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Abstract: New forms of data science, including machine learning and data analytics, are enabled by machine-15 

readable information but are not widely deployed in construction. A qualitative study of information flow in three 16 

projects using Building Information Modelling (BIM) in the late design and construction phase is used to identify 17 

the challenges of codification which limit the application of data science. Despite substantial efforts to codify 18 

information with ‘Common Data Environment (CDE)’ platforms to structure and transfer digital information 19 

within and between teams, participants work across multiple media in both structured and unstructured ways. 20 

Challenges of codification identified in this paper relate to software usage (interoperability, translation, modelling, 21 

and file-based sharing), information sharing (unstructured information, document control, workarounds, process 22 

change, and multiple CDEs), and construction process information (loss of constraints and low level of detail). 23 

This paper contributes to the current understanding of data science in construction by articulating the codification 24 

challenges and their implications for data quality dimensions, such as accuracy, completeness, accessibility, 25 

consistency, timeliness, and provenance. It concludes with practical implications for developing and using 26 

machine-readable information and directions for research to extract insight from data and support future 27 

automation.  28 
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 31 

1. Introduction 32 

Machine-readable information is enabling new forms of data science, including machine learning and 33 

data analytics. These methods offer value to the construction sector through resource and waste optimization, 34 

data-driven design, prescriptive analytics for rule checking, visual analytics, performance predictions, operational 35 

analytics, and more (Bilal et al., 2016). Yet the construction sector is not taking advantage of these developments 36 

as data science is not widely deployed. Bilal et al. (2016) have identified poor data management as one of the 37 

main factors which limit the application of data science in construction. The sector is actively trying to overcome 38 

this limitation through Building Information Modelling (BIM), an approach to incrementally building structured 39 

(and, hence, machine-readable) information throughout the project cycle (Eastman et al., 2008; Jordani, 2010), 40 

and where it is machine readable, such structured information could support the use of data science. Recent ideas 41 

such as the ‘digital twin’ are also predicated on the availability of such structured information (both geometries 42 

and behaviours; see Bolton et al., 2018). Research has begun to develop approaches to, and document practices 43 

of, codifying information (to convert it into a structured and machine-readable format) to improve delivery 44 

practices (e.g. in relation to the construction phase (Goedert and Meadati, 2008), workspace planning (Choi et al., 45 

2014), construction defects (Kwon et al., 2014), and lessons learned in a project (Oti et al., 2018)). These studies 46 

have advanced knowledge regarding frameworks and methods to codify construction information. In addition to 47 

these studies, there is a need for work to extend understanding of the issues which prevent codification of 48 

information to improve uptake of data science in construction.  49 

By examining information sharing across projects which use BIM in the late design and construction 50 

phase, this paper aims to identify the codification challenges which arise in practice by examining information 51 

sharing across projects that use BIM. In this paper, codification is defined as the process of conversion of 52 

information into a structured and machine-readable format to support the application of data science. Information 53 

refers to the collection of data contextualized with relevant schema and semantics so that insights can be made 54 

from the data. The codification challenges are the issues which reduce the machine readability and quality of 55 

construction information and, in turn, limit the uptake of data science in the sector. Inspired by work which frames 56 

BIM use as a complex social activity (Cao et al., 2014; Dossick and Neff, 2010), this paper builds on and 57 

contributes to strands in the literature focused on data quality, machine readability, and BIM adoption and 58 

implementation. Data analyses suggest codification challenges which are organizational as well as technical in 59 

nature, relating to software use, information sharing, and construction process information.  60 
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To develop the contribution, the rest of this paper is divided into four sections. Section 2 provides a brief 61 

background on data quality and machine readability in projects and organizational issues associated with BIM 62 

adoption and data quality. Section 3 describes the cases and method used in the study. Section 4 presents the 63 

findings. These findings are discussed further in relation to the literature in section 5, and the conclusions are 64 

presented in section 6.  65 

2. Background  66 

As the construction sector becomes increasingly digital, most information is stored digitally and is 67 

accessible through servers or a common data environment (CDE) held in firms or projects (British Standards 68 

Institution, 2018; Preidel et al., 2016). However, being digitally accessible does not mean that the information is 69 

machine readable as the semantics may not be embedded in the data (Hendler and Pardo, 2012). Semantics could 70 

be derived from the data using advanced machine learning techniques such as natural language processing and 71 

deep learning (Carrillo et al., 2011; Wang, 2017). Nonetheless, this is a resource-intensive process which requires 72 

training models for achieving satisfactory accuracy and has costs associated with it.  The result of this process 73 

may also not be of high-quality (Wang, 2017). Despite the existence of such data-cleaning algorithms across 74 

sectors, poor data quality is costing $3.1 trillion in the United States (Quintero et al., 2015). In addition, the poor 75 

quality of data is increasing operational costs, decreasing revenue, and resulting in missed commercial 76 

opportunities (Loshin, 2010). Within construction, Sacks et al. (2017) have described how the quality of input 77 

information influences semantic enrichment of BIM when using machine learning. Moreover, Farias et al. (2018) 78 

have shown the effects of poor quality data resulting in wrong inferences when they tried to extract building views 79 

using a rule-based method. Whyte et al. (2016) articulated how managing change in large datasets becomes a 80 

focus in an era of ‘big data’ in which project information is increasingly characterized by volume, velocity, and 81 

variety. Recent work has further characterizes such data as also including characteristics of veracity and value 82 

(e.g. Younas, 2019). These issues of data quality occur because construction data is heterogeneous, and its veracity 83 

is not always known. Data cleaning related to the variety (heterogeneity) and veracity characteristics of big data 84 

is especially difficult when compared to data cleaning related to other characteristics such as volume and velocity 85 

(Fan, 2015; Janssen et al., 2017). Therefore, there is a need to keep the data of the highest quality and in a machine-86 

readable format (maintaining the data relationships) as far as possible to have the best inferencing.  87 

2.1 Quality and machine readability 88 

What constitutes a good quality dataset? According to Wang and Strong (1996), a good quality dataset 89 

is the one that has enough information embedded in it for a particular use by the user. Researchers have set out 90 
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multiple dimensions to assess the data quality concerning big data analytics (Batini and Scannapieco, 2016; Cai 91 

and Zhu, 2015; Delone and McLean, 2014; Naumann and Rolker, 2000; Wang and Strong, 1996). For this paper, 92 

the focus is on the following data quality dimensions based on Batini and Scannapieco (2016) as they best reflect 93 

the implications of codification challenges. Accuracy is the closeness of the measured/represented data and reality. 94 

There are two kinds of accuracies: semantic and syntactic. Semantic accuracy relates to the closeness of the data 95 

value to reality, whereas syntactic accuracy refers to the closeness of the data representation to the expected data 96 

type/model. Completeness is the measure of information content present in the data compared to the extent of 97 

information content required to be present in the data to perform a particular task. Temporal dimensions refer to 98 

currency, volatility, and timeliness. Currency relates to the promptness of data updates. Volatility refers to the 99 

frequency at which the data variance occurs. Timeliness refers to the suitability of the current data to perform a 100 

task. Consistency refers to uniformity and constancy of data with respect to the semantic rules defined over 101 

multiple data items. Accessibility refers to the ability of data to be accessed by a user (human user or computer 102 

program) and generate information from it. Data provenance is the description of the origins of data and the 103 

process by which it is manipulated. Jayawardene et al. (2015) have conducted a systematic literature review on 104 

the extensive data quality dimensions and consolidated overlapping dimensions of quality. This means that some 105 

of the data quality dimensions are interdependent. For example, the data quality dimension related to semantic 106 

accuracy might depend on the timeliness dimension as the data may be accurate with respect to time. However, 107 

the same value may be inaccurate at a different time. At the outset, a dataset is considered to be of good quality 108 

when the measure of these dimensions is high, leading to better inferences. 109 

What constitutes machine-readable data? Data in a structured format that could easily be processed by 110 

computers are considered as ‘machine-readable’. Berners-Lee ( 2006) has stated a set of’ ‘rules’ for creating 111 

structured data so that it can be connected and interpreted easily by machines. The first one is to index the data to 112 

make it digitally accessible by storing it on online servers so that it can be easily accessed by computers as well 113 

as people. This relates to the accessibility dimension of data quality. Indexing the data and storing it online 114 

increases the accessibility as it is easy to find. The second rule is to structure the data with relevant schemas for 115 

easy interpretation by machines. This step makes the data structured such that semantic relations are embedded 116 

within it, resulting in better inferencing and, thus, improving the syntactic accuracy of the data. The third rule is 117 

to make the schemas public and machine readable by using open-source schemas to describe the data model so 118 

that interpretations can be made by computers without any proprietary data interfaces. Proprietary data formats 119 

limit data inferencing as the schema by which data is modelled is only accessible to few applications. Therefore, 120 
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using open-source schema would increase the measure of accessibility dimension as more applications can use 121 

the open schema to derive the context of data for inferencing. The last rule is to link the data with other datasets 122 

so that better inferences can be made by deriving the context information. This improves the consistency 123 

dimensions of data quality as the same data is linked to multiple datasets. Linking would ensure that there are no 124 

conflicts in the data about a concept stored in multiple databases. Based on these rules, structured information can 125 

be classified into five types in the increasing order of machine readability, as shown in Table 1. Increasing the 126 

machine readability of the data, in turn, increases the data quality as the dimensions relating to accessibility, 127 

accuracy, and consistency are improved in the process.  128 

<<Insert Table 1>> 129 

2.2 Limits of existing research 130 

What is limiting the generation of good quality machine-readable information within the sector? It does 131 

not appear to be technical development as novel technical solutions are being developed by construction 132 

informatics researchers with a focus on the integration of data in the sector, for example, through the use of data 133 

standards (Krijnen and Beetz, 2017; Pazlar and Turk, 2008), cloud-based BIM (Beetz et al., 2010; Singh et al., 134 

2011; Zhang et al., 2017), and linked-data technologies (Kim et al., 2018; Pauwels et al., 2015; Pedro et al., 2017, 135 

Zhang and Beetz, 2015). It does not appear to be policy interventions either. Standards and public mandates have 136 

placed BIM at the heart of the information management required to coordinate processes in project delivery and 137 

operation of infrastructure, making BIM central to digital tools and workflows in projects ( British Standards 138 

Institution, 2018; Sacks et al., 2018). Instead, the literature suggests that the issues may be both organizational 139 

and technical in nature. 140 

Prior research has assessed BIM adoption across different markets, using a model of diffusion area, 141 

macro-maturity components, macro-diffusion dynamics, and so forth, and validated this model by applying it to 142 

assess BIM adoption amongst 21 countries (Kassem and Succar, 2017). This work has determined the BIM project 143 

objectives, critical success factors, and operative critical success factors for effective implementation of BIM 144 

(Chegu, Badrinath, and Hsieh, 2019). It has identified the success factors for adoption of BIM in a company, 145 

selection of projects within the company to implement BIM, and selection of BIM services and software (Won et 146 

al., 2013). It has surveyed the degree of implementation of BIM statistically by evaluating the level of BIM 147 

implementation and quality of collaboration and communication in BIM-enabled projects, and linking discussing 148 

its influence on uptake of integrated delivery systems (Chang et al., 2017), and developing strategies for using 149 

BIM to reduce rework in construction (Hwang, et al., 2019) and improve collaboration through the development 150 
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of BIM-based platforms by analyzing requirements and details of elements needed for a collaborative work model 151 

(Zhang et al., 2017). In addition, Gu and London (2010) have created a collaborative BIM decision framework to 152 

facilitate BIM adoption through a four-part method. The framework first defines the scope, purpose, roles, 153 

relationships, and project phases, followed by developing a work process roadmap, identifying the technical 154 

capabilities and the limitations of tools, and finally customizing these to suit the capabilities and skillsets of the 155 

project team. Building on this study, Singh et al. (2011) have determined technical requirements for a BIM server 156 

to serve as a collaboration platform. These studies have extended the existing knowledge base, and they give a 157 

deeper understanding of the problems associated with BIM implementation, and suggested steps for the effective 158 

implementation of BIM. However, data quality issues emerging from the problems associated with BIM 159 

implementation is relatively less studied. 160 

Previous research on data quality within the construction sector has studied semantic and syntactic 161 

accuracy of BIM, BIM quality assurance processes for the design stage and data quality issues in the design model, 162 

and completeness of information in BIM for facility management. Solihin et al. (2015) have identified 163 

requirements for good quality for BIM in an Industry Foundation Class (IFC) format. Building on this study, Lee 164 

et al. (2018) have presented a semantic rule-checking process to ensure data quality pertaining to semantic and 165 

syntactic accuracy is maintained whilst BIM in an IFC format is exchanged. In another study, the quality of the 166 

information in the design phase was assessed using a structured and quantifiable process based on a BIM quality 167 

assurance by Donato et al. (2017). Mirarchi and Pavan (2019) have analyzed the data quality issues concerning 168 

accuracy, consistency, and completeness dimensions of the BIM models created during the design. For facility 169 

management, Zadeh et al. (2017) have proposed a framework to assess the quality of BIM, focusing on the 170 

completeness dimension. These studies have advanced the knowledge on data quality issues associated with BIM 171 

models. Aa limitation of these studies is that they do not address the data quality issues emerging due to the wider 172 

practice of using document-based and model-based information sharing in the sector.  173 

To address the data quality issues emerging due to such document-based and model-based information-174 

sharing practices, it is necessary to study information flow across project teams in detail. By better characterizing 175 

the practice, such empirical work can then inform future technical developments (e.g. Hartmann, 2008) and 176 

address challenges raised in prior work in areas such as automated scheduling (e.g. Han and Golparvar-Fard, 177 

2017). Previous research on the use of BIM in organizations articulates antecedents to BIM uptake (Taylor, 2007) 178 

and identifies organizational issues which affect BIM implementation, such as organizational divisions (Dossick 179 

and Neff, 2010). It describes how practices are always ‘hybrid’, overlaying a range of old and new media and 180 
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processes (Harty and Whyte, 2010; Whyte, 2011), with the roles of construction professionals also evolving 181 

(Akintola et al., 2017; Jaradat et al., 2013; Sebastian, 2011). Such work draws attention to the organizational 182 

factors associated with information use, whereby technological integration cannot be assumed to foster closer 183 

collaboration across companies (Dossick and Neff, 2010). This literature, which understands BIM use as a 184 

complex socialized activity (Cao et al., 2014), provides an approach that can be used to study the codification 185 

challenges and design quality issues which emerge in leading practice.  186 

 187 

3. Research method 188 

To understand the challenges of codification in construction, three construction projects are studied 189 

qualitatively to investigate the digital tools and workflows used in the projects, structured and unstructured 190 

information flows in these projects, and the problems associated with the information flow. These three leading 191 

projects are a multi-storey residential student apartment block in the United Kingdom (Case 1), a metro rail 192 

infrastructure project in India (Case 2), and a major water infrastructure megaproject in the United Kingdom (Case 193 

3). The multi-storey residential apartment project (Case 1) is an exemplary project exhibiting the use of BIM in 194 

the United Kingdom, constructed by a leading contractor and using state-of-the-art offsite manufacturing 195 

approaches in construction. The metro rail project in India (Case2) is pioneering BIM implementation amongst 196 

the metro projects in India, incorporating learning on digital implementation from global megaprojects. The water 197 

infrastructure project (Case 3) is one of the biggest construction projects in the United Kingdom, using innovative 198 

technological solutions to futureproof construction and deliver a physical asset as well as a digital asset for 199 

operation. Early in the study, the first author, who collected the data, also visited another infrastructure project 200 

and a commercial retrofit project, and these three projects were then chosen due to their significance and because 201 

they use a level of digital collaboration categorized as BIM level 2. These projects follow the BIM level 2 202 

recommendations set out by the mandate (it is mandated in Case 3 and seen as best practice in the other cases). 203 

Although the metro rail project (Case 2 is in a country which does not have a regulatory framework for BIM level 204 

2 recommendation, the owner required the adoption of BIM level 2 as international best practice, which justifies 205 

our choice for selecting the case. Information sharing across project teams in the late design and construction 206 

phases of the three projects is studied qualitatively by visiting the projects, analyzing internal and publicly 207 

available documents, observing meetings, and conducting informal and formal interviews on the use of product 208 

and process information during the construction stage (refer Appendix 1).  209 



 

 

8 

 

Within each project, there was an initial setup meeting to present the study and identify interviewees. 210 

The interview protocol covered questions of communication, software tools used, BIM, collaboration, and 211 

information flow. The data analysis phase overlapped with the data collection phase. The taped interviews were 212 

transcribed, and field notes were typed up. These were read and reread between the project meetings. Summaries 213 

of interviews were sent back to the interviewees for member checks. All the data was organized into cases and 214 

stored into the qualitative analysis software. These methods draw on a qualitative case study approach (Eisenhardt 215 

and Graebner, 2007), building insights across the three cases from multiple sources (site visits, documents, field 216 

notes, and interview transcripts).  217 

• Multi-storey residential student apartment block in the United Kingdom (Case 1): To study this case, the first 218 

author visited the construction site and offices of the projects, had informal conversations with the digital and 219 

planning engineers, examined construction documents and models, and studied the software tools used to 220 

understand the information embedded in the BIMs, construction schedules, and other reports such as design 221 

calculation, method statements, and so on. These documents were centrally hosted on a CDE, and the first 222 

author had access to it whilst being there at the office.  223 

• Metro rail infrastructure project in India (Case 2): To examine this case, documents such as the BIM execution 224 

plan, presentation documents for training, and press releases were studied to understand digital information 225 

management practices. The project manager, chief site engineer, casting yard engineer, and BIM consultants, 226 

who form a cohort of the key decision makers during the construction stage, were interviewed informally to 227 

get an insight into the extent of codification in the information flow during their daily work practices. Field 228 

notes were taken during the interview. In addition to these interviews, the casting yard, viaduct construction 229 

site, and a station site were visited to understand the on-ground practice of various activities. Further insight 230 

into this case was obtained through a workshop, co-organized by the authors, with 40 participants, including 231 

client representatives of six major Indian metro-rail projects along with technology providers and delivery 232 

teams. The workshop provided a perspective on the digitization of this project in the broader landscape of 233 

Indian metro rail construction.  234 

• Water infrastructure project in the United Kingdom (Case 3): To understand the codification challenges in 235 

this case, eight semi-structured interviews were conducted. All eight interviewees had more than ten years of 236 

experience in the construction sector and had worked with different major projects in the United Kingdom 237 

and abroad. The interviewees’ areas of expertise covered design, planning, project engineering, digital 238 

engineering, prefabricated construction, and information management. All interviewees had teams working 239 
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with them on their areas of specialization and also interacted with the other stakeholders in the project. These 240 

characteristics make them ideal for case-based research. Following the semi-structured approach ensured 241 

participants would talk broadly on their experiences with information flow using digital collaboration tools. 242 

Seven out of the eight interviews were recorded, and transcripts were made from the recordings. In addition 243 

to the interviews, the first author conducted multiple visits over two weeks to the project office, observing 244 

meetings and the work practice. The first author also had access to CDE and documents such as a construction 245 

programme, look-ahead schedule, and method statements.  246 

Data analysis took place in three steps. First, each of the cases was separately analyzed. Second, the cases 247 

were compared and contrasted. The initial analyses were conducted during data collection, so early analyses 248 

focused and directed later data collection. The ‘within case’ analyses and the ‘cross-case comparisons’ also led to 249 

an iteration between these steps of data analysis as the comparison across cases was instructive in directing 250 

analytic attention within cases. Finally, the third step was a more in-depth analysis of the third case study (for 251 

which there was more detailed information).  252 

A starting assumption of this current study is that there are data quality issues caused by the way digital 253 

tools and workflows are used in late design and construction stages. This research thus addresses the questions: 254 

How do codification challenges arise because of the different digital workflows and working practices across 255 

projects? How do these lead to data quality issues? ‘Within case’ analysis of the multi-storey student apartment 256 

raised issues of data interoperability, information loss, use of 2D CAD, and lack of detail in the schedule. In the 257 

metro rail project, the issues of data interoperability, use of 2D CAD, and lack of detail in the schedule were also 258 

present, but there were also issues of unstructured communication channels, document control, and lack of skills 259 

to adopt digital technologies. In the water infrastructure project, additional issues were identified concerning 260 

problems with CDE, lack of process codification, and long processing times. In the water infrastructure project, 261 

the design workflow, work package plan, construction programme, BIM models, and drawings in the CDE were 262 

studied to understand the level of detail and machine readability of the documents. Coding was done on the field 263 

notes and interview transcripts to identify different issues related to codification and information sharing. The 264 

software was used to track the patterns emerging from these data. These codes were organized to find themes. 265 

The identified themes were then analyzed based on the data quality dimensions to understand their implications 266 

about data quality.  267 

 268 
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4. Codification challenges in construction  269 

Table 2 summarizes the codification challenges observed from studying the projects. Low machine 270 

readability of data is a significant challenge for codification, which was observed across the projects. Product 271 

information is well codified through BIM, CAD drawings, analysis models, and so on in all the projects. However, 272 

the codified information is distributed amongst different formats and databases, limiting the application of 273 

analytics. In addition, multiple modes of communication, multiple CDEs, and lack of process change also limit 274 

the codification of information in the projects studied. Different codification challenges observed in the cases have 275 

been mapped in Table 2. These topics are discussed in detail in this section.  276 

<<Insert Table 2 here>> 277 

4.1 Software usage  278 

This section presents the codification challenges related to software usages such as interoperability, 279 

information loss during conversions, and multiple modelling techniques during the late design and construction 280 

phase. The implication of these challenges on the data quality with respect to dimension accuracy, completeness, 281 

accessibility, and data provenance is explained in this section. 282 

4.1.1 Interoperability 283 

Interoperability was raised as a central problem by the interviewees, especially when working with 284 

multiple CAD tools in projects, resulting in data loss during format conversions. Even within the same software 285 

environment, there are problems related to data compatibility whilst working between different software versions.  286 

“Sometimes the drawings where I am using this MicroStation, but sometimes they were drafted from 287 

the client, let’s say, in Autodesk. And transferring things from Autodesk to MicroStation, you lose 288 

data […] the 2019 will open the 2018, 2017, and 2016. But when the 2020 comes into play, then you 289 

cannot open it anymore with the 2019 files that are generated with the 2020” (Technical manager, 290 

C3I5) 291 

Here, the drawings are made using different CAD tools such as AutoCAD and MicroStation. However, the data 292 

may not be opened (or edited) using the same tools with which they were created. This creates problems of 293 

interoperability and loss of information when data in one format is converted to another. Similar problems also 294 

occur when using multiple versions of the same tool. 295 

This issue was observed in all three cases but at different scales. Uneven distribution of tools would result 296 

in issues of data interoperability. The student apartment (Case 1) and the metro project (Case 2) had predominantly 297 

used tools from a single software vendor (Autodesk for the student apartment and Bentley for the metro project) 298 
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for executing most of their tasks, resulting in better interoperability when compared to the water project (Case 3), 299 

which uses tools from different software vendors. The scale of the project has an influence on this diverse 300 

distribution of software use. The scale of the student apartment was smaller than that of the metro and water 301 

projects, with a leading firm involved in both design and construction, resulting in evenness of software usage 302 

(contractor office visit, C1S1). Even though the metro project had different firms engaged in design and 303 

construction, the information management was handled by an owner support organization, resulting in evenness 304 

in the data (BIM consultant 1, C2I4). The water project, on the other hand, had multiple firms working on different 305 

phases of the projects with their own sets of tools, resulting in issues of data interoperability (digital engineer, 306 

C3I3).  307 

Data interoperability is a significant problem when it comes to data quality and machine readability. If 308 

the data is locked to a proprietary format, it limits the application of data science. Software vendors provide a 309 

proprietary Application Program Interface (API) to access the data. However, access to the data through APIs is 310 

limited, and information access is limited to proprietary domain-specific programs. This limits data science as 311 

different systems cannot talk to each other and derive the context from the information. Although there are open-312 

data formats available for the exchange of information, these are not often used in the construction phase and are 313 

only submitted at specific data drops. Evidence also shows that there is a loss of information when converting 314 

between formats because of inefficient exporters and importers. This problem reflects data quality related to the 315 

accessibility dimension. As long as this data remains inaccessible, algorithms make inferences with limited data, 316 

resulting in incomplete inferences. 317 

4.1.2 Information loss during the conversion  318 

For structured information flow through a CDE, the files are converted to a PDF format. The original file 319 

may be uploaded as a supporting document, but this is not a necessary requirement.  320 

“If we’re conveying CAD information, it’s being uploaded as a supporting file. There’s a facility in 321 

[CDE1] that when you upload a PDF, you can also upload a secondary file.” (Information manager, 322 

C3I4) 323 

The student apartment and the water project followed a workflow which required documents to be 324 

uploaded as a PDF to the CDE, resulting in the loss of information during conversions (access to CDE C1D4, 325 

access to CDE1, C3D2). However, the metro project used a workflow without this requirement, resulting in 326 

retaining the information (digital project management, C2D2). 327 
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The conversion from native formats to a PDF format results in the loss of semantic relationships 328 

embedded in the file. The loss of the semantic relationship between datasets results in data silos and limits machine 329 

readability. This aspect of the loss of information results in incomplete information and lowers the data quality 330 

related to the completeness dimension. Furthermore, during the conversions, the metadata related to the original 331 

file is lost. This lowers the data quality dimension associated with data provenance. 332 

4.1.3 Multiple modelling techniques 333 

Software tools allow different methods for creation of information. However, not all methods lead to the 334 

information being reusable. The modelled information would have multiple uses, which may not be known to the 335 

creator of information.  336 

“So, if they use the wrong tool to model something, you don’t have the appropriate dataset to it [...] 337 

when you go into your authoring tool, do I use a slab tool or do I go and use a generic solid 338 

modelling tools then try and attach a dataset to it[…]if they’re not, therefore we have to go in there 339 

and say, well I can’t just say there’s a slab now, that’s just a piece of geometry” (Digital engineer, 340 

C3I3) 341 

For example, a slab could be modelled as a generic solid model with a dataset attached to it or as a slab component. 342 

From the human point of view, the information contained in both models is the same. However, during automated 343 

quantity take-off, the slab modelled as a generic solid would not be considered as the computer cannot classify it 344 

as a slab.  345 

“For tunneling purposes, when you try to extract 2D drawings from 3D BIM models, those drawings 346 

are not as correct and as detailed as they used to be. They have glitches, they have errors” 347 

(Technical manager, C3I5) 348 

This issue was observed predominantly in the water project. Limited observation of this issue in the student 349 

apartment and the metro project can be attributed to the absence of multiple firms in modelling the data.  350 

Organizational divisions in large projects lead to lower machine readability and data quality because of 351 

differences in modelling approaches and software tools used. Software tools offer different approaches to model 352 

the same information at the same level of detail. Moreover, modelling approaches used by the firms are guided 353 

by the norms and practices followed in the firm. These norms may be different for the firms who use the data. 354 

Whilst examining the cases of the student apartment and metro project, where the information modelling is 355 

performed by a single firm, the issues such as interoperability and improper modelling of information were limited. 356 

However, in the water project, where the information modelling spanned over different firms, there was evidence 357 
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of issues of interoperability of data and improper information modelling. Therefore, the information created could 358 

be used as a digital submission but limits further use. Even when the information is present in the model in the 359 

correct format, the level of detail of the modelled information is less than desired, making the information not fit 360 

for further use. This problem reduces the quality of the data concerning accuracy and completeness. The fact that 361 

the data exists but not in the way it was supposed to be a case of syntactic inaccuracy.  362 

4.2 Information sharing  363 

This section presents the codification challenges in construction, such as unstructured information 364 

sharing, drawing and file-based sharing, document control issues, and lack of process change. The implications 365 

of these challenges on the data quality dimensions are presented in this section.  366 

4.2.1 Unstructured information sharing 367 

Information shared over modes such as meetings, reports, e-mails, etc., contains relevant data for decision 368 

making. This information is embedded in documents, is shared in a human-readable format (documents, 369 

PowerPoint presentations, drawings, etc.), and is in formats which are both human and machine readable (e.g. 370 

spreadsheet, BIM, etc.). The main limitation of the information shared through these unstructured channels is its 371 

accessibility, which is limited to people involved in the meeting or e-mail conversation.  372 

“A guy made a design on a spreadsheet for quantities. Some people knew about it; he logged it as 373 

well. And I didn’t know that at all. So, at the very end of the day, on the eleventh hour when I have 374 

finished everything, by the way, we have this spread sheet, and it’s exactly what I wanted to do” 375 

(Technical manager, C3I5) 376 

In this case, the information required for a task was already available. However, it was not accessible for the 377 

person who needed it, who was not part of the group within which the information was shared. This led to the 378 

recreation of the information and loss of productive time. The unstructured information-sharing issue was 379 

observed in all cases. The office visits in the student apartment (C1S1), meetings with project participants in the 380 

metro project (C2I1, C2I2, C2I3), and interviews with participants in the water project (Table 3) revealed the 381 

problem of unstructured information in the projects.  382 

<<Insert Table 3>> 383 

Even when there are structured workflows for information sharing, project participants find it easier to use 384 

the unstructured channels of communication. They often find structured information flow through the CDE slow 385 

and complicated. Despite being more traceable and accountable compared to unstructured information-exchange 386 

practices, the complexity of the new structured methods for information sharing and the poor understanding of 387 
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workflows across the teams lead to the use of a combination of structured and unstructured channels for 388 

information sharing. This issue, however, has an implication on data quality, lowering it with respect to the 389 

accessibility dimension since data is not available in a common repository. Instead, it is distributed in different 390 

silos and e-mail databases, and the access is limited. In addition, it introduces inconsistency as the same 391 

information is distributed amongst different databases which are not connected or synchronized. Tracing the 392 

source of the data and its history is also difficult when using unstructured channels for information sharing, thereby 393 

reducing the quality of data associated with the provenance dimension. These issues limit the data science as the 394 

datasets for drawing inferences are siloed and disconnected.  395 

4.2.2 Drawings and file-based sharing 396 

Even though the projects follow BIM level 2, the engineers interviewed are more comfortable performing 397 

submissions and approvals using drawings rather than model-based information sharing. This is mainly because 398 

they find it intuitive to use drawings. 399 

“I use, I’m not very good at, but I use all the navigator tools that we’ve got here. But I prefer to use 400 

AutoCAD because I find it a lot easier” (Project engineer, C3I1) 401 

Despite having a BIM coordination tool, Bentley Navigator, the project engineers resort to using the CAD tool 402 

because they find it easier. In the contractor’s offices of the projects studied, the engineers had drawings on their 403 

desks and the CAD software opened on the monitors. If they find errors in the drawings, they modify and edit 404 

them first on paper and then on the computer. 405 

“Because I have to open up every drawing individually and print them all, or even if you do it the 406 

other way around, it’s very slow anyway. And then, once I’ve printed them, reviewed them all, you 407 

could do it on there [computer] but it’s not the best way because we haven’t got the technology. I 408 

haven’t got a big screen” (Project engineer, C3I1) 409 

The engineers use laptops with small screens. Some of the hot desks have an additional screen; however, these 410 

were also small (less than 23 inches). This is highly inconvenient when reviewing large drawings as they pan and 411 

zoom to detect mistakes. This issue was also observed in the student apartment and metro projects.  412 

During the visit to the contractor’s office (C1S1) in the student apartment, the first author observed multiple 413 

discussions between engineers using drawings as a common representation medium. On the site, a tablet-based 414 

application was used to open the drawing. Similarly, in the metro project, the workflow for design, review, and 415 

approval (C2D2) presents how drawings are reviewed and processed using the CDE. Such evidence points towards 416 

the drawing and file-based information sharing in the construction phase.  417 
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The file-based sharing impacts the data quality dimensions associated with temporality and consistency. 418 

Most of the file-based manipulations happen within the computer and are uploaded only when complete. Hence, 419 

there is a mismatch between the rate of the volatility of data and currency of data. The volatility is high as the data 420 

is manipulated on the users’ desks (for example, they are manipulating the information in a printed drawing). 421 

However, the currency of the data is low as it is uploaded as a batch. That means the data is updated at a lesser 422 

speed than it is varied. This has an implication on the data quality associated with the timeliness dimension as the 423 

data in the CDE is not the latest version. File-based sharing impacts consistency too. The files act as individual 424 

entities and have information from related files in them. Unlike a model, this information is not connected. 425 

Therefore, when the source is updated, the information in the file may not be updated, which introduces 426 

inconsistency problems. 427 

4.2.3 Document control bottlenecks 428 

Document control plays a vital role in the flow of structured information in the projects, and document 429 

control professionals are tasked with managing the access, version control, and availability of documents. Before 430 

being uploaded to the CDE, such documents must be approved by the relevant authority (depending on the 431 

document). The quantity of documents uploaded to CDEs in the projects studied is enormous, and in each project, 432 

processing information becomes a significant task, with bottlenecks in the process leading to workarounds and 433 

data quality issues. As the authorization of documents is limited to specific individuals, they tend to get asked for 434 

a huge volume of authorizations, and this slows down the information flow. 435 

“So, there’s certain people who are responsible for issuing information or authorize certain 436 

communications, and if they’re not available then things can stop. Or they may have a high volume 437 

of these authorizations to do that it takes them a lot of time to get through” (Project planner, C3I2) 438 

This process of authorization means that multiple versions of designs can be circulating in different parts of the 439 

project. For example, whilst one design is in use by the construction team, in the meantime, the designers could 440 

have progressed the design, and the latest design is not uploaded as it is in the queue to get approved.  441 

“Design teams and checkers and approvers could be progressing designs but then it’d be held up 442 

when someone say high up needed to actually approve the whole design” (Digital engineer, C3I3) 443 

“It’s just making sure that I’m getting the latest information and no-one’s updating it in the 444 

background and then the right versions are going onto [CDE1] […] it’s no longer the most current 445 

version anymore by the time I’m reviewing it” (Project engineer, C3I1)  446 
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“[…]when this revision has been updated from the designer to revision 10 and I sit here on my desk 447 

checking the revision 1 and the designer has the revision ten, then that revision 10 is internal […] 448 

because he keeps on updating but he hasn’t he hasn’t put it on the [CDE1].” (Technical manager, 449 

C3I5) 450 

This shows that the information available in the CDE is not the latest version, thereby reducing data quality 451 

associated with the timeliness dimension. The CDE has provisions for labelling status of a document as work-in-452 

progress. However, even with that, it is hard to ascertain whether the information at hand is the latest as the work-453 

in-progress documents can only be accessed by internal teams. This accessibility becomes a dimension of data 454 

quality which such approval processes make challenging. Additionally, even when the information is internally 455 

approved, it does not get stored on the CDE. Another approval is necessary to share the information with other 456 

stakeholders, thus limiting other stakeholders and algorithms from accessing this information for further decision 457 

making. In the metro project, an innovative approach to address this issue for drawings was implemented, placing 458 

a quick response (QR) code (a matrix barcode) in the document and a mobile app to scan the QR code and inform 459 

the user whether the drawing is the latest version or not. However, the document status must be continuously 460 

updated to make this useful and is limited to the issued drawings and not the work-in-progress drawings. 461 

Although it seems to be straightforward from the outset, many users find document control frustrating 462 

because submission ends up being a long process even when all the attributes are correct. For example, engineers 463 

submit the packages to the document controller in their firm, who sends it to the document controller in the other 464 

firm (receiving end), which is then sent to the team lead and, finally, to the user who would get the useful 465 

information out of that package. This is a long process with checks and iterative cycles involved in each stage. 466 

The document controller makes sure that the files in the CDE have the relevant attributes before they are published 467 

in the CDE. If there are missing attributes, the submission is rejected. In the case of a Request For Information 468 

(RFI), if the document controller does not understand the request, it gets rejected. At times, it takes more than two 469 

to three weeks for the document to reach the recipient whilst following the document control workflow. This is 470 

essentially slowing down the whole information flow by implementing a system which was supposed to speed up 471 

the process.  472 

“It took us three weeks to actually get the package with all the right documents and revisions in 473 

there, and that’s a long time; again […] I gave it to my document control and my document control 474 

sent it to the other company’s document control, the document control there sends it to whoever the 475 

lead is, and the lead then sends it on to whoever’s doing the work – and that may take a week or 476 
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two. And that’s completely wasted time, and no one in the middle of that process has done any 477 

work[…] And actually, by the time it gets to the people who are reviewing the actual technical data, 478 

it may be three or four weeks later […] In fact, I did it yesterday, I sent a load of RFIs through to 479 

[designer] informally, five minutes after I'd sent it through my document control.” (Principal 480 

engineer, C3I8) 481 

To bypass this obstacle, workers send the information through an unstructured channel in addition to the structured 482 

workflows. This is because of poor understanding of document control workflows amongst the project participants 483 

regarding the requirement of these structured workflows and the CDE. The slow processes and the need for 484 

completing the task before deadlines force employees not to follow document control workflows.  485 

“There is generally a poor understanding of document control requirements, certification 486 

requirements […] we’re finding that general good practice that people should have brought with 487 

them from other projects is being conveniently put to one side for the purposes of expediting the 488 

work that people are being asked to do” (Information manager, C3I4) 489 

In addition, the workflows in the CDE are complex and not intuitive, making it difficult for users to follow the 490 

protocols for document control.  491 

“Just because of the way they need to store it in certain places and stuff like that, and it can’t be 492 

done… The way that [CDE1] is set up here, I believe it is not easy to use” (Project engineer, C3I1) 493 

“It seems very complex, you open them up, there’s lots of things going on […] I just want to know 494 

where I can get my latest drawing” (Digital engineer, C3I3) 495 

This has resulted in employees bypassing the workflow, which leads to system conflicts and further delays in the 496 

processes and, at times, in the information being stored on the CDE.  497 

“I think someone within the doc management system had obviously circumnavigated it somehow, to 498 

get the drawings out. And then when we were trying to get the said revisions for our set out, the 499 

system wouldn't allow it because directory hadn't been properly created.” (Technical manager, 500 

C3I5) 501 

Not following the document control workflows leads to information loss in the CDE. This is a major setback to 502 

codification as the data is stored in an unstructured way which is difficult to access. This problem was found in 503 

the metro project as well. Conversations with the project manager (C2I1), chief site engineer (C2I2), and BIM 504 

consultants (C2I4, C254, C2I6) revealed that the project team weren’t exposed to structured information flow 505 

used with digital technologies in the past. This made the implementation of CDE-based structured workflows 506 
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difficult despite the training given to the participants, resulting in a combination of structured and unstructured 507 

workflows in the project. 508 

The complexity of workflows and document control measures has implications for data quality. There are 509 

shared norms, values, and expectations for the users regarding the tools, such as speed, easy communication, 510 

transparency, and so on, which were developed based on their previous experiences of collaboration. When the 511 

new tool does not meet the expected qualities, it reduces their productivity, and users move back to the older ways 512 

of information sharing to expedite the task. When users find it difficult to utilize the CDE for structured 513 

information flow, they bypass the workflows to get the work expedited. This leads to the loss of metadata, 514 

document trails, and information dependencies as these unstructured communication channels offer limited or no 515 

codification. In addition, the document control workflow itself makes the process slow. Document control 516 

bottlenecks have multiple implications for data quality. Firstly, the value for the timeliness dimension is lowered 517 

as the data which is published might not be the latest. Hence, the inferences are based on old data, which leads to 518 

false interpretations. Secondly, this lowers the semantic accuracy of the data as its attributes might no longer be 519 

true. This also introduces the problem of consistency. Depending on which database employees look at, they see 520 

different values. For instance, one CDE to which the information was packaged would have the latest value, whilst 521 

the one which must go through another document controller would have a different value. This tampers with the 522 

idea of a ‘single source of truth’. In addition, when users circumnavigate the workflow, there are more data quality 523 

issues related to unstructured information sharing such as accessibility and provenance.  524 

4.2.4 Lack of process change 525 

Even though structured information flow is digitized through the introduction of a CDE, the process 526 

enabling information flow remains unchanged. For example, for a piece of information to be approved, it must be 527 

printed, associated with a cover sheet, and signed.  528 

“We’re actually going to export that out of the CDE, we’re going to print it out, we’re going to 529 

staple it together, we’re going to put our own cover sheet on the front of it, with the exact same 530 

details on the back and we’re going to go off and go and get three signatures, scan it back in, put it 531 

back into [CDE1] and submit it.”(Project engineer, C3I1) 532 

Printing and scanning the document results in loss of metadata. A scanned document in a PDF format has little 533 

machine-readable information in it. Inferring the contents from a scanned document is also resource intensive 534 

when compared to its original form. In the process of printing and scanning, the content becomes digitally 535 

accessible but not machine readable, thereby limiting the application of data science.  536 
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“What I'm finding now is it’s not actually speeding everything up, it’s sort of making everything a 537 

lot slower; which I find very frustrating” (Principal engineer, C3I8) 538 

The lack of change in the processes reduces the value in the adoption of a CDE as it increases the time to do these 539 

tasks rather than a total reduction in time.  540 

In the water project, three CDEs were used for the project, which created issues such as double handling, 541 

data inconsistencies, and so on. The presence of multiple CDEs in a project is another example of the lack of 542 

process change. Multiple CDEs resembles the paper-based workflows such as document flows between the 543 

designer and contractor, another set of document flows within the contractor’s office, and another set of document 544 

flows to the clients for approvals.  545 

‘Our client prefers [CDE1], and we have the designer who stores things in [CDE2], so we have 546 

both of those tools, and we have to balance between those two. That can be very confusing when we 547 

have two platforms’ (technical manager, C3I5). 548 

For the information submissions to the clients, CDE1 was used; for the information from the design consultants 549 

to the contractor, CDE2 was used; and for internal file handling and sharing with the contractor, CDE3 was used. 550 

CDE1 and CDE3 came from the same vendor. However, CDE2 was from a different vendor.  551 

“Everything had to be taken out of one data environment and pushed into another. One of the issues 552 

with that is the consistency or the compliance or knowing the latest versions of information” (Digital 553 

engineer, C3I6) 554 

The existence of multiple CDEs within a project introduces the problem of data inconsistencies. Documents must 555 

be taken out of one CDE and placed in another. When the volume of information is huge, with each file having 556 

multiple versions, it is difficult to maintain consistency of documents across multiple CDEs. This means that 557 

information in a CDE might not be accurate and up to date, leading to incorrect interpretations when data analytics 558 

is performed on it. 559 

“As the contractor, then we have to deliver it to a completely separate, disconnected CDE […] 560 

we’re double-handling” (Digital engineer, C3I3) 561 

When the CDEs are disconnected, the document trail is lost when a document is moved from one CDE to another, 562 

leading to the loss of traceability.  563 

Lack of process change has multiple implications on data quality as well. Printing and scanning remove 564 

metadata and data relationships from the files. A scanned version of the file would also have very little machine-565 

readable information embedded in it and would require resource-intensive methods to extract insights from it. 566 
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This reduces the data quality dimensions such as accessibility (as the metadata and data relationships are removed), 567 

completeness (information is not complete), and provenance (document trail is lost in the process). In addition, 568 

having multiple CDEs introduces the data quality issue associated with provenance as files residing in multiple 569 

CDEs are disconnected, and the relationships of that particular file with another file are lost in the transition 570 

process. There are further issues with synchronization of the information when it is distributed in multiple CDEs. 571 

This introduces the data quality issues associated with consistency, which limits the quality of findings made by 572 

inference algorithms.  573 

4.3 Construction process information  574 

This section presents the codification challenges related to construction process information. The data 575 

analysis shows that product information is relatively well structured as BIM models, analysis models, and CAD 576 

drawings. However, construction process information is relatively less structured and detailed when compared to 577 

product information. Process information is codified as Gantt chart models in scheduling software and then linked 578 

to the BIM model. The detailed process information is not structured into a model. Instead, it is shared as method 579 

statements in less structured PowerPoint presentations and PDF documents. Sharing information in these 580 

unstructured formats has implications for data quality, which are presented in this section.  581 

4.3.1 Loss of constraint information 582 

In construction, the constraints for any activity execution are discussed during team meetings as the 583 

constraints span between different teams. For example, logistics constraints span amongst prefabrication, logistics, 584 

and site teams. These discussions lead to the removal of constraints by rearranging the start and end times for the 585 

activities. These are then translated to Gantt charts as an output.  586 

“So, from an engineering perspective, we have to interpret engineering information, whether it be 587 

drawing or written constraints, written narratives and interpret those into a Gantt chart. So, we 588 

physically need that information to know what we’re building and what the constraints in building it are.” 589 

(Project planner, C3I2). 590 

The above statement from the project planner provides evidence on the processes used to convert the constraints 591 

into a Gantt chart for communication. However, during this process, many of the constraints themselves, and thus 592 

context information for rearranging the activities, are lost. This is because Gantt charts can hold only precedence 593 

constraints. Other constraints, such as disjunctive (where activities cannot overlap) and logical constraints, are not 594 

embedded into the Gantt model. Instead, they are retained only as tacit information by project participants 595 

involved in team meetings. This is a case of incomplete information within the dataset as this information is only 596 
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accessible to the meeting participants. For example, one of the meetings in the water project had an issue with 597 

piling, where the pile-driving equipment did not have access to the site for a specific date as there was another 598 

activity going on which limited the width of the site access road. At the meeting, this was raised: 599 

“Access chamber works will conflict with access road for pile work, piling work package has to be moved 600 

back 2 weeks.” (Progress review meeting, C3M3) 601 

Here, there is a dependency between access chamber works, and the piling work package as the access chamber 602 

work would reduce the road width. Therefore, the piling activity was delayed to a later date. The constraint was 603 

removed. However, the knowledge that there was a constraint is not recorded, and thus the presence of that 604 

constraint is not codified. This means such constraints are not machine readable as the access to this information 605 

was limited to the participants of a particular meeting. If an automatic scheduler is used to reschedule these 606 

activities, this rescheduling activity would not have access to this information, resulting in an unrealistic schedule. 607 

Similar issues were observed in all cases. This issue introduces data quality problems associated with 608 

accessibility (information is limited to people who attended the meeting) and data completeness (the model does 609 

not include any constraint information; hence, it is incomplete). 610 

4.3.2 Low level of detail 611 

The precedence information codified into Gantt charts is linked with BIM to create 4D BIM simulations. 612 

However, the lack of detail in work packaging and associated information (such as constraints and resources) 613 

results in misinterpretation from the 4D models. The metro project follows a 5D BIM workflow (digital project 614 

management PPT—C2D2), where the schedule is linked to a BIM model, Bill of Quantities (BOQ), and an 615 

Enterprise Resource Planning (ERP) system to compare the cost based on the quantities versus the cost stated in 616 

the work orders from the subcontractors. The progress information is also linked to this model to ensure that the 617 

work is done before sanctioning the bills for the work orders.  618 

“Work package for three spans were linked to a work order. Model showed the deck for a span was 619 

completed before the pier supporting it was completed because the work package for the first span 620 

was reported as completed.” (Field notes- BIM Consultant 2, C2I5) 621 

<<Insert Figure 2>> 622 

 The deck of the metro can be completed only when the pier supporting it is completed, as shown in Figure 2. 623 

However, the system recorded the deck assembly to be completed when the pier was not completed. This was 624 

because work packages for the deck and pier were different as they were done by different subcontractors, and 625 

the level of detail of the work package is low. A subcontractor who dealt with deck assembly had a part of the 626 
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work package completed, but the lack of detail in work packaging triggered the computer to record the whole 627 

work package as completed, resulting in the error. This is a clear case of lack of detail in the model leading to 628 

wrong inferencing.  629 

Similar issues were observed in the student apartment (Case 1) by examining the schedule data in the 630 

construction programme (C1D1) and the water project (Case 3) by examining the construction programme update 631 

(C3D4) and observing the review meeting (C3M3). These issues are caused by low data quality due to incomplete 632 

information related to the completeness dimension.  633 

 634 

5. Discussion 635 

This section discusses the software usage, information sharing, and construction process information 636 

codification challenges which limit the uptake of data science in construction, drawing on the evidence from the 637 

empirical study. The discussion relates the findings to the literature on BIM use in practice (e.g. Dossick and Neff, 638 

2010; Harty and Whyte, 2010) and other strands of research on data quality, machine readability, and BIM 639 

adoption and implementation to articulate how these new analyses contribute by extending understanding of 640 

codification challenges. Furthermore, building on and extending Batini and Scannapieco (2016), it shows how 641 

these codification challenges are then mapped to their data quality dimensions, such as accuracy, completeness, 642 

timeliness, consistency, accessibility, and data provenance.  643 

5.1 Software usage  644 

The findings on software usage show that, despite significant digitization of work processes, data remains 645 

fragmented into different domains and formats because of the multiple software tools in use across the 646 

organizations involved in construction. Work in the construction information technology community is pioneering 647 

new data management solutions to improve interoperability (Hu et al., 2016; Pauwels et al., 2010; Pazlar and Turk, 648 

2008; Redmond et al., 2012), and it is disappointing to find that construction projects still suffer from poor quality 649 

data as a result of problems of interoperability caused by the existence of multiple domain-specific tools and 650 

modelling practices. In their work, Dossick and Neff (2010) have previously shown how the organizational and 651 

cultural divisions between the designers and builders, contractors, and subcontractors stifle collaborative work. 652 

This paper shows these issues are not resolved. In the projects studied, organizational and cultural divisions 653 

between the firms involved in the late design and construction stages of projects cause software usage problems 654 

(interoperability, information loss during format conversion, multiple modelling techniques). Whilst there may be 655 

shared norms and tools within a firm for modelling information, these norms differ across the firms which 656 
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modelled project information. Multiple modelling techniques (as described in 4.1.3) and data created using 657 

different software (as described in 4.1.1) result in datasets which are not interoperable and require format 658 

conversions, resulting in loss of information and low machine readability. The water project (Case 3) had multiple 659 

firms working on the data over different phases of the project, with interoperability problems more prevalent in 660 

this case in comparison with the student apartment (Case 1), in which a single leading firm was involved with the 661 

creation and use of the model. Although the metro project (Case 2) had different firms over the different phases 662 

of the project, digital data creation was handled through a single owner support organization, limiting the impact 663 

of this problem. Software usage problems are found to lead to challenges of codification for data science; hence, 664 

this work extends prior insights by Dossick and Neff (2010) to show how organizational and cultural divisions 665 

between designers and builders not only stifle collaborative work and joint problem-solving but also result in 666 

fragmented datasets in construction, leading to data silos and data loss and, thus, resulting in poor data quality 667 

which is more difficult to use in data science.  668 

As it is relatively unusual and potentially undesirable to have one firm or owner with overall control of 669 

the model, to enable more distributed working, developers of new tools or digitally enabled processes should 670 

consider the implication of organizational separation in the sector in addition to the technical requirements. In 671 

their work, Dossick and Neff (2010) have described the influence of strong leadership to hold people together on 672 

a project to improve collaboration despite professional segregation. Similarly, a set of common practices and a 673 

larger vision for the data creation and management should be laid out in the project to ensure the data meets the 674 

necessary quality to enable its use without loss of information in between. To achieve better-quality data in 675 

projects, practitioners must focus beyond the individual scope of their multiple firms towards the common goals 676 

of the project. 677 

5.2 Information sharing 678 

The analyses suggest that the construction sector has not yet made the transition from document-based 679 

to model-based ways of organizing digital data. The use of drawings and file-based sharing, unstructured 680 

information sharing, printing and scanning of documents, multiple CDEs, and so forth in information sharing has 681 

a significant impact on the machine readability of data. Paper-based practices are institutionalized in the sector, 682 

and while they are being replaced by digital ways of working, this change is slow, with users of construction 683 

information still conditioned to work with drawings and PDFs and unstructured information sharing. Even in 684 

projects which are championing newer BIM-based workflows using CDEs, this work finds it is difficult to replace 685 

these practices, as evidenced by the problems associated with information sharing (section 4.2). The complexity 686 
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and long processing times involved in these workflows force users to shift back to existing practices and 687 

workarounds to expedite their work. The findings from this paper also support the previous characterization of 688 

users in construction combining new structured methods of information sharing along with the prior practice of 689 

unstructured information sharing when they were hindered by bottlenecks in processes, such as document control. 690 

Thus, we can characterize the project participants use a range of new and existing practices together as ‘hybrid 691 

practices’ (Harty and Whyte, 2010), and their circumnavigation of workflows results in unstructured information 692 

sharing (as shown in a previous discussion in Whyte et al. (2016)). However, this paper goes beyond such studies 693 

to characterize the implications for data quality and to highlight, building on Hartmann (2008), the potential to 694 

develop newer workflows and digitally enabled processes which address the challenges faced by practitioners.  695 

5.3 Construction process information  696 

Regarding construction process information, this paper shows that the process codification is limited to 697 

the master planning or phase planning level and lacks the level of detail and linkage required for the application 698 

of data science tools. Whilst product information is relatively well codified in BIM, process information is less 699 

well detailed, and there is a lack of constraint information. These challenges are identified by researchers 700 

implementing 4D BIM. For example, Han and Golparvar-Fard (2017) have stated that the process modelling 701 

methods fail to document field issues to be made available for further analysis; for instance, the 4D BIM’s “Model 702 

Breakdown Structure typically does not match operational details or require creating complicated namespaces 703 

which, without visual representations, are difficult to communicate” (p. 1733). Giretti et al. (2012) have further 704 

reported the lack of correlation between the resources employed hourly and work progress. This led to the 705 

decomposition of tasks into sub-tasks to determine causal relationships between the involved variables so the 706 

whole progress could be determined. This study suggests that to overcome such reported issues, the methods for 707 

codifying construction process information must be more detailed. The institutionalized practice of planning being 708 

limited to master planning and phase planning, without the focus on granular planning such as look-ahead planning 709 

and weekly planning, is causing this codification challenge, with the lack of semantic relationships embedded in 710 

the model limiting the application of automatic schedulers. These issues suggest both a change in the modelling 711 

of process information in construction, with the need to develop tools which support modelling of complex 712 

constraint information, and also a change in the practice to codify the process information in greater detail so that 713 

data science could be employed to augment decision making in construction.  714 
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5.4 Machine readability of construction datasets 715 

This section discusses the machine readability of the construction datasets. Common construction 716 

datasets are classified based on the set of ‘rules’ for creating structured data described by Berners-Lee (2006) in 717 

Table 4.  718 

<<Insert Table 4>> 719 

Most of the construction information observed from the cases satisfies the requirement for a one-star 720 

category. The observed projects use a CDE for storing and managing project data, resulting in indexing the data 721 

and storing it on online servers, resulting in one-star data. CDE makes the data easier to retrieve for the computers 722 

to make inferences on them. However, the complexity of the new structured methods for information sharing 723 

using CDE, and the poor understanding of workflows across the teams, leads to the use of a combination of 724 

structured and unstructured channels for information sharing, as discussed in section 4.2. This aspect reduces the 725 

machine readability of the information distributed over unstructured channels as the information is not indexed 726 

nor available on a common server. The same issue occurs when the users circumnavigate the workflows to get the 727 

work expedited. Similarly, codification challenges associated with construction process information also lower 728 

the machine readability as the information is not recorded (lack of detail and loss of construction information) 729 

and, hence, not indexed or stored in online servers. These issues make the information inaccessible for inferencing.  730 

With regard to the structure of the construction information, construction datasets in the form of BIM, 731 

project management information in project management software (Primavera P6, Asta powerproject, etc.), outputs 732 

from Microsoft tools such as Excel, and so forth are structured, satisfying the requirements for two-star data. 733 

However, construction data are also unstructured in the forms of PDF documents, drawings, and other file-based 734 

formats, as described in sections 4.2.2 and 4.2.4. The lack of structure in the datasets makes inferencing from 735 

them difficult, leading to the need for complex algorithms. Where the construction data is structured, the data 736 

structure is in proprietary formats which require the APIs to access the semantic relationships within the data. The 737 

observed projects do not use open formats or open standards for publishing the data. Proprietary tools for the 738 

authorship of construction data are far more advanced and easier to use than the open-source tools. Hence, 739 

construction projects resort to using the tested and robust proprietary tools, resulting in issues associated with 740 

interoperability and loss of information presented in section 4.1. Thus, the construction information rarely 741 

achieves three-star classification, as mentioned by Berners-Lee (2006). In conclusion, the maximum level of 742 

machine readability of the construction datasets in the observed projects is two-star, with most of the information 743 

with a one-star rating.  744 
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Low machine readability of the data has implications on data quality. When the construction information 745 

is not stored on servers due to information sharing issues or lack of detail in the models, the accessibility of that 746 

data is affected, thus reducing the accessibility dimension of the data quality. When information is stored in CDE 747 

(satisfying conditions for one-star data) as PDF documents, the structure of the data is not maintained, resulting 748 

in data quality issues associated with syntactic accuracy and consistency. Lack of a data structure removes the 749 

context from the information, thus resulting in the need for complex algorithms to infer the contexts and infer 750 

from data. This issue also introduces problems associated with consistency as the data value for a field might be 751 

different in different files, and the lack of context limits the computer programs to detect it. This problem is further 752 

worsened as the datasets are not linked since the links are lost when a file is moved from one CDE to another. 753 

Storing the information in proprietary formats also reduces the accessibility dimension for data quality. 754 

5.5  Implications for data quality 755 

The codification challenges discussed earlier have many significant implications for data quality. To 756 

unpack these in this section, they are mapped onto the different quality dimensions. 757 

<<Insert Table 5>>  758 

Accuracy: The organizational and cultural divisions between different teams results in problems 759 

associated with multiple modelling techniques, leading to data quality issues concerning the syntactic accuracy of 760 

the data. This was evident from the dataset when different people had different perceptions of the model, as in the 761 

case of the slab example in 4.1.3. Similarly, the hybrid practices associated with information sharing lead to 762 

lowering the semantic accuracy of the data as the data with which inferences are made are not accurate due to 763 

inefficiencies in information sharing. When there are syntactic errors in the data, this leads to incorrect insights 764 

(for example, if a slab is modelled as a geometric object with attributes attached to it and when a software tool is 765 

used to compute quantity take-off from the model for all the slabs). The output would be zero as quantity required 766 

as the program fails to identify the geometric object as a slab. If this software is integrated with a costing tool used 767 

for cash flow analytics, this error gets propagated into that tool. These errors can be removed to an extent using 768 

semantic enrichment programs. However, even the accuracy of inferences of semantic enrichment programs is 769 

dependent on the quality of input datasets (Sacks et al., 2017).  770 

Completeness: Concerning the completeness of the data, organizational and cultural divisions between 771 

the teams resulting in problems such as interoperability, format conversions, multiple modelling techniques and 772 

the implication of hybrid practices such as printing and scanning the documents play a role in reducing the data 773 

quality. For example, the software usage issues caused by the organizational divisions leads to format conversion 774 
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resulting data loss leading incomplete dataset. Lack of process change also leads to similar problems such as loss 775 

of metadata when documents are printed and scanned. The institutionalized practices of process modelling with 776 

low levels of detail and the practice of not codifying constraints in the model result in incomplete data. Inferring 777 

insights from incomplete datasets reduces the quality of the output. For example, if the constraints are not codified 778 

in a schedule, an automatic scheduler would create an unrealistic schedule. This leads to further problems down 779 

the line. In the case of a product model, an incomplete dataset used for a structural capacity prediction would give 780 

incorrect results.  781 

Timeliness: This dimension of data quality is mostly affected by the information-sharing practices in 782 

construction using hybrid practices by using old and new practices simultaneously. File-based sharing (resulting 783 

in slowing down the data updates compared to model-based sharing), document control bottlenecks delaying the 784 

submission of data into the system, and the use of multiple CDEs requiring data transfer from one to another 785 

(resulting in a delay in fetching the data) all constitute outdated data-skewing analytics. When outdated data is 786 

used for analytics, the resulting inference is not time appropriate, and decisions taken with those inferences lead 787 

to problems. For example, if the construction plan is made using resource availability data, during the actual 788 

construction date, the assigned resource might not be available. When this is managed manually, the planner 789 

makes sure this does not happen. However, when performed automatically, it is necessary that the datasets are 790 

updated close to real time.  791 

Consistency: Hybrid practices in information sharing, resulting in document control bottlenecks, multiple 792 

CDEs, and circumnavigating workflows, induce inconsistency in the data. The data in one CDE might be different 793 

from that in another CDE. Similarly, the document control bottlenecks in publishing the data result in different 794 

teams and their databases having different versions of the data. This creates a problem during the data analysis 795 

phase. For example, for the same content, different values might exist, of which only one is true. This induces 796 

problems of semantic accuracy if the computer takes the incorrect value for analysis. 797 

Accessibility: This dimension of data quality is affected by organizational and cultural divisions between 798 

teams, hybrid practices, and institutionalized practices in process modelling. Organizational and cultural divisions 799 

between teams, resulting in the use of multiple software, multiple modelling techniques, and so forth, affect the 800 

accessibility of data as employees must convert the data to access it, and there are instances which show 801 

conversions result in loss of data. Hence, the data is only accessible in full content to the team, which created it. 802 

Similarly, the hybrid practices, particularly printing and subsequent scanning of the documents, remove the 803 

metadata as well as semantic information within those data, resulting in a less-efficient analysis. In addition, the 804 
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lack of constraint codification restricts the information regarding constraints, making it accessible to the few 805 

people who attended the meeting. It is not embedded in the model and, hence, not accessible to any analytic 806 

algorithms. This reduces the capability of such algorithms to infer accurate information and determine causalities.  807 

Provenance: This dimension of the data quality is affected by both organizational and cultural divisions 808 

in the industry as well as hybrid practices. Fragmentation in the industry leads to many conversions and much 809 

manipulation of data to suit purposes, in the process removing the traceability and origins of the data. Similarly, 810 

multiple CDEs, printing and scanning of documents and unstructured information sharing also lead to loss of 811 

metadata and ends up removing information regarding origins of the data. This limits algorithms from making 812 

inferences based on data origins and their incremental manipulation.  813 

This section described the challenges of codification as causes of data quality issues, which have implications 814 

for different data quality dimensions and the output of data analytics. While big data techniques suggest future 815 

opportunities to use data science with an increasing variety of data of different levels of veracity, data cleaning is 816 

a resource-intensive process, and significant training models are required. To improve the uptake of data science 817 

in construction, high-quality data is necessary, and achieving this requires overcoming the codification challenges 818 

identified here. 819 

 820 

6. Conclusions and future work 821 

Codification challenges for data science in construction are found to be related to: 1) software usage—822 

interoperability, information loss during conversion, and multiple modelling techniques, 2) information sharing—823 

unstructured information sharing, drawing and file-based sharing document control, and lack of process change, 824 

and 3) construction process information—loss of constraints and low levels of detail. The implication of these 825 

challenges was discussed by mapping them to data quality dimensions such as accuracy, completeness, timeliness, 826 

consistency, and provenance. Through the identification of the codification challenges in the late design and 827 

construction phase of the projects and their mapping to the data quality dimensions, this paper extends the 828 

knowledge on data quality issues in construction. It shows how data quality arises from organizational as well as 829 

technical practices. The persistence of organizational and cultural divisions, paper-and document-based (as well 830 

as digital- and model-based) ways of working, and institutionalized practices of construction process modelling 831 

are challenges for the uptake of data science as they lead to the partial codification of information in machine-832 

readable formats. Whilst the fragmented nature of the sector is well understood, this work shows how codification 833 

challenges arise because of the different digital workflows and working practices across projects, and how these 834 
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lead to fragmented data as a result of the use of multiple software packages, poor information sharing and only 835 

partially captured construction process information.  836 

While all of the projects studied were BIM enabled, within these projects, information sharing issues and 837 

software usage issues emerge as a result of their document-based, and sometimes paper-based, practices. Project-838 

wide standards and policies are created to streamline information sharing through structured workflows, and these 839 

workflows are aimed at improving collaboration, but the process of document control raises issues. In addition, 840 

this study identifies inefficiencies (such as long processing times, complexity, etc.) in these workflows, which 841 

pushes the users to bypass the structured methods in the current workflows. This forces the users to revert to older 842 

methods or use a combination of old and new methods, resulting in the generation of unstructured information. 843 

These cause data quality issues relating to inaccessibility of data, timeliness of data, and data consistency. 844 

Limited codification in construction process information is a result of the institutionalized practice of 845 

scheduling focusing on codifying just precedence relationships into a Gantt chart. The advancements in 4D and 846 

5D BIM have attempted to address this problem to an extent by integrating the resource and cost information to a 847 

single platform. However, the data herein suggest that the level of detail of the scheduling is still at a macro-848 

planning level. In addition, the constraint relationships between resources and processes, resources and the site 849 

conditions, and site conditions and the processes discussed in weekly meetings are not codified into a model. This 850 

limits the data science due to data quality issues associated with completeness and accessibility.  851 

How might codification challenges be overcome to enable greater uptake of data science in construction? 852 

The evidence from this paper points towards a need for change in the policy and practice to ensure machine 853 

readability and better-quality construction information. The current policies on information modelling are aimed 854 

at improving collaboration amongst the project participants. Building on the existing policies, newer policies 855 

should ensure that the machine readability and quality of the data are maintained during information sharing. Care 856 

should be taken to ensure that newer policies suit the existing work practices in construction so that the workflows 857 

recommended by such policies are not bypassed by the users. Newer policies also ensure the transition from file-858 

based information sharing to model-based information sharing, where the model data is shared based on the 859 

principles stated by Berners-Lee (2006) to ensure machine readability. Standards under development, such as 860 

ISO/DIS 21597—information container for data drop, exchange specification parts 1 and 2—are moving in this 861 

direction, where linked data technologies are used to define the relationships between documents and datasets, 862 

thereby automating the document control processes (International Organization for Standardization, 2019). These 863 

standards would have a positive impact on data quality pertaining to dimensions, timeliness, accessibility, and 864 
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consistency. Even though policy interventions would have a positive effect on data quality, the construction sector 865 

is known for institutionalized practices and resistance to change. Thus, policies must influence practices to enable 866 

greater uptake of data science.  867 

Thus, in addition to the policies, it is, therefore, necessary to adopt newer methods in practice to make 868 

construction information machine readable. This study examined a student apartment building project constructed 869 

by a leading contractor in the United Kingdom using state-of-the-art offsite manufacturing techniques (Case 1), a 870 

metro project pioneering digital transformation in India (Case 2), and an innovative water megaproject in the 871 

United Kingdom (Case 3). Despite these projects having advanced workflows and innovative approaches to ensure 872 

structured information, lack of process change after digitization of workflows was evident in the datasets, which 873 

included multiple CDEs, printing and scanning of documents, need for wet signatures, and such. These practices 874 

continue to occur due to the lack of trust in digital workflows; thus, there must be a change in this mindset, and 875 

trust in digital data must be developed in the construction practice. There is also a need for a shift to model-based 876 

information sharing from the file-based information sharing between teams. To address this issue, related to a lack 877 

of detail in process information, there is a need for change in the look-ahead scheduling practice to incorporate 878 

the codification of different constraint relationships into information. This might involve a significant change in 879 

the planning of a progress review process by integrating BIM-based scheduling tools within the planning and 880 

progress meetings and modelling different constraints within the software environment to capture it from the 881 

discussions.  882 

The current study has identified the codification challenges by examining information sharing in the late 883 

design and construction phase and mapped it to the data quality dimensions. The findings from this study inform 884 

the researchers, who are developing frameworks and methods to codify construction information, of the 885 

organizational issues to be considered in their work. This paper also provides the data quality implications of 886 

issues associated with BIM implementation, motivating the researchers focusing on implementation studies to 887 

widen their scope from collaboration to include data quality and machine readability. Future research can build 888 

on this study to develop recommendations for ensuring the machine readability of construction information 889 

generated throughout different stages of the lifecycle of the project. To achieve this, future research should focus 890 

on different aspects. Firstly, researchers should elaborate on the organizational issues identified in the current 891 

study across different phases of the project and amongst different stakeholders involved in the project. Secondly, 892 

accounting for the complexity of information-use trends in construction, there is a need for research in 893 

fundamental data science to pave the way for the integration of the disconnected information in the construction 894 
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sector. This includes developing newer information modelling approaches which adapt to the current work 895 

processes as well as support codification of information, such as algorithms for crawling through the disconnected 896 

information to draw insights and learning algorithms to detect discrepancies in data (such as with accuracy, 897 

completeness, timeliness, consistency, and provenance) and predict their consequences. Finally, researchers and 898 

managers of construction projects should work together towards developing workflows and information sharing 899 

practices which ensure the machine readability of construction information whilst considering the issues of 900 

fragmentation, hybrid practices and institutionalized practices. This paper has provided a foundation for such 901 

future research by extending the knowledge on data quality issues in construction through the identification of 902 

codification challenges, considering the wider practice of model and document-based information sharing.  903 
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 1077 

Table 1: Level of machine readability the data based on linked data principles set out by Berners-Lee 1078 

(2006) 1079 

Quality of data Principles for publishing a machine-readable 

data set 

 1-Star Data is available on the web 

2-Star 1-star data structured in a proprietary format 

3-Star 1-star data structured in a non-proprietary 

format 

4-Star 3-star data that is published using open 

standards  

5-Star 4-star data with links to other 4 star datasets  

 1080 

1081 
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Table 2: Codification challenges across the cases 1082 

Codification challenges Observations The student 

apartment 

The metro 

project 

The water 

project 

Software usage Interoperability X X X 

Information loss during conversions X  X 

Modelling technique 
 

 X 

Information sharing Unstructured information sharing X X X 

Drawing and file-based sharing X X X 

Document control bottleneck  X X 

Lack of process change X X X 

Process information Loss of constraints  X X X 

Low level of detail X X X 

1083 
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 Table 3: Information sharing between different teams 1084 

Media Example evidence from the dataset 

Common Data 

Environments 

(CDE1, CDE2 

from different 

vendors) 

Formal submissions, drawing receipts, design and temporary works: “if it’s formal document 

submission, we do it through [CDE1] [...] When I receive drawings from [design consultant], 

I get them through [CDE2]. And quite a lot of the designers use [CDE2] and[...] Well, we try 

get all the design functions, including temporary works to use [CDE2].” (Project engineer, 

C3I1) 

Reports Spreadsheets and documents: “There’s lots of reporting on the project[...] And then that gets 

out into various outputs, so that could be just a schedule in Excel. Lots of Excel outputs as 

well, huge amount of Excel outputs. And, if it’s a commercial discussion there may need to be 

some narrative around it, so using Microsoft Word to develop a narrative.” (Project Planner 

lead, C3I2) 

Meetings Design review meetings: “You could do a design meeting, review something and then say, 

write comment on that[...]to understand what information, they’re going to require at a 

particular stage. So that may consist of meetings; that might consist of face-to-face 

conversations, emails, etc.” (Digital engineering lead, C3I3) 

Buildability meetings “attendance to buildability meetings and trying to get out of them what 

sort of temporary works may be needed to build something” (Project engineer, C3I1) 

Client meetings: “I will be going off-site to attend meetings with the client” (Information 

manager, C3I4) 

Design for Manufacture and Assembly (DfMA) input: “I’m trying to attend meetings and 

troubleshoot and try to help and provide technical input into the design and assisting the 

designer and support team” (Technical manager/DfMA coordinator, C3I5) 

Email Highly used: “So, obviously we do use emails a lot.” (Project Planner lead, C3I2) 

A normal type of communication: “Then emails, meetings, usually types of communication.” 

(Project engineer, C3I1)  

Provides remote precision: “If I’m communicating over longer distances or if I think to myself, 

I’d better make a precise request, then it’ll be emails. We don’t use a communicator-type 

facility in [CDE1]”. (Information manager, C3I4) 

“Stakeholders, yes, it’s certainly meetings and emails. Most of our stakeholders don’t want to 

use [CDE1], because of the admin that comes with that” (Principal engineer, C3I8) 

Remote 

conversations 

Online meetings: “Generally, like a Skype, conference calls, linked meetings” (Senior digital 

engineer, C3I6) 

Online communications and records of design logs, discussion points, online forums: “Yes, so 

all the design data is held within a common data environment, which was [CDE2]. And so, I 

managed that area and access to that area. Then all communications were stored on SharePoint 

on Microsoft online, so everyone had access to registers or design logs or discussion points, 

almost used as an online forum where anyone could ask questions” (Senior digital engineer, 

C3I6) 

Telephone calls with design consultants: “So, I'll start with between us and design consultants: 

there's meetings, emails, and phone calls. I prefer meetings and phone calls” (Principal 

engineer, C3I8) 
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Table 4: Construction data sets categorized based on levels of machine readability 1087 

Quality of data Principles for publishing a machine-readable 

data set 

Construction data sets 

 1-Star Data is available on the web Files and Models uploaded in the common data 

environment 

2-Star 1-star data structured in a proprietary format BIM files in proprietary formats (Revit files, 

Microstation files, etc.), project management 

information (Asta power project, Primavera P6, 

Microsoft project), design rationale and associated 

information (in Microsoft Excel), etc.  

3-Star 1-star data structured in a non-proprietary 

format 

BIM files in IFC format, CSV data etc.  

4-Star 3-star data that is published using open 

standards  

BIM files published using open standards such as 

ifcOWL, BOT ontology etc. 

5-Star 4-star data with links to other 4 star datasets  BIM files published using open standards linked to 

other such files (BIM files, GIS data etc). 
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 1090 

Table 5. The mapping between findings and data quality dimensions 1091 

Data quality 

dimension 

Codes and data 

Accuracy Multiple modelling techniques: “use the wrong tool to model something […] I can’t just say 

there’s a slab now, that’s just a piece of geometry” (Digital engineer, C3I3); “when you try to 

extract 2D drawings from 3D BIM models, those drawings are not as correct and as detailed as 

they used to be” (Technical manager, C3I5) 

 Document control bottlenecks: “it’s no longer the most current version anymore by the time I’m 

reviewing it” (Project engineer, C3I1) “he keeps on updating but he hasn’t he hasn’t put it on the 

[CDE1].” (Technical manager, C3I5) “I just want to know where I can get my latest drawing” 

(Digital engineer, C3I3) “I think someone within the doc management system had obviously 

circumnavigated it somehow, to get the drawings out. And then when we were trying to get the 

said revisions for our set out, the system wouldn't allow it because directory hadn't been properly 

created.” (Technical manager, C3I5) 

Completeness Interoperability: “transferring things […], you lose data” (Technical manager, C3I5) 

Information loss during conversion: “when you upload a PDF.” (Information manager, C3I4) 

Multiple modelling techniques: “use the wrong tool to model something […] I can’t just say 

there’s a slab now, that’s just a piece of geometry” (Digital engineer, C3I3); “when you try to 

extract 2D drawings from 3D BIM models, those drawings are not as correct and as detailed as 

they used to be” (Technical manager, C3I5)  

Lack of process change: “We’re going to print it out, we’re going to staple it together […] get 

three signatures, scan it back in, put it back into [CDE1] and submit it.”(Project engineer, C3I1) 

“it’s not actually speeding everything up, it’s sort of making everything a lot slower; which I 

find very frustrating” (Principal engineer, C3I8) “can be very confusing when we have two 

platforms” (Technical manager, C3I5) “Everything had to be taken out of one data environment 

and pushed into another. One of the issues with that is the consistency or the compliance or 

knowing the latest versions of information” (Digital engineer, C3I6) “As the contractor, then we 

have to deliver it to a completely separate, disconnected CDE […] we’re double-handling” 

(Digital engineer, C3I3)  

Loss of constraint information: “we physically need that information to know what we’re 

building and what the constraints in building it are.” (Project planner, C3I2). “Access chamber 

works will conflict with access road for pile work, piling work package has to be moved back 2 

weeks.” (Progress review meeting, C3M3); Low level of detail: “Work package for three spans 

were linked to a work order. Model showed the deck for a span was completed before the pier 

supporting it was completed because the work package for the first span was reported as 

completed.” (Field notes- BIM Consultant 2, C2I5) 

Timeliness Unstructured information sharing: “when I have finished everything - by the way, we have this 

spread sheet” (Technical manager, C3I5) Document control bottlenecks: “it’s no longer the most 

current version anymore by the time I’m reviewing it” (Project engineer, C3I1) “he keeps on 

updating but he hasn’t he hasn’t put it on the [CDE1].” (Technical manager, C3I5) “I just want 

to know where I can get my latest drawing” (Digital engineer, C3I3) “I think someone within the 

doc management system had obviously circumnavigated it somehow, to get the drawings out. 

And then when we were trying to get the said revisions for our set out, the system wouldn't allow 

it because directory hadn't been properly created.” (Technical manager, C3I5)  

Lack of process change: “We’re going to print it out, we’re going to staple it together […] get 

three signatures, scan it back in, put it back into [CDE1] and submit it.”(Project engineer, C3I1) 

“it’s not actually speeding everything up, it’s sort of making everything a lot slower; which I 

find very frustrating” (Principal engineer, C3I8) “can be very confusing when we have two 
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platforms” (Technical manager, C3I5) “Everything had to be taken out of one data environment 

and pushed into another. One of the issues with that is the consistency or the compliance or 

knowing the latest versions of information” (Digital engineer, C3I6) “As the contractor, then we 

have to deliver it to a completely separate, disconnected CDE […] we’re double-handling” 

(Digital engineer, C3I3) 

Consistency Document control bottlenecks: “it’s no longer the most current version anymore by the time I’m 

reviewing it” (Project engineer, C3I1) “he keeps on updating but he hasn’t he hasn’t put it on the 

[CDE1].” (Technical manager, C3I5) “I just want to know where I can get my latest drawing” 

(Digital engineer, C3I3) “I think someone within the doc management system had obviously 

circumnavigated it somehow, to get the drawings out. And then when we were trying to get the 

said revisions for our set out, the system wouldn't allow it because directory hadn't been properly 

created.” (Technical manager, C3I5) 

Accessibility Interoperability: “transferring things […], you lose data” (Technical manager, C3I5); 

Unstructured information sharing: “when I have finished everything - by the way, we have this 

spread sheet” (Technical manager, C3I5);  

Drawings and file-based sharing: “I use all the navigator tools that we’ve got here. But I prefer 

to use AutoCAD because I find it a lot easier” (Project engineer, C3I1) “It’s not the best way 

because we haven’t got the technology. I haven’t got a big screen” (Project engineer, C3I1)  

Lack of process change: “We’re going to print it out, we’re going to staple it together […] get 

three signatures, scan it back in, put it back into [CDE1] and submit it.”(Project engineer, C3I1) 

“it’s not actually speeding everything up, it’s sort of making everything a lot slower; which I 

find very frustrating” (Principal engineer, C3I8) “can be very confusing when we have two 

platforms” (Technical manager, C3I5) “Everything had to be taken out of one data environment 

and pushed into another. One of the issues with that is the consistency or the compliance or 

knowing the latest versions of information” (Digital engineer, C3I6) “As the contractor, then we 

have to deliver it to a completely separate, disconnected CDE […] we’re double-handling” 

(Digital engineer, C3I3)  

Loss of constraint information: “we physically need that information to know what we’re 

building and what the constraints in building it are.” (Project planner, C3I2). “Access chamber 

works will conflict with access road for pile work, piling work package has to be moved back 2 

weeks.” (Progress review meeting, C3M3);  

Low level of detail: “Work package for three spans were linked to a work order. Model showed 

the deck for a span was completed before the pier supporting it was completed because the work 

package for the first span was reported as completed.” (Field notes- BIM Consultant 2, C2I5) 

Data 

Provenance 

Information loss during conversion:  “when you upload a PDF.” (Information manager, C3I4); 

Drawings and file-based sharing: “I use all the navigator tools that we’ve got here. But I prefer 

to use AutoCAD because I find it a lot easier” (Project engineer, C3I1) “It’s not the best way 

because we haven’t got the technology. I haven’t got a big screen” (Project engineer, C3I1)  

Lack of process change: “We’re going to print it out, we’re going to staple it together […] get 

three signatures, scan it back in, put it back into [CDE1] and submit it.”(Project engineer, C3I1) 

“it’s not actually speeding everything up, it’s sort of making everything a lot slower; which I 

find very frustrating” (Principal engineer, C3I8) “can be very confusing when we have two 

platforms” (Technical manager, C3I5) “Everything had to be taken out of one data environment 

and pushed into another. One of the issues with that is the consistency or the compliance or 

knowing the latest versions of information” (Digital engineer, C3I6) “As the contractor, then we 

have to deliver it to a completely separate, disconnected CDE […] we’re double-handling” 

(Digital engineer, C3I3) 
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