 ≈ −0.931 and α4 ≈ −0.968. The most important of these in

our context is the phase transition between the condensation and non-condensation
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phase α1 given by

α1 = inf{α : F ′1(y;x, α,Ξ) ≤ 0 ∀ y ∈ (0, 1)} =
35
√

10− 116

9
.

If α ≥ α1, for any x ∈ (0, 1) there exists exactly one real solution to F1(·) therefore
no limit discontinuity. If α ∈ (α3, α1) there exist two separate ranges containing

two stable roots and elsewhere only one. This implies there must be a jump from

converging from ψ1(x) to ψ3(x) in the �rst range then from ψ3(x) to ψ5 in the second

range. When α < α3 there can exist one or two points of condensation as there is a

range with three stable roots. We know that the three roots ψ1(x), ψ3(x) and ψ5(x)

are stable in a given range. We use results found in Section 3.2 to show that a vertex

with location in this range could attract condensation in three di�erent ways, one

with is a double jump which corresponds to the model only having condensation at

one point. The phase transitions which occur at α2 and α4 are less important as

they tell us where jumps can happen however not how many there are.

Lemma 3.3.3. For a �xed location x ∈ (0, 1), as n→∞ the random variable Ψn(x)
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converges almost surely to a limit according to the following conditional equation:

lim
n→∞

Ψn (x) =



ψ (x) , if α ≥ α1, x ∈ [0, 1] ,

ψ (x) , if α ∈ (α2, α1) , x ∈
[
0, |F1(β2;x,α,Ξ)|

α+1

)
,

ψ1 (x) , ψ3 (x) , if α ∈ (α2, α1) , x ∈
[
|F1(β2;x,α,Ξ)|

α+1
, |F1(β1;x,α,Ξ)|

α+1

]
,

ψ (x) , if α ∈ (α2, α1) , x ∈
(
|F1(β1;x,α,Ξ)|

α+1
, |F1(1−β1;x,α,Ξ)|

α+1

)
,

ψ1 (x) , ψ3 (x) , if α ∈ (α2, α1) , x ∈
[
|F1(1−β1;x,α,Ξ)|

α+1
, |F1(1−β2;x,α,Ξ)|

α+1

]
,

ψ (x) , if α ∈ (α2, α1) , x ∈
(
|F1(1−β2;x,α,Ξ)|

α+1
, 1
]
,

ψ (x) , if α ∈ [α3, α2) , x ∈
(
|F1(β1;x,α,Ξ)|

α+1
, |F1(1−β1;x,α,Ξ)|

α+1

)
,

ψ1 (x) , ψ3 (x) , if α ∈ [α3, α2) , x 6∈
(
|F1(β1;x,α,Ξ)|

α+1
, |F1(1−β1;x,α,Ξ)|

α+1

)
,

ψ1 (x) , ψ3 (x) , ψ5 (x) , if α ∈ [α4, α3) , x ∈
[
|F1(1−β1;x,α,Ξ)|

α+1
, |F1(β1;x,α,Ξ)|

α+1

]
,

ψ1 (x) , ψ3 (x) , if α ∈ [α4, α3) , x 6∈
[
|F1(1−β1;x,α,Ξ)|

α+1
, |F1(β1;x,α,Ξ)|

α+1

]
,

ψ1 (x) , ψ3 (x) , ψ5 (x) , if α ≤ α4, x ∈ [0, 1] .

The function F1(y;x, α,Ξ) has at most four turning points denoted by (β1, F1(β1;x, α,Ξ)),

(β2, F1(β2;x, α,Ξ)), (1− β2, F1(1− β2;x, α,Ξ)) and (1− β1, F1(1− β1;x, α,Ξ)) that

satisfy β1 ≤ β2 ≤ 1 − β2 ≤ 1 − β1, F1(β1;x, α,Ξ) ≤ F1(β2;x, α,Ξ) and F1(1 −
β2;x, α,Ξ) ≤ F1(1− β1;x, α,Ξ).

Plots of each of the four transition points can be seen in Figure 3.13 evaluated at

(from bottom to top) x = 0, 1
2
and 1 respectively.
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Fig. 3.10: F1(y;x, α,Ξ) evaluated at values of α representing the phase transitions which
appear for this choice of Ξ for x ∈

{
0, 1

2 , 1
}
.

We examine further a particular value α = −0.85 ∈ (α2, α1) which produces a curve

which lies between Figure 3.10a and Figure 3.10b. A plot of root frequency diagram

of the curve in Figure 3.11. It is visible that x's interval is partitioned into �ve

sections, three where there is exactly one real root and two where there exists three.

The �ve partitions [0, β2], [β2, β1], [β1, 1− β1], [1− β1, 1− β2] and [1− β2, 1]. In this

case β2 ≈ 0.05 and β1 ≈ 0.275.
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Fig. 3.11: Frequency of roots for values of α = − 85
100 .

Figure 3.11 show that for α = −0.85 that there almost surely exists two points

of condensation. However Corollary 3.2.10 implies that this could be down to two

separate persistent hubs forming in both feasible regions [β2, β1] and [1− β1, 1− β2],

or by new �tter vertices joining the graph. Evidence of the former can be found

below in Figure 3.12 (left) and the latter in Figure 3.12 (right) via simulations. We

consider another particular value α = −0.95 which lies between a di�erent pair of

phase transitions, (α4, α3). This value of α de�nes a curve between Figure 3.10c and

Figure 3.10d.

In Figure 3.13 we run a similar simulation to that above based on α = −0.95. It is

shown that there exists a minimum of two stable roots for any x ∈ (0, 1) therefore

condensation can occur at any location in the graph.
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Fig. 3.12: The roots of F1(y;x, α,Ξ) for α = − 85
100 .
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Fig. 3.13: Results from simulations for α = − 95
100 . Diagrams here generated by simulations

run by J.Haslegrave found in [HJY19].



4. LOCATION BASED CHOICE MODEL: DEGREE

DISTRIBUTION

A common question asked as part of the study of growing networks is how the degree

sequence behaves as the number of vertices grows. Chapter 3 focused on necessary

conditions we must implement on the location based choice model to allow for con-

densation to occur in a network. This chapter focuses on the degree distribution of

a speci�c subset of models discussed in Chapter 3.

This chapters' content is orientated around �nding a power law degree distribution

which models the middle of r set of location based choice models, speci�cally when

r is odd. Section 4.1 sets out relevant de�nitions followed by key results. Section

4.2 discusses the middle of three model Ξ = (0, 1, 0) from Section 3.3.3. Notation for

this chapter remains consistent with that of Chapter 3.

This work was built upon in collaboration with Arne Grauer and Lukas Lüchtrath

from the University of Köln resulting in [GLY20].

4.1 Results

Again we �x a parameter r ∈ N such that r ≥ 3, imposing a further condition that

r is odd. This condition on r is to ensure a de�nitive middle value of the Rr vector;

more speci�cally this allows for the case where Ξ = (0, . . . , 0, 1, 0, . . . , 0) such that

the 1 is in the centre position.

De�nition 4.1.1. We de�ne P
(n)
x1,x2(k) as the proportion of vertices in Gn which have

degree at most k and locations in the interval [x1, x2] ⊂ [0, 1].
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De�nition 4.1.2. We de�ne τ
(k)
Gn

as the subset of vertices in Gn which have degree

k and location in the interval [x1, x2].

Lemma 4.1.3. The proportion of vertices in Gn+1 with degree at most k with loca-

tions in the interval [x1, x2] satis�es

FL
n+ n0 + 1

≤ E
(
P (n+1)
x1,x2

(k)
∣∣∣Fn)− P (n)

x1,x2
(k) ≤ FU

n+ n0 + 1
. (4.1)

Here Fn = σ(Gi, xj; i, j ≤ n) is the �ltration generated by the sequence of graphs and

FL =− fU(Ψn(x1),Ψn(x2))
(
P (n)
x1,x2

(k)− P (n)
x1,x2

(k − 1)
) k + α

2 + α
− P (n)

x1,x2
(k) + (x2 − x1),

FU =− fL(Ψn(x1),Ψn(x2))
(
P (n)
x1,x2

(k)− P (n)
x1,x2

(k − 1)
) k + α

2 + α
− P (n)

x1,x2
(k) + (x2 − x1).

Here the functions fU(y1, y2) and fL(y1, y2) are de�ned as

fU(y1, y2) =

 r−1
2∑
j=0

r∑
i= r+1

2

(
r

i

)(
i

j

)
yj1 (y2 − y1)i−j−1 (1− y2)r−i


and

fL(y1, y2) =
r + 1

2

(
r
r+1

2

)
y
r−1

2
1 (1− y2)

r−1
2 .

Proof. We begin by �nding the expected increase in the number of vertices with

degree at most k and location inside the interval [x1, x2] at the point in which vn+1

joins the graph with location xn+1. This is expressed by

E
(

(n+ n0 + 1)P (n+1)
x1,x2

(k)
∣∣∣Fn) =(n+ n0)P (n)

x1,x2
(k)− P

(
vn+1 ∼ τ

(k)
Gn

)
(4.2)

+ P(xn+1 ∈ [x1, x2]).

The �rst term here counts the number of vertices in Gn with degree at most k which

have locations in the interval [x1, x2]. The �nal term is the probability the location

of the new vertex vn+1 is in the same interval. Given vertex locations are i.i.d.
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uniform this is written as P(x1 ≤ xn+1 ≤ x2) = x2− x1. The second term here is the

probability our new vertex forms an edge to a vertex in Gn with degree k in location

[x1, x2]. The probability of this event is

P
(
vn+1 ∼ τ

(k)
Gn

)
≤ (k + α)(n+ n0)

(2 + α)(n+ n0)− 2

(
P (n)
x1,x2

(k)− P (n)
x1,x2

(k − 1)
)
fU(Ψn(x1),Ψn(x2)).

and

P
(
vn+1 ∼ τ

(k)
Gn

)
≥ (k + α)(n+ n0)

(2 + α)(n+ n0)− 2

(
P (n)
x1,x2

(k)− P (n)
x1,x2

(k − 1)
)
fL(Ψn(x1),Ψn(x2)).

The �rst term here describes the probability a degree k vertex is selected from Gn by

vn+1 as a candidate for attachment; the second term describes the number of degree

k vertices in Gn with locations in the interval [x1, x2]; the �nal term expresses the

probability the vertex selected from Gn for attachment has location which lies in

the interval [x1, x2] given that one exists in our sample. We are able to reformulate

equation (4.2) giving the expected number of vertices with degree at most k in Gn+1

with locations in [x1, x2] as

E
(

(n+ n0 + 1)P (n+1)
x1,x2

(k)
∣∣∣Fn) =

f(Ψn(x1),Ψn(x2))
(
P

(n)
x1,x2(k)− P (n)

x1,x2(k − 1)
)

(k + α)

(2 + α)− 2
n+n0

+ (n+ n0)P (n)
x1,x2

(k) + (x2 − x1).

(4.3)

Here f(Ψn(x1),Ψn(x1)) is bounded by fU(·) and fL(·) which we de�ne as the prob-

ability of attaching to the correct vertex with respect to our model given a member

of the r selected vertices has location in [x1, x2]. Given the number of vertices n in

Gn is increasing we have that

lim
n→∞

2

n+ n0

→ 0,
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therefore for n� 0 equation (4.3) is bounded above by

E
(

(n+ n0 + 1)P (n+1)
x1,x2

(k)
∣∣∣Fn) ≤fL(Ψn(x1),Ψn(x2))

(
P (n)
x1,x2

(k)− P (n)
x1,x2

(k − 1)
) k + α

2 + α

+ (n+ n0)P (n)
x1,x2

(k) + (x2 − x1).

and below by

E
(

(n+ n0 + 1)P (n+1)
x1,x2

(k)
∣∣∣Fn) ≥fL(Ψn(x1),Ψn(x2))

(
P (n)
x1,x2

(k)− P (n)
x1,x2

(k − 1)
) k + α

2 + α

+ (n+ n0)P (n)
x1,x2

(k) + (x2 − x1).

The lower bound fL is fairly trivial to calculate as

(y2 − y1)fL(y1, y2) =
r + 1

2

(
r
r+1

2

)
ys−1

1 (y2 − y1) (1− y2)r−s ,

fL(y1, y2) =
r + 1

2

(
r
r+1

2

)
y
r−1

2
1 (1− y2)

r−1
2 .

The upper bound fU is calculated in the same way by conditioning on the event a

vertex is selected with location in [x1, x2],

(y2 − y1)fU(y1, y2) =

r−1
2∑
j=0

r∑
i= r+1

2

(
r

i

)(
i

j

)
yj1 (y2 − y1)i−j (1− y2)r−i ,

fU(y1, y2) =

r−1
2∑
j=0

r∑
i= r+1

2

(
r

i

)(
i

j

)
yj1 (y2 − y1)i−j−1 (1− y2)r−i .

Here y1, y2 ∈ [0, 1] and y2 ≥ y1. By rearranging equation (4.3) we substitute in our

upper and lower bounds to attain the desired result.

De�nition 4.1.4. We de�ne the noise introduced in Lemma 4.1.3 as

ξn+1 = γ−1
n+1

(
P (n+1)
x1,x2

(k)− E
(
P (n+1)
x1,x2

(k)
∣∣∣Fn)) ,
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where ξn+1 ∈ {ξLn+1, ξ
U
n+1}. It is clear to see that E

(
ξUn+1|Fn

)
= E

(
ξLn+1|Fn

)
= 0.

Theorem 4.1.5. For a �xed α ∈ (−1,∞) and su�ciently large k we have that the

proportion of vertices with degree less than or equal to k in the region [x1, x2] denoted

by P
(n)
x1,x2(k) satis�es both

lim inf
n→∞

P (n)
x1,x2

(k) & (x2 − x1)
(

1− δU(fU(Ψn(x1),Ψn(x2)))(α + 1 + k)
− 2+α
fU (Ψn(x1),Ψn(x2))

)
and

lim sup
n→∞

P (n)
x1,x2

(k) . (x2 − x1)
(

1− δL(fL(Ψn(x1),Ψn(x2)))(α + 1 + k)
− 2+α
fL(Ψn(x1),Ψn(x2))

)
where

δL(fL(y1, y2)) =
Γ
(
α + 1 + 2+α

fL(y1,y2)

)
Γ(α + 1)

and δU(fU(y1, y2)) =
Γ
(
α + 1 + 2+α

fU (y1,y2)

)
Γ(α + 1)

such that

lim inf
n→∞

P (n)
x1,x2

(k) ≤ lim
n→∞

P (n)
x1,x2

(k) ≤ lim sup
n→∞

P (n)
x1,x2

(k).

Proof. We start by solving both 0 = FL and 0 = FU

0 = (x2 − x1)− P (n)
x1,x2

(k)− fL(y1, y2)
(
P (n)
x1,x2

(k)− P (n)
x1,x2

(k − 1)
) (k + α)

(2 + α)
,

0 = (x2 − x1)− P (n)
x1,x2

(k)− fU(y1, y2)
(
P (n)
x1,x2

(k)− P (n)
x1,x2

(k − 1)
) (k + α)

(2 + α)
.

Due to the similarity of these equations we need only solve

0 = (x2 − x1)− P (n)
x1,x2

(k)− f(y1, y2)
(
P (n)
x1,x2

(k)− P (n)
x1,x2

(k − 1)
) (k + α)

(2 + α)
. (4.4)
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We rearrange equation (4.4) to make P
(n)
x1,x2(k) the subject:

P (n)
x1,x2

(k) =
x2 − x1 + (k+α)f(y1,y2)

2+α
P

(n)
x1,x2(k − 1)

1 + (k+α)f(y1,y2)
2+α

=
(2 + α)(x2 − x1)

2 + α + (k + α)f(y1, y2)
+

1

1 + 2+α
(k+α)f(y1,y2)

P (n)
x1,x2

(k − 1)

= βk + γkP
(n)
x1,x2

(k − 1)

By using a recursive method and observing the termination criteria P
(n)
x1,x2(0) = 0

deduced because Gn is connected we have

P (n)
x1,x2

(k) =βk +
k−1∑
j=1

(
βj

k∏
i=j+1

γi

)

=βk +
k−1∑
j=1

βj

Γ(α + k + 1)Γ
(
α + j + 1 + 2+α

f(y1,y2)

)
Γ(α + j + 1)Γ

(
α + k + 1 + 2+α

f(y1,y2)

)


=βk +

Γ
(
α + 1 + k + 2+α

f(y1,y2)

)
(α + k)

Γ(α + 1 + k)
(
a+ k + 2+α

f(y1,y2)

) − Γ
(
α + 2 + 2+α

f(y1,y2)

)
(α + 1)

Γ(α + 2)
(
a+ 1 + 2+α

f(y1,y2)

)


× (x2 − x1) Γ(α + 1 + k)

Γ
(
α + 1 + k + 2+α

f(y1,y2)

)
=βk −

(x2 − x1) Γ(α + 1 + k)Γ
(
α + 1 + 2+α

f(y1,y2)

)
Γ(α + 1)Γ

(
α + 1 + k + 2+α

f(y1,y2)

) +
(x2 − x1) (α + k)(
α + k + 2+α

f(y1,y2)

)
= (x2 − x1)

1−
Γ
(
α + 1 + 2+α

f(y1,y2)

)
Γ(α + 1 + k)

Γ
(
α + 1 + k + 2+α

f(y1,y2)

)
Γ(α + 1)


= (x2 − x1)

1− δ(f(y1, y2))
Γ(α + 1 + k)

Γ
(
α + 1 + k + 2+α

f(y1,y2)

)
 .
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such that

δ(f(y1, y2)) =
Γ
(
α + 1 + 2+α

f(y1,y2)

)
Γ(α + 1)

.

By using an approximation associated to the division of two gamma functions

Γ(α + 1 + k)

Γ(α + 1 + k + 2+α
f(y1,y2)

)
∼ (α + 1 + k)

− 2+α
f(y1,y2) ,

as k →∞ the proportion P
(n)
k,x1,x2

follows

lim inf
n→∞

P
(n)
k,x1,x2

. (x2 − x1)
(

1− δ(fL(Ψn(x1),Ψn(x2)))(α + 1 + k)
− 2+α
fL(Ψn(x1),Ψn(x2))

)
and

lim sup
n→∞

P
(n)
k,x1,x2

& (x2 − x1)
(

1− δ(fU(Ψn(x1),Ψn(x2)))(α + 1 + k)
− 2+α
fU (Ψn(x1),Ψn(x2))

)
.

The degree distribution of our network should take into account all of the vertices in

the network, not just those with locations in a particular region. We currently have

a description of the degree distribution in the range [x1, x2] and not [0, 1].

Theorem 4.1.6. For

Pk = lim
x1,x2→x

lim
n→∞

P
(n)
x1,x2(k)

x2 − x1

then as k →∞
Pk ∼ 1− δ(f(Ψ(x)))(α + 1 + k)−

2+α
f(Ψ(x)) ,

here we use f(Ψ(x)) in replace of f(Ψ(x),Ψ(x)).

Proof. As the number of vertices n → ∞ the random variable Ψn(x) tends to the

limit Ψ(x). As the interval [x1, x2] narrows to a point x such that x1 ≤ x ≤ x2 the
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upper and lower limits on the probability converge to

lim
x1→x
x2→x

fL(Ψn(x1),Ψn(x2)) =
r + 1

2

(
r
r+1

2

)
Ψn(x1)

r−1
2 (1−Ψn(x2))

r−1
2 ,

lim
x1→x
x2→x

fU(Ψn(x1),Ψn(x2)) =
r + 1

2

(
r
r+1

2

)
Ψn(x1)

r−1
2 (1−Ψn(x2))

r−1
2 .

We denote this limit as

f(Ψ(x)) =
r!(

r−1
2

)
!
(
r−1

2

)
!
Ψ(x)

r−1
2 (1−Ψ(x))

r−1
2 .

In conjunction with Theorem 4.1.5 we see the upper and lower bound on f(Ψn(x1),Ψn(x2))

converge to the same limit given by f(Ψn(x)). This means

lim sup
n→∞

P
(n)
k,x1,x2

− lim inf
n→∞

P
(n)
k,x1,x2

→ 0

thus the proportion of vertices with degree at most k in the interval [x1, x2], Pk

follows

Pk ≤ max
x1,x2

lim sup
n→∞

(
(x2 − x1)

(
1− δ(f(Ψ(x)))(α + 1 + k)−

2+α
f(Ψ(x))

))
.

and

Pk ≥ min
x1,x2

lim inf
n→∞

(
(x2 − x1)

(
1− δ(f(Ψ(x)))(α + 1 + k)−

2+α
f(Ψ(x))

))
.

Therefore the functions FL(·) and FU(·) given in Lemma 4.1 converge sandwiching

our stochastic approximation equation. By dividing by the length of the interval in

question, x2−x1, we deduce a statement for the whole range our location values can

take as

Pk →
(

1− δ(f(Ψ(x)))(α + 1 + k)−
2+α

f(Ψ(x))

)
. (4.5)

for k →∞.

Theorem 4.1.7. For a vertex vi ∈ V (Gn) selected uniformly at random with location
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in [x1, x2], the asymptotic degree distribution follows

lim
x1,x2→x

lim
n→∞

P(deg(vi) ≥ k|xi ∈ [x1, x2])→
Γ
(
α + 1 + 2+α

f(Ψ(x))

)
Γ(α + 1)

(α + k)−
2+α

f(Ψ(x)) ,

where xi is the location of vertex vi.

Proof. The proof of this is a consequence of substituting (4.5) into P(deg(Vi) ≥ k) =

1− Pk−1.

We examine the behaviour of the degree distribution as α approaches the phase

transition regarding condensation. Theorem 2.6 in [HJY19] states that in the case

where the new vertex selects r vertices for attachment forming an edge between

the new vertex and the member of the selection with the sth highest location with

probability 1 the phase transition αc occurs at

αc = s

(
r

s

)(
s− 1

r − s

)s−1(
r − s
r − 1

)r−1

− 2. (4.6)

Precisely, condensation occurs in the model almost surely if α < αc and almost surely

does not occur if α ≥ αc.

By applying equation (4.6) to the middle of r model we found this critical phase

transition regarding condensation occurs at

αc =
r!21−r(

r−1
2

)
!
(
r−1

2

)
!
− 2.

Given that f(y) is maximized at y = 1
2
found by using

df

dy
=

(
r − 1

2

)
y
r−3

2 (1− y)
r−3

2 (1− 2y) = 0

we have that P(deg(vi) ≥ k) has the heaviest tail at y = 1
2
. This is seen below in

Figure 4.1.
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(a) r = 3 (b) r = 7

(c) r = 11 (d) r = 15

Fig. 4.1: Our degree distribution for r ∈ {3, 7, 11, 15} and K = {10, 11, . . . , 25}.

This makes sense, in middle of r model as new vertices favour those in Gn with

locations closer to the centre of the range. We show that that at this point f
(

1
2

)
=

2 + α leads to the power law distribution associated to the point where the tail is

heaviest is described by

P(deg(Vi) ≥ k) =

r!21−r

( r−1
2 )!( r−1

2 )!
− 1

k − 2 + r!21−r

( r−1
2 )!( r−1

2 )!

= 1− k − 1

k − 2 + r!21−r

( r−1
2 )!( r−1

2 )!

.

4.2 Comparison to Barabási-Albert

Theorem 4.1.7 is evident when considering Barabási-Albert preferential attachment

[BA99]. It is well known that the degree distribution of [BA99] follows

PBA(deg(Vi) = k) =
2m(m+ 1)

k(k + 1)(k + 2)
. (4.7)
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Shown using (4.7), when m = 1 the degree distribution of the Barabási-Albert model

follows

PBA(deg(Vi) ≥ k) = 1−
k−1∑
n=1

4

n(n+ 1)(n+ 2)
= 1− 4

(
k(k + 1)− 2

4k(k + 1)

)
. (4.8)

As k →∞ equation (4.8) converges to

lim
k→∞

1− 4

(
k(k + 1)− 2

4k(k + 1)

)
= 2k−2.

We consider how our model detailed in Section 3.1 relates to the Barabási-Albert

model; we set r = 1 and the biasing coe�cient α = 0. To include the lack of vertex

location in their model we set x = 1 leading to Ψn(1) = 1, leading to f(Ψ(1)) = 1

using equation (4.1.6). By combining this information using Theorem 4.1.7 we form

P(deg(Vi) ≥ k) =
Γ
(
0 + 1 + 2+0

1

)
Γ(0 + 1)

(0 + k)−
2+0

1 = 2k−2,

verifying the asymptotic equivalence of the two models giving credence to our result.



5. LOCATION BASED CHOICE MODEL: DIMENSION

EXTENSION

There are a number of extensions which could be explored concerning the location

based choice model discussed in Chapter 3. Freeman and Jordan [FJ18] studied

a variation allowing for a random sample size, r. They did however impose the

restriction that the new edge always forms between vn+1 and the member of the

sample with the highest location. An issue arising from applying this generalisation

to the location based choice model is how we de�ne Ξ. As described in Section 3.1,

Ξ is a �xed parameter of the model.

This chapter focuses on an extension which allows for the vertex location to possess

multiple components. This extension re�ects real world systems more accurately in

that the choice of where edges (hyperlinks, citations, friendships, etc) form is typically

based on a multitude of di�erent attributes, not just one. Due to the computational

complexity of this model we discuss a few simpli�ed examples exploring this mul-

tidimensional �tness model which discretises the problem onto a low dimensional

lattice.

5.1 Model description

Notation and terminology remains mostly consistent with previous chapters. Given

the premise of this chapter we rede�ne the notion of a vertex's location to �t

our model. Speci�cally, for a vertex vi ∈ V (Gn) we de�ne its location as xi =(
x

(1)
i , x

(2)
i , . . . , x

(k)
i

)
such that xi ∼ Uni[0, 1]k.
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As a starting point we reduce our model so that every vertex has a two dimensional

location, k = 2. Given this extended de�nition of location it is no longer appropriate

to use the de�nition of Ψn(x) from Chapters 3-4 as Ψn(x) is fundamentally a one

dimensional concept with no direct analogue into higher dimensions. As the nature of

the model is to examine the e�ect an extension in the location has on the occurrence

of condensation we cannot simply take the Euclidean norm of a vertex's location, as

this simply reduces our model to the one dimensional case discussed in Chapter 3.

Comparing two high dimensional vectors in an way which preserves the aspects we

are interested in which is analogous to Ψn(x) in previous chapters is hard. An

example why is if we have two vertices va and vb with locations xa = (0, 1)T and

xb = (0.6, 0.8)T respectively, we see that |xa| = |xb| = 1 and both x
(1)
a ≤ x

(1)
b and

x
(2)
a ≥ x

(2)
b are satis�ed. Though this �rst condition occurs with probability zero,

the second is relatively common. We require a comparison method which not only

works in this case but ideally in higher dimensions.

As we are more interested in the e�ect k has on the model opposed to r, we begin

by looking at a reduced model whereby three existing vertices are sampled from Gn

at time n + 1. This model begins with an initial graph G0 on n0 vertices labelled

{v1−n0 , v2−n0 , . . . , v−1, v0}. For simplicity we maintain the tree structure assumed in

earlier chapters. The graph Gn+1 is formed from the addition of vertex vn+1 to Gn.

Preferential attachment as outlined by equation (2.4) is used to sample three vertices

from Gn. There are a number of options for us to consider when deciding which of

these three selected vertices vn+1 attaches to, for example:

1. The vertex of the three which is closest to the centre of mass of the three.

2. The vertex of the subset corresponding to the largest angle of the triangle.

It is fairly straightforward to see that in the r = 3 case both of these options result in

the selection of the same vertex. We use option one as it is less computationally time

consuming when simulating and extends well to a higher number of sampled vertices.

Option two breaks down when concerning convexity when more than three vertices

are sampled. Using option one the new vertex vn+1 forms an edge between itself and
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the member of the selection which is closest to the centre of mass M = (M1,M2)T

of the convex hull created by the locations of the selected vertices according to

Ms = 1
k

∑k
r=1 x

(s)
r for Ms ∈ {M1,M2}. A visual representation of how this model

behaves is given below in �gure 5.1 below.

0
0 1

1

x(1)

x(2)

xi

xj

xk

xn+1

M

Fig. 5.1: Two dimensional location model involving three sampled vertices.

We de�ne d(M,xi) as the Euclidean distance betweenM and the location associated

with vi calculated using d(M,xi) =

√∑k
s=1

(
x

(s)
i −Ms

)2

.

Lemma 5.1.1. If vertex vi is sampled more than once then P(vn+1 ∼ vi) = 1.

Proof. Clearly if vi is sampled three times, the edge vn+1 ∼ vi is formed. We assign

the locations xi to vi and xj to vj which we use to calculate the components of M as

Ms =
x

(s)
j + 2x

(s)
i

3

for Ms ∈ {M1,M2}. We compare the distances d(xi,M) and d(xj,M):

d(xi,M) = |xi −M | =
1

3

√(
x

(1)
i − x

(1)
j

)2

+
(
x

(2)
i − x

(2)
j

)2

,
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d(xj,M) = |xj −M | =
2

3

√(
x

(1)
i − x

(1)
j

)2

+
(
x

(2)
i − x

(2)
j

)2

.

Clearly d(xi,M) = 2d(xj,M) therefore vn+1 forms an edge between itself and vertex

vi with probability one.

5.1.1 2× 2 lattice simpli�cation

We examine an initial simpli�cation by considering a 2×2 lattice con�guration where

new vertices are at one of four locations denoted by x1, x2, x3 and x4.

Let us de�ne X1,n, X2,n, X3,n and X4,n as the proportion of edge ends at each of the

four points x1, x2, x3 and x4 respectively in graph Gn. Using [Pem07] we formulate

an appropriate set of stochastic approximation equations concerning each of X1,n,

X2,n, X3,n and X4,n in the form

E(Xn+1,i|Fn)−Xn,i = γn+1Fi (Xn;α) , (5.1)

where Xn = (X1,n, X2,n, . . . , X4,n) and γ−1
n+1 = (n+ n0)(2 +α) +α is the appropriate

normalization factor. Here our set of four stochastic approximation equations are

given by

F1 (Xn;α) = −2X3
1,n + 3X2

1,n + 6X4,nX1,nX2,n − (2 + α)X1,n +
(1 + α)

4
, (5.2)

F2 (Xn;α) = −2X3
2,n + 3X2

2,n + 6X1,nX2,nX3,n − (2 + α)X2,n +
(1 + α)

4
,

F3 (Xn;α) = −2X3
3,n + 3X2

3,n + 6X2,nX3,nX4,n − (2 + α)X3,n +
(1 + α)

4
,

F4 (Xn;α) = −2X3
4,n + 3X2

4,n + 6X3,nX4,nX1,n − (2 + α)X4,n +
(1 + α)

4
.

By observing our proportions must satisfyX4,n = 1−
∑3

k=1 Xk,n we require only three

of these equations to fully describe our model, deducing a complete set of solutions

to the four equations.

Theorem 5.1.2. If α ≥ −1
2
there is a positive probability of convergence to

(
1
4
, 1

4
, 1

4
, 1

4

)
.
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If α < −1
2
there exists a positive probability of convergence to (18), (19), (24) or (25)

of Table 5.1. Convergence to
(

1
4
, 1

4
, 1

4
, 1

4

)
when α ≤ −1

2
or any of (18), (19), (24) or

(25) when α > −1
2
occurs with probability zero.

Proof. We use MatLab to solve our set of equations displaying the complete list of

stationary points in exact form in Table 5.1.

X1 X2 X3 X4

1) 1
4

1
4

1
4

1
4

2) 1
4
− b 1

4
+ b 1

4
− b 1

4
+ b

3) 1
4

+ b 1
4
− b 1

4
+ b 1

4
− b

4) 1
4

+ c 1
4
− c 1

4
− c 1

4
+ c

5) 1
4

+ c 1
4

+ c 1
4
− c 1

4
− c

6) 1
4
− c 1

4
− c 1

4
+ c 1

4
+ c

7) 1
4
− c 1

4
+ c 1

4
+ c 1

4
− c

8) 1
4
− c− d 1

4
− c+ d 1

4
+ c− d 1

4
+ c+ d

9) 1
4
− c− d 1

4
+ c+ d 1

4
+ c− d 1

4
− c+ d

10) 1
4

+ c+ d 1
4
− c− d 1

4
− c+ d 1

4
+ c− d

11) 1
4

+ c+ d 1
4

+ c− d 1
4
− c+ d 1

4
− c− d

12) 1
4

+ c− d 1
4
− c+ d 1

4
− c− d 1

4
+ c+ d

13) 1
4

+ c− d 1
4

+ c+ d 1
4
− c− d 1

4
− c+ d

14) 1
4
− c+ d 1

4
− c− d 1

4
+ c+ d 1

4
+ c− d

15) 1
4
− c+ d 1

4
+ c− d 1

4
+ c+ d 1

4
− c− d

16) z1
1
2
− z1 − 2c z1

1
2
− z1 + 2c

17) z1
1
2
− z1 + 2c z1

1
2
− z1 − 2c

18) z2
1
2
− z2 − 2c z2

1
2
− z2 + 2c

19) z2
1
2
− z2 + 2c z2

1
2
− z2 − 2c

20) z3
1
2
− z3 − 2c z3

1
2
− z3 + 2c

21) z3
1
2
− z3 + 2c z3

1
2
− z3 − 2c

22) 1
2
− z1 − 2c z1

1
2
− z1 + 2c z1

23) 1
2
− z1 + 2c z1

1
2
− z1 − 2c z1

24) 1
2
− z2 − 2c z2

1
2
− z2 + 2c z2

25) 1
2
− z2 + 2c z2

1
2
− z2 − 2c z2

26) 1
2
− z3 − 2c z3

1
2
− z3 + 2c z3

27) 1
2
− z3 + 2c z3

1
2
− z3 − 2c z3

Tab. 5.1: Solutions to the 2× 2 lattice model for multidimensional location.
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Here

b =
1

4

√
4α + 5, c =

1

4

√
−1− 2α and d =

1

2

√
1− α

2

and

f(z;α) = z3 − 3

4
z2 +

1

2

(
α +

1

2

)
z +

1

16
(α + 1) = (z − z1)(z − z2)(z − z3)

where z1 ≤ z2 ≤ z3 such that

z1 =
35184372088832

(√
3i− 1

) (
2
√

3
√

128α3 + 291α2 + 249α + 61− 54α− 27
)1/3

585491545649747
+

1099511627776
(
1 +
√

3i
)

(384α + 48)

608935746319847
(
2
√

3
√

128α3 + 291α2 + 249α + 61− 54α− 27
)1/3

+
1

4

z2 =−
1099511627776

(√
3i− 1

)
(384α + 48)

608935746319847
(
2
√

3
√

128α3 + 291α2 + 249α + 61− 54α− 27
)1/3
−

35184372088832
(
1 +
√

3i
) (

2
√

3
√

128α3 + 291α2 + 249α + 61− 54α− 27
)1/3

585491545649747
+

1

4

z3 =
70368744177664

(
2
√

3
√

128α3 + 291α2 + 249α + 61− 54α− 27
)1/3

585491545649747

− 2199023255552 (384α + 48)

608935746319847
(
2
√

3
√

128α3 + 291α2 + 249α + 61− 54α− 27
)1/3

+
1

4
.

We use the de�nitions of b, c and d along with the structure of these solutions to

narrow down the potential stable points. We �rst note that all components of a

viable solution (X1, X2, X3, X4) must be real values between 0 and 1 inclusive for

α > −1 as they correspond to proportions. We see from solutions (2-3) in Table 5.1

that we must have

0 ≤ b ≤ 1

4
,

which is only true when −5
4
≤ α ≤ −1, therefore this pair are infeasible with respect

to the de�nition of α. We use similar logic to show that −1
2
≥ α ≥ −1 must hold in

order for solutions (4-7) to be viable.
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We plot the components of solutions (8-15) in Figure 5.2.

−1 −0.95 −0.9 −0.85 −0.8 −0.75 −0.7 −0.65 −0.6 −0.55 −0.5
−0.5

0

0.5

1

α

0.25 + c+ d
0.25− c+ d
0.25 + c− d
0.25− c− d

Fig. 5.2: Plot of solution components to entries (8-15) of Table 5.1.

We see 1
4
−c−d is never in the interval [0, 1] implying all solutions (8-15) are infeasible.

In order to examine the stability of solutions (16-27) we must �rst take into consid-

eration the possible values of z1, z2 and z3. As we have shown above −1 < α ≤ −1
2

must hold for c to be real. We plot the function f(z;α) which generates z1, z2 and

z3 in Figure 5.3 for α ∈ (−1,−1
2
]. We display f(z;−1) (bottom most curve) and

f(z;−0.5) (top curve) in black.
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Fig. 5.3: A plot of f(z;α) depicting bounds on the roots generated by incremental values
taken of α ∈ [−0.5,−1).

We see from Figure 5.3 that each of the roots are bounded above and below by the

roots generated by f(z;−0.5) and f(z;−1). Moreover we see that

f(z;−1) = z(z − 1)(z + 0.25) (5.3)

and

f(z;−0.5) =

(
z − 1

4

)(
z2 − z

2
− 1

8

)
. (5.4)

By using (5.3) and (5.4) we calculate exact values for the bounds on our roots as

z1 ∈

(
−1

4
,
1

4
−
√

3

4

]
, z2 ∈

(
0,

1

4

]
and z3 ∈

[
1

4
+

√
3

4
, 1

)
. (5.5)

Figure 5.4 evaluates the three roots of f(z;α) showing behaviour inside the intervals
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given by (5.5).

Fig. 5.4: A plot showing the e�ect a change in α has on z1, z2 and z3.

We immediately see that any solutions with z1 as a component are infeasible because

z1 < 0 for all α when c ∈ R. We further see that as z3 >
3
5
and c ≥ 0 it follows

that 1
2
− z3 − 2c < 0 ruling out any solutions with z3 as a component. We plot the

components of our solutions with higher complexity; namely 1
2

+ z2 ± 2c which has

components plotted in Figure 5.5.
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Fig. 5.5: A plot showing the e�ect a change in α has on the root components r1 = z2+ 1
2−2c,

r2 = z2 and r3 = z2 + 1
2 + 2c.

Table 5.2 contains the feasible solutions of Table 5.1 and the corresponding range of

α for which each is valid.

X1 X2 X3 X4 Feasible Range
1) 1

4
1
4

1
4

1
4

Always
4) 1

4
+ c 1

4
− c 1

4
− c 1

4
+ c α ≤ −1

2

5) 1
4

+ c 1
4

+ c 1
4
− c 1

4
− c α ≤ −1

2

6) 1
4
− c 1

4
− c 1

4
+ c 1

4
+ c α ≤ −1

2

7) 1
4
− c 1

4
+ c 1

4
+ c 1

4
− c α ≤ −1

2

18) z2
1
2
− z2 − 2c z2

1
2
− z2 + 2c α ≤ −1

2

19) z2
1
2
− z2 + 2c z2

1
2
− z2 − 2c α ≤ −1

2

24) 1
2
− z2 − 2c z2

1
2
− z2 + 2c z2 α ≤ −1

2

25) 1
2
− z2 + 2c z2

1
2
− z2 − 2c z2 α ≤ −1

2

Tab. 5.2: Viable limiting proportions and conditions associated to Table 5.1.
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Pemantle [Pem07] outlines conditions in which a random variables converge in a vec-

tor �eld to a stable (Theorem 2.8) attractor (Theorem 2.16) of the root set (Corollary

2.7) with positive probability and unstable with probability zero (Theorem 2.17).

The stability associated to our system of stochastic approximation equations (5.2)

requires the partial derivatives

∂

∂X1

F1 (Xn;α) = 6(X1 +X2)(X3 +X4)− 6X2X3 − (a+ 2),

∂

∂X2

F1 (Xn;α) = 6X1(X4 −X2),

∂

∂X3

F1 (Xn;α) = −6X1X2,

∂

∂X1

F2 (Xn;α) = 6X2X3,

∂

∂X2

F2 (Xn;α) = 6X2(1−X2) + 6X1X3 − (a+ 2),

∂

∂X3

F2 (Xn;α) = 6X1X2,

∂

∂X1

F3 (Xn;α) = −6X2X3,

∂

∂X2

F3 (Xn;α) = 6X3(X4 −X2),

∂

∂X3

F3 (Xn;α) = 6(X2 +X3)(X1 +X4)− 6X1X2 − (a+ 2),

to fully describe. We use these to calculate the associated eigenvalues to this system

as

λ1 = 6(X1 +X2)(X3 +X4)− (α + 2),

λ2 = 6(X1 +X4)(X2 +X3)− (α + 2),

λ3 = 6(X1X3 +X2X4)− (a+ 2).

Table 5.3 gives these evaluated at each of the solutions in Table 5.2.
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Number feasible proportion range λ1 λ2 λ3

1) Always −1
2
− α −1

2
− α −5

4
− α

4) α ≤ −1
2

−1
2
− α 1 + 2α −1

2
+ 1

2
α

5) α ≤ −1
2

1 + 2α −1
2
− α −2− 1

2
α

6) α ≤ −1
2

1 + 2α −1
2
− α −2− 1

2
α

7) α ≤ −1
2

−1
2
− α 1 + 2α −1

2
+ 1

2
α

18) α ≤ −1
2

1 + 2α −1 + 2α z2
2 − z2

2
+ α+1

12

19) α ≤ −1
2

1 + 2α −1 + 2α z2
2 − z2

2
+ α+1

12

24) α ≤ −1
2

1 + 2α −1 + 2α z2
2 − z2

2
+ α+1

12

25) α ≤ −1
2

1 + 2α −1 + 2α z2
2 − z2

2
+ α+1

12

Tab. 5.3: Each eigenvalue associated to the feasible solutions from Table 5.2.

In order for a solution to be stable all eigenvalues must be negative simultaneously.

Table 5.4 combines the information found in the range column of Table 5.3 with

the corresponding values of α for which each of the eigenvalues are negative. The

�nal column of Table 5.4 combines all four columns to give the range for which each

solution is a viable stable proportion.

Number Range λ1 λ2 λ3 Stable when
1) Always −1

2
< α −1

2
< α −5

4
< α −1

2
< α

4) −1 < α < −1
2
−1

2
< α α < −1

2
α < 1 Never

5) −1 < α < −1
2

α < −1
2
−1

2
< α −4 < α Never

6) −1 < α < −1
2

α < −1
2
−1

2
< α −4 < α Never

7) −1 < α < −1
2
−1

2
< α α < −1

2
α < 1 Never

18) −1 < α < −1
2

α < −1
2

α < 1
2

z2
2 − z2

2
+ α+1

12
< 0 α < −1

2

19) −1 < α < −1
2

α < −1
2

α < 1
2

z2
2 − z2

2
+ α+1

12
< 0 α < −1

2

24) −1 < α < −1
2

α < −1
2

α < 1
2

z2
2 − z2

2
+ α+1

12
< 0 α < −1

2

25) −1 < α < −1
2

α < −1
2

α < 1
2

z2
2 − z2

2
+ α+1

12
< 0 α < −1

2

Tab. 5.4: Stability conditions for each of the feasible limiting proportions for the 2 × 2
lattice model.

We see from Table 5.4 there exist a single phase transition in this model at α = −1
2
.

When α is greater than this threshold the limiting proportion of edge ends at each

of the four vertices is equal. Utilizing Theorem 2.16 of [Pem07] we show that when
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α < −1
2
our process converges to any of the four solutions (18, 19, 24 or 25) with

positive probability and by Theorem 2.17 and non-convergence to these points when

α > −1
2
. Similarly when α > −1

2
Theorem 2.16 of [Pem07] allows us to conclude

that this process converges to (1) and by Theorem 2.17 of [Pem07], non-convergence

to (1) when α < −1
2
.

5.1.2 3× 3 lattice simpli�cation

The natural extension to the model described in Section 5.1.1 is to increase the size

of vertices in our network to n× n. This is a complicated task; we �rst consider the

case when we have nine vertices for new edges to be selected from.

0
0 1

1

x1 x2 x3

x4 x5 x6

x7 x8 x9

Fig. 5.6: A grid depicting the options for new vertices to attach to in the reduced 3 × 3
lattice model.

Using a similar method as we did in equation (5.1) we formulate the set of stochastic

approximation equations:

F1

(
X(9)

n ;α
)

=− 2X3
1 + 3X2

1 −X1(2 + a) +
1 + α

9

+ 6X1

(
X2X4 +X3X4 +X2X7 +X3X7 +

1

2
X6X7 +

1

2
X3X8

)
F2

(
X(9)

n ;α
)

=− 2X3
2 + 3X2

2 −X2(2 + a) +
1 + α

9
+ 6X2(X1X3 +X1X9 +X1X5
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+X1X6 +X1X8 +X3X4 +X3X5 +X4X6 +X3X7 +X3X8)

+ 6X2

(
1

2
X6X7 +

1

2
X4X9

)
F3

(
X(9)

n ;α
)

=− 2X3
3 + 3X2

3 −X3(2 + a) +
1 + α

9

+ 6X3

(
X1X9 +X1X6 +X2X6 +X2X9 +

1

2
X1X8 +

1

2
X4X9

)
F4

(
X(9)

n ;α
)

=− 2X3
4 + 3X2

4 −X4(2 + a) +
1 + α

9
+ 6X4(X1X5 +X1X6 +X1X7

+X1X8 +X1X9 +X2X7 +X2X8 +X3X7 +X5X7 +X6X7)

+ 6X4

(
1

2
X2X9 +

1

2
X3X8

)
F5

(
X(9)

n ;α
)

=− 2X3
5 + 3X2

5 −X5(2 + a) +
1 + α

9
+ 6X5(X1X6 +X1X7 +X1X3

+X1X8 +X1X9 +X2X4 +X2X7 +X2X8 +X2X9 +X2X6 +X3X4

+X3X7 +X3X8 +X3X9 +X4X6 +X4X8 +X4X9 +X6X7 +X6X8

+X7X9)

F6

(
X(9)

n ;α
)

=− 2X3
6 + 3X2

6 −X6(2 + a) +
1 + α

9
+ 6X6(X1X9 +X2X8 +X2X9

+X3X4 +X3X7 +X3X8 +X3X9 +X3X5 +X4X9 +X5X9)

+ 6X6

(
1

2
X2X7 +

1

2
X1X8

)
F7

(
X(9)

n ;α
)

=− 2X3
7 + 3X2

7 −X7(2 + a) +
1 + α

9

+ 6X7

(
X1X8 +X1X9 +X4X8 +X4X9 +

1

2
X1X6 +

1

2
X2X9

)
F8

(
X(9)

n ;α
)

=− 2X3
8 + 3X2

8 −X8(2 + a) +
1 + α

9
+ 6X8(X1X9 +X2X7 +X2X9

+X3X7 +X4X6 +X4X9 +X5X7 +X5X9 +X6X7 +X7X9)

+ 6X8

(
1

2
X1X6 +

1

2
X3X4

)
F9

(
X(9)

n ;α
)

=− 2X3
9 + 3X2

9 −X9(2 + a) +
1 + α

9
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+ 6X9

(
X3X7 +X3X8 +X6X7 +X6X8 +

1

2
X3X4 +

1

2
X2X7

)
.

The analysis for this model is signi�cantly more di�cult due to the larger array of

equations which requires solving simultaneously. When we had the four dimensional

system we had (4−1)4−1 solutions. In this situation we have (9−1)9−1 = 224 solutions

for the 3 × 3 system. It follows immediately that if we were to use this method to

solve the n× n system we have a maximum of

2
(n2−1) ln|n2−1|

ln|2|

di�erent solutions. We therefore must �nd a di�erent method to solve this problem.



6. COMPETING TYPES WITH LOCATION MODEL:

COEXISTENCE

In this chapter we introduce a natural extension of a model proposed by Antunovi¢,

Mossel and Rácz in [AMR16] discussed previously in Section 2.4. The AMR model

applies a method of growth which allows for vertex choices to grow sequentially

within the graph. The AMR model describes coexistence between types of vertices

in a graph as the number of vertices grows. Here it is meant that vertices are classi�ed

by types where new vertices choose their type based on a sample of those taken from

the current network. Coexistence in this situation is where no single type dominates.

Our model extends the AMR type adoption framework to the geometric/community

models discussed in [Jor13,HS18] by the introduction of vertex location. Under this

new framework vn+1 is assigned a location upon its creation then deciding its type

based on them edges it forms with the current vertices using preferential attachment,

equation (2.4).

An important change we make to de�nitions in previous chapters is vertex location.

We categorise a vertex's type as either 1 or 2 and vertex location similarly as 1 or 2

for the most part, though we do de�ne the basic model for any number of types and

locations.

An analogy of this model is that of the US presidential primary election voting

process. Here we might look for coexistence among voter sex (representing vertex

location as it is chosen at birth) and political a�liation (as this is in�uenced by

surrounding political views.) One would expect proportions of males and females

a�liated to each party to be (probably) non equal quantities.
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Work on this chapter was begun late in the process and therefore is potential for

further work to extend the results.

6.1 Model description

We �rst de�ne initial notation in terms of a general model involving any number of

types Tj and locations Li such that i, j ∈ N. Following this we reduce the model to

a speci�c case involving two types and two locations as this is enough to show our

desired results involving coexistence we desire.

6.1.1 General model

Let {L1, L2, . . . , Ll} be the set of possible locations and {T1, T2, . . . , Tt} be the set of
types. We de�ne v

(i,j)
k as a vertex in graph Gn with location Li and type Tj, and µi

as the probability a vertex is at location Li.

Starting with an initial graph G0 on n0 vertices each of which has an assigned type

and location, we denote these vertices by {v1−n0 , v2−n0 , . . . , v0}. For simplicity we

assume that the average degree in G0 is 2m (though as n→∞ this is not important.)

We further assume there exist vertices in G0 representing every combination of type

and location. In a change to [AMR16] we introduce a constant θ ∈ [0, 1] which

acts as a biasing constant during the type selection process. This value θ acts as

the main feature of the model we are extending to. This is a version of the graph

model from [Jor13, AMR16] however including the type allocation procedure from

from [AMR16].

A question we ask is; in the situation when there exists is more than one limit

in the model, is possible to get di�erent limits at di�erent locations? In order to

examine this further we track the total degree weight at each combination of types

and locations.

De�nition 6.1.1. Let X
(n)
i,j be the proportion of degree mass at vertices with location

i with type j in graph Gn.
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In order to form Gn+1, a new vertex v
(i)
n+1 joins Gn with its own location Li chosen

according to some distribution. A sample of m vertices are then taken from Gn with

replacement by way of preferential attachment (2.4). This sampling is biased by θ

when considering vertices with di�erent locations than itself. If we assume the new

vertex v
(i)
n+1 is at location Li, of the m samples taken with replacement, a single edge

from v
(i)
n+1 connects to an existing vertex of the same location with type Tj with

probability

X
(n)
i,j(∑t

k=1X
(n)
i,k

)
+

(
θ
∑l

r=1
r 6=i

∑t
k=1X

(n)
r,k

) .
A vertex not at location Li forms an edge with a type Tj vertex with probability

θ
∑l

k=1
k 6=i

X
(n)
k,j(∑t

k=1X
(n)
i,k

)
+

(
θ
∑l

r=1
r 6=i

∑t
k=1X

(n)
r,k

) .
Combining both these probabilities we deduce the probability a new vertex forms an

edge with a type Tj vertex as

Q
(n)
i,j =

X
(n)
i,j + θ

∑l
k=1
k 6=i

X
(n)
k,j(∑t

k=1X
(n)
i,k

)
+

(
θ
∑l

r=1
r 6=i

∑t
k=1 X

(n)
r,k

) (6.1)

=
X

(n)
i,j − θX

(n)
i,j + θ

∑l

k=1
X

(n)
k,j(∑t

k=1X
(n)
i,k

)
− θ

(∑t
k=1 X

(n)
i,k

)
+
(
θ
∑l

r=1

∑t
k=1X

(n)
r,k

)
=

(1− θ)X(n)
i,j + θ

∑l

k=1
X

(n)
k,j

θ + (1− θ)
(∑t

k=1 X
(n)
i,k

) .

Once type Tj has been allocated to v
(i)
n+1 it is rede�ned as v

(i,j)
n+1 though referred to in

text as vn+1 for simplicity. We will choose the type of this new vertex later.
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6.1.2 Reduced model

In order to explore this model further we restrict this model it to the lowest complex-

ity in which we expect to see our desired results. This reduced model is where there

exists exactly two locations Li ∈ {L1, L2} and two types Tj ∈ {T1, T2}. Vertices in

our model have four combinations of locations and types. The probability associated

to forming an edge to a vertex in these combinations given vn+1 is at location Li is

given by

Q
(n)
i,j =

(1− θ)X(n)
i,j + θ

(
X

(n)
1,j +X

(n)
2,j

)
θ + (1− θ)

(
X

(n)
i,1 +X

(n)
i,2

) . (6.2)

We de�ne Fn as the σ-algebra generated by the sequence of graphs generated up to

time n. Conditional on Fn, the number of vertices of type Tj which vn+1 connects

to is distributed binomially according to a binomial distribution given by

Binomial
(
m,Q

(n)
i,j

)
.

Due to the nature of the model, a vertex is either T1 or T2, so we are able to fully

describe vertex types as either T1 or not T1. Using this, the probability vn+1 is

assigned type T1 given k ∈ N edges are formed to vertices with type T1 is ρk ∈ [0, 1].

Using this type allocation criterion and equation (6.2) we formulate the probability

vn+1 connects to k type T1 vertices using the binomial distribution which is used to

calculate the probability vn+1 is assigned T1 as

m∑
k=0

ρk

(
m

k

)(
Q

(n)
i,1

)k (
1−Q(n)

i,1

)m−k
conditional on vn+1 being at location Li. The probability vn+1 is at location Li and

of type T1 is

µi

m∑
k=0

ρk

(
m

k

)(
Q

(n)
i,1

)k (
1−Q(n)

i,1

)m−k
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where µi is the probability a vertex is at location Li. This leads to the expected

number of edges adjacent to vn+1 with type T1 at location Li as

Gi,1 (Xn;m, θ, µi) = mµi

m∑
k=0

ρk

(
m

k

)(
Q

(n)
i,1

)k (
1−Q(n)

i,1

)m−k
. (6.3)

where

Xn =


X

(n)
1,1 X

(n)
1,2 . . . X

(n)
1,t

X
(n)
2,1 X

(n)
2,2 . . . X

(n)
2,t

...
...

. . .
...

X
(n)
l,1 X

(n)
l,2 . . . X

(n)
l,t

 .

Remark 6.1.2. We can write equation (6.3) in polynomial form with explicit coef-

�cients as follows

Gi,1 (Xn;m, θ, µi) = mµi

m∑
k=0

(
m

k

)( k∑
a=0

(
k

a

)
(−1)a+kρa

)(
Q

(n)
i,1

)k
.

The probability a single edge connects to a vertex at location Li and type T1 for any

i ∈ N is expressed by

µiX
(n)
i,1∑t

k=1X
(n)
i,k + θ

∑t
k=1

∑l
r=1
r 6=i

X
(n)
r,k

+
θ(1− µi)X(n)

i,1

θ
∑t

k=1 X
(n)
i,k +

∑t
k=1

∑l
r=1
r 6=i

X
(n)
r,k

which is rewritten as

µiX
(n)
i,1

θ + (1− θ)
∑t

k=1 X
(n)
i,k

+
θ(1− µi)X(n)

i,1

1− (1− θ)
∑t

k=1X
(n)
i,k

. (6.4)

By restricting equation (6.4) to the setting where l = t = 2 we calculate the expected
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number of edges which connect to a vertex at location Li with type T1 as

Hi,1 (Xn;m, θ, µi) =
mX

(n)
i,1 µi

θ + (1− θ)
(
X

(n)
i,1 +X

(n)
i,2

) +
θmX

(n)
i,1 (1− µi)

1− (1− θ)
(
X

(n)
i,1 +X

(n)
i,2

) .
We de�ne Gi,2 (Xn;m, θ, µi) and Hi,2 (Xn;m, θ, µi) analogously noting that the prob-

ability a new vertex is of type 2 given it has k type two neighbours is 1− ρm−k.

6.2 Approximation equation structure

By utilizing the form described by Pemantle in [Pem07] we formulate a stochastic

approximation equation describing the expected change in the proportion of vertices

of each type at each location.

Theorem 6.2.1. For a �xed m we de�ne the i × j set of stochastic approximation

equations as

X
(n+1)
i,1 −X(n)

i,1 = γn

(
Fi,1 (Xn;m, θ, µi, α) + ξ

(i,1)
n+1

)
where

Fi,1 (Xn;m, θ, µi, α) = Gi,1 (Xn;m, θ, µi) +Hi,1 (Xn;m, θ, µi)− (α + 2m)X
(n)
i,1

and both E
(
ξ

(i,1)
n+1

∣∣∣Fn) = 0 and γ−1
n = (α + 2m)(n+ 1 + n0).

Proof. We set up an equation which describes the increase in the proportion of

vertices at location i with type 1 using

X
(n+1)
i,1 = γn+1

(
γ−1
n X

(n)
i,1 +Gi,1 (Xn;m, θ, µi) +Hi,1 (Xn;m, θ, µi) + ξ

(i,1)
n+1

)
(6.5)

where γ−1
n+1 = α(n + n0 + 1) + 2m(n + 1) + 2mn0 is the total degree of Gn+1. By

rearranging equation (6.5) we obtain the desired result. The associated noise of the
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system is de�ned as

ξ
(i,1)
n+1 = γ−1

n+1

(
X

(n+1)
i,1 − E

(
X

(n+1)
i,1

∣∣∣Fn))
which by de�nition has expectation zero.

Theorem 6.2.2. The four dimensional system of equations described by Theorem

6.2.1 for i, j ∈ {1, 2} with variables

Xn =
(
X

(n)
1,1 , X

(n)
1,2 , X

(n)
2,1 , X

(n)
2,2

)
which satis�es

Xi,1 +Xi,2 → pi

as n→∞, where pi gives the proportion of edge ends at location i.

Proof. We use an equation devised by Jordan [Jor13] containing µi and θ as argu-

ments to calculate the limiting proportion of edge ends at location i, pi, by solving

µi

(
1

pi
+

1− θ
pi + θ(1− pi)

)
= (1− µi)

(
1

1− pi
+

1− θ
1− pi(1− θ)

)
. (6.6)

As we have restricted our model to i ∈ {1, 2} we have that µ2 = 1 − µ1 and p2 =

1 − p1. In previous chapters we were able to reduce our system of equations using

the knowledge that our limiting proportions should sum to one. Though we could do

this again, we would be required to solve three equations simultaneously. Theorem

6.2.2 allows us to further simplify the process of solving our system. By utilizing

Theorems 6.2.1 and 6.2.2 the stationary points of

F1,1 (Xn;m, θ, µ1, α) = F2,1 (Xn;m, θ, µ2, α) = 0 (6.7)

we calculate limiting proportions corresponding to solutions to the four dimensional
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stochastic approximation equations. Jordan [Jor13] proved convergence to a Lya-

punov function describing a similar model to ours without vertex types. The Lya-

punov function argument from [Jor13] allows us to deduce that a stable solution of

equation (6.7) remains a stable solution with respect to the full model.

6.3 Speci�c attachment criteria for µ = 1
2

In this section we discuss a number of examples which occur based on di�erent

selection vectors ρ = (ρ0, ρ1, . . . , ρm) in the situation when µ1 = µ2 = 1
2
. For

simplicity we set α = 0 as we are interested in the phase transitions associated with

θ. Using these conditions we factorize equation (6.6) as

4(θ − 1)2

(
p− 1

2

)(
p2 − p− θ

2(θ − 1)2

)
= 0. (6.8)

The solutions to equation (6.8) give the values

p(L) =
1

2
−
√

1 + θ2

2(1− θ)
, p(M) =

1

2
and p(U) =

1

2
+

√
1 + θ2

2(1− θ)
.

It is clear that pU , pL 6∈ (0, 1) therefore p(M) = 1
2
is the only viable limiting proportion

denoted by p going forward. Utilizing this value of p allows us to formulate the pair

of ordinary di�erential equations

F1,1

(
Xn;m, θ,

1

2
, 0

)
=G1,1

(
Xn;m, θ,

1

2

)
− 2mX

(n)
1,1 +H1,1

(
Xn;m, θ,

1

2

)
(6.9)

=
m

2

m∑
k=0

ρk

(
m

k

)(
Q

(n)
1,1

)k (
1−Q(n)

1,1

)m−k
− 2mX

(n)
1,1

+
m

2

(
1

θ + (1− θ)p1

+
θ

1− (1− θ)p1

)
X

(n)
1,1

=−mX(n)
1,1 +

m

2

m∑
k=0

ρk

(
m

k

)(
Q

(n)
1,1

)k (
1−Q(n)

1,1

)m−k
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for p1 = 1
2
, and

F2,1

(
Xn;m, θ,

1

2
, 0

)
=G2,1

(
Xn;m, θ,

1

2

)
+H2,1

(
Xn;m, θ,

1

2

)
− 2mX

(n)
2,1 (6.10)

=
m

2

m∑
k=0

ρk

(
m

k

)(
Q

(n)
2,1

)k (
1−Q(n)

2,1

)m−k
− 2mX

(n)
2,1

+
m

2

(
1

θ + (1− θ)p2

+
θ

1− (1− θ)p2

)
X

(n)
2,1

=−mX(n)
2,1 +

m

2

m∑
k=0

ρk

(
m

k

)(
Q

(n)
2,1

)k (
1−Q(n)

2,1

)m−k
for p2 = 1

2
which describe our model. Using equation (6.2) evaluated at the appro-

priate parameters we formulate

Q
(n)
1,1 =

2
(
X

(n)
1,1 + θX

(n)
2,1

)
1 + θ

and Q
(n)
2,1 =

2
(
X

(n)
2,1 + θX

(n)
1,1

)
1 + θ

. (6.11)

We use Y to denote the set (x1,1, x1,2, x2,1, x2,2) such that all entries are positive

values summing to one satisfying pi = xi,1 + xi,2. Further from this we say that the

solutions to the ODE's given by (6.9) and (6.10) are restricted to Y .

6.3.1 Linear model

The linear model is where the choice of which type vn+1 is assigned varies linearly

as the number of vertices sampled from Gn+1 increases from 0 selections to m. More

speci�cally the entries of the vector ρ = (ρ0, ρ1, . . . , ρm) follow ρk = k
m
.

Theorem 6.3.1. For ρk = k
m

it follows that

Gi,1 (Xn;m, θ, µi, 0) = mµiQ
(n)
i,1 .
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Proof. We use Remark 6.1.2 to calculate Gi,1 (Xn;m, θ, µi, 0) as follows

Gi,1 (Xn;m, θ, µi, 0) = mµi

m∑
k=1

(
m

k

)( k∑
a=0

(
k

a

)
(−1)a+k k

m

)(
Q

(n)
i,1

)k
= µi

m∑
k=1

(
m

k

)(
k

k∑
a=1

(
k − 1

a− 1

)
(−1)a+k

)(
Q

(n)
i,1

)k
Using the substitution b = a− 1

Gi,1 (Xn;m, θ, µi, 0) = µi

m∑
k=1

(
m

k

)(
k
k−1∑
b=0

(
k − 1

b

)
(−1)b−1+k

)(
Q

(n)
i,1

)k
.

By utilizing the series expansion

(1 + (−1))k−1 =
k−1∑
b=0

(
k − 1

b

)
(−1)i =

1, if k = 1,

0, otherwise,

we reformulate Gi,1 (Xn;m, θ, µi, 0) as

Gi,1 (Xn;m, θ, µi, 0) =µi

1∑
k=1

(
m

k

)(
k
k−1∑
b=0

(
k − 1

b

)
(−1)b−1+k

)(
Q

(n)
i,1

)k
.

+ µi

m∑
k=2

(
m

k

)(
k
k−1∑
b=0

(
k − 1

b

)
(−1)b−1+k

)(
Q

(n)
i,1

)k
.

=mµiQ
(n)
i,1

as required.

Lemma 6.3.2. The solutions to the system of equations associated to the linear

model when µ = 1
2
can be fully expressed by solving(
F1,1

(
Xn;m, θ, 1

2
, 0
)

F2,1

(
Xn;m, θ, 1

2
, 0
)) =

mθ

θ + 1

(
−1 1

1 −1

)(
X

(n)
1,1

X
(n)
2,1

)
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restricted to the set Y .

Proof. We discussed in section 6.2 that the limiting proportions of our four dimen-

sional system can be described fully by solving

F1,1

(
Xn;m, θ,

1

2
, 0

)
= F2,1

(
Xn;m, θ,

1

2
, 0

)
= 0

due to the proportions satisfying X1,1 + X1,2 = 1
2
and X2,1 + X2,2 = 1

2
. Using this

knowledge with the simpli�ed form of G derived in Theorem 6.3.1 we need only solve

both

F1,1

(
Xn;m, θ,

1

2
, 0

)
=
m

2
Q

(n)
1,1 −mX

(n)
1,1 ,

and

F2,1

(
Xn;m, θ,

1

2
, 0

)
=
m

2
Q

(n)
2,1 −mX

(n)
2,1 ,

simultaneously. This pair can be written in the required form as(
F1,1

(
Xn;m, θ, 1

2
, 0
)

F2,1

(
Xn;m, θ, 1

2
, 0
)) =

mθ

θ + 1

(
−1 1

1 −1

)(
X

(n)
1,1

X
(n)
2,1

)
. (6.12)

Lemma 6.3.3. For the linear case when µ = 1
2
, all solutions are of the form (γ, 1

2
−

γ, γ, 1
2
− γ).

Proof. We see from equation (6.12) that X
(n)
1,1 −X

(n)
2,1 = 0 which leads to solutions of

the form (γ, 1
2
− γ, γ, 1

2
− γ) such that γ ∈ [0, 1

2
].

We check whether this point is stable by using the stability matrix given by∣∣∣∣∣∣∣
∂F1,1(Xn;m,θ, 1

2
,0)

∂X
(n)
1,1

− λ ∂F1,1(Xn;m,θ, 1
2
,0)

∂X
(n)
2,1

∂F2,1(Xn;m,θ, 1
2
,0)

∂X
(n)
1,1

∂F2,1(Xn;m,θ, 1
2
,0)

∂X
(n)
2,1

− λ

∣∣∣∣∣∣∣ =

∣∣∣∣∣−c− λ c

c −c− λ

∣∣∣∣∣ = λ (λ+ 2c) = 0.
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where c = mθ
1+θ

. For a stable point to be stable we require all eigenvalues to be

negative simultaneously. Clearly −2c < 0 however λ = 0 is ambiguous when it

comes to concluding stability. Because of this we cannot deduce stability using these

methods; there may be ways of doing it.

6.3.2 Coin �ip model

The type selection for the coin �ip model is described as follows: if a new vertex

vn+1 forms edges between m vertices of one type then it chooses that type however if

there is a mix of types in the selection then a coin is tossed to decide the type. This

is written more precisely as

ρk =


0, if k = 0,

x, if k ∈ {1, 2, . . . ,m− 1},

1, if k = m.

Here x ∈ (0, 1) is the probability our new vertex assumes type one. By using this

information we formulate the appropriate equations as:

F1,1

(
Xn;m, θ,

1

2
, 0

)
=
m

2

(
(1− x)

(
Q

(n)
1,1

)m
+ x

(
1−

(
1−Q(n)

1,1

)m))
−mX(n)

1,1

and

F2,1

(
Xn;m, θ,

1

2
, 0

)
=
m

2

(
(1− x)

(
Q

(n)
2,1

)m
+ x

(
1−

(
1−Q(n)

2,1

)m))
−mX(n)

2,1 ,

where the solution set is restricted to Y .

Lemma 6.3.4. When µ = 1
2
both

(
1
2
, 0, 1

2
, 0
)
and

(
0, 1

2
, 0, 1

2

)
are stable solutions to

the system for any θ if m ∈
(
0, 1

x

)
for
(

1
2
, 0, 1

2
, 0
)
or m ∈

(
0, 1

1−x

)
for
(
0, 1

2
, 0, 1

2

)
.

We see later as part of a special case that these are the only solutions.
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Proof. For µ = 1
2
we have that p = 1

2
leading to

Q
(n)
1,1 =

2

1 + θ

(
X

(n)
1,1 + θX

(n)
2,1

)
and

Q
(n)
2,1 =

2

1 + θ

(
X

(n)
2,1 + θX

(n)
1,1

)
.

It is easy to check that both
(

1
2
, 0, 1

2
, 0
)
and

(
0, 1

2
, 0, 1

2

)
are solutions to

F1,1

(
Xn;m, θ,

1

2
, 0

)
= F2,1

(
Xn;m, θ,

1

2
, 0

)
= 0.

To check the stability we calculate the eigenvalues of the Jacobian matrix using

∂

∂X
(n)
1,1

F1,1

(
Xn;m, θ,

1

2
, 0

)
=

(1− x)m2

1 + θ
(Q

(n)
1,1 )m−1 +

xm2

1 + θ
(1−Q(n)

1,1 )m−1 −m = Z1 −m,

∂

∂X
(n)
2,1

F1,1

(
Xn;m, θ,

1

2
, 0

)
=

(1− x)θm2

1 + θ
(Q

(n)
1,1 )m−1 +

xθm2

1 + θ
(1−Q(n)

1,1 )m−1 = θZ1,

∂

∂X
(n)
1,1

F2,1

(
Xn;m, θ,

1

2
, 0

)
=

(1− x)θm2

1 + θ
(Q

(n)
2,1 )m−1 +

xθm2

1 + θ
(1−Q(n)

2,1 )m−1 = θZ2,

∂

∂X
(n)
2,1

F2,1

(
Xn;m, θ,

1

2
, 0

)
=

(1− x)m2

1 + θ
(Q

(n)
2,1 )m−1 +

xm2

1 + θ
(1−Q(n)

2,1 )m−1 −m = Z2 −m.

By solving

det

∣∣∣∣∣Z1 −m− λ θZ1

θZ2 Z2 −m− λ

∣∣∣∣∣ = 0

we �nd the pair of eigenvalues as

λ =
1

2
(Z1 + Z2)−m± 1

2

√
(Z1 − Z2)2 + 4Z1Z2θ2.

These eigenvalues evaluated at
(

1
2
, 0, 1

2
, 0
)
result in λ+ = m(m(1− x)− 1). We have

λ+ < 0 when m ∈
(
0, 1

1−x

)
. For λ− = m

(
m(1−x)(1−θ)

1+θ
− 1
)
it follows that λ− < 0

when m ∈
(

0, 1+θ
(1−x)(1−θ)

)
.
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By evaluating our eigenvalues at
(
0, 1

2
, 0, 1

2

)
we have that λ+ = m(mx − 1). Hence

λ+ < 0 holds true when m ∈
(
0, 1

x

)
. As λ− = m

(
mx(1−θ)

1+θ
− 1
)
we solve λ− < 0 to

see that if m ∈
(

0, 1+θ
x(1−θ)

)
then λ− < 0.

For
(

1
2
, 0, 1

2
, 0
)
as θ ∈ (0, 1) and 1+θ

1−θ > 1 we see that (1+θ)
(1−x)(1−θ) >

1
1−x so the condition

on λ+ dominates. A similar result are found for
(
0, 1

2
, 0, 1

2

)
in that m ∈

(
0, 1

x

)
dominates.

6.3.2.1 Coin �ip model with m = 3, x = 1
2

We examine the coin �ip model for the smallest value of m for which interesting

results are expected, m = 3. We formulate the appropriate equations as:

F1,1

(
Xn; 3, θ,

1

2
, 0

)
=

3

4

(
Q

(n)
1,1

)(
2
(
Q

(n)
1,1

)2

− 3Q
(n)
1,1 + 3

)
− 3X

(n)
1,1

and

F2,1

(
Xn; 3, θ,

1

2
, 0

)
=

3

4

(
Q

(n)
2,1

)(
2
(
Q

(n)
2,1

)2

− 3Q
(n)
2,1 + 3

)
− 3X

(n)
2,1 .

We solve this pair equal to zero using MatLab to attain the following table of

solutions where the numbering in the left hand column are used throughout this

section.

X1,1 X2,1

1) 0 0
2) 1

2
1
2

3) 1
4

1
4

4) 1
4
− 1

4
1+θ
1−θ

√
1+7θ
1−θ

1
4

+ 1
4

1+θ
1−θ

√
1+7θ
1−θ

5) 1
4

+ 1
4

1+θ
1−θ

√
1+7θ
1−θ

1
4
− 1

4
1+θ
1−θ

√
1+7θ
1−θ

6) 1
4
− α 1

4
− β

7) 1
4

+ α 1
4

+ β
8) 1

4
− β 1

4
− α

9) 1
4

+ β 1
4

+ α

Tab. 6.1: A complete set of solutions to the coin �ip model for m = 3, µ = 1
2 and x = 1

2 .
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The components of our solutions are given by

α =

√
2

4

√
S + T (θ2 − 1)

U
and β =

√
2

4

√
S − T (θ2 − 1)

U

for

S = 1 + 3θ − 15θ2 + 3θ3, U = (1− θ)3 and T =
√

(−55θ2 + 6θ + 1).

We use Table 6.1 and equations (6.11) to formulate a corresponding table of Q
(n)
1,1

and Q
(n)
2,1 values found in Table 6.2.

Q1,1 Q2,1

1) 0 0
2) 1 1
3) 1

2
1
2

4) 1
2
− 1

2

√
1+7θ
1−θ

1
2

+ 1
2

√
1+7θ
1−θ

5) 1
2

+ 1
2

√
1+7θ
1−θ

1
2
− 1

2

√
1+7θ
1−θ

6) 1
2
−

√
2

4(1+θ)
(α + θβ) 1

2
−

√
2

4(1+θ)
(θα + β)

7) 1
2

+
√

2
4(1+θ)

(α + θβ) 1
2

+
√

2
4(1+θ)

(θα + β)

8) 1
2
−

√
2

4(1+θ)
(β + θα) 1

2
−

√
2

4(1+θ)
(θβ + α)

9) 1
2

+
√

2
4(1+θ)

(β + θα) 1
2

+
√

2
4(1+θ)

(θβ + α)

Tab. 6.2: The corresponding set of Q1,1 and Q2,1 values for each of the solutions found in
Table 6.1.

The stability conditions of the three trivial solutions (1-3) are given by the following

table.

X1,1 X2,1 Q1,1 Q2,1 λ+ λ+ < 0 λ− λ−<0
1) 0 0 0 0 3

2
never 9

2

(
1−θ
1+θ

)
− 3 1

5
< θ

2) 1
2

1
2

1 1 3
2

never 9
2

(
1−θ
1+θ

)
− 3 1

5
< θ

3) 1
4

1
4

1
2

1
2

−3
4

always 9
4

(
1−θ
1+θ

)
− 3 always

Tab. 6.3: Stability conditions for the trivial solutions to the coin �ip model where m = 3,
µ1 = 1

2 and x = 1
2 .
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Here we see that neither (1) and (2) are stable due to λ+. For any θ ∈ [0, 1] the

solution
(

1
4
, 1

4
, 1

4
, 1

4

)
is stable with respect to both eigenvalues. By applying Theorem

2.16 from [Pem07] we conclude
(

1
4
, 1

4
, 1

4
, 1

4

)
is a possible limit for the stochastic process.

The pair of solutions given by (4) and (5) of Table 6.1 as(
1

4
− 1

4

√
1 + 7θ

1− θ
,
1

4
+

1

4

√
1 + 7θ

1− θ

)
and

(
1

4
+

1

4

√
1 + 7θ

1− θ
,
1

4
− 1

4

√
1 + 7θ

1− θ

)

are not viable solutions for our limiting proportions as
√

1+7θ
1−θ > 1 for all θ ∈ [0, 1].

Similarly solutions (6-9) are infeasible proportions of edge mass as there is no value

θ ∈ [0, 1] where both α or β satisfy α, β ∈
[
0, 1

4

]
. This can be seen from Figure 6.1

below.

Fig. 6.1: A plot of α and β for θ ∈ [0, 1] showing that there is no value of θ for which both
α, β ∈

[
0, 1

4

]
simultaneously.

From analysing the stability conditions of the m = 3 coin �ip model it is observable
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there is only one stable limiting proportion. This is where all four proportions are

equal in the limit.

6.3.3 Majority wins model

The majority wins model described by the vector ρ = (0, 0, ..., 1, 1) speci�es the type

which vn+1 is assigned as the dominant type from the m vertices vn+1 is adjacent to.

This selection criteria is expressed by

ρk =

0, if k = 0, 1, ..., m−1
2
,

1, if k = m+1
2
, m+3

2
, ...,m,

if m is odd, and

ρk =


0, if k = 0, 1, ..., m

2
− 1,

1
2
, if k = m

2
,

1, if k = m
2

+ 1, m
2

+ 2, ...,m,

if m is even. Due to the complexity of this model we look into some speci�c values

of m. There is no need to evaluate the m = 2 case in this context as in this situation

the coin �ip, majority wins and linear models all produce the same outcome. Using

equations found in Section 6.3 we formulate the appropriate functions required to

describe the associated four dimensional model as follows

Fi,1

(
Xn;m, θ,

1

2
, 0

)
=


−mX(n)

i,1 + m
2

∑m
k=m

2
+1

(
m
k

) (
Q

(n)
i,1

)k (
1−Q(n)

i,1

)m−k
if m even

+m
4

(
m
m/2

) (
Q

(n)
i,1

)m
2
(

1−Q(n)
i,1

)m
2
,

−mX(n)
i,1 + m

2

∑m
k=m+1

2

(
m
k

) (
Q

(n)
i,1

)k (
1−Q(n)

i,1

)m−k
, if m odd.

Theorem 6.3.5. For any s ∈ N such that s ≥ 2 it follows that

Fi,1

(
Xn; 2s, θ,

1

2
, 0

)
=

2s

2s− 1
Fi,1

(
Xn; 2s− 1, θ,

1

2
, 0

)
.
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Proof. We prove this by calculating the di�erence between the two sides.

(2s− 1)Fi,1

(
Xn; 2s, θ,

1

2
, 0

)
− (2s)Fi,1

(
Xn; 2s− 1, θ,

1

2
, 0

)
=

=(2s− 1)

(
−2sX

(n)
i,1 +

s

2

(
2s

s

)(
Q

(n)
i,1

)s (
1−

(
Q

(n)
i,1

))s
+

(
s

2s−1∑
k=s+1

(
2s

k

)(
Q

(n)
i,1

)k (
1−

(
Q

(n)
i,1

))2s−k
))

− (2s)

(
−(2s− 1)X +

2s− 1

2

2s−1∑
k=s

(
2s− 1

k

)(
Q

(n)
i,1

)k (
1−Q(n)

i,1

)2s−1−k
)

=s(2s− 1)

(
2s∑

k=s+1

(
2s

k

)(
Q

(n)
i,1

)k (
1−Q(n)

i,1

)2s−k
−

2s−1∑
k=s

(
2s− 1

k

)(
Q

(n)
i,1

)k (
1−Q(n)

i,1

)2s−1−k
)

+
s(2s− 1)

2

(
2s

s

)(
Q

(n)
i,1

)s (
1−Q(n)

i,1

)s
=s(2s− 1)

2s−1∑
k=s

(
2s− 1

k

)(
Q

(n)
i,1

)k (
1−Q(n)

i,1

)2s−1−k
(
k − 2sQ

(n)
i,1

2s− k

)

+ s(2s− 1)

((
Q

(n)
i,1

)2s

− 1

2

(
2s

s

)(
Q

(n)
i,1

)s (
1−Q(n)

i,1

)s)
=s(2s− 1)

(
Q

(n)
i,1

)s (
1−Q(n)

i,1

)s((2s− 1

s

)
− 1

2

(
2s

s

))
= 0

completing the proof.

Theorem 6.3.5 links the odd and even case meaning we simply require a minor

alteration to the odd cases to infer the solutions to the even cases.

6.3.3.1 Majority wins model with m = 3

We calculate the appropriate functions for the majority wins m = 3 case as

F1,1

(
Xn; 3, θ,

1

2
, 0

)
= −3X

(n)
1,1 − 3

(
Q

(n)
1,1

)3

+
9

2

(
Q

(n)
1,1

)2

(6.13)

F2,1

(
Xn; 3, θ,

1

2
, 0

)
= −3X

(n)
2,1 − 3

(
Q

(n)
2,1

)3

+
9

2

(
Q

(n)
2,1

)2
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where the solution set is restricted to Y . For simplicity we let

S = 3θ3 − 9θ2 + 3θ − 1,

R = (θ − 1)
√
−(7θ − 1)(θ + 1)3,

T = 2θ(2θ2 − 3θ + 3),

U = (θ − 1)3.

Using MatLab we solved

F1,1

(
Xn; 3, θ,

1

2
, 0

)
= F2,1

(
Xn; 3, θ,

1

2
, 0

)
= 0

summarizing the solutions in Table 6.13.

X1,1 X2,1

1) 1
4

+ (θ+1)
√

5θ−1

4(θ−1)
√
θ−1

1
4
− (θ+1)

√
5θ−1

4(θ−1)
√
θ−1

2) 1
4
− (θ+1)

√
5θ−1

4(θ−1)
√
θ−1

1
4

+ (θ+1)
√

5θ−1

4(θ−1)
√
θ−1

3) 0 0
4) 1

2
1
2

5) 1
4

1
4

6) 1
4

+
√

2(S+R)
8T

√
S−R
U

1
4
−
√

2
8

√
S−R
U

7) 1
4
−
√

2(S+R)
8T

√
S−R
U

1
4

+
√

2
8

√
S−R
U

8) 1
4

+
√

2(S−R)
8T

√
S+R
U

1
4
−
√

2
8

√
S+R
U

9) 1
4
−
√

2(S−R)
8T

√
S+R
U

1
4

+
√

2
8

√
S+R
U

Tab. 6.4: A complete set of solutions to the stochastic approximation equations given by
equations (6.13) describing the m = 3 majority wins model.

Lemma 6.3.6. For any θ ∈ [0, 1] it is true that√
S2 −R2

T 2
= 1.
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Proof.

√
S2 −R2

T 2
=

√√√√(3θ3 − 9θ2 + 3θ − 1)2 −
(

(θ − 1)
√
−(7θ − 1)(θ + 1)3

)2

4θ2(2θ2 − 3θ + 3)2

=

√
4θ2 (4θ4 − 12θ3 + 21θ2 − 18θ + 9)

4θ2(2θ2 − 3θ + 3)2
= 1.

We apply Lemma 6.3.6 to simplify entries contained in Table 6.4 forming Table 6.5.

X1,1 X2,1

1) 1
4

+ (θ+1)
4(θ−1)

√
5θ−1
θ−1

1
4
− (θ+1)

4(θ−1)

√
5θ−1
θ−1

2) 1
4
− (θ+1)

4(θ−1)

√
5θ−1
θ−1

1
4

+ (θ+1)
4(θ−1)

√
5θ−1
θ−1

3) 0 0
4) 1

2
1
2

5) 1
4

1
4

6) 1
4

+
√

2
8

√
S+R
U

1
4
−
√

2
8

√
S−R
U

7) 1
4
−
√

2
8

√
S+R
U

1
4

+
√

2
8

√
S−R
U

8) 1
4

+
√

2
8

√
S−R
U

1
4
−
√

2
8

√
S+R
U

9) 1
4
−
√

2
8

√
S−R
U

1
4

+
√

2
8

√
S+R
U

Tab. 6.5: Simpli�ed entries found in Table 6.4 containing solutions to the approximation
equations relating to the majority wins model with m = 3.

Similarly as to previous sections, we use the stability matrix formed from equations

(6.13)

det

∣∣∣∣∣∣∣
18Q

(n)
1,1

1+θ

(
1−Q(n)

1,1

)
− λ− 3

18θQ
(n)
1,1

1+θ

(
1−Q(n)

1,1

)
18θQ

(n)
2,1

1+θ

(
1−Q(n)

2,1

)
18Q

(n)
2,1

1+θ

(
1−Q(n)

2,1

)
− λ− 3

∣∣∣∣∣∣∣ = 0 (6.14)
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to identify the stability conditions associated to each of the solutions found in Table

6.5. By using (6.14) we �nd the appropriate eigenvalues of our the majority wins

model with m = 3 as

λ = −3 +
9

1 + θ

(
J ±
√
J2 − 4K

)
(6.15)

where

J = Q1,1 (1−Q1,1) +Q2,1 (1−Q2,1)

and

K = Q1,1Q2,1 (1−Q1,1) (1−Q2,1)
(
1− θ2

)
.

Lemma 6.3.7. For any θ ∈ (0, 1) both solutions (0, 1
2
, 0, 1

2
) and (1

2
, 0, 1

2
, 0) are stable

whereas (1
4
, 1

4
, 1

4
, 1

4
) is unstable.

Proof. Using the values in Table 6.5 and the eigenvalues found in (6.15) we generate

the following table:

X1,1 X2,1 Q1,1 Q2,1 λ+ λ+ < 0 λ− λ− < 0
3) 0 0 0 0 −3 always −3 always
4) 1

2
1
2

1 1 −3 always −3 always
5) 1

4
1
4

1
2

1
2

3
2

never 3
2
− 9θ

1+θ
1
5
< θ

We see from rows one and two that the eigenvalues for (0, 1
2
, 0, 1

2
) and (1

2
, 0, 1

2
, 0)

are both always negative. We see from table that λ+ for (5) is always positive.

Therefore, we conclude that (0, 1
2
, 0, 1

2
) and (1

2
, 0, 1

2
, 0) are stable points and (1

4
, 1

4
, 1

4
, 1

4
)

is unstable.

Lemma 6.3.8. For θ ∈ (0, 1) the two solutions to (6.13) described by (1) and (2)

from Table 6.5 are stable when θ ∈
[
0, 1

7

)
and unstable when θ > 1

7
.
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Proof. We begin our proof by using (1) to calculate

Q1,1 =
1

2
− 1

2

√
1− 5θ

1− θ
and Q2,1 =

1

2
+

1

2

√
1− 5θ

1− θ
.

We see by observation that both Q1,1 and Q2,1 are real and in the interval [0, 1] when

θ ∈
[
0, 1

5

]
. Using these we evaluate the separate components of our eigenvalues as

J = 2Q1,1Q2,1 and K = (1− θ2) (Q1,1)2 (Q2,1)2 .

By putting these components together we formulate our eigenvalues in the form

λ = −3 +
18θ

(1− θ)(1 + θ)
(1± θ)

We deduce the conditions necessary to impose on θ to ensure stability given by

λ+ : 0 > −3 +
18θ

(1− θ)
=⇒ 1

7
> θ,

λ− : 0 > −3 +
18θ

(1 + θ)
=⇒ 1

5
> θ.

We conclude that λ+ and λ− are both negative simultaneously for θ ∈
[
0, 1

7

)
. Finally,

using Theorem 2.17 of [Pem07] we conclude that non-convergence occurs when θ >
1
7
.

Lemma 6.3.8 outlines the possibility of two di�erent behaviours in the two di�erent

communities in the majority wins model when θ < 1
7
. This seems to not be the case,

based on the stability criteria, for the majority wins model when θ > 1
7
, the linear

model or the coin �ip models.

De�nition 6.3.9. For two column vectors [a] = [a1, a2, ..., ak]
T and [b] = [b1, b2, ..., bk]

T ;

we de�ne array multiplication as [a][b] = [a1b1, a2b2, ..., akbk]
T and array addition as

[a]+[b] = [a1+b1, a2+b2, ..., ak+bk]
T . Similar identities can be de�ned for subtraction

and division.
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Lemma 6.3.10. For θ ∈ [0, 1], none of the solutions to (6.13) given by the following

table are stable

X1,1 X2,1 Q1,1 Q2,1

6) 1
4

+
√

2
8
α 1

4
−
√

2
8
β 1

2
+

√
2

4(1+θ)
(α− βθ) 1

2
+

√
2

4(1+θ)
(αθ − β)

7) 1
4
−
√

2
8
α 1

4
+
√

2
8
β 1

2
−

√
2

4(1+θ)
(α− βθ) 1

2
−

√
2

4(1+θ)
(αθ − β)

8) 1
4

+
√

2
8
β 1

4
−
√

2
8
α 1

2
+

√
2

4(1+θ)
(−αθ + β) 1

2
+

√
2

4(1+θ)
(−α + βθ)

9) 1
4
−
√

2
8
β 1

4
+
√

2
8
α 1

2
−

√
2

4(1+θ)
(−αθ + β) 1

2
−

√
2

4(1+θ)
(−α + βθ)

such that α =
√

S+R
U

and β =
√

S−R
U

.

Proof. We begin by calculating the components of our eigenvalues, starting with J .

J =



1
2

+
√

2
4(1+θ)

(√
S+R
U
−
√

S−R
U
θ
)

1
2
−

√
2

4(1+θ)

(√
S+R
U
−
√

S−R
U
θ
)

1
2

+
√

2
4(1+θ)

(
−
√

S+R
U
θ +

√
S−R
U

)
1
2
−

√
2

4(1+θ)

(
−
√

S+R
U
θ +

√
S−R
U

)





1
2
−

√
2

4(1+θ)

(√
S+R
U
−
√

S−R
U
θ
)

1
2

+
√

2
4(1+θ)

(√
S+R
U
−
√

S−R
U
θ
)

1
2
−

√
2

4(1+θ)

(
−
√

S+R
U
θ +

√
S−R
U

)
1
2

+
√

2
4(1+θ)

(
−
√

S+R
U
θ +

√
S−R
U

)

+



1
2

+
√

2
4(1+θ)

(√
S+R
U
θ −

√
S−R
U

)
1
2
−

√
2

4(1+θ)

(√
S+R
U
θ −

√
S−R
U

)
1
2

+
√

2
4(1+θ)

(
−
√

S+R
U

+
√

S−R
U
θ
)

1
2
−

√
2

4(1+θ)

(
−
√

S+R
U

+
√

S−R
U
θ
)





1
2
−

√
2

4(1+θ)

(√
S+R
U
θ −

√
S−R
U

)
1
2

+
√

2
4(1+θ)

(√
S+R
U
θ −

√
S−R
U

)
1
2
−

√
2

4(1+θ)

(
−
√

S+R
U

+
√

S−R
U
θ
)

1
2

+
√

2
4(1+θ)

(
−
√

S+R
U

+
√

S−R
U
θ
)



J =



1
2
−

(√
S+R
U
−
√

S−R
U

θ
)2

+
(√

S+R
U

θ−
√

S−R
U

)2

8(1+θ)2

1
2
−

(√
S+R
U
−
√

S−R
U

θ
)2

+
(√

S+R
U

θ−
√

S−R
U

)2

8(1+θ)2

1
2
−

(√
S+R
U
−
√

S−R
U

θ
)2

+
(√

S+R
U

θ−
√

S−R
U

)2

8(1+θ)2

1
2
−

(√
S+R
U
−
√

S−R
U

θ
)2

+
(√

S+R
U

θ−
√

S−R
U

)2

8(1+θ)2


We see from here that all four solutions produced the same value of J simpli�ed as
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follows

J =
1

2
−

(√
S+R
U
−
√

S−R
U
θ
)2

+
(√

S+R
U
θ −

√
S−R
U

)2

8 (1 + θ)2

=
1

2
−

(
S+R
U

+ S−R
U

)
(θ2 + 1)− 4θ

√
S+R
U

√
S−R
U

8(1 + θ)2

=
1

2
−

2S (θ2 + 1) + 4θ
(√

S2 −R2
)

8U(1 + θ)2
.

Applying Lemma 6.3.6,
√
S2 −R2 =

√
T 2 yields

J =
1

2
− S (θ2 + 1) + 2θT

4U(1 + θ)2

=
1

2
− (θ − 1)2(θ + 1)2(3θ − 1)

4(θ − 1)3(1 + θ)2

=
1 + θ

4(1− θ)
.

We compute K in a similar way:

K =



1
2

+
√

2
4(1+θ)

(√
S+R
U
−
√

S−R
U
θ
)

1
2
−

√
2

4(1+θ)

(√
S+R
U
−
√

S−R
U
θ
)

1
2

+
√

2
4(1+θ)

(
−
√

S+R
U
θ +

√
S−R
U

)
1
2
−

√
2

4(1+θ)

(
−
√

S+R
U
θ +

√
S−R
U

)





1
2
−

√
2

4(1+θ)

(√
S+R
U
−
√

S−R
U
θ
)

1
2

+
√

2
4(1+θ)

(√
S+R
U
−
√

S−R
U
θ
)

1
2
−

√
2

4(1+θ)

(
−
√

S+R
U
θ +

√
S−R
U

)
1
2

+
√

2
4(1+θ)

(
−
√

S+R
U
θ +

√
S−R
U

)

×



1
2

+
√

2
4(1+θ)

(√
S+R
U
θ −

√
S−R
U

)
1
2
−

√
2

4(1+θ)

(√
S+R
U
θ −

√
S−R
U

)
1
2

+
√

2
4(1+θ)

(
−
√

S+R
U

+
√

S−R
U
θ
)

1
2
−

√
2

4(1+θ)

(
−
√

S+R
U

+
√

S−R
U
θ
)





1
2
−

√
2

4(1+θ)

(√
S+R
U
θ −

√
S−R
U

)
1
2

+
√

2
4(1+θ)

(√
S+R
U
θ −

√
S−R
U

)
1
2
−

√
2

4(1+θ)

(
−
√

S+R
U

+
√

S−R
U
θ
)

1
2

+
√

2
4(1+θ)

(
−
√

S+R
U

+
√

S−R
U
θ
)

 (1− θ2)
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which simpli�es to

K(θ) = (1− θ2)



1
4
−

(√
S+R
U
−
√

S−R
U

θ
)2

8(1+θ)2

1
4
−

(√
S+R
U
−
√

S−R
U

θ
)2

8(1+θ)2

1
4
−

(
−
√

S+R
U

θ+
√

S−R
U

)2

8(1+θ)2

1
4
−

(
−
√

S+R
U

θ+
√

S−R
U

)2

8(1+θ)2





1
4
−

(√
S+R
U

θ−
√

S−R
U

)2

8(1+θ)2

1
4
−

(√
S+R
U

θ−
√

S−R
U

)2

8(1+θ)2

1
4
−

(
−
√

S+R
U

+
√

S−R
U

θ
)2

8(1+θ)2

1
4
−

(
−
√

S+R
U

+
√

S−R
U

θ
)2

8(1+θ)2


.

This again reduces to the same equation. For α =
√

S+R
U

and β =
√

S−R
U

we have

K = (1− θ2)

(
1

4
− (α− βθ)2

8 (1 + θ)2

)(
1

4
− (αθ − β)2

8 (1 + θ)2

)

= (1− θ2)

(
1

16
− (α− βθ)2 + (αθ − β)2

32(1 + θ)2
+

(α− βθ)2(αθ − β)2

64(1 + θ)4

)
= (1− θ2)

(
J

4
− 1

16
+

(α− βθ)2(αθ − β)2

64(1 + θ)4

)
= (1− θ2)

(
1 + θ

16(1− θ)
− 1

16
+

(α− βθ)2(αθ − β)2

64(1 + θ)4

)
.

Using identities αβ = −
√

T 2

U2 = −T
U

and α2 + β2 = 2S
U

found in Lemma 6.3.7 we

simplify this to

K = (1− θ2)

(
1 + θ

16(1− θ)
− 1

16
+

θ2

4(θ − 1)2

)
=
θ(θ + 1)2

2(1− θ)
.

We formulate the appropriate eigenvalues as

λ = −3 +
9

1 + θ

 1 + θ

4(1− θ)
±

√(
1 + θ

4(1− θ)

)2

− θ(θ + 1)2

2(1− θ)

 ,
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which simpli�es to give

0 > −3 +
9

4(1− θ)

(
1±
√

8θ2 − 8θ + 1
)

which holds true for θ ∈
[

2−
√

2
4
, 2+

√
2

4

]
. For λ+ we solve

1− 4θ

3
>
√

8θ2 − 8θ + 1

−(7θ − 1)(θ − 1) > 0.

which is satis�ed when θ ∈
(

1
7
, 2−

√
2

4

)
. The particular solutions X

(n)
1,1 and X

(n)
2,1 exist

when θ ≤ 1
7
. Clearly this eigenvalue is never negative in the required domain leading

to instability for all solutions in question.

6.3.3.2 Majority wins model with m = 4

In order to examine them = 4 case we utilize Theorem 6.3.5. This is not so important

in the formulation of the approximation equations, but more so in the solving of them.

Given the m = 4 case is merely a scaled m = 3 case they have the same solutions,

found in Table 6.5. We use the equations associated to the m = 3 case

F1,1

(
Xn; 4, θ,

1

2
, 0

)
= −4X

(n)
1,1 − 4

(
Q

(n)
1,1

)3

+ 6
(
Q

(n)
1,1

)2

=
4

3
F1,1

(
Xn; 3, θ,

1

2
, 0

)
and

F2,1

(
Xn; 4, θ,

1

2
, 0

)
= −4X

(n)
1,1 − 4

(
Q

(n)
2,1

)3

+ 6
(
Q

(n)
2,1

)2

=
4

3
F2,1

(
Xn; 3, θ,

1

2
, 0

)
.

to calculate the associated eigenvalues using

det

∣∣∣∣∣∣∣
24Q

(n)
1,1

1+θ

(
1−Q(n)

1,1

)
− λ− 4

24θQ
(n)
1,1

1+θ

(
1−Q(n)

1,1

)
24θQ

(n)
2,1

1+θ

(
1−Q(n)

2,1

)
24Q

(n)
2,1

1+θ

(
1−Q(n)

2,1

)
− λ− 4

∣∣∣∣∣∣∣ = 0
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as

λ

(
Xn; 4, θ,

1

2
, 0

)
= −4 +

12

1 + θ

(
J ±
√
J2 − 4K

)
=

4

3
λ

(
Xn; 3, θ,

1

2
, 0

)
.

It is therefore clear to see that due to a similar property given by Theorem 6.3.5 the

same limiting proportions and stability conditions hold as were discussed in Section

6.3.3.1.
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