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A B S T R A C T

While parameters are crucial components of cognitive models, relatively little importance has been given to their
units. We show that this has lead to some parameters to be contaminated, introducing an artifactual correlation
between them. We also show that this has led to the illegal comparison of parameters with different units of
measurement – this may invalidate parameter comparisons across participants, conditions, groups, or studies.
We demonstrate that this problem affects two related models: Stevens' power law and Rachlin's delay dis-
counting model. We show that it may even affect models which superficially avoid the incompatible units
problem, such as hyperbolic discounting. We present simulation results to demonstrate the extent of the issues
caused by the muddled units problem. We offer solutions in order to avoid the problem in the future or to aid in
re-interpreting existing datasets.

1. The incomparable units problem

It does not make sense to compare 7meters with 8 seconds and ask,
“Which is bigger?” The comparison is not allowed because one cannot
compare numbers with different physical units—we have an idiom for
this: “it is like comparing apples and oranges”. In this article we show
that neglecting the units of psychological parameters can lead to apples-
and-oranges type problems and, ultimately, to mistaken conclusions.

1.1. A demonstration with Stevens' power law

Stevens’ (1975) power law describes the relationship between
physical magnitudes and their psychological equivalent. In Stevens'
power law, the psychological magnitude ψ(I) of physical magnitude or
intensity I is given by

=I I( ) a (1)

where λ and a are free parameters.
The law may well correctly capture the transformation from phy-

sical to psychological magnitude. However, there is a problem with the
λ parameter which means it cannot be used for measurement of an
individual difference and cannot be compared across individuals. This
is because Stevens' law is parameterised incorrectly—so that the units
of one parameter are muddled with the value of another parameter. The
concepts of dimensional invariance (Fourier, 1822; Maxwell, 1891;

Krantz, 1972; Stewart, Scheibehenne, & Pachur, 2019) and mean-
ingfulness (Falmagne, 1985; Falmagne & Narens, 1983) can be applied
in mathematical models of psychology, by considering the units of
psychological parameters. Let's consider the perception of visual length,
and particularly of lines. If length is measured in the International
System of Units (SI) of metres (m), then I has units ofm. This means that
Ia has units of ma. If ψ(I) is to be a unitless psychological scale, or at
least a scale with its own psychological units, then it must be free of the
physical units. This means that λ must have the reciprocal units of Ia so
that the units cancel out. Thus λ must have units of = m a1

ma . The key
problem here is that λ has units which depend upon a. Stewart et al.
(2019) have shown, for similar models, how this will lead to estimates
of λ and a that are highly correlated, and that it is illegal to compare λ
values across, for example, individuals with different values of a. When
a differs, the units of λ differ, and comparing magnitudes with different
units is not permitted.

We have highlighted a problem with the units of λ in Stevens' law,
though λ is often not the parameter of core interest in psychophysical
modelling. Instead it is the exponent a that is of primary consideration.
The exponent a has been tabulated, in reviews of the experimental
literature, for more than 20 physical continua, including loudness,
brightness, length and area, tastes and smells, temperature, pressure,
texture, vibration, weight, duration, and even electric shocks. The λ
parameter is of lesser theoretical interest, because it is determined, in
part, by the properties of the judgement scale for ψ which are somewhat
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arbitrary and determined by the experimenter. For example, λ will
differ depending on whether the scale runs from 0–10 or 0–100. But
later in this paper, when we are considering temporal discounting, the
analogue of λ is of core theoretical interest.

1.2. Fechner's law is dimensionally correct

In contrast to Stevens' law, Fechner’s (1966) law

=I I
I

( ) ln
0 (2)

is a meaningful and dimensionally invariant law. The ratio of the
physical quantity I and the threshold physical quantity I0 (at which the
perception ψ(I) is zero) is unitless, because the units of I and I0 cancel in
the ratio. Logarithms are also unitless—they are the power to which the
base of the log must be raised, and powers are unitless real numbers.
This means that λ need have only whatever unit required to match the
scale of ψ(I) is measured in.

1.3. Fixing the units in Stevens' law

We propose the modified Stevens' power law:

=I I( ) ( )a (3)

where γa= λ or γ= λ1/a. Note that a is still a dimensionless quantity,
but γ is in inverse units of I, such as 1

metres
for length, 1

metres2 for area,
1

days
for duration, for example. Also, now γ is appealingly independent of a.
Comparisons between a parameters and between γ parameters are al-
lowable in dimensional analysis; but, as we explain above, comparisons
of λ are not. This fix—moving the constant inside the power—is de-
scribed in Stewart et al. (2019).

To summarise, studies which have compared values of λ across or
within individuals are wrong because comparing quantities which are
not in the same units is not permitted. Our strong suggestion would be
that for such studies, the λ parameter is transformed into γ and the
results be reinterpreted based on these values. The extent to which this
may be a problem, and the feasibility of this suggestion, is explored in
the remainder of the paper.

2. A case study in time perception and temporal discounting

We illustrate the incompatible units problem in the domain of hot
affective emotional states. Multiple studies have found that when
people undergo a hot affective state manipulation (e.g. by viewing
sexually arousing stimuli) then their present bias increases (Wilson &
Daly, 2004; Ariely & Loewenstein, 2006; Van den Bergh & Dewitte,
2008; Lemley, Asmussen, & Reed, 2015). That is, they discount future
rewards to a greater extent, such that preferences shift toward smaller
but sooner rewards compared to larger but later rewards. But what are
the cognitive processes that are responsible? Are people's temporal
preferences altered in hot states2 because of changes in discount rates, or
because of changes in subjective time perception, or some combination
of the two?

Regardless of the precise measure used, results of the above studies
were interpreted as changes in time discounting caused by the experi-
mental hot state manipulation. Caution must be expressed however as
these results could have also been driven partly or wholly by changes in
subjective time perception. In an excellent series of studies, Kim and
Zauberman (2013) found a similar increase in present bias caused by
hot state manipulations, but, because they also measured subjective
time perception, were able to conclude that this change in present bias

is driven by changes in subjective time perception rather than changes
in discount rates. They measured the relationships between subjective
time perception and inter-temporal choice for money under control and
hot states. In Study 1 they showed that male participant's subjective
time perception was altered by viewing pictures of female lingerie
models. They used a procedure to estimate perceived durations from
objectively stated durations according to Stevens' power law (see Eq.
(1), where I is measuring the duration). Participants indicated sub-
jective time by adjusting the length of a line on the computer screen,
relative to a reference duration of 1month corresponding to
32.71mm), therefore the units of I was in mm. This resulted in group
level fits of ψ(I)= 0.998I0.68 for the hot condition and ψ(I)= 0.610I0.73

for the control condition.
One conclusion drawn by the researchers was that participant's

subjective time perception was sublinear3— based upon the point es-
timates of the exponents both being below 1, and a non-significant
difference between these exponent parameter values. Because the ex-
ponent is unitless, this conclusion is not affected by any units problems.

A second conclusion was that perceived time increased in the hot
state, such that a fixed duration was perceived as longer. The scaling
parameter (λ in our Eq. (1)) increased from the control to experimental
condition. This comparison of λ values is not valid, undermining the
conclusion that changes in subjective time perception were responsible.
As we have seen, the λ parameters are in units which are also affected
by the exponent. Specifically, the group level constant for the hot
condition is λ=0.998 mm−0.68 (i.e. units of mm−0.68), and λ=0.61
mm−0.73 (i.e. units of mm−0.73) for the control condition. These con-
stants are in different units and therefore cannot be compared. Likewise
conducting t-tests or ANOVAs on λ values for participant level fits is
also illegal, as they are all units of mma where a is different for each
participant. Instead, λ should be transformed to γ (for each participant,
which requires the λ and a values for each participant). So even though
there were non-significant differences in a in the control and hot state
groups, the a values will have been different for each participant, and
we do not know whether group differences would have been sig-
nificantly different when comparing the fitted γ values across control
and hot conditions. The best we can do without the participant-level
data or parameter estimates is to compute γ at the group level. This
results in γhot = 0.998(1/0.68)= 0.997 and γcontrol= 0.610(1/
0.73)= 0.508, but these are just point estimates so we have no way to
verify if there are statistically significant differences between γhot and
γcontrol. This is also a highly dubious operation—as we will discuss in
more detail later in the paper, transforming (λ,a) to (γ,a) parameters for
group level summary statistics is invalid because a will vary across
participants. And so we are unfortunately left with uncertainty about
the effect of the hot state manipulations in this experiment on sub-
jective time perception.

Our intention is to point out that we simply cannot make claims
based on the comparison of quantities with different units. We do not
intend to cast doubt upon the role of subjective time perception in hot
state manipulations. Indeed, the basic claim seems reasonable given the
findings of a previous study (Zauberman, Kim, Malkoc, & Bettman,
2009) which modelled subjective time with the Weber-Fechner Law
(which bypasses these concerns) rather than Stevens' power law.

3. Implications for delay discounting

This units problem is not just restricted to Stevens' power law and
magnitude estimation. In the remainder of the paper we outline how
this problem filters through into the temporal discounting literature in
multiple ways. First we demonstrate that Rachlin's popular discount
function suffers from the units problem and we propose a fix. Second,

2 Hot state does not have a technical definition, but it refers to a joint phy-
siological and phenomenological state of affairs, often induced by sexual
arousal.

3 Technically this should be referred to as a monotonically increasing but
decelerating function.

B.T. Vincent and N. Stewart Cognition 198 (2020) 104203

2



we demonstrate that the popular hyperbolic discount function may also
suffer from this problem despite superficially escaping the incompatible
units problem.

Here, we illustrate these problems in the domain of inter-temporal
choice (also known as delay discounting). The core phenomena of in-
terest here is how agents make trade-offs between the magnitude of a
gain (or a loss) and the immediacy of that. For example, the present
subjective value of £100 now is greater than £100 in 40 years because
future rewards are discounted by some fraction. This could be driven by
many reasons including inflation expectations, risk of future rewards
not materialising, opportunity costs etc. But how exactly are decisions
made about outcomes which occur at different points in time? The
general utility-based approach to answering this is to propose that our
present subjective value V of a reward R at a given delay D is given by

=V R D u R f D( , ) ( ) ( ) (4)

where u(R) is a utility function relating objective rewards R to sub-
jective values, and f(D) is a discount function which modulates our
subjective values as a function of delay. In the discounting literature it
is common to assume a linear subjective value function, i.e. the identify
function u(R)= R in which case u(R) is in units of pounds, euros, dol-
lars, etc. The focus is instead upon the form of the discount function f
(D) which we will explore below.

There are a range of popular discount functions which do not suffer
from these unit comparison problems:

• Exponential discounting (Samuelson, 1937) where f(D)= exp
(−kD). D is in time units (e.g., days). Here k is in inverse time units
of this (e.g., days−1).
• Constant sensitivity function (Ebert, Prelec, & Prelec, 2007) where

=f D aD( ) exp ( ( ) )b . Here a is in inverse time units, and b is di-
mensionless.
• The Myerson and Green (1995) hyperboloid where f(D)= 1/
(1+ kD)s. Here k is in inverse time units and s is dimensionless.
• Double exponential (McClure, Ericson, Laibson, Loewenstein, &
Cohen, 2007) where = +f D k D k D( ) exp ( ) (1 )exp ( )1 2 (this
model might more accurately be called a ‘mixture of exponentials').
The mixture component ω is dimensionless and k1 and k2 are in
inverse time units.

Nevertheless even if a discount function's parameters does not suffer
from the incompatible units problem, when comparing parameter va-
lues (such as k) across participants, conditions, or studies, it is im-
portant to ensure that they are all in the same units. For example, if the
unit of time is days in one paper and years in another, then the raw
published k values cannot be compared because one will have units of
days−1 and the other will have units of years−1. It is only allowable to
compare k values in the same units, and so the k values need to be
scaled to the same units4. Because discount rates vary drastically across
species (half lives (1/k) range from seconds to years or decades;
Vanderveldt, Oliveira, & Green, 2016) this mistake could easily be
made in a meta-analysis, for example.

3.1. Implications for Rachlin's delay discounting function

Some discount functions suffer from a problem where fitted para-
meters are unknowingly in different units and therefore are not com-
parable. This problem affects two prominent discount functions. The
first is exponential discounting of subjective (i.e. Stevens' power law
scaled) time (Takahashi, Oono, & Radford, 2008)

=f D kD( ) exp ( )s (5)

and the second is the prominent Rachlin (2006) hyperboloid model5

equating to hyperbolic discounting of (Stevens' power law scaled)
subjective time,

= +f D kD( ) 1/(1 ).s (6)

We proceed to illustrate the issues with the Rachlin discount func-
tion given its frequent use in the discounting literature, but the issues
we highlight also affect Eq. (5) (see Appendix A).

s is a power — a unitless real number. This means that comparison
of fitted values or posterior distributions of s across participants or
studies is allowable under dimensional analysis, as s has the same units
(in this case, no units). Of course, there may be other issues around
parameter trade offs that make this comparison hard.

However a units problem does arise with the k parameter. f(D) is a
unitless fraction, which means the right hand side of Eq. (6) must also
be unitless. As the numerator 1 is unitless, the denominator 1+ kDs

must also be unitless. The (kDs) term must be unitless, because it is
added to 1, which has no units, and one can only add quantities with
the same units. Because D is in units of days (for example) then this
means that Ds is in units of dayss. This means that k must have units of
1/dayss to cancel with the units of Ds. Given that s will vary across
participants, then you cannot compare k across participants as they are
all in different units. For example, when s=1 then k has units of 1/
days but when =s 1

2 then k has units of =days 1/ days1
2 .

Based upon our proposed fix to Stevens' power law (Eq. (3)), we
propose the modified-Rachlin discounting function:

= +f D D( ) 1/(1 ( ) )s (7)

where and κs= k or κ= k1/s. Note that s is still a dimensionless quan-
tity, but κ is in units of days−1, which is appealingly independent of s.
Comparisons between s parameters and between κ parameters are al-
lowable in dimensional analysis; but, as we explain above, comparisons
of k parameters are not.

The modified-Rachlin function has a number of advantages. First
and most obviously, it now becomes legitimate to compare discounting
behaviours (using κ) across participants with different subjective time
perception (as specified by s). This is a significant advantage because
previous comparisons of k across participants or studies will in fact be
invalid because they are contaminated by varying values of s.

Second, the κ parameter is now conveniently always equal to the
inverse half life (the delay at which a reward is equal to half its ob-
jective value) regardless of the value of s. (See this by noting that the
delay Dhalf at which the value of the reward is halved can be substituted
into Eq. (7) to give = + D

1
2

1
1 ( )shalf

which means 2=1+ (κDhalf)s and
1= (κDhalf)s and 11/s= κDhalf and thus 1= κDhalf.) This was an ap-
pealing property of the discount rate in the hyperbolic discount func-
tion (Mazur, 1987), but which was lost in the original Rachlin function.

Third, parameter estimation of (κ,s) will be improved and more robust.
The top panel in Fig. 1 shows some simulated data from a delay dis-
counting experiment. The bottom panels show likelihood surfaces for the
parameters of the Rachlin and modified-Rachlin discount functions for a
single simulated experiment. There is a very clear parameter trade-off
which occurs with Rachlin's discount function, as seen by the negatively
sloped ridge in the likelihood surface (Fig. 1 bottom left). These parameter

4 For example, to convert k in units of years−1 to units of days−1, we multiply
by 1/365.

5We illustrate how Rachlin's discount function is derived from hyperbolic
discounting of subjective time perception according to Stevens' power law. First
we start with hyperbolic discounting of subjective delay, f(D)= 1/(1+ kψ(D)),
where ψ(D) is subjective time delay. If we substitute in Eq. (1) we obtain f
(D)= 1/(1+ k′λDs). We see that Rachlin's k (Eq. (6)) is the product of actual
discount rates k′ and the subjective time scaling parameter, k= k′λ. To be clear,
the k parameter in the Rachlin model conflates the discount rate (k′) and a
subjective time scaling parameter (λ) and it is not possible to identify their
values from discounting data alone. Instead, this would require both inter-
temporal choice experiments and subjective time perception measures for each
participant.
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trade-offs are often present but hard to detect using methods which esti-
mate only point estimate parameters (e.g. Gilroy, Franck, & Hantula,
2017), only those which estimate the full likelihood or posterior surface
over parameter space (such as Vincent, 2016). However, parameter cor-
relations across participants have been noted in modelling work (such as
Peters, Miedl, & Büchel, 2012). This disappears in the likelihood surface of
the modified Rachlin function (Fig. 1 bottom right). This is especially
appealing in the context of Bayesian parameter estimation—the highly
anti-correlated structure of the likelihood surface in Fig. 1 (bottom left)
could pose challenges for some sampling algorithms to accurately estimate
the true posterior distribution (see Stewart et al., 2019).

Fourth, a direct consequence of this ridge in the likelihood surface is
that errors in estimating the maximum likelihood estimates of true (k,s)
parameters will contain undesirable correlational structure. Fig. 2 (top)
shows the distribution of maximum likelihood estimates from a para-
meter recovery simulation—200 simulated experiments were run with
stochastic choices and maximum likelihood estimation of an observer
with fixed parameters. While the 200 observers were identical, with the
same fixed (k,s), scatter of the estimates away from the true (k,s)
crosshairs is caused by the stochasticity of the binary responses to the
inter-temporal choices. The result is that errors in the maximum like-
lihood parameters are undesirably correlated. Fig. 2b shows that the
modified-Rachlin function fixes this problem, we no longer have this
parameter trade-off in the maximum likelihood estimates.

We propose that existing research with (k,s) estimated from the
Rachlin function can, and should, be transformed to our modified
parameters (κ,s) so that comparison between participants and studies
become valid and relevant. This transformation is a valid approach—we
found that a maximum likelihood procedure to estimate (k,s) are ac-
curate, and map on precisely (after the κ = k1/s transformation) to
parameter estimates of (κ,s) directly (see Fig. 2c, d). The correlation
coefficient between s estimated from the Rachlin and modified Rachlin

function was virtually equal to 1, within 5-6 decimal places. This was
also the case for the correlation coefficient between κ (transformed from
the k recovered from the Rachlin function) and the κ recovered from the
modified Rachlin function. This is good news—assuming rigorous
maximum likelihood estimation procedures were followed, we do not
believe that estimation with the Rachlin function would introduce
systematic errors in the actual parameters estimated, just that the k
parameter is contaminated as described above. If there is doubt how-
ever about the accuracy of past maximum likelihood procedures, the
most prudent approach would be to estimate (κ,s) directly from the
archived raw intertemporal choice data.

To probe this mapping between (k,s) and (κ,s) further, we repeated
the parameter recovery approach (from Fig. 2) but extended this for
multiple true parameter values in Fig. 3. Fig. 3 shows true parameter
values chosen from a grid over (κ,s) space, along with recovered para-
meter values using maximum likelihood estimation. The results are in
line with the intuition from Fig. 2, that there is a 1-to-1 mapping be-
tween (k,s) and (κ,s) parameter spaces. That is, it should be possible to
accurately map to (κ,s) directly from existing estimates of (k,s) obtained
from Rachlin's function. There are two concerns which remain however.

The first concern is that when past results are re-examined and k,s is
transformed into κ,s, this may well merit reinterpretation of existing
findings in the literature. For example, differences between k between
groups or conditions could have been interpreted (wrongly) as relevant
differences in discount rates between participants, groups, or condi-
tions. But because k is contaminated by s, these differences could have
been caused by changes in subjective time perception. This is clear to
see in Fig. 3a–c. As stated, κ is unrelated to s and corresponds to the
inverse half life6. It is clear from Fig. 3b, that increases in k could either

Fig. 1. Simulated inter-temporal choice data (top)
and corresponding likelihood surfaces for the
Rachlin model (bottom left; Eq. (6)) and modified
Rachlin model (bottom right; Eq. (7)). The true data
generating parameters were (k=exp(−3),s=0.7),
and the simulated response data were generated
using the adaptive procedure described by Frye,
Galizio, Friedel, DeHart, and Odum (2016) (see
Appendix B for simulation details). Points above the
indifference curve correspond to those inter-tem-
poral choices where immediate rewards have greater
present subjective value, and vice versa. The x-axis is
equal to the immediate reward value divided by the
delayed reward value. The code to generate this
figure is available at https://osf.io/uscmd/.

6 Although κ is still the product of both a discounting process and the constant
term in Stevens' power law.
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be caused by an increase in k while s remains constant, or by k re-
maining constant, and a decrease in s. This should hopefully underscore
the importance of revisiting published studies which make theoretical
claims about discounting behaviour on the basis of changes in k ob-
tained from Rachlin's hyperboloid function.

Our second concern is that conversion of existing parameter esti-
mates of (k,s) from the Rachlin discount function to our proposed (κ,s)
parameterisation should be done with care. As we eluded to in the case
study above, this conversion is only valid when conducted on partici-
pant level parameters, not on group mean or median parameter values.
To get a sense of why this is the case, we can see from Fig. 3b that group
mean or median values of k will be disproportionately influenced by
participants with high s values. This is shown further in the histograms
Fig. 3d–e. For example, consider a number of participants with the same
discounting behaviour (same values of κ) but with different subjective
time perception (different values of s). If we fit with the modified-Ra-
chlin function, then our group level estimate of average κ will be ac-
curate and independent of the varying s values. However, if we fit the
same set of participants (i.e. a column of points) with the Rachlin
function then our group level estimate of k will be undesirably influ-
enced by the variation of s. To summarise, researchers wishing to
convert (k,s) parameters into our proposed superior (κ,s) parameter
space must do so on a participant level, not on a group mean or median
level.

3.2. How this can lead to incorrect psychological theorising

To what extent is the muddled units issue a problem for psycholo-
gical theorising? In order to assess this, we conducted a number of si-
mulated experiments where we use Bayesian t-tests to infer the effect
size of group differences in discount rates based upon either k from the

original Rachlin discount function or κ from the modified Rachlin dis-
count function.

A first example demonstrates how we may make Type 1 errors.
Imagine a within participant experiment where an experiment condi-
tion is hypothesised to affect the discount rate κ, relative to a control
group. However in this example the experimental manipulation has no
effect on discount rates, only upon the s parameter. The results of si-
mulations in Fig. 4 demonstrate that if we analysed parameter fits to the
original Rachlin discount function, then we could incorrectly infer
group level differences in discounting and therefore wrongly conclude
that the experimental manipulation affected discounting processes
when they did not. Conversely, if we analysed data based upon the
modified Rachlin discount function, then we would correctly conclude
that the experimental manipulation did not result in any systematic
group difference in discounting behaviour.

A second examples demonstrates how it is also possible to make
Type 2 errors. Now imagine an experimental situation where we make
inferences about differences about discount rates in two groups who do
actually differ in terms of their discount rate κ. Imagine further that
participant within each group have some variation in their actual s
values (shown as σs in Fig. 5). We can see that analyses based on the
original Rachlin discount function can potentially drastically under-
estimate (or miss entirely) the presence of a group level effect in dis-
count rates when participants vary in their s parameters. This problem
gets worse as the variability in s increases. In contrast, if we conduct our
analyses based upon the modified Rachlin discount function, then our
inferred effect sizes accurately track the true effect size.

While real world examples are unlikely to be as clear cut as the
examples we have explored, we have outlined how our research con-
clusions and thus psychological theorising, may be led astray by either
Type 1 or Type 2 errors when our parameters suffer from the muddled

Fig. 2. Robustness of ML estimation to
stochastic response data. A set of 200 ex-
periments (akin to that shown in Fig. 1)
were conducted on a simulated participant
with fixed true parameter values (shown by
crosshairs; k=exp(−3), s=0.7, thus
κ=exp(−3)1/0.7) and stochastic responses.
Maximum likelihood estimation was used
to estimate parameters for the Rachlin
(panel a) and modified Rachlin (panel b)
functions. Points represent the maximum
likelihood parameters for each simulated
dataset. The parameter estimation proce-
dure was found to be robust—conducting
MLE on data using the Rachlin or the
modified Rachlin functions will result in
identical maximum likelihood estimates,
see main text for details. This was demon-
strated by near perfect correlations between
s from both equations (panel c) being al-
most exactly 1, and likewise for k trans-
formed to κ, and κ (panel d). The data on
the x and y axes of panel c are the same as
the x axis of panel a and x axis of panel b,
respectively. The data on the x and y-axes
of panel d are the same as the x axis of
panel b and a, respectively. See Appendix B
for simulation details. The code to generate
this figure is available at https://osf.io/
uscmd/.
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units problem. Conversely, we have shown that our proposed fix, the
modified Rachlin discount function, avoids these problems and gives
rise to more correct inferences about effect sizes.

3.3. Concerns extend to hyperbolic discounting

We have outlined how the incompatible units problem effects
Rachlin's discount function, and outlined examples of how this may
lead to erroneous psychological theorising. One way to deal with this
problem is given by our modified Rachlin's discount function (Eq. (7)).
Another possible approach would be to omit the s parameter altogether,
leaving us with the classic hyperbolic7 discount function (Mazur, 1987)

= +f D kD( ) 1/(1 ). (8)

Superficially, this function does not suffer from the incompatible units
problem—k is simply in units of days−1 (or 1/k is measured in days) and
we can compare k values across participants. Or can we?

This depends on how we interpret hyperbolic discounting. The first
and strongest position could be that humans and other agents have

direct access to objective time and have perfect prospective time per-
ception. If we believe this then we can entirely ignore the issue of
subjective time perception and proceed with analysing data using the
hyperbolic discount function unencumbered. While this approach may
be valid for ideal observers or abstract modelling, it could be proble-
matic under the currently dominant approach of indirect perception in
experimental psychology (Helmholtz, 1856; Gregory, 1980). The
second strategy could accept the notion of indirect perception and that
agents may only have access to subjective time, but simply assume that
observer's time perception is veridical. This stance would also allow
researchers to proceed with hyperbolic discounting of objective time
unencumbered, however the assumption of accurate and veridical time
perception is a strong one which would greatly benefit from empirical
justification. The third interpretation is that we take the indirect per-
ception approach but simply ignore the role of subjective time per-
ception by omitting s, or equivalently fixing s=1, and proceeding with
the hyperbolic discount function. While this is least philosophically
problematic, and resolves the incompatible units problem, it does mean
we are left with a model misspecification problem.

We suspect that most experimental psychologists would fall under
the third camp, and therefore our concern is that we may not be able to
draw relevant conclusions about discounting from changes in discount
rates k from the hyperbolic discount function. This would again mean

Fig. 3. Comparing the Rachlin (k,s) and our modified Rachlin
(κ,s) parameter spaces. Panel (a) shows a series of discount
functions with parameter values uniformly spaced in mod-
ified-Rachlin parameter space (κ,s) (black points in (c)).
Different colours represent different true κ values, and sa-
turation represents different s values. Corresponding true
parameter values in the Rachlin (k,s) space are shown in
panel (b) – comparing panels (b) and (c) shows the nature of
the mapping between (k,s) and (κ,s). Coloured points in (b) &
(c) correspond to inferred parameter values based on simu-
lated experiments. We can see that the inferred parameters
are centred on the true parameter values (black points). The
change in estimation precision over the parameter space is
caused by the ability of the simulated adaptive delay dis-
counting procedure to constrain the plausible parameter va-
lues. Panels (d) and (e) show histograms of inferred k and κ
values respectively for simulated participants with fixed true
κ values. We can see that the inferred κ values are in-
dependent of s, but the inferred k values are contaminated by
s, and so group level inferences about k will be skewed by
participants with varying s values. See Appendix B for simu-
lation details. The code to generate this figure is available at
https://osf.io/uscmd/. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web
version of this article.)

7 Eq. (8) is not actually a hyperbolic function, but we will stick with this
convention as it has been adopted wholesale in the discounting literature. We
refer the reader to (Rasmusen, 2008) for further insights on this point.
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that comparisons of discount rates k between participants or conditions
or groups would again be invalid. This may have broad consequences
which could require revisiting previous results.

The problem revolves around the fact that the Mazur (1987) hy-
perbolic discount function is a special case of the Rachlin discount
function8 when the exponent s equals 1. So if it actually is the case that
people hyperbolically discount subjective time (s≠1) rather than ob-
jective time (when s=1), then analyses based upon the hyperbolic
discount function will suffer from a model misspecification problem,
where the parameters of a misspecified model are systematically biased.
Expecting that papers all contain accurate and comparable estimates of
k just because the unit of k does not contain s is not a good solution. If s
differs across participants but is left out of our model, all of our k values
will be differently systematically biased, and thus not comparable. This
model misspecification problem is a different problem to the units
problem—by choosing a model specification that avoids the units
problem one has run into the model misspecification problem instead.

We propose that this is a real problem. Claims about discounting be-
haviour (i.e. choices made in inter-temporal choice tasks) previously at-
tributed to changes in discount rates, but may have been partly down to
changes in subjective time perception. For example, one of the most highly
cited empirical works on delay discounting shows that discounting is
higher in current smokers than ex-smokers, than never smokers (Bickel,
Odum, & Madden, 1999). However we also have empirical support for

atypical time perception in addictive disorders (stimulant-dependent par-
ticipants over-estimate time), with the explicit suggestion that this may
influence broad lack of impulse control (Wittmann, Leland, Churan, &
Paulus, 2007). On the other end of the spectrum, patients with anorexia
nervosa display some of the lowest observed discounting behaviour
(Steinglass et al., 2012; Decker, Figner, & Steinglass, 2015; Bartholdy
et al., 2017) also under-estimate time (Vicario & Felmingham, 2018). So to
what extent is this discounting behaviour caused by changes in discount
rates versus subjective time perception? We therefore mirror the call of
Kim and Zauberman (2018) that research needs to disentangle the relative
contributions of subjective time perception and discount rates. Until we
have a clearer understanding here, it may be premature to claim that
changes in discounting behaviour is straightforwardly attributable to
changes in discount rates alone.

In order to estimate the extent of the problem, we conducted further
simulations. Fig. 6 shows the degree of bias in the hyperbolic discount rate
k parameter as a function of true (κ,s) parameters from the modified Ra-
chlin function. The degree of bias is shown using the estimated k, nor-
malised by the true κ value. For simulated observers who have linear time
perception (s=1; equal to hyperbolic discounting) we can recover dis-
count rates with no systematic bias. Worryingly, we find systematic biases
in the estimates of k for observers who do discount subjective time (s≠1).
We see systematic underestimates of k for accelerating time perception
(s>1) and systematic overestimates of k for decelerating time perception
(s<1). These biases are not subtle—for example, a normalised estimate of
+2 means kestimate is twice the true κ value, and a normalised estimate of
-0.5 means kestimate is half of the true κ value. These simulations suggest

Fig. 4. The muddled units problem can give rise to Type 1 errors, incorrectly detecting the presence of an effect which is not there. We repeatedly simulated two
groups of participants (top) with a group mean difference in slog( ) of slog( ) (see top right) and no differences in discounting behaviour in terms of log( ). We then
used Bayesian methods to infer the true effect size (difference in discounting behaviour), based on either the original (top left) or the modified Rachlin para-
meterisation (top right). We varied slog( ) and plot the corresponding posterior mean and 95% credible intervals (points and error bars, bottom). Analysis based on
the original Rachlin is prone to Type 1 errors, incorrectly inferring the presence of an effect (differences in discount rates) when there is no such effect. The analysis
based on the modified Rachlin discount function correctly infers the lack of an effect. The code to generate this figure is available at https://osf.io/uscmd/.

8 And of the Myerson and Green (1995) hyperboloid: f(D)= 1/(1+ kD)s
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that if we accept that subjective time perception influences preferences in
inter-temporal choice tasks, and that participant's subjective time per-
ception is uncontrolled for, then claims of changes in discount rates could
be conflated with subjective time perception.

One line of evidence suggests that this may be a real problem for
conclusions based on hyperbolic discount rates alone. When discount
functions are pitted against each other to explain inter-temporal choice
behaviour, 2–parameter hyperboloid models (including the Rachlin hy-
perboloid) fit behavioural data better than the hyperbolic model
(McKerchar et al., 2009). That study only assessed goodness of model fit
however and did not assess either fit to out-of-sample data (e.g. as in cross
validation) or compare model metrics which add a penalty for the addi-
tional parameter. Franck, Koffarnus, House, and Bickel (2015) did how-
ever report BIC (Bayesian Information Criterion; which penalises models
with more parameters) scores for fits to individuals. They report the
proportion of participants for which a range of models were the most
probable to have generated the data as: Rachlin (34.3%), Myerson and
Green (27.0%), hyperbolic (18.0%), Laibson (10.8%), exponential (8.1%),
and a control model (1.8%). Given the hyperbolic discount function was
the most probable model for only 18.0% of participants, this is not strong
support for linear subjective time perception. This suggests that in many
cases s≠1 and so estimates of k from the hyperbolic discount function will
be contaminated by subjective time perception and not solely reflect dis-
counting processes. If we believe s=1 based upon empirical evidence,
model comparison, or a priori beliefs, then there is no problem. Otherwise
however, this potentially poses a problem for some established findings in
the discounting literature based upon participant, group, or condition
differences in k values from the hyperbolic discount function.

A second line of evidence can be drawn from the Kim and
Zauberman (2013) and Zauberman et al. (2009) studies we have al-
ready seen. Taken together these studies provide compelling evidence
that subjective time perception is decelerating, and varies across par-
ticipants and/or experimental conditions. We propose that this may be
a serious issue—previous results claiming that inter-temporal choice is
affected by discounting may need to be revisited in order to assess the
confound of subjective time perception.

3.4. Plotting and reporting log parameter values

Before we conclude, we add a note on plotting or reporting trans-
formed parameter values. Researchers often report, or plot, the loga-
rithm of the k parameter from the hyperbolic discounting model, klog( ).
But what is klog( )? Following dimensional analysis leads us to the an-
swer. Recall that k is the inverse half life in the hyperbolic discounting
model. That is, k is the inverse of the number of days it takes for the
present value to be half that of the delayed outcome: If it takes 10 days
for the value to drop by half, then k=1/10 per day. Dimensional
analysis requires that the number to which a logarithm is applied is
unitless. For this reason, a standard reference level is required. The
level can be set at any value (e.g., kreference= 1 per day or
kreference= 3.141592654 per day, or any value). However if researchers
just take the logarithm of the numerical value of k without regard to the
units, they have effectively selected a reference value of 1 unit. In this
example for k, that would be a reference level of kreference= 1 per day.

For example, say k=2per day and suppose the experimenter is
using logarithms to the base 10. log10(2)= 0.30103. But this number

Fig. 5. The muddled units problem can also give rise to Type 2 errors. We simulated 2 groups of participants (top) who varied in their true difference in discount rates
( klog( )) and variability of the s parameter, σs. We consider 3 levels of σs (bottom panels) and vary the true effect size via klog( ). We plot the posterior mean and
95% credible intervals of the effect size using Bayesian methods for both the original and modified Rachlin parameterisation (bottom). Analyses based upon the κ
from the modified Rachlin discount function result in accurate inferred effect sizes. The same inferences based upon k from the original Rachlin discount function can
miss the presence of group differences in discount rates when there is variation in the s values of participants. The code to generate this figure is available at https://
osf.io/uscmd/.
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0.30103, which is “log10(k)”, really should be written as
=( )log 0.3010310

2 per day
1 per day . This means that k=2 per day is 100.30103= 2

times larger than the reference level of k=1 per day. And with natural
logarithms =( )log 0.6931472e

2 per day
1 per day . This means that k=2 per day is

e0.6931472= 2 times larger than the reference level of k=1 per day.
Changing the reference level alters klog( ) by an additive constant. So if

only differences in klog( ) are of concern then the reference level cancels.
However, if the absolute value of k is to be used, then the reference level
(and the base of the logarithm) should be reported—although klog( ) has
no units, it should be understood as a logarithm of the number of times
larger k is than some reference level k.9

4. Conclusions

The importance of the units of psychological parameters in per-
ceptual and cognitive models has sometimes been underappreciated.
This has led to the muddled units problem where researchers illegally
compare parameter values with different units. Further, this causes
parameters to become polluted by other parameters, which changes
their meaning and interpretation, potentially invalidating research
conclusions.

We have illustrated the problem with Stevens' power law and pro-
posed a simple-to-implement re-parameterisation which can (a) allow
past research to be reevaluated, and (b) avoid the parameter in-
compatibility problem in the future. We have also shown how the
problem affects the study of subjective time perception and temporal
discounting. Using simulations, we demonstrated this using the Rachlin
temporal discounting function, and show how the units of the temporal
discounting parameter are contaminated by the units of the subjective
time perception parameter, and show how our re-parameterisation
avoids this problem.

More subtle, but still deeply problematic, is that in reformulating
models to make them dimensionally sound can swap the units problem
for the misspecified model problem. Switching to a dimensionally

Fig. 6. Estimation biases of k from the hyperbolic discount function, based upon inter-temporal choice data for simulated observers who discount according to the
modified-Rachlin function. Each point represents a simulated observer with a true κ corresponding to the x-axis position and true s value as shown by the colour (see
legend). The y-axis shows normalised error kestimated/κtrue such that a value of 1 means no error. We see no systematic bias when observers discount linear time, s=1.
But we see systematic underestimates of k for accelerating time perception (s>1) and systematic overestimates of k for decelerating time perception (s<1). The
code to generate this figure is available at https://osf.io/uscmd/. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

9 Perhaps the most prominent example of this is the reporting of sound levels
on the decibel scale. For example the ear-drum-rupturing 150 dB level of a jet at
takeoff at a distance of 25m, often reported as “150 dB” is really “150 dB SPL”
or “150 dB sound pressure level”. Sound pressure level = ( )L 20 logp

p
p10 0

, where
p is the sound pressure level of the jet measured in any unit of pressure and p0 is
the reference level, measured in the same unit. p0 is typically set at 20 μPa or
20micro Pascals (which Wikipedia says is the loudness of a mosquito flying 3m
away). This means that the “150” means the jet at 25m is 10150/20= 31, 622,
777 times louder than a mosquito at 3m.
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sound model that is not the ‘true’ data generating process to avoid the
units issue, leads to parameters of the misspecified model being sys-
tematically biased. This was illustrated with the hyperbolic discount
function, which is used very often in the delay discounting literature.
We do not claim that our modified Rachlin function is the true data
generating model but it does satisfactorily resolve the units problem
that we have identified.

If one wished to keep the interpretation of Rachlin's discount
function as hyperbolic discounting of Stevens' power law scaled sub-
jective time, then there are other alternative approaches. One would be
to conduct time perception experiments in addition to inter-temporal
choice experiments, such that the s parameter (and ideally also λ) are
known for each participant. This would allow the k to equate to dis-
counting of subjective time. A related approach could be to run mod-
ified inter-temporal choice tasks (with no time perception tasks) where
participants are presented with rewards at subjective time delays.

We end with a series of important, but potentially alarming, re-
commendations in relation to cognitive modelling. First, researchers
should routinely report the units of their psychological parameters. This
will help reduce the possibility of erroneous comparison of parameter
estimates in different units. Ideally this reporting will apply to both axis
labels of plots in parameter space as well as reporting of parameter
values in tables or the main text. For example, reporting that k=0.5 is
not sufficient; reporting k=0.5days−1 or k=0.5 per day is preferred.
It is also typical to report log transformed k values ( kln( )). While log
transformed values have no units, they do have a (possibly implicit)
reference which does have units and its units should be reported. The
same goes for κ or ln( ) in our modified Rachlin discount function.

Our second recommendation is that cognitive modellers might
routinely consider the units of their models during model formulation,
in order to avoid the incompatible units problem. For example, in the
Introduction, we show that Stevens' Law is not dimensionally correct,
but that Fechner's Law is.

Our third recommendation is for the readers of the existing litera-
ture. When interpreting existing models, and especially their para-
meterisation and parameter estimation, readers should have in mind

the units of the parameters. If there is a problem, then a solution in-
volving re-parameterisation needs to be found and this may necessitate
revisiting the theoretical claims made. For example, in conducting a
meta-analysis of loss aversion, Walasek, Mullett, and Stewart (2018)
had to obtain the raw choice-level data and re-estimate prospect the-
ory's loss aversion parameter for each participant. For any non-linear
re-parameterisation, transforming group level average parameter va-
lues will not be sufficient.

We also have recommendations relating to delay discounting and
subjective time perception. Our fourth suggestion is that exponential
discounting of power-scaled subjective time (Takahashi et al., 2008)
should be disfavoured and treated with caution. Instead, focus should
be placed on the constant sensitivity function (Ebert et al., 2007, see
Appendix A), or on exponential discounting of Weber-Fechner time
perception (which is equivalent to the Myerson (2004) hyperboloid
(Takahashi et al., 2008)). And finally, fifth, we suggest that researchers
should switch to using our modified Rachlin discount function from this
point onwards. Published research findings based upon participant,
group, or condition differences in the contaminated discount rate
parameter (k) from Rachlin's discount function may need to be re-ex-
amined (Mazur, 2007; Jones & Rachlin, 2009; Myerson, Green, &
Morris, 2011; Peters et al., 2012; Kralik & Sampson, 2012; Schneider,
Peters, Peth, & Büchel, 2014).
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Appendix A. Fix for exponential discounting of power scaled time

For the sake of completeness, our proposed fix to the exponential discounting of (Stevens' power law scaled) subjective time (Takahashi et al.,
2008) would be

=f D D( ) exp ( ( ) )s (A1)

where κ and s are parameters. Our proposed fix is in fact equivalent to the constant sensitivity function of Ebert et al. (2007).

Appendix B. Simulation methods

The code to generate the figures is available at https://osf.io/uscmd/. We used the Python programming language, version 3.6 (Python Software
Foundation, https://www.python.org/).

B.1. Experimental design

Our simulated inter-temporal choice tasks used the heuristic adaptive experimental design procedure described by Frye et al. (2016) to select
pairs of immediate and delayed prospects. Each experimental trial consisted of an immediate prospect PA=(RA,DA) and a delayed prospect
PB=(RB,DB), each of which consists of a reward R and a delay D. Prospect A was always immediate, so PA was always equal to 0. We defined 8 valid
delay levels, DB could take on values of 1, 2, 7, 14, 30, 30× 3, 365, 365×5 days, and we used 8 trials per delay level. This resulted in each
simulated experiment consisting of 64 trials. In summary, the choice presented to the simulated participant was between PA and PB). Responses were
generated as a biased coin flip (Bernoulli trial), see below.

B.2. Likelihood methods

We used maximum likelihood estimation methods for parameter estimation. We either evaluate the likelihood over a grid of possible parameter
values (grid approximation), or we use a maximisation procedure to maximise the probability of the data given the parameters. Practically, we
minimised the negative log likelihood of the data being generated by a given set of parameters θ

= =NLL Plog( (data | )).t
T

t1 (B1)
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The likelihood of the data on a trial for given parameters was modelled as a biased coin flip, i.e. a Bernoulli trial,

= =P P R P P(data | ) Bernoulli ( ( 1| , , ))t t t
A

t
B (B2)

where =P R P P( 1| , , )t t
A B is the probability of choosing Pt

B (coded as Rt=1).
We defined the data as

= P P Rdata ( , , )t t
A

t
B

t (B3)

where PA and PB are prospects (see above) and Rt is the response on trial t of T trials in total.
We defined the response probability as

= = +P R P P V P V P( 1| , , ) (1 2 ) ( ) ( ) .t t
A B t

B
t
A

(B4)

where Φ is the standard cumulative normal distribution which forms a psychometric function mapping the difference between present subjective
values of the rewards to a response probability. We set a fixed value of α=4, which is the slope of this psychometric function and can be thought of
as a ‘comparison acuity’ parameter—lower values mean greater response accuracy for prospects with similar present subjective values (see Vincent,
2016, for details). The first term deals with response errors, where ϵ was fixed at 0.01. The function V (P) converts a prospect (consisting of a reward
and its delay) into a present subjective value (see Eq. (4)). We assume a linear value function, u(R)= R as is common in the discounting literature.
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