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Abstract We report simulation experiments estimating the uncertainties in California regional fossil fuel
and biosphere CO2 exchanges that might be obtained by using an atmospheric inverse modeling system
driven by the combination of ground-based observations of radiocarbon and total CO2, together with
column-mean CO2 observations from NASA’s Orbiting Carbon Observatory (OCO-2). The work includes an
initial examination of statistical uncertainties in prior models for CO2 exchange, in radiocarbon-based
fossil fuel CO2 measurements, in OCO-2 measurements, and in a regional atmospheric transport modeling
system. Using these nominal assumptions for measurement and model uncertainties, we find that flask
measurements of radiocarbon and total CO2 at 10 towers can be used to distinguish between different fossil
fuel emission data products for major urban regions of California. We then show that the combination of flask
and OCO-2 observations yields posterior uncertainties in monthly-mean fossil fuel emissions of ~5–10%,
levels likely useful for policy relevant evaluation of bottom-up fossil fuel emission estimates. Similarly, we find
that inversions yield uncertainties in monthly biosphere CO2 exchange of ~6%–12%, depending on season,
providing useful information on net carbon uptake in California’s forests and agricultural lands. Finally, initial
sensitivity analysis suggests that obtaining the above results requires control of systematic biases below
approximately 0.5 ppm, placing requirements on accuracy of the atmospheric measurements, background
subtraction, and atmospheric transport modeling.

1. Introduction

California is the most populous state in the U.S. and presently emits approximately 100 TgC yr�1 of CO2 from
fossil fuel use [California Air Resources Board (CARB), 2015], roughly 1% of the global total emissions [Boden
et al., 2016]. In 2006, California’s “Global Warming Solutions Act” (AB-32) set a goal of reducing greenhouse
gas emissions 15% by 2020, compared to business-as-usual growth in emissions; further reductions of 40%
are planned for 2030, and 80% by 2050. Estimates of fossil fuel CO2 (ffCO2) emissions commonly use
“bottom-up” calculations that integrate activity data, such as fuel consumption, with emission factors that
describe howmuch ffCO2 is emitted per unit of activity. Bottom-up estimates of ffCO2 emissions are reported
to have small uncertainties of ±5% (1σ) at the global level [Le Quéré et al., 2015], but they can be subject to
biases from missing sources or errors in emission factors, and uncertainties can become much larger on
subnational scales [Asefi-Najafabady et al., 2014; Hogue et al., 2016].

Inversions of atmospheric data including fossil fuel tracers such as radiocarbon could provide independent
estimates for regional emissions of fossil fuel-derived CO2 in California. Fossil fuel-derived CO2 can be distin-
guished with observations of radiocarbon (14C) in CO2 because fossil fuels have lost all 14C to radioactive
decay [Levin et al., 2003]. Other tracers of fossil fuel-derived CO2 include carbon monoxide (CO), nitrogen
oxides (e.g., NO2) [Konovalov et al., 2016], or synthetic gases such as sulfur hexafluoride [Turnbull et al.,
2006]. Atmospheric data have been used previously to provide independent short-term estimates for
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emissions of ffCO2 from different regions of California. For example, Turnbull et al. [2011] analyzed radiocar-
bon flask data collected as part of an aircraft mass balance study in February 2009 that found fossil fuel CO2

emissions from Sacramento county were approximately consistent with the Vulcan bottom-up emission data
product for 2002 [Gurney et al., 2009] (mean difference relative to Vulcan: �17%, range: �43% to +133%). As
part of the California Research at the Nexus of Air Quality and Climate Change study in May–June 2010, an
analysis of continuous in situ CO2 and CO collected in Pasadena, California found that ffCO2 was consistent
(�3%±14%) with signals computed by using the Vulcan model [Newman et al., 2013], while a separate
tracer-ratio inversion of aircraft total CO2 and CO observations from six daytime flights estimated fossil fuel
CO2 emissions that were somewhat higher (15–38%) than Vulcan [Brioude et al., 2013].

Atmospheric data may also provide valuable constraints on state and regional carbon exchange by terrestrial
ecosystems in California. Net biosphere fluxes are the result of differences between large gross uptake and
respiration fluxes, each of which depends on a combination of vegetation cover, seasonally varying climate,
and often to a large degree, land management. While California forests were recently estimated to sequester
~13 Tg C yr�1 [CARB, 2015], the net uptake is uncertain and may be highly variable from year to year. For
example, California’s ecosystems are estimated to switch to a net source in dry years [Potter, 2010]. In
addition, agriculture in California may not be carbon neutral [Wolf et al., 2015] and changes in agricultural
practices have the potential to sequester carbon in agricultural systems.

Here we explore the potential for a prototype data collection and data analysis system to estimate regional
and state-total fossil and biosphere CO2 (bioCO2) exchanges in California by using simulation experiments.
The simulated atmospheric observations include remotely sensed column-averaged CO2 dry air mole fraction
(denoted as XCO2) from NASA’s Orbiting Carbon Observatory Satellite (OCO-2) [Crisp et al., 2017] and tower-
based observations of CO2 concentrations, in conjunction with radiocarbon in CO2, which enables separation
of fossil fuel and biospheric influences from CO2 in flask samples. The use of both satellite and tower plat-
forms combines the spatial coverage of OCO-2 with the additional tracer data provided by the ground-based
network. Recently, Basu et al. [2016] performed a similar simulation experiment to determine regional and
U.S. total ffCO2 and bioCO2 exchanges by using the CarbonTracker inversion system with radiocarbon sam-
ples from tower sites spread across the continental United States. They found that regional ffCO2 emissions
could generally be estimated to within ±5% with a high-density tower network and that regional uncertainty
in estimated biosphere exchanges was reduced with the use of radiocarbon data. In comparison to Basu et al.,
we focus on the smaller domain of California by using a mesoscale atmospheric transport model and include
column CO2 data. At urban scales, simulation experiments have also investigated the degree to which CO2

emissions could be estimated for subsectors of fossil fuel use by using networks of tower-based CO2 sensors
[Kort et al., 2013; Wu et al., 2016].

In section 2 we describe an observing system simulation experiment that simulates ffCO2 and bioCO2 signals
for a planned deployment of air samplers at 10 existing tower sites in combination with OCO-2 XCO2 retrievals
over California. We then describe a regionally specific inversion framework used to solve for expected poster-
ior uncertainties in fossil fuel and biosphere exchanges for 2months: November 2010 and May 2011. In the
results we report the simulated fossil and biosphere CO2 signals for the tower sites and OCO-2, the uncertain-
ties in posterior ffCO2 and bioCO2 exchanges by region and in total by using (a) OCO-2 data alone, (b) flask
data alone, or (c) the combination of OCO-2 and flasks together. We then conduct initial sensitivity analyses
of three varieties. First we vary the assumptions for random uncertainties in prior emissions and the model-
measurement comparison. Next, we explore biases introduced in posterior statewide fossil fuel CO2 emissions
when regional inversion scheme is suppliedwith spatially “incorrect” prior emissionmodels (i.e., differing from
the emissionmodel used to calculate simulated observations). Last, we also explore the sensitivity of posterior
estimates of statewide CO2 exchange to examples of potential observational and transport model biases.

2. Methods

As described above, this work explores the application of flask measurements of CO2 and radiocarbon in CO2

and remote sensing of total CO2 to quantify California’s regional CO2 exchanges at regional and statewide
scales. The analysis approach applies a Bayesian inversion developed for previous work to estimate methane
emissions that combine atmospheric observations, atmospheric transport modeling, prior flux models, and
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uncertainty specification [Jeong
et al., 2013]. As in the previous
work, the inversion multiplicatively
scales prior emission estimates in
16 regions (see Figure 1) that are
slightly modified from the 15 “air
basins” classified by the California
Air Resources Board for air quality
control (https://www.arb.ca.gov/
desig/adm/basincnty.htm), subdi-
viding the San Joaquin Valley into
northern (region 8) and southern
(region 16) subregions.

2.1. Observation Network
2.1.1. Tower Network for ffCO2

and BioCO2

The prototype observation system
we investigate here is based on a
similar network used for a 2month
ground-based measurement cam-
paign at 10 existing air sampling
sites located in major urban
and selected rural areas across
California (Figure 1 and Table 1).
Here we assumed that flask sam-
ples would be collected every

2 days at 2200 UT (1400 PST) at each site over two example months when net biosphere exchange of CO2

is expected to be positive (November 2010) and negative (May 2011). While we do not include continuous
measurements of total CO2 or combustion tracers (e.g., CO or NO2) in this analysis, we note that the addition
of continuous data has the potential to improve the estimates of CO2 exchange and might reasonably be
included in a future study.

The amount of CO2 added by fossil fuel emissions (ffCO2) and the amount of CO2 added or removed by
biospheric exchange (bioCO2) can be calculated in flask air by using measurements of radiocarbon in CO2

(Δ14C) as following the work of Levin et al. [2003]:

ffCO2 ¼ Cobs
Δbg � Δobs

Δbg � Δff
þ β; (1)

bioCO2 ¼ Cobs � Cbg � ffCO2: (2)

Here Cobs and Δobs are the
observed atmospheric CO2 mixing
ratio and the Δ14C ratio of the
observed CO2, Cbg and Δbg are
the background CO2 concentration
and isotopic ratio, Δff is the isotopic
ratio of pure fossil fuel combustion
(�1000‰), and β represents the
effect of nonfossil isotopic influ-
ences on the calculation of ffCO2.
The equations derive from approx-
imate mass balances for 14CO2 and
total CO2 and are expressed in

Figure 1. Map of California showing 10 tower sampling sites and 16 regions
for which CO2 exchanges are estimated.

Table 1. Tower Measurement Sites

Site Location Latitude Longitude Inlet Height (m, agl)

ARV Arvin 35.24 �118.79 10
CIT Caltech, Pasadena 34.14 �118.12 10
LVR Livermore 37.67 �121.71 27
SBC San Bernardino 34.09 �117.31 58
SIO Scripps 32.87 �117.26 10
STB Sutter Buttes 39.21 �121.82 10
STR San Francisco 37.76 �122.45 232
THD Trinidad Head 41.05 �124.15 20
VTR Victorville 34.61 �117.29 90
WGC Walnut Grove 38.27 �121.49 91
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units of ppm. Cbg and Δbg represent the composition of air entering California, which can be determined by
observations at coastal sites under conditions with persistent marine air inflow [Li et al., 2005]. In this study,
we do not explicitly employ estimates of Cbg or Δbg but do include an estimate of how uncertainties in these
parameters propagate into uncertainty in local signals as described below.

Uncertainty in measuring ffCO2 and bioCO2 is composed of contributions from each of the terms in equation
(1) but typically dominated bymeasurement uncertainties inΔobs andΔbg. Here uncertainty in eachmeasure-
ment of Δ14C is roughly 2‰ [Graven et al., 2007], equivalent to ~0.8 ppm in ffCO2. By comparison, measure-
ment uncertainty in the total CO2 concentration is typically near 0.1 ppm [Keeling et al., 2001], negligible in
comparison to uncertainty in Δ14C. Previous observations have shown that Δ14C gradients in background
air in the Northern Hemisphere between La Jolla, California (latitude ~ 26°N) and Point Barrow, Alaska
(latitude =~71°N) vary slightly by season; gradients are typically near zero in April and approximately
2–3‰ in October [Graven et al., 2012]. Since previously observed spatial gradients in Northern Hemisphere
background sites are not larger than the measurement uncertainty, uncertainty in Δbg is therefore expected
to be similar to the measurement uncertainty of ±2‰ or ~0.8 ppm. In previous work, β caused by respiration
in California has been estimated to be 0.2 ± 0.1 ppm in 2009 [Turnbull et al., 2011] and less than 0.5 ppm in
2004–2005 [Hsueh et al., 2007]. This work assumes β =0.2 ± 0.2 ppm with a uniform magnitude and uncer-
tainty over the state. Air-sea exchange is assumed to have a negligible effect on Δ14C over California since
air-sea gradients Δ14C in the midlatitude Pacific are currently near zero [Graven et al., 2012]. The uncertainty
in background Cbg is estimated to be ~0.5 ppm based on sampling the NOAA East Pacific marine background
CO2 curtain in the same manner that Jeong et al. [2013] previously sampled background CH4.

Propagating the above uncertainties (which are dominated by uncertainty in measurement of 14CO2)
through equation (1) yields an uncertainty in ffCO2 of ~1.3 ppm, which we round up to 1.5 ppm in this work.
We note that this estimate is similar to uncertainties reported in recent studies by using flask measurements
of CO2 and Δ14C in the Western U.S. (1.0–1.3 ppm, 1σ) [LaFranchi et al., 2013; Turnbull et al., 2011]. As
described in the section on regional inversions, we conduct some sensitivity tests to estimate the effect of
systematic offset and gain biases in estimated fossil fuel CO2.
2.1.2. OCO-2 Observations
NASA’s OCO-2 satellite, launched in July 2014, was designed to provide global estimates of atmospheric CO2

with the precision, resolution, and coverage needed to characterize sources and sinks on regional scales.
Measurements of reflected sunlight (day time only) are made in the Oxygen-A band (0.76μm) and the weak
and strong CO2 bands (1.6 and 2.06μm, respectively), from which XCO2 estimates are derived via an inverse
retrieval algorithm. The OCO-2 mission collects nearly one million soundings per day (24 soundings/s) at
approximately 3 km2 nadir resolution [Crisp et al., 2017]. After cloud and aerosol screening, approximately
20 to 30% (global average) of the total number of soundings remain for processing by the Level 2 retrieval
algorithm [Taylor et al., 2016]. The 233 orbit tracks in the NASA A-Train WRS-2 repeat cycle are spaced at
approximately 1.55° longitude (~150 km at the equator). The nominal operation during the first year in space
was to alternate between nadir and glint observing modes every 16 days (one complete repeat cycle).
However, in July 2015, the nominal observation mode was updated to alternate between nadir and glint
viewing on successive orbits, with some orbits that pass almost exclusively over oceans always in glint view-
ing mode. The ground tracks are highly repeatable and predictable, with approximately five orbits passing
over parts of California.

For the time period analyzed here which was prior to the acquisition of real OCO-2 observations, synthetic
OCO-2 soundings were generated by using the OCO-2 simulator at Colorado State University [O’Brien et al.,
2009]. These simulations were based on mission specifications in 2012 of collecting only four footprints
per measurement frame. However, prior to launch, mission status doubled this to retrieve the full eight foot-
prints per frame. The OCO-2 simulations included clouds and aerosols taken from a database of Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observation profile data [Winker et al., 2010] and were
screened by using a total optical depth threshold of 0.3. Simulations were run over a 32 day period in
September and October to account for 16 day repeat cycles for nadir and glint viewing modes. We assume
similar orbit tracks and data yield for inversion simulation experiments in November 2010 and May 2011,
although we note that in reality, cloud coverage and glint orbits will shift during the year. These simplifica-
tions should have little bearing on the overall effects reported here.
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To provide an initial estimate of the uncertainty in OCO-2 observations, we note that Frankenberg et al. [2015]
reported that OCO-2 retrievals agreed with each other to within <0.5 ppm during thermal vacuum tests and
here assume the random uncertainty in individual XCO2 retrievals of 0.5 ppm for both local observations
(over California) and for measurement of background inflow. Assuming that the random uncertainties in local
and background measurements are uncorrelated, the difference measurement of local enhancement (local
XCO2 minus background XCO2 difference) will have an uncertainty of sqrt(2) * 0.5 ppm or ~0.7 ppm. For the
inversion study described below, we also assume that individual retrievals are averaged into bins containing
four retrievals on each ground track (equivalent to an ~0.1° on the ground) and that the random component
of uncertainty in the binned data averages down by a factor of (1/4)1/2 = 1/2, from ~0.7 ppm to ~0.35 ppm.

We also note that the evaluation of systematic uncertainties in OCO-2 is currently unresolved and the subject
of active research. To address this in a preliminary fashion, we also performed some sensitivity tests to
systematic bias in XCO2. Here ongoing work suggests that bias corrections may range from <1 ppm to
~2ppm, with potential (and as yet unquantified) uncertainties of ~25% (C. O’Dell, private communication,
2016). In this paper, we include a sensitivity test to a uniform 0.5 ppm offset in XCO2 over California and
evaluate the resulting changes in posterior estimates of fossil and biosphere CO2 exchanges.

2.2. Prior Flux Models
2.2.1. Fossil Fuel Fluxes
In order to characterize the likely spatial and temporal variations of ffCO2 emissions across California, we
start with the Vulcan 2.2 emission map [Gurney et al., 2009] as our primary ffCO2 prior flux estimate and
then estimate uncertainties by comparing Vulcan with other ffCO2 emission data sets. Vulcan provides an
hourly resolved fossil fuel CO2 emission product on a 0.1 × 0.1° grid for 2002 that takes into account weekday
and weekend variations in emissions from the location of power plants, roads, and industrial facilities
including cement production. Even though we are focusing on the years 2010–2011, we use the Vulcan
2.2 product for the year 2002 without modification. We note that annual state total fossil fuel CO2 emissions
are estimated to have changed by less than 20% over the period 2002 to 2013 [CARB, 2015] such that the use
of the 2002 inventory is unlikely to substantially affect our conclusions. We also use the Emission Database
for Global Atmospheric Research (EDGAR, version FT2010) [Emission Database for Global Atmospheric
Research (EDGAR), 2011] 0.1 × 0.1° time-invariant emission map as an alternate ffCO2 prior flux estimate (see
section 2.5).

To approximate the regional uncertainty in prior fossil fuel emissions, we take two approaches. First we com-
pare Vulcan with three other estimates of fossil fuel CO2 emissions in California that are available as spatially
distributed maps. The four emission maps: EDGAR (version FT2010) [EDGAR, 2011], Open-source Data
Inventory for Anthropogenic CO2 (ODIAC, version ODIAC2013a) [Oda and Maksyutov, 2011], Fossil Fuel
Data Assimilation System (FFDAS, version 2.0) [Asefi-Najafabady et al., 2014], and Vulcan [Gurney et al.,
2009], are shown in Figure 2. To provide a regionally specific estimate of prior fossil fuel emission uncertainty
for use in the inversion, the regional and state total emission sums are compared in Table 2. Marine and avia-
tion emissions are excluded from all inventories in this comparison, except for the gridded Vulcan emissions,
which includes aviation emissions up to 3000 ft. In the air basin totals reported in Table 2, we have subtracted
aviation emissions from Vulcan, which total 4.9 Tg C yr�1 across California. Cement emissions were included
in all estimates except FFDAS, so for consistency, we added cement emissions from Vulcan to FFDAS in the air
basin totals.

At the state scale, fossil fuel CO2 emissions from ground-based sources (not including marine or aviation) in
California estimated by Vulcan in 2002 are 87 Tg C yr�1, while EDGAR, ODIAC, and FFDAS in 2008 are 104, 88,
and 82 TgC yr�1, respectively. For comparison, the California Air Resources Board estimates statewide
ground-based fossil fuel emission totals of 96, 94, and 90 Tg C yr�1 in 2002, 2008, and 2013, respectively
[CARB, 2015], which is within the range of the four emission maps. The 1σ standard deviation in statewide
total fossil fuel emissions in California across the four emission maps is ~11%, equivalent to roughly 4 times
the uncertainty (4–5% at 2σ) in total U.S. fossil fuel CO2 emissions reported in previous synthesis studies
[Pacala et al., 2010; Andres et al., 2014].

At the regional scale, we estimated the 1σ uncertainty in fossil fuel CO2 emissions as the larger of the standard
deviation of emissions across (1) the four emission maps or (2) the ensemble of FFDAS emission estimates in
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Table 2. Summed Fossil Fuel Emissions in Individual Air Basins and Statewide Totals for Four Gridded Inventories, in
Units of Tg C yr�1

Region Name EDGAR ODIAC 1 km FFDAS Vulcan

1 North Coast 1.6 0.5 0.5 1.0
2 Northeast Plateau 1.3 0.2 0.3 0.4
3 Sacramento Valley 7.4 6.2 6.4 6.8
4 Mountain Counties 2.1 0.8 0.8 2.2
5 Lake County 0.2 0.1 0.1 0.1
6 Great Basin Valleys 0.6 0.1 0.1 0.2
7 San Francisco Bay 17.5 12.1 11.1 16.4
8 San Joaquin Valley (North) 9.4 2.4 3.3 3.0
9 North Central Coast 2.2 2.0 1.5 6.0
10 Mojave Desert 4.3 4.4 4.5 6.1
11 South Central Coast 3.4 3.1 2.7 4.4
12 South Coast 35.5 33.8 31.2 26.9
13 Salton Sea 1.7 3.6 4.7 1.4
14 San Diego 6.6 6.4 6.9 6.6
15 Lake Tahoe 0.1 0.0 0.0 0.1
16 San Joaquin Valley (South) 10.8 12.3 8.6 5.6

Total 104.7 88.0 82.7 86.9

Figure 2. Annual mean fossil fuel CO2 emissions in California from four gridded inventory products (log10(μmolm�2 s�1):
(a) Vulcan, (b) EDGAR, (c) FFDAS, and (d) ODIAC and (e) mean of four models and (f) standard deviation of four models.
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Asefi-Najafabady et al. [2014]. Generally speaking, the largest emissions are obtained in the largest
metropolitan regions (i.e., South Coast, San Francisco Bay, and San Diego), with substantial emissions also
from the Sacramento and San Joaquin Valley. For most regions, the standard deviation across the four
emission maps, corresponding to fractional deviations between 10% and 74%, was larger than the
standard deviation across the FFDAS ensemble. However, the standard deviation across the four emissions
maps for San Diego was smaller (4%) than the standard deviation across the FFDAS ensemble (10%), so we
used the larger FFDAS-based estimate to specify uncertainty in San Diego. The estimated mean prior ffCO2

Table 3. Prior Emissions (Tg C yr�1) for ffCO2 (Top) and bioCO2 (Bottom) Exchanges in May and Novembera

Region 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Total

May
Fossil fuel 0.4 1.1 6.7 2.3 0.1 0.2 16.5 2.9 4.5 6.0 3.9 26.7 1.4 6.8 0.1 5.8 85.4
Biosphere �3.0 �15.6 �17.0 �4.6 �1.7 0.2 �11.3 �6.1 �7.1 �5.1 �10.7 �5.9 �1.7 �4.5 0.3 �11.0 �104.8

November
Fossil fuel 0.4 1.0 6.8 2.2 0.1 0.3 17.5 3.0 5.1 6.2 3.9 25.9 1.3 6.5 0.1 5.7 86.0
Biosphere 7.2 14.3 9.1 5.5 1.5 2.2 9.7 5.8 9.3 1.4 8.8 1.9 0.1 0.3 0.2 15.0 92.3

aNegative exchange refers to carbon uptake by the land surface.

Table 4. Prior and Posterior Emission Uncertainties for Fossil Fuel and Biosphere CO2 Exchange in May and Novembera

Region 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

May
Fossil fuel
Prior 1.07 0.59 0.10 0.52 0.40 0.95 0.23 0.74 0.77 0.22 0.19 0.10 0.57 0.10 1.15 0.31
Post.OCO2 1.07 0.57 0.10 0.52 0.40 0.53 0.23 0.71 0.77 0.22 0.18 0.10 0.57 0.10 1.13 0.30
Post.Flask 1.07 0.57 0.09 0.51 0.40 0.95 0.06 0.66 0.69 0.20 0.19 0.04 0.57 0.07 1.15 0.18
Post.OCO2 + Flask 1.07 0.53 0.09 0.51 0.40 0.49 0.06 0.63 0.69 0.20 0.18 0.04 0.56 0.07 1.13 0.18
Post.100%.prior.err 1.00 0.79 0.16 0.95 1.00 0.55 0.06 0.81 0.85 0.41 0.45 0.05 0.97 0.09 0.98 0.23
Post.Rflask = 0.75 1.07 0.54 0.09 0.51 0.40 0.50 0.07 0.65 0.72 0.21 0.18 0.06 0.57 0.08 1.13 0.21
Post.ffCO2.only 1.07 0.59 0.10 0.52 0.40 0.95 0.12 0.72 0.75 0.21 0.19 0.06 0.57 0.08 1.15 0.25

Biosphere
Prior 0.47 0.51 1.02 0.45 0.75 2.61 1.35 1.08 0.66 0.36 1.00 1.04 0.27 0.81 3.13 0.78
Post.OCO2 0.34 0.31 0.57 0.44 0.75 1.03 1.00 0.95 0.59 0.34 0.85 1.03 0.27 0.81 1.21 0.37
Post.Flask 0.20 0.05 0.06 0.34 0.31 1.40 0.04 0.39 0.44 0.23 0.24 0.19 0.27 0.73 2.12 0.09
Post.OCO2 + Flask 0.16 0.05 0.06 0.33 0.31 0.80 0.04 0.38 0.41 0.22 0.23 0.19 0.27 0.73 1.09 0.09
Post.100%.prior.err 0.18 0.05 0.06 0.44 0.33 0.65 0.04 0.39 0.47 0.28 0.24 0.19 1.00 0.88 0.76 0.09
Post.Rflask = 0.75 0.20 0.06 0.08 0.37 0.40 0.87 0.05 0.50 0.48 0.27 0.30 0.28 0.27 0.77 1.13 0.12

November
Fossil fuel
Prior 1.07 0.59 0.10 0.52 0.40 0.95 0.23 0.74 0.77 0.22 0.19 0.10 0.57 0.10 1.15 0.31
Post.OCO2 1.07 0.59 0.10 0.52 0.40 0.58 0.23 0.66 0.76 0.22 0.19 0.10 0.55 0.10 1.12 0.31
Post.Flask 1.06 0.52 0.09 0.48 0.40 0.95 0.07 0.50 0.72 0.20 0.19 0.06 0.57 0.07 1.15 0.17
Post.OCO2 + Flask 1.06 0.52 0.09 0.48 0.40 0.52 0.07 0.48 0.71 0.20 0.18 0.06 0.55 0.07 1.12 0.17
Post.100%.prior.err 1.00 0.73 0.20 0.83 1.00 0.67 0.08 0.58 0.88 0.46 0.55 0.07 0.91 0.09 0.98 0.21
Post.Rflask = 0.75 1.06 0.54 0.09 0.49 0.40 0.54 0.09 0.53 0.73 0.21 0.18 0.07 0.55 0.08 1.12 0.20
Post.ffCO2.only 1.07 0.57 0.09 0.50 0.40 0.95 0.08 0.56 0.73 0.21 0.19 0.07 0.57 0.08 1.15 0.18

Biosphere
Prior 0.71 0.24 0.66 0.72 0.13 0.17 0.40 0.21 0.61 0.48 1.90 1.82 1.14 1.28 0.60 0.78
Post.OCO2 0.61 0.23 0.58 0.71 0.13 0.17 0.39 0.20 0.60 0.47 1.61 1.81 1.13 1.27 0.52 0.70
Post.Flask 0.24 0.02 0.16 0.49 0.13 0.17 0.22 0.17 0.58 0.45 0.98 0.54 1.11 0.77 0.60 0.23
Post.OCO2 + Flask 0.23 0.02 0.16 0.49 0.13 0.17 0.22 0.17 0.57 0.44 0.91 0.54 1.10 0.76 0.51 0.22
Post.100%.prior.err 0.25 0.02 0.17 0.59 0.79 0.76 0.26 0.28 0.86 0.75 0.75 0.50 0.97 0.69 0.70 0.23
Post.Rflask = 0.75 0.30 0.03 0.22 0.57 0.13 0.17 0.27 0.18 0.59 0.45 1.12 0.75 1.12 0.94 0.51 0.30

aValues are presented as fractions of prior emissions from Table 3. Posterior results are presented for inversions by using prior uncertainties with only OCO-2
observations (Post.OCO2), only flask observations (Post.Flask), and OCO-2 and flask observations together (Post.OCO2 + Flask). Results for sensitivity tests using
100% prior uncertainties for fossil and biosphere exchanges (Post.100%.prior.err), 75% model measurement uncertainty for flask observations (Post.
Rflask = 0.75), and an inversion of fossil fuel emissions by using only flask 14CO2 observations (Post.ffCO2.only) are also shown.
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emissions for the two seasons (May and November) differ slightly from the annual mean and are shown in
Table 3, while the fractional uncertainties in prior regional emissions are shown in Table 4 (together with
prior biosphere and posterior uncertainty estimates described later in this paper).
2.2.2. Terrestrial Biosphere Fluxes
We prescribe net biosphere CO2 fluxes by using the Carnegie Ames Stanford Approach (CASA) Global
Fire Emissions Database Version 3 model with 0.5 × 0.5° resolution [van der Werf et al., 2010] adapted for
the NASA Carbon Monitoring System (CMS) Flux Pilot Project (http://cmsflux.jpl.nasa.gov/). The model
employs remotely sensed meteorology together with vegetation index from Moderate Resolution Imaging
Spectroradiometer (MODIS) and an estimated light use efficiency parameterization to simulate net primary
productivity and a soil model to simulate heterotrophic respiration and thereby net ecosystem production
[Collatz et al., 2013]. In this implementation, we imposed the diurnal cycle from the 1.25 × 1.0° fluxes onto
the nearest neighbor 0.5 × 0.5° monthly mean fluxes to approximate hourly resolved biosphere fluxes at
0.5° resolution. Estimated monthly mean fluxes are shown for the California domain in Figure 3. Summing
over land surface emissions yields prior estimates of bioCO2 exchange for the 16 regions of California shown
in Table 3, with state totals of �104 and 91 Tg C yr�1 for May and November, respectively (where positive
emissions are oriented toward the atmosphere). Here we note that the large variation in seasonal net bio-
sphere carbon exchange poses a challenge for assessment of the net annual exchange. Estimating the net
annual source or sink of CO2 in California would require year-round observations, but we do not explicitly
address net annual exchanges in the current study.

Prior uncertainty in biosphere CO2 exchange was estimated by combining two approaches. First, we applied
estimated uncertainties derived from a sensitivity analysis of net ecosystem exchange to CASA model
parameters, sampling populations of values normally distributed around baseline values [Liu et al., 2014].
Standard deviation values were based on literature reviews (NPP, Q10, and wood mortality), reported data
uncertainty (e.g., woody cover fraction is a MODIS product reported to have 10% uncertainty), and expert opi-
nion (for the heterotrophic response to soil moisture). Summing these uncertainties in quadrature over the
air basins, fractional uncertainties range from 10 to 200%, depending on region and season. For a subset
of regions exhibiting what we considered small uncertainty (<20%), we compared emissions with those esti-
mated from CarbonTracker (Carbon Tracker, 2013, ftp://aftp.cmdl.noaa.gov/products/carbontracker/co2/
fluxes/monthly/; version 2013B) assimilations for the corresponding dates and used the fractional difference

Figure 3. CASA net ecosystem CO2 exchange (μmolm�2 s�1) for (left) May and (right) November with sampling sites and air basin regions. Positive exchange is
oriented to the atmosphere.

Journal of Geophysical Research: Atmospheres 10.1002/2016JD025617

FISCHER ET AL. CALIFORNIA CO2 OBSERVING SIMULATION 3660

http://cmsflux.jpl.nasa.gov/
ftp://aftp.cmdl.noaa.gov/products/carbontracker/co2/fluxes/monthly/
ftp://aftp.cmdl.noaa.gov/products/carbontracker/co2/fluxes/monthly/


between CASA and CarbonTracker for those regions. The resulting estimated fractional uncertainties are
reported in Table 4. For the purposes of this analysis, we assume that the resulting uncertainties between
different regions are uncorrelated, but note that this assumption could be revisited in future work.

2.3. Atmospheric Transport and CO2 Signal Prediction

We apply the Coupled Weather Research and Forecasting/Stochastic Time-Inverted Lagrangian Transport
(WRF-STILT) model [Lin et al., 2003; Nehrkorn et al., 2010] to compute transport meteorology and footprint
predictions for May 2011 and November, 2010. WRF version 3.5.1 is used to simulate meteorology in domains
covering western North America at 36 and 12 km, nesting down over subregions of California at 4, and 1.3 km
resolutions following work described in Jeong et al. [2013]. As in Jeong et al. [2013], we use the five-layer
thermal diffusion land surface model for May when irrigation provides an additional source of land surface
moisture in California, and the NOAH land surface model for November. To compute CO2 measurement sen-
sitivity to surface fluxes (footprints) from hourly WRF outputs, an ensemble of 500 STILT particles are released
from each receptor and run backward in time for 7 days driven with meteorology from WRF output. In the
case of OCO-2 receptors, 500 particles are released along nadir vertical columns and distributed across 10 ver-
tical layers of 1 km thickness from the land surface to the top layer of the WRF model atmosphere of 10 km
altitude, corresponding to ~75% of the atmospheric column. The density of particles per layer varies in pro-
portion to the mean layer pressure along the column to approximate the column profile. While this approach
does not include a more detailed representation of the OCO-2 observation profile, it is unlikely to strongly
affect the results. Figure 4 shows monthly mean footprints for the flask receptors at 2200 UT, when flasks
would be collected. In general, footprint sensitivity is largest near the receptor sites and tracks the upwind
direction backward in time. For each site and time point, the simulated hourly resolved CO2 signals were cal-
culated by summing over the footprint times the corresponding flux over each of the 16 regions within
California and remaining land surface fluxes in the modeling domain outside California for a 17th region.
We use the term signal to refer to the local enhancement or depletion in CO2 concentration caused by fossil
fuel emissions or biospheric exchange occurring within our domain. In this work we do not explicitly estimate
background CO2 variations from outside the model domain but do include an approximate estimate of
uncertainty due to CO2 background as described above.

Following previous work we include estimated uncertainties in predicted CO2 signals due to uncertainties in
modeled atmospheric transport, planetary boundary layer (PBL) and wind velocities, limited numbers of par-
ticles, and background subtraction [e.g., Lin et al., 2003; Göckede et al., 2010]. Applying these techniques to

Figure 4. WRF-STILT footprints (ppm/μmolm�2 s�1) for tower flask sampling sites, showing mean sensitivity to surface emissions at 2200 UT local time for the
months of May and November.
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California, previous studies compared WRF-STILT predictions with data from radar wind profilers located
across California to estimate uncertainty in predicted CH4 signals due to errors from modeled PBL heights
and winds in theWRF-STILT model. Resulting 68% confidence level (CL) uncertainties in predicted CH4 signals
ranged from 0.3 to 0.8 times themeanmonthly signals [e.g., Jeong et al., 2013]. Here we assume 68% CL trans-
port model uncertainty of 0.5 times themagnitude of themeanmonthly local CO2 signal for each site for flask
measurements and 0.3 times monthly XCO2 signals for OCO-2 because the XCO2 is not as sensitive to uncer-
tainty in predicted planetary boundary layer depth as the tower measurements. As described in section 2.4
below, we conduct a sensitivity analysis to quantify the effect of biases in flask and OCO-2 observations.

2.4. Inversion Method

The scaling factor Bayesian inversion method relates model predictions to measurements as

c ¼ Kλ þ v; (3)

where c is the observed background-subtracted measured mixing ratios, K is a matrix representing predicted
mixing ratios for each region as the summed product of footprint F and prior flux f (i.e., K= Ff), λ is a vector of
scaling factors for the CO2 exchange from each of the spatial regions across California, and v is a model-data
mismatch vector with covariance matrix R. Here R is represented as a diagonal matrix representing the total
uncertainty contributed by all sources of uncertainty (e.g., measurement and transport) summed in quadra-
ture. Under the assumption of normally distributed (Gaussian) uncertainties, the posterior estimates for λ can
be solved as

λpost ¼ KTR�1K þ Q�1
λ

� ��1
KTR�1cþ Q�1

λ λprior
� �

; (4)

where λprior is the separate prior flux estimate for fossil fuel and biospheric fluxes from the 16 air basins in
California plus one region representing fluxes from outside California and the superscript “T” and “�1” indi-
cate the matrix transpose and inverse, respectively. Since we take the scaling factor approach, λprior is speci-
fied to be unity and Qλ is the uncertainty covariance matrix representing prior model uncertainties in fossil
fuel and biospheric fluxes. Again, under the assumption of normally distributed uncertainties, the posterior
error covariance for λ can be written as

Vpost ¼ KTR�1K þ Q�1
λ

� ��1
: (5)

2.5. Inversions Using Simulated Data

To estimate how much the posterior uncertainty in regional ffCO2 and bioCO2 exchanges is reduced relative
to the prior uncertainties through inversions by using simulated data, we computed posterior exchanges and
their uncertainties for each region for May and November. Here posterior fluxes are the product of the prior
exchanges and the posterior scaling factors λpost from equation (4). Posterior uncertainties in regional
exchanges are the product of prior exchanges and the uncertainty in posterior scaling factors given by the
square root of Vpost in equation (5). In this implementation, flask measurements are assumed to provide
direct measures of both total CO2 and ffCO2 (from radiocarbon), while OCO-2 spatially binned column mea-
surements provide total CO2. This generates measurement matrices with ~150 flask measurements of ffCO2

and of total CO2 (10 sites each sampled every other day for a month) and a roughly equal number of spatially
binned OCO-2 total-column CO2 observations per month. The exchange estimates comprise 34 values of λ,
corresponding to ffCO2 and bioCO2 exchanges for the 16 regions inside California and a 17th region repre-
senting signals from the remainder of the model domain outside California.

We estimate the reduction in posterior uncertainties for ffCO2 and bioCO2 exchanges from each region of
California for three observation strategies: (a) only using OCO-2 measurements of total CO2 = ffCO2 and
bioCO2; (b) only using flask measurements that include both ffCO2 and total CO2; and (c) using OCO-2 mea-
surements of total CO2 and flask measurements of both ffCO2 and total CO2. For each case, we compute the
34 posterior scaling factors and their uncertainties for ffCO2 and bioCO2 exchange in the 17 regions. We then
estimate the uncertainty in statewide California exchange, σE, for fossil fuel or biosphere CO2 exchange
including error correlations as

σE2 ¼ EpriorVpostETprior; (6)

where Eprior is a vector of regional fossil fuel or biosphere CO2 exchange.
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2.6. Sensitivity Tests for Random and Systematic Errors

In addition to the above, we also performed some sensitivity tests varying the assumptions of random uncer-
tainties. First, we tested the power of the observational data to constrain posterior emissions under the
assumption that emissions from all regions are poorly known by increasing the prior flux uncertainty to
100% in all regions. Second, we tested how much the posterior emission uncertainties changed in response
to an increase in assumed model-measurement uncertainty (e.g., due to increased atmospheric transport
model uncertainty) by increasing the signal-dependent scaling of the R matrix for the tower observations
from 0.5 to 0.75 of the mean monthly signal for the tower sites. We do not change the model-measurement
uncertainty for OCO-2, which has the effect of allowing for higher uncertainty in surface level transport and
planetary boundary layer depth. Third, we tested whether the reductions in posterior uncertainty for ffCO2

obtained from flasks alone are affected by the concurrent inversion of bioCO2 exchanges by comparing pos-
terior uncertainties obtained above to an inversion using flask measurements of ffCO2 only to determine
ffCO2 emissions.

Next, we examine the sensitivity of inversions for ffCO2 emissions alone to the use of an incorrect prior
model for ffCO2 emissions. Here we effectively test whether the tower network can recover “true” emis-
sions calculated by using Vulcan emissions if “incorrect” prior signals are calculated by using an alternate
emission model. For this test, we perform an inversion by using observed “true” signals computed with
Vulcan and “incorrect” prior signals computed with either the EDGAR map or a spatially uniform map with
flux = 1μmolm�2 s�1. In both cases, the uncertainties in prior emissions are estimated as the absolute dif-
ference of prior minus Vulcan emissions for each region. We then examine the posterior emissions by

Figure 5. Predicted synthetic prior CO2 mixing ratio (ppm) signals for (top row) fossil fuel and (bottom row) biosphere
exchanges for flasks sampled at 2200 UT (1400 PST) for each tower site for months of (left column) May and (right
column) November.
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region to identify how well the inversion recovers the “correct” (Vulcan) emissions by region and for the
state total.

Last, we also conducted sensitivity tests to explore the effect of systematic biases in the models and/or obser-
vations. Here we tested the effect of a systematic 10% underestimate in the strength of predicted signals
(e.g., due to systematic bias in PBL depth) and uniform +0.5 ppm offset biases in either the flask or OCO-2
observations (e.g., due to systematic bias in background CO2). While these tests are not comprehensive, they
provide insight into the impacts of possible biases on posterior ffCO2 and bioCO2 exchanges.

3. Results
3.1. Simulated ffCO2 and BioCO2 Observations

Simulated ffCO2, bioCO2, and total CO2 observations were computed for flask and OCO-2 receptors over each
monthlong period. Time series of monthly flask measurements are shown in Figure 5 for the 10 tower sites. In
urban areas, simulated ffCO2 signals are typically larger than bioCO2 signals (|bioCO2/ffCO2|< 0.1–0.2). The
ffCO2 signals sometimes reach levels of 5–30 ppm in the urban areas of southern California (CIT, SBC, and

Figure 6. Predicted (top row) ffCO2 and (bottom row) bioCO2 column mean mixing ratio signals (ppm) for OCO-2 nadir
overpasses for (left column) May and (right column) November. Predicted column retrievals have been averaged into
approximately 0.1° bins (four retrievals per bin) along each track as used in the inversions.
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SIO), similar to observations by Newman et al. [2013]. The simulations suggest that ffCO2 is weaker in San
Bernardino and stronger in San Diego in November, relative to May, due to seasonal changes in the
meteorology. In suburban and rural areas, bioCO2 signals (~1–10 ppm) are generally comparable to or
larger than ffCO2 signals (|bioCO2/ffCO2| ~ 0.8–2). Here bioCO2 signals are sometimes negative (indicating
net CO2 drawdown) at some sites and sample dates in May, though some are positive, indicating that the
contribution from respiration exceeds that from photosynthesis. In November, bioCO2 signals are generally
positive because respiratory fluxes dominate. The resulting ffCO2 and bioCO2 signals can often be large
compared to the measurement uncertainties. In these cases, the estimated transport model uncertainties
(which are proportional to the mean monthly signal) tend to dominate the model-data uncertainty for the
flask samples.

Figure 6 shows the predicted ffCO2 and bioCO2 signals for the spatially binned XCO2 signals for OCO-2 along
the nominal nadir observation tracks. In general, the simulated bioCO2 and ffCO2 in XCO2 is comparable to
or smaller than the measurement uncertainty assumed for the spatially binned OCO-2 measurements
(0.35 ppm). The exception is in or near major urban areas where ffCO2 signals are 1–2 ppm and in some rural
areas where bioCO2 signals approach or exceed 1 ppm.

Here we note that CO2 signals from outside California effectively add a random noise to the observations
because the transport model error is assumed to be proportional to the mean signal level as described

Figure 7. Estimated prior and posterior emissions in (top row) ffCO2 and (bottom row) biosphere exchange for different CA
air basins in months of (left column) May and (right column) November. Line lengths indicate uncertainties in prior (black)
and posterior estimates obtained by using OCO-2 alone (red), flask observations alone (green), and OCO-2 and flasks
together (blue). Note that May biosphere exchanges (Tg C yr�1) are negative, though all scales are logarithmic to show
fractional variations in uncertainties. Regions with the combination of CO2 exchange and footprint sensitivity show
significant reduction in posterior uncertainties for ffCO2 emissions (e.g., 3 = Sacramento Valley, 7 = SF Bay, 12 = SoCAB) and
biosphere exchange (2 = North Coast, 3 = Sacramento Valley, 12 = SoCAB, 16 = San Joaquin Valley).
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above. For the tower observations,
predicted CO2 signals from outside
California (not shown) are small
compared to the total signal from
within California for most flask sites
(<10%), except for Trinidad Head,
where they can be ~30–100% of
the California signal when north-
erly winds transport bioCO2 signals
from the northwest U.S. and
Canada. For most OCO-2 observa-
tions, signals outside California
are roughly equivalent to signals
inside California because of the
larger spatial footprints.

3.2. Posterior Estimates and
Uncertainty Reductions

As described in section 2.5, we first
estimate the reduction in posterior

uncertainty relative to the prior that is obtained by applying equation (5), using predicted signals and the
baseline assumptions regarding prior and model-measurement uncertainties. Here we compare results
obtained with OCO-2, flask, and OCO-2 and flask data together to provide constraints on the combination
of fossil fuel and biospheric CO2 exchanges (Figure 7). Figure 7 and Table 4 show the fractional posterior
uncertainties in fossil fuel and biosphere CO2 exchange by region. In general, significant reductions below
prior fossil fuel emission uncertainties are obtained for the San Francisco Bay Area, the South Coast Air
Basin, San Diego, and the Southern San Joaquin Valley (regions 7, 12, 14, and 16) by using the flask data, while
posterior uncertainty in the Sacramento urban area (region 3) is not significantly different than the already
small (10%) prior uncertainty. Posterior uncertainty is similar to the prior uncertainty in other regions (e.g.,
4, 6, and 13) because of either the lack of towers or small ffCO2 emissions from those regions.

Using simulated OCO-2 observations alone, we find an influence on posterior ffCO2 emission uncertainties in
region 6, but the 16-day repeat swaths do not overlap strongly with urban regions containing large emis-
sions. For biosphere exchange, detectable reductions in uncertainty are found for several regions with
OCO-2 (e.g., region 1, 2, 3, 6, 8, 9, 15, and 16) and nearly all regions (except 13) with flasks in May. The effect
of the inversion is smaller in November when fluxes are weaker and generally positive with respect to the
atmosphere due to respiration overwhelming photosynthesis. The stronger constraint on bioCO2 as com-
pared to ffCO2 is likely due in part to the large prior uncertainty relative to ffCO2 and/or stronger exchange
(e.g., region 3).

The statewide prior and posterior uncertainties are shown in Table 5. For the cases including flask observa-
tions, statewide ffCO2 emission uncertainties are reduced from 8.1% and 8.4% to 4.8% and 5.3 % in May
and November, respectively, primarily due to the constraints of flask data on the strongly emitting regions
of San Francisco Bay Area, the South Coast Air Basin, San Diego, and the Southern San Joaquin Valley.
State total uncertainty in biosphere CO2 exchange is reduced from 29% and 26% to 5.3% and 9.2% in May
and November, respectively. In the above cases, OCO-2 observations alone produce little reduction in poster-
ior ffCO2 uncertainties but a finite reduction in posterior bioCO2 uncertainties when estimated without tower
observations (from 29 to 20% and from 26% to 22%, in May and November, respectively). Here we note that
the cross correlations in posterior uncertainties are generally found to be small and negative, reducing the
uncertainty in statewide CO2 exchange from 0 to ~10% below that obtained assuming uncorrelated
posterior errors.

3.3. Sensitivity Tests for Random Errors

As described above, we also conducted sensitivity tests for random uncertainties and systematic biases. First,
we tested how much the observations reduced emission uncertainties in a case with large (100%) prior

Table 5. Summary of California State Total Posterior Emission
Uncertainties as a Fraction of Statewide Prior Emissions (From Table 3)
for Fossil (Sum.ff) and Biosphere (Sum.bio) CO2 Exchange

Sum.ff Sum.bio

May
Prior 0.081 0.288
Post.OCO2 0.080 0.220
Post.Flask 0.048 0.055
Post.OCO2 + Flask 0.048 0.053
Post.100%.prior.err 0.067 0.062
Post.Rflask = 0.75 0.053 0.064
Post.ffCO2.only 0.060

November
Prior 0.084 0.258
Post.OCO2 0.083 0.222
Post.Flask 0.054 0.095
Post.OCO2 + Flask 0.053 0.092
Post.100%.prior.err 0.072 0.073
Post.Rflask = 0.75 0.058 0.114
Post.ffCO2.only 0.057
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uncertainties assumed for both
ffCO2 and bioCO2 in all regions,
using both flask and OCO-2 obser-
vations in the inversion. Here sig-
nificant reductions in fractional
uncertainty (from 100% in the prior
for each region to between 5 and
50% in the posterior) were
obtained for ffCO2 in several
regions (i.e., 3, 6, 7, 11, 12, 14, and
16) in May, with somewhat smaller
reductions in November. This had
the effect of reducing uncertainties
in statewide California total ffCO2

emissions from prior uncertainties
of 41% and 40% (estimated from
quadrature sum of 100% regional
uncertainties) to the posterior
uncertainties of 6.7% and 7.2% in
May and November, respectively.
For bioCO2, significant reductions
in posterior uncertainty (from
100% in prior to between 5% and
50% in posterior) were obtained

in many regions (i.e., 1, 2, 3, 7, 8, 9, 10, 11, 12, 14, and 16) in May, though fewer (i.e., 3, 7, 12, and 16) in
November, lowering the uncertainties in California total bioCO2 from prior estimates of 32% and 33% to
posterior estimates of 6.2% and 7.3% in May and November, respectively. This suggests that regionally
summed ffCO2 (bioCO2) emissions could be estimated to within 6–7% in May and November even with
poorly known prior emissions, provided that the assumptions regarding model-measurement uncertainties
are valid.

Second, we increased the uncertainties in the component of the model-measurement error due to transport
model uncertainty in the flask observations, increasing the measurement uncertainty from 0.5 to 0.75 of the
mean signal strength for each site with flask observations. Not surprisingly, we found that the posterior
uncertainties did not change for regions where uncertainties due to transport model uncertainty were small
compared to flask ffCO2 measurement uncertainty (e.g., regions 6 and 15) but did increase roughly 25% in
regions where uncertainties due to transport error were large (e.g., regions 7 and 12). However, resulting
posterior uncertainties in California total ffCO2 emissions were 5.3% in May and 5.8% in November and
6.4% and 11.4% in bioCO2 exchange in May and November, respectively, increasing only slightly because
the regional uncertainties were summed in quadrature and many of the other posterior uncertainties were
largely unchanged.

Third, we estimated the reduction in uncertainty for ffCO2 emissions obtained by using only the flask-
based measurements of 14CO2. Here the uncertainties were reduced for several regions (7, 12, 14, and 16)
where signals are large compared to measurement uncertainty as shown in Figure 8. Summing across
regions, the uncertainty in California total ffCO2 emissions again was reduced to ~6%, only slightly larger
than that found by using both ffCO2 and total CO2 measurements to simultaneously estimate ffCO2 and
bioCO2. This suggests that much of the reduction in posterior estimates of ffCO2 are obtained from the
radiocarbon measurements.

3.4. Sensitivity Tests for Systematic Errors

First, we tested the effect of applying incorrect prior maps for ffCO2 emissions. Here we first used the “true”
Vulcan ffCO2 emission map to compute the simulated flask observations and used “incorrect” EDGAR ffCO2
emissions to compute prior signals, with prior uncertainties in emissions estimated as the absolute difference
of EDGAR-Vulcan emissions for each region. Figure 8 shows the difference between “incorrect” prior (EDGAR)

Figure 8. Differences from regionally summed “true” Vulcan ffCO2 emissions
for “incorrect” prior emissions (Tg C yr�1) calculated by using EDGAR (red)
and resulting posterior emission estimates obtained from the inversion
(black) by using flask observations 14CO2. The error bars represent prior and
posterior uncertainties, respectively.
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and “true” (Vulcan) emissions and the
difference of posterior minus Vulcan
emissions for November 2010 after
inversion. The posterior emissions
are significantly improved from the
prior emissions in regions 7, 12, 14,
and 16, though slightly worse in
region 10. As shown in Table 6, the
resulting reductions in bias and
uncertainty for state total ffCO2 emis-
sions range from “incorrect” prior
minus “true” biases of 8.6 ± 11.7
and 8.2 ± 12.5 Tg C yr�1 to posterior
minus “true” errors of �3.1 ± 4.6 and
�4.7 ± 4.7 Tg C yr�1 in May and
November, respectively. Here we

note that the EDGAR-Vulcan differences are computed by using monthly specific values for emissions from
the Vulcan 2.2 data set that differ from the annual mean emissions shown in Table 2. We then repeated
the prior model bias test, here computing the “incorrect” prior model signals by using a spatially uniform
ffCO2 flux = 1μmolm�2 s�1 for all areas of California. As before, we estimated prior uncertainties on prior
emissions as the difference from “true” Vulcan emissions. In this case, the inversion adjusted posterior emis-
sions were larger but consistent with “true” emissions, with “prior”minus “true” emissions of 73 ± 43 Tg C yr�1

and posterior minus “true” error of 29 ± 21 and 4.4 ± 16.4 Tg C yr�1 for total California ffCO2 emissions in
May and November, respectively. In both of the above cases, the inversions using incorrect priors produce
posterior emissions that are substantially closer to the true emissions, but only if the prior uncertainties are
set large enough to encompass biases in the prior model.

Second, we tested the effect of some hypothetical CO2 observation biases due to measurement error or inac-
curate background subtraction with results shown in Table 7. In case (a) we applied a 1.1 multiplicative gain
error to flask and OCO-2 observations together, mimicking a systematic underestimation in the strength of
the footprints (e.g., due to systematic uncertainties in boundary layer depth and/or average wind speed).
Here the estimated posterior estimates of CO2 exchangewere increased by ~10% in regions where the obser-
vations provide constraints on ffCO2 emissions in regions 7, 12, 14, and 16 (not shown). The resulting poster-
ior biases in statewide ffCO2 emissions were 6.0 ± 4.0 and 6.0 ± 4.6 Tg C yr�1 and biases in bioCO2 were
�9.6 ± 5.6 and 9.5 ± 8.5 Tg C yr�1 in May and November, respectively. In case (b) we added a systematic
+0.5 ppm bias to the flask observations and conducted a flask only inversion, mimicking a systematic error
in flask measurement background subtraction. Here the California total posterior ffCO2 emissions increased
by 6.7 ± 4.1 and 4.1 ± 4.6 Tg C yr�1 in May and November, respectively. Here posterior biosphere exchange

Table 6. Posterior Estimates of Bias in State Total Estimates of Fossil Fuel
CO2 Emissions (Tg C yr�1) Obtained for Inversion Experiments by Using
Vulcan Emissions to Simulate (True) Observations and Prior Predicted
Signals Calculated With Either EDGAR or Flat Flux (1Mmolm�2 s�1)
Emission Mapsa

Prior-True
Exchange

Prior
Uncertainty

Posterior-True
Exchange

Posterior
Uncertainty

May
EDGAR prior 8.6 11.7 �3.1 4.6
Flat flux prior 73.4 42.5 28.9 20.9

November
EDGAR prior 8.2 12.5 �4.7 4.7
Flat flux prior 73 42 4.4 16.4

aIn each case, prior model uncertainty for the 16 regions inside
California is calculated as the difference between the incorrect prior and
true (Vulcan) emissions for that region.

Table 7. Posterior-Prior Estimates of Bias in State Total Estimates of Fossil Fuel and Biosphere CO2 Exchanges (Tg C yr�1)
Obtained for Inversion With Both Flask and OCO-2 Observations Scaled by a Factor of 1.1, Inversion Using Only Flask
Observations Biased by +0.5 ppm, and Inversion Using Only OCO-2 Observations Biased by +0.5 ppm

Fossil Fuel Biosphere

Posterior-True
Exchange

Posterior
Uncertainty

Posterior-True
Exchange

Posterior
Uncertainty

May
x1.1 footprint strength 6.04 4.06 -9.62 5.58
Flask + 0.5 ppm 6.67 4.11 0.23 5.77
OCO2 + 0.5 ppm 2.12 6.82 49.04 23.08

November
x1.1 footprint strength 6.01 4.57 9.51 8.52
Flask + 0.5 ppm 4.14 4.62 3.71 8.75
OCO2 + 0.5 ppm 1.22 7.13 4.93 20.47
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increased slightly by 0.23 ± 5.8 and 3.7 ± 8.8 Tg C yr�1 in May and November. In case (c) we added a systema-
tic 0.5 ppm bias to the OCO-2 observations alone, mimicking an incorrect observational bias correction. Here
statewide California total posterior ffCO2 was biased 2.1 ± 6.8 and 1.2 ± 7.1 Tg C yr�1 in May or November, and
biosphere exchange was biased 49± 23.1 and 4.9 ± 20.5 Tg C yr�1 in May and November, respectively.
Although not shown in the table, we note that adding unbiased flask observations to the test with biased
OCO-2 observations reduced the posterior biases in bioCO2 to <1 Tg C yr�1.

4. Discussion

These simulation experiments suggest that the combination of 14CO2 and total CO2 measurements from
a network of towers and XCO2 measurements from OCO-2 can be effective in improving upon prior flux
estimates for both fossil fuel emissions and net biosphere CO2 exchange in California. Here the towers
provide good coverage of major urban regions of California but comparatively sparse coverage of rural
regions, while OCO-2 provides somewhat more rural coverage. In particular, the posterior uncertainties
obtained from this analysis suggest that the prototype atmospheric inversion system could reduce the
posterior uncertainties in California total CO2 exchange to ~5–14% on the monthly average time scale
with an ability to differentiate true fluxes from incorrect prior fluxes for major emitting regions using
the observation and inversion system, provided that prior uncertainties are not underestimated. We also
found that the posterior flux uncertainties were only moderately sensitive to increases in the prior uncer-
tainty and to increases in the model-measurement uncertainty but that hypothetical biases in bioCO2

and ffCO2 signals created corresponding errors in posterior CO2 exchanges. These last points suggest
that inversions using specified prior uncertainties should include a sensitivity test varying prior uncertain-
ties or use of a hierarchical Bayesian inversion method that allows dynamic adjustment of prior uncer-
tainties [Jeong et al., 2016].

The posterior uncertainty in ffCO2 emissions of 5–6% on monthly time scales suggests that the inversion sys-
tem could be effective in evaluating fossil fuel emission data products and emission reduction policies such
as AB-32 in California, if observations are sustained and systematic errors can be controlled so that uncertain-
ties are reduced over time. For example, the AB-32 emission reduction target is approximately 6% of total
greenhouse gas emissions from 2013 to 2020, while future plans involve much larger emission reductions
for 2030 (40% from 2020 to 2030) and 2050 (80% from 2020 to 2050). In addition, sustained observations will
be needed to capture seasonal variations in fossil and biosphere CO2 exchanges. Although not addressed in
this analysis, targeted satellite observations of XCO2 in large urban environments have the potential to
reduce posterior emission uncertainties [e.g., Kort et al., 2013], though careful attention to bias corrections
and uncertainties will be required.

For bioCO2, the atmospheric inversion system produced posterior uncertainties of 6% to 12% of prior values,
depending on season, suggesting that deployment of the systemwould improve estimates of the net bioCO2

exchange from diverse ecosystems in California, particularly with year-round, sustained measurements. We
note that OCO-2 provides coverage for some regions that are not effectively sampled by towers, likely allow-
ing detection of spatial patterns due to management or climate change mitigation strategies that are not
accurately captured in models for biosphere CO2 exchange. In this respect, future missions such as OCO-3
on the International Space Station, and a recently selected geostationary satellite over the Americas
(GeoCARB), offer the potential to improve spatial coverage of the California and the continental U.S.
[Polonsky et al., 2014].

As emphasized above, systematic uncertainties will need to be carefully controlled to achieve emission
estimates with accuracy of 5% or better. For example, Basu et al. [2016] found that random error in estimates
of U.S. continental annual ffCO2 emissions could be reduced to below 5% by using roughly 400 radiocarbon
samples per month at sites spread across the continental US, such that many areas are more sparsely covered
than in this study. However, the authors found that the systematic difference in emission estimates derived
from two different transport models was greater than 10%. While speculative, some aspects of systematic
bias might be sufficiently similar from year to year that interannual emission trends might be detected.
However, quantifying the sign, magnitude, and stability of systematic biases in regional transport models
at the level of a few percent will be a significant challenge.
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