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A conventional approach to wideband Multi-Source (MS) Direction-of-Arrival (DOA)1

estimation is to perform Single Source (SS) DOA estimation in Time-Frequency (TF)2

bins for which a SS assumption is valid. The typical SS-validity confidence metrics3

analyse the validity of the SS assumption over a fixed-size TF region local to the4

TF bin. The performance of such methods degrades as the number of simultane-5

ously active sources increases due to the associated decrease in the size of the TF6

regions where the SS assumption is valid. A SS-validity confidence metric is pro-7

posed that exploits a dynamic MS assumption over relatively larger TF regions. The8

proposed metric first clusters the initial DOA estimates (one per TF bin) and then9

uses the members’ spatial consistency as well as its cluster’s spread to weight each10

TF bin. Distance-based and density-based clustering are employed as two alternative11

approaches for clustering DOAs. A noise-robust density-based clustering is also used12

in an evolutionary framework to propose a method for source counting and source13

direction estimation. The evaluation results based on simulations and also with real14

recordings show that the proposed weighting strategy significantly improves the ac-15

curacy of source counting and MS DOA estimation compared to the state-of-the-art.16
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I. INTRODUCTION17

Multi-Source (MS) Direction-of-Arrival (DOA) estimation is required for acoustic source18

separation/localization/tracking, spatial filtering, environment mapping, dereverberation19

and speech enhancement. It addresses the often-occurring case in real-world scenarios where20

two or more sources are active simultaneously. As such it can be used in applications such as21

hearing aids, robot audition, meeting diarization and teleconferencing. The main challenges22

for MS DOA algorithms include reverberation, sensor or environmental noise as well as the23

presence of an unknown number of simultaneously active sources1. In this work we address24

MS DOA estimation in a reverberant environment using microphone array with arbitrary25

geometry and configuration for an unknown number of simultaneously active speech sources26

where the number of these active sources changes over time.27

Several existing approaches to MS DOA estimation for speech sources use W-Disjoint28

Orthogonality (WDO)2, assuming sparseness of speech in the Time-Frequency (TF) domain,29

in combination with subspace decomposition to decompose the noisy observation covariance30

matrix into signal and noise subspaces3,40–42. Such methods often follow three stages: (1)31

Single Source (SS) TF bin detection in which the TF bins predominantly containing a32

single source are detected; (2) SS DOA estimation where a DOA estimator based on the SS33

assumption is applied only at the detected SS bins; (3) Multiple source direction estimation34

using the set of temporal narrowband DOA estimates.35

In a SS bin, the observation covariance matrix formed from the microphone array signals36

is expected to have unit rank. In real-world scenarios, DOA estimation has to be performed37
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in reverberation that is characterized by the combination of direct-path propagation and38

reflections4. In such scenarios, SS dominance with unit rank covariance matrix rarely occurs39

at a TF bin and therefore some form of SS-validity confidence metric is used to detect the40

more reliable SS bins for use in DOA estimation. Methods such as the coherence test5, SS41

Zone (SSZ) detection6 or Direct Path Dominance (DPD) test7 assume the validity of SS42

assumption over a local TF region in the vicinity of a TF bin of interest and each method43

defines a specific SS-validity confidence metric. Having obtained the SS validity measure44

at each bin, two alternative approaches can be used for the selection of reliable bins. The45

methods in67 identify the SS bins based on a comparison between the SS validity measures46

and a fixed user-defined threshold whereas the method in8 selects a user-defined percentage47

of the TF bins with the strongest SS validity measures. In5, SS bins are detected using48

the rank of the correlation matrix at each TF bin. Due to averaging across only local time49

frames and lack of subspace decomposition in the selection of SS bins, that approach is50

most effective only for MS DOA estimation in an anechoic environment. In6, the average of51

pairwise correlation coefficients between adjacent sensors is used as a SS validity confidence52

metric, where the correlation averaging is performed only across the local frequencies of53

each time frame. It does not use subspace decomposition and is therefore prone to noise and54

multiple coherent sources. In DPD7, Singular Value Decomposition (SVD) is employed and55

the Singular Value Ratio (SVR), defined as the ratio of the largest to second largest singular56

values, of the signals’ covariance matrix is used as the SS-validity confidence metric. DPD57

performs the covariance averaging over adjacent frequencies and time-frames. The latter58

property, along with the use of subspace decomposition makes DPD robust to reverberation59
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as it aims to find TF bins with not just a dominant SS but also a dominant direct path,60

ignoring bins containing significant reverberation.61

As the number of simultaneously active sources increases, the performance of the pre-62

viously mentioned methods degrades38, although presence of the dominant SS still occurs.63

This is because the WDO assumption is valid in fewer TF bins and in smaller TF regions64

as the number of simultaneously active sources increases as shown in Section II.65

Figure 2 shows an overview of the MS DOA estimation system proposed in this paper.66

The novelties in this work are: (1) the use of density-based clustering in the context of67

acoustic DOA estimation, as used in DOAs clustering and source counting units in Fig.68

2 and (2) a novel SS-validity confidence metric for weighting of initial DOA estimates, as69

used in DOAs weighting unit in Fig. 2. The proposed Multi-Source Estimation Consistency70

(MSEC) metric is based on a dynamic MS assumption, as opposed to the SS assumption in71

conventional approaches. MSEC uses a consistently large TF region where the number of72

simultaneously active sources within the region is autonomously estimated.73

This paper is structured as follows. Section II demonstrates the problem when the number74

of simultaneously active sources increases. Section III reviews two alternative distance- and75

density-based clustering approaches employed to estimate the number of active sources. It76

then describes a novel SS-validity confidence metric as well as an autonomous source counting77

method, an earlier version of which is discussed in9. Section IV evaluates the performance of78

the proposed metric against the state-of-the-art under various simulated scenarios. Finally79

Section V illustrates the performance and accuracy of the evaluated methods using signals80

recorded in a real room.81
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II. PROBLEM ANALYSIS82

Consider a reverberant environment containing Ns simultaneously active speech sources83

with uniform angular spacing4φ at 1 m distance from a microphone array. Each source rep-84

resents a different speaker speaking different utterances. The received signal at a microphone85

in the Short-time Fourier Transform (STFT) domain is86

X(k, τ) =
Ns∑
n=1

(An(k, τ) +
∞∑
j=1

Rn,j(k, τ)), (1)

where An denotes the direct-path component from source n and Rn,j is the component of87

reflection j from source n. The frequency, k, and time frame, τ , indices are subsequently88

omitted for notational simplicity.89

Let Signal-to-Interference Ratio (SIR) at a TF bin be the ratio of the magnitude of the90

dominant direct path, |Ab|, and the magnitude of the rest of the signals from the mixture91

of Ns sources, |X − Ab|, which includes all other direct paths and reverberations excluding92

the dominant direct path where93

b = argmax
n

(|An|), (2)

is the index of the dominant direct path. Figure 1 shows in white the TF bins with SIR94

≥ 10 dB in such a scenario for Ns = {2, 3, 4, 5} and 4φ = 50°. It can be clearly seen that95

with the increase of Ns, the number of the bins and the size of the TF regions with valid96

WDO assumption decreases. For SS bin detectors based on a fixed-size analysis TF window,97

this leads to increasing failure of the SS assumption validity and consequent performance98

degradation for the SS bin detectors that rely on this assumption.99
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One solution10 to this problem is the use of a dynamic MS assumption over a fixed-size TF100

region where the number of active sources within the processing TF region is autonomously101

estimated. For such techniques, estimation of the optimum number of sources remains a102

challenge. In10, the authors propose the use of the Akaike Information Criterion (AIC)11 to103

find the optimum number of eigenvectors spanning the signal space for the MS assumption.104

Although this approach overcomes the problem of Ns estimation, it loses reliability with105

noisy observations.106107

The use of temporal narrowband DOA estimation based on the SS assumption in a MS108

scenario is expected to be relatively accurate at the TF bins containing one significantly109

dominant direct-path component and inaccurate otherwise7,38,39. The direction of the er-110

ror in erroneous DOA estimates is determined by the relative phase and amplitude of the111

impinging plane waves as shown in12. Such variance of directional displacements in DOA112

estimates at non-SS bins results in spatially inconsistent erroneous DOAs whereas, in prac-113

tical scenarios, DOA estimates at SS bins are expected to have spatial consistency if the114

sources are stationary or only slowly moving over time. In13 and14, the authors propose115

the use of diffuseness of DOA estimates which is based on SS assumption and suffers from116

the previously-stated problem of SS-based metrics as the number of sources increases. We117

therefore investigate the use of spatial consistency of SS-based DOA estimates under the118

MS assumption. We also investigate how to estimate the number of active sources over a119

TF region using this approach, as well as the validity of the SS assumption at a TF bin.120
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FIG. 1. Illustration showing in white the TF bins with SIR≥ 10 dB considering the signal as the

dominant direct path and the interference as the reverberant signals mixture of (a) 2, (b) 3, (c) 4

and (d) 5 sources with T60 = 0.4 s.

III. PROPOSED METHOD121

Assuming that the initial DOAs (one per TF bin) are provided by any chosen temporal122

narrowband SS DOA estimation procedure, a new SS validity confidence metric is proposed123

based on spatial consistency of initial DOA estimates and a dynamic MS assumption. Two124

alternative distance- and density-based clustering techniques for the dynamic MS assumption125
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FIG. 2. Block digram of the proposed system for MS DOA estimation. The MSEC weighting and

Source counting blocks are specifically where the proposed methods contribute.

are introduced and discussed. The architecture of the proposed system is illustrated in Fig.126

2.127

In order to increase the distinctness of densities between accurate and inaccurate initial128

DOAs for the purpose of robust estimation of the number of active sources, we consider all129

initial DOA estimates from the previous T frames. Therefore, at each frame τ , we consider130

the set of DOA estimates U(τ) including all initial DOAs from frame τ to τ −T , defined as131

U(τ) = {û(t, k) : ∀k, t ∈ {τ, τ − 1, . . . , τ − T}}, (3)

where û(t, k) is the estimated DOA unit vector at time frame t and frequency k and T is a132

fixed user-defined temporal window length.133

To quantify spatial consistency of the multi-modal distribution of DOA estimates from134

U(τ), an adaptive distance-based clustering technique such as K-means and a density-based135

noise-robust clustering technique such as Density-based Spatial Clustering of Applications136

with Noise (DBSCAN)15 are used as two alternative approaches. Sections III A and III B re-137
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spectively present adaptive K-means and DBSCAN clusterings applied to DOA distribution.138

In the following, τ , t and k are omitted for brevity where unambiguous.139

A. Adaptive K-means Clustering140

To find the optimum number of clusters, the AIC is calculated as11141

AIC = −2Q+ 2v, (4)

in which −Q, the negative maximum log-likelihood of the data, represents a measure of142

distortion and v, the number of parameters of the model, represents a measure of model143

complexity.144

For K-means with a given K, the first term in (4) is replaced with Residual Sum of145

Squared (RSS) of the clustering giving16
146

AIC(K) = RSS(K) + 2JK, (5)

where RSS(.) is the sum of squared angular distances of each member to its cluster centroid147

and J denotes the number of dimensions of the centroid which leads to JK parameters148

for K clusters. Note that with the increase of K, RSS(K) decreases while 2JK increases,149

which makes AIC(K) a penalty factor for a given model where its minimum gives the best150

clustering with the minimum number of clusters.151

Having performed K-means for K = {1, . . . , Kmax} on the set of DOAs U with random152

initializations, using (5), the optimum number of clusters, Kc, is chosen as153

Kc = arg min
K

[AIC(K)] . (6)
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B. DBSCAN Clustering154

Unlike distance-based clustering techniques, density-based DBSCAN clustering does not155

consider the number of clusters to be known a priori but instead is based on a user-defined156

minimum density for a cluster. Therefore DBSCAN considers an assumption on the density157

of clusters rather than the number of clusters, which makes it robust to noise and suitable158

for autonomous cluster counting.159

The terms used in DBSCAN clustering are defined as follows15.160

1. Neighbourhood DOAs161

The set of neighbourhood DOAs for a DOA estimate p̂ is defined as162

Nε(p̂) = {q̂ ∈ U |∠ (p̂, q̂) ≤ ε}, (7)

where ∠ (p̂, q̂) is the angular separation (in degrees) between two DOA estimates p̂ and q̂163

and ε is chosen to define the angular extent of the neighbourhood in degrees.164

2. Density165

The density at a DOA estimate p̂ is defined as the number of DOA estimates (including166

p̂ itself) within its neighbourhood |Nε(p̂)|, where |.| indicates cardinality.167

3. Threshold density168

The threshold density denoted as MinPts is the minimum density for a potential cluster.169
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4. Directly density-reachable170

A DOA estimate p̂ is directly density-reachable from another DOA estimate q̂ if171

• p̂ ∈ Nε(q̂) and172

• |Nε(q̂)| ≥ MinPts (core point condition).173

5. Density-reachable174

A DOA estimate p̂ is density-reachable from another DOA estimate q̂ if there is a chain175

of DOA estimates {p̂i}Li=1, where p̂1 = q̂ and p̂L = p̂, such that p̂i+1 is directly density-176

reachable from p̂i.177

6. Density-connected178

A DOA estimate p̂ is density-connected to another DOA estimate q̂ if there is a DOA179

estimate m̂ such that both p̂ and q̂ are density-reachable from it.180

7. Cluster181

A cluster S is a subset of U satisfying:182

• ∀p̂, q̂ : if p̂ ∈ S and q̂ is density-reachable from p̂, then q̂ ∈ S and183

• ∀p̂, q̂ ∈ S : p̂ is density-connected to q̂.184
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Noise point
Border point
Core point

Directly density-reachable
Density-reachable
ε-neighbourhood range

FIG. 3. DOA estimates labelling by DBSCAN with MinPts=3.

8. Noise185

A subset of DOA estimates in U not belonging to any cluster.186

Figure 3 illustrates the labelling of an example of several DOA estimates by DBSCAN187

with MinPts=3. Each core point (green) has at least three DOAs including itself within its188

ε-radius neighbourhood while the border (orange) and the noise (red) DOAs do not satisfy189

the core point condition.190191

Given the user-defined parameters ε and MinPts, the algorithm first detects all the core192

points. A single cluster is identified in two steps: (1) start from an arbitrary core point193

and (2) retrieve all points which are density-reachable from it. It then visits the next un-194

clustered core point and repeats this process until all core points are clustered. The points195

which do not belong to any cluster are labelled as noise.196

C. MSEC197

Having performed clustering on data set U(τ) by either adaptive K-means or DBSCAN,198

we obtain the estimated number of clusters Kc(τ), the clusters {Si(τ)}KC(τ)i=1 and the centroids199
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unit vector {ĉi(τ)}KC(τ)i=1 where i is the cluster index. As a representative of the spread of200

DOA estimates within each cluster, the average member-to-centroid angular distance Di(τ)201

is calculated for each cluster as202

Di(τ) =
1

|Si(τ)|
∑

k∈Si(τ)

∠(û(τ, k), ĉi(τ)), (8)

where ∠ (.) denotes the angle in degrees between two vectors.203

The MSEC weight for each DOA estimate is determined from two factors, the cluster204

weight and the member weight. For each DOA estimate, the cluster weight, which represents205

the normalized measure of concentration in its associated cluster, is206

ψ(τ, k) = 1− Di(τ)

180
, k ∈ Si(τ), (9)

and the member weight, which represents the normalized measure of closeness to its associ-207

ated centroid, is208

λ(τ, k) = 1− ∠(û(τ, k), ĉi(τ))

180
, k ∈ Si(τ). (10)

The MSEC weight in the TF domain is then formed as209

w(τ, k) =
√
ψ(τ, k)λ(τ, k). (11)

A special case of MSEC with T = 0 and Kmax = 1 is proposed in17, which is based on the210

SS assumption within a time-frame.211

Figure 4 displays DBSCAN and adaptive K-means clusterings of an example distribution212

of initial DOA estimates for 5 consecutive frames (T = 4). This illustrates that DBSCAN213

identifies and ignores the noise DOA estimates due to the use of a static definition of cluster214

density while adaptive K-means assigns every DOA estimate to a cluster. Although adaptive215
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(b) Adaptive K-means

FIG. 4. An example of DOA estimates from 5 consecutive time-frames clustered by (a) DBSCAN

with (ε,MinPts) = (20°, 10) and (b) adaptive K-means with Kmax = 4. The colours and markers

indicate the clusters while the black dots in (a) are the noise DOAs. The true source directions

are marked as cyan filled circles.

K-means has resulted in detecting more sources, it also includes more erroneous detections216

of DOAs and gives less accurate weighting due to the reduced positioinal accuracy of the217

cluster centroid caused by the presence of outliers (erroneous DOAs), as shown next.218

Figure 5 shows a scatter plot of the normalized MSEC weights versus the normalized219

accuracy of the initial DOAs used in the example of Fig. 4. It can be seen that the noise-220

robust DBSCAN-MSEC has only weighted strongly the DOAs that have > 0.8 normalized221

accuracy, and zero-weighted the inaccurate DOAs with < 0.8 normalized accuracy.222

Having weighted all the DOA estimates in the TF domain, only the estimates with the P%223

strongest weights are selected. One conventional technique to estimate the source directions224

from the set of selected DOA estimates is to directly18,19 or iteratively20,21 find the position225
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FIG. 5. Normalized weight vs normalized accuracy for MSEC using (a) DBSCAN and (b) adaptive

K-means for the example of Fig. 4.

of the peaks in the 2D (azimuth × inclination) smoothed histogram of the selected DOA226

estimates. Such techniques assume that the number of sources is known a priori and are227

sensitive to the smoothing setting (e.g. standard deviation of the smoothing kernel) on the228

sources’ angular separation, noise level and irregularity in the peaks, which are all assumed229

to be unknown in our case. Other clustering-based techniques such as K-means22 or mixture230

models using Gaussian23, Laplacian24 or Von Mises25 distributions are also used in source231

direction estimation from the set of initial DOA estimates. These approaches, as well as232

peak detection, typically require a priori knowledge of the number of sources and are prone233

to errors due to outlier DOA estimates.234

D. Autonomous Robust Source Counting235

Density-based clustering has received much less attention than distance-based or model-236

based clustering techniques in the context of acoustic DOA estimation. We now propose a237
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density-based clustering scheme employing a variant of DBSCAN in an evolutionary frame-238

work for source counting and direction estimation from a set of selected DOA estimates.239

Consider D as the set of selected DOA estimates using MSEC weights (or potentially any240

other weighting metrics), which can still include noise DOA estimates. The selection step241

ensures that D is significantly more sparse and less noisy than the initial set of all DOA242

estimates. In DBSCAN, the threshold density MinPts needs to be chosen and this depends243

on the relative density level of the noise DOA estimates in the dataset.244

As shown in9, the original DBSCAN loses reliability in cases with distributions of vary-245

ing densities as there may not be a value for MinPts, given ε, for which all densities are246

individually clustered. For an example of points distribution in9 it is shown that any choice247

of MinPts leads either to the erroneous merging of adjacent densities or the missing of the248

least dense distribution. Mixtures of distributions with widely varying density often occur in249

DOA estimation especially in multi-source acoustic scenarios where one source is less active250

or relatively more distant with respect to the microphone array compared to other sources.251

Variations of DBSCAN26–30 are proposed but all require user intervention for setting pa-252

rameters. The DBSCAN employed in MSEC uses an empirically-chosen static MinPts in253

order to avoid extremely high computational cost per TF bin. But for a one-run process-254

ing of the set of estimates D, the use of dynamic MinPts can improve the performance255

of clustering. Unlike DBSCAN, evolutive DBSCAN9, for a fixed ε, uses varying MinPts256

∈ [min(|Nε(D)|) + 1,max(|Nε(D)|) − 1]. The step-size for searching MinPts can be either257

defined by the user or calculated based on the maximum number of iterations (NumIt)258

specified by the user.259
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At each iteration, after a comparison between the current clustering and the previous260

clustering, the current clusters are labelled as either ‘dead’ or ‘alive’ each defined as follows261

1) Dead: A cluster is dead if one the following two conditions is met. It has a shared262

member with more than one alive cluster in the last iteration (merge condition) or it has263

a shared member with any previously dead cluster (re-occurrence of a previously merged264

cluster). 2) Alive: A cluster is alive if it is not dead.265

At each iteration, the weight and the centroid of the alive clusters are stored where cluster266

weight is defined as the mean density of the clustered DOAs. The pseudocode for the main267

part of this algorithm is provided in Algorithm 1.268

Having obtained M centroids {ci}Mi=1 of alive clusters and their associated weights {wi}Mi=1,269

one final autonomous DBSCAN is applied on the set of centroids which finally estimates270

the number of detected clusters, L, and their final centroids {di}Li=1 indicating the estimated271

number of sources and the final DOA estimates respectively, as shown in Fig. 6(c). Assuming272

densities of DOAs in D have non-radical skewness, we expect very low spatial variance for273

the centroids belonging to a repetitively alive cluster at consecutive iterations. Therefore274

a small value of εf = 5° is defined in the final DBSCAN while MinPts is autonomously275

determined as follows. A sorted weighted-density graph is built for the centroids {ci}Mi=1276

using their weights {wi}Mi=1 and densities {|Nεf (ci)|}Mi=1. The use of the weights exaggerates277

the dynamic range and so the angle of the ‘knee’ in the graph. This is because the outlier278

centroids are expected to be from low density clusters of outlier DOA estimates that might279

have been clustered due to low MinPts at the end of evolutionary process. The estimated280

MinPts for the final DBSCAN is the density at the position of the ‘prominent’ knee with281
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FIG. 6. Evolutive DBSCAN on an example set of selected DOA estimates D. (a) sorted weighted

density (blue dashed) graph and its derivative (solid red). Position of the knee marked as blue

circle. Distribution of (b) DOA estimates (c) centroid estimates for 5 sources. Final centroids are

marked by coloured circles.

the lowest weighted density. This is derived as the position of the first peak (excluding the282

peaks with less than 10% of the highest peak) in its derivative function as shown in Fig.283

6(a). Note that if min({|Nεf (ci)|}Mi=1) > 1, no knee detection is needed and MinPts is the284

minimum density.285286
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Algorithm 1 Evolutive DBSCAN
function EVOLUTIVE DBSCAN(points)

centroids=[]; %holds alive centroids and weights

MinPts=max(|Nε(.)|)− 1; cntr=1;

while (MinPts≥ min(|Nε(.)|) + 1) OR (cntr≤NumIt)

C=DBSCAN(points,ε,MinPts);

if isEmpty(centroids) then

centroids += C(all).centroid; %initialization

C.dead members=[]; %all dead members

else

C=LABEL CLUSTERS(C,C last);

if anyClusterAlive(C) then

centroids += C(alive ones).centroid;

C=RemoveDead(C,dead ones);

end if

end if

C last=C; MinPts -= step; cntr += 1;

end

return centroids

end function
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IV. EVALUATIONS287

The performance of the proposed method is first evaluated using recorded anechoic speech288

convolved with simulated room impulse response for Spherical Microphone Array (SMA)43–45289

in the presence of reverberation and sensor noise. Performance using real speakers in a290

reverberant room is considered in Section V. The evaluation is performed for a varying291

number of sources and angular separation. The DPD method is used as a baseline for292

comparison. Without loss of generality, the inclination of sources is fixed at 90°, for simulated293

data, so as to place them in the same horizontal plane as the microphone array for clarity294

of systematic evaluation of the effect of source separation. However, inclination is varied in295

the experimental verification using real data in Section V.296

The room impulse responses of a 32-element rigid SMA with radius of 4.2 cm (corre-297

sponding to the em32 Eigenmike®) in a 5× 6× 4 m shoebox room with T60 = 0.4 s31 were298

simulated using the image method32 implemented by33. Ns sources were randomly placed299

with azimuth interval of 4φ degrees at a distance of 1 m from the centre of the SMA on the300

same horizontal plane as SMA. For each Ns and 4φ, 100 random trials were used in each of301

which the first azimuth was randomly selected from a uniform circular distribution around302

the SMA. The source signals consisted of different anechoic speech signals randomly selected303

for each trial from the APLAWD database34. The active level of each speech source accord-304

ing to ITU-T P.5635, as measured for the omnidirectional eigenbeam, is set to be equal across305

all trials. Spatio-temporally white Gaussian noise was added to the microphone signals to306

produce an SNR of 25 dB for each source. A sampling frequency of 8 kHz was used with307
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50% overlapping time-frames of 8 ms duration. Any narrowband method can be used for308

the DOA estimator but for fast computation, the efficient Pseudointensity Vectors (PIVs)36309

method was used in these test as an example SS DOA estimator to obtain the initial DOA310

estimates. PIVs use eigenbeams up to the first-order spherical harmonic37.311

In DPD7 using SMAs, the covariance matrix is approximated as the average covariance

matrix over a local TF region7,12

R(τ, k) =
1

JτJk

Jτ−1∑
jτ=0

Jk−1∑
jk=0

a(τ − jτ , k + jk)

× aH(τ − jτ , k + jk), (12)

where Jτ = 6 and Jk = 4 are the widths (number of bins) of the averaging windows over time312

and frequency respectively. This gives 32 ms and 500 Hz window-size in the TF domain based313

on our time and frequency resolution. The column vector a contains spherical harmonic314

eigenbeams up to the third order and (.)H denotes the Hermitian transpose.315

MSEC has a temporal window size of T = 4 frames in (3), which is chosen to be small316

enough to decompose the problem of N sources into L < N sources over the interval and317

wide enough to form distinguishable densities for consistent DOAs. For clusterings used in318

variations of MSEC, adaptive K-means has Kmax = 4 with random initialization per K and319

DBSCAN has ε = 10° and MinPts= 10 which is approximately 5% of the number of the320

estimates in dataset U(τ). These values for the setting parameters of the evaluated methods321

are empirically chosen. Both MSEC alternatives mainly rely on two user-tuned parameters,322

T for MSEC weighting in addition to Kmax or MinPts for adaptive K-means and DBSCAN323

respectively. Note that the pair of ε and MinPts in DBSCAN are not independent since324
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the user can use a fixed ε = 10° and adjust MinPts only for optimum results. Therefore325

the number of user-tuned parameters in both MSEC approaches is the same as in the DPD326

approach, which is also based on two Jτ and Jk user-defined parameters.327

A uniform weighting strategy, in which all DOA estimates are selected, is also included328

in the evaluation as a reference. For the purpose of evaluating the performance of the329

weighting metrics only, a fixed selection percentage of P = 25% is empirically suggested8
330

and used for DPD and both variations of MSEC. Therefore DPD and MSEC both select331

an equal number of DOA estimates, which is the top 25% DOAs with the highest weights332

while uniform weighting selects all DOA estimates. The error (in degrees) for each selected333

DOA estimate is calculated as the angular distance between the estimate and the nearest334

true DOA.335

A. Accuracy of the selected DOAs336

In this section the accuracy of the DOA estimates selected by the weights is evaluated.337

Figure 7 shows the mean error of the DOA estimates selected by each method for 4φ =338

{45°, 90°} and incremental Ns = {2, 3, 4}. It can be seen that MSEC variations select339

significantly more accurate DOA estimates compared to DPD and uniform weighting, which340

validates the advantage of MS over SS assumption in MS scenario. DBSCAN-based MSEC341

has 92% to 129% mean accuracy improvement in these tests compared to DPD due to the342

dynamic MS assumption and noise-robustness. It can also be seen that as Ns increases the343

mean accuracy of the uniform and DPD weights improves. This is due to the decrease in344

the least possible error as the number of sources increases.345
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FIG. 7. The overall mean error of the DOAs for varying separation and incremental number of

sources.

Figure 10 shows the top view and side view of the normalized smoothed histogram of346

DOA estimates selected by each method for an example experimental trial. The perfor-347

mance benefits of MSEC are shown and can be explained by observing the distinctness and348

sharpness of the peaks. It can be seen that MSEC variations have well defined peaks around349

each of the source positions especially for the fourth source (from the left) where DPD fails350

due to the oversize processing TF region at the TF bins with a significantly dominant fourth351

source resulting in selection of inaccurate DOA estimates. The reason for such failure is352

visualised and further discussed in the TF domain in Section IV C.353

B. Correlation between weights and DOA estimate accuracy354

Figure 8 shows the mean correlation between the normalized weights and the normalized355

accuracy of their DOA estimate. The normalized accuracy is356

1− error/180, (13)

where error (in degrees) is the spherical angle between the DOA estimate and the nearest357

true DOA. DPD weights show low correlation with accuracy. On the other hand, MSECs358
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FIG. 8. The overall mean correlation between the normalized weight and accuracy for varying

separation and incremental number of sources.
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FIG. 9. Distribution of the normalized weights and their DOA estimate accuracy for an example

trial with (Ns,4φ) = (2, 90°).

are, at least by a factor of 4, more linearly correlated with DOA estimate accuracy. This359

is due to two reasons. (1) MSEC is calculated using the DOA estimates and is therefore360

expected to be directly impacted by DOA accuracy unlike DPD which uses eigenbeams. (2)361

The MSEC metric is calculated in the spatial domain using angular distances which has the362

same unit and nature as the DOA estimate accuracy whereas the DPD metric uses the SVR363

of the eigenbeams.364

Figure 9 illustrates a scatter plot of the selected normalized weights versus normalized365

accuracy of their DOA estimates for K-means and DBSCAN-based MSEC for an example366
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FIG. 10. The side view (top row) and the top view (bottom row) of the normalized smoothed

histogram of the selected DOA estimates using (a) Uniform weights including all DOAs, (b) DPD,

(c) adaptive K-means MSEC and (d) DBSCAN MSEC for an example trial with (Ns,4φ) =

(4, 90°).

trial. It can be seen that DBSCAN-based weighting has significantly fewer inaccurate DOA367

estimates which are falsely weighted high compared to K-means. This is due to two reasons.368

(1) DBSCAN is a noise-robust clustering technique and is more capable of ignoring the in-369

accurate DOA estimates. (2) The outcome clustering of K-means is stochastic for each run370

because of random initialization and dependency of the outcome on the initialization, while371

DBSCAN does not require initialization and its outcome is therefore deterministic. During372

an experimental analysis it was observed that different trials of K-means on the same dataset373

with the same choice of K sometimes led to inconsistent clusterings and therefore incon-374

sistent estimation of Kc(τ). Such inconsistent behaviour can sometimes lead to erroneous375

clustering and so erroneous weighting.376
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C. Effect of weightings on counting and direction estimation of sources377

In this section the performance of each SS-validity confidence metric is evaluated in378

the context of source direction estimation and source counting using evolutive DBSCAN9
379

presented in Section III D. In9 it is shown that the evolutive DBSCAN outperforms the380

conventional histogram peak picking as well as adaptive K-means and original DBSCAN381

techniques and is therefore chosen as our source counting and source direction extraction382

technique in this paper. The choice of NumIt=50 was empirically found to be a good trade-383

off between reliability and computational efficiency for our proposed evolutive DBSCAN.384

MSEC based on K-means is excluded from the evaluation in this section since DBSCAN-385

MSEC has a better performance as shown in the previous sections.386

The two performance metrics Successful Localization Rate (SLR) and Mean Error respec-387

tively represent the source counting and DOA estimation accuracy. SLR is the percentage388

of trials for which the correct number of sources was detected and all the best case data389

associated pairs of estimate-true DOA are less than 20°, which is half of the minimum source390

separation used in the evaluation. The mean error is calculated for the successfully localized391

cases where all sources are detected.392

Figure 11 shows the mean error and SLR of DPD and DBSCAN-MSEC, abbreviated393

to MSEC in this section, for varying 4φ and Ns. It can be seen that MSEC outperforms394

DPD in all cases. In terms of DOA estimation accuracy, although MSEC and DPD perform395

very closely, MSEC slightly leads by 1° at 45° separation with 4 sources. In terms of source396

counting accuracy, MSEC significantly leads especially for 4φ = 45° as Ns increases. MSEC397
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also shows strong robustness to separation and number of sources as its SLR drops only to398

75% while DPD’s SLR is reduced to 20% with the decrease in 4φ and increase in Ns. Such399

results match with the observation in Fig. 10. It is seen that the peaks of the multi-modal400

distributions, which affect the accuracy of DOA estimation, remain approximately at the401

same position for DPD and MSEC while the sharpness and distinctness of the peaks, which402

affect the source counting, are significantly different.403

Figure 13 shows the TF bins with the top P = 25% strongest MSEC and DPD weights404

as well as the bins with PIV DOA estimates, which have ≤ 10° error and are considered405

as accurate DOAs, for an example trial. As shown in Fig. 13(c), accurate DOAs occur at406

varying-size TF regions and even at isolated TF bins. It can be clearly seen that MSEC407

has been more successful in detecting varying-size TF regions and isolated TF bins due to408

dynamic MS assumption over relatively large analysis window-size compared to DPD, which409

is based on SS assumption over small analysis window-size.410

V. EXPERIMENTAL VERIFICATION USING REAL-WORLD DATA411

In this section the performance of each method is evaluated using real recordings in a412

reverberant room. Recordings of 4 s speech utterances in a room with approximate dimen-413

sions of 10 × 9 × 2.5 m and T60 = 0.4 s were obtained using an Eigenmike 32-channel rigid414

SMA with radius of 4.2 cm placed close to the centre of the room. Four talkers were simul-415

taneously active and were located 1.5 m away from the centre of the array at approximately416

60° intervals while their inclinations alternated to be above or below the horizontal plane417

of the array. Figure 12 shows the normalized smoothed histograms for uniform weighting418
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FIG. 11. Mean error (top row) and SLR (bottom row) for (a) 2, (b) 3 and (c) 4 sources with

varying source separation.

using all DOA estimates, DPD and DBSCAN-MSEC using P = 25% of the DOA estimates419

with the strongest weights, where DOA estimates are obtained using PIVs36. Due to only420

approximate knowledge of the ground-truth position of sources and array in the physical421

room, accurate numerical estimation error cannot be obtained. The approximate mean es-422

timation error for all methods is 4°. All methods successfully estimate peaks corresponding423

to all four sources due to wide separation of sources. In order to provide a numerical eval-424

uation, for each peak a measure of ‘peak strength’ as suggested in38 is used which is the425

ratio of the peak height over the peak smoothness where the peak smoothness is defined as426

the average height in the normalized peak distribution within its range of rp = 30° (half of427

source separation) neighbourhood. Table I presents the peak strength of each peak for all428

methods. The smoothed histograms in Fig. 12 and the peak strengths in Table I show429430431432433

that MSEC significantly outperforms the baseline and the state-of-the-art methods using434
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FIG. 12. Normalized smoothed histogram for uniform weighting (all DOA estimates), DPD and

DBSAN-MSEC (both based on P = 25%) using real recording. The black dot represents the

approximate true DOA.

FIG. 13. TF bins with top P = 25% strongest (a) DBSCAN-MSEC weights, (b) DPD weights and

(c) ≤ 10° DOA error for (Ns,4φ) = (3, 90°).
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Peak Uniform Weight DPD MSEC

1 2.08 2.94 6.04

2 1.96 2.59 6.03

3 1.82 1.75 4.97

4 0.99 0.67 4.31

Mean 1.71 1.99 5.33

TABLE I. Peak Strength of each peak for all methods

real recordings and serves towards validation of the evaluation results based on simulation435

in the previous section.436

VI. CONCLUSION437

A confidence metric for validity of SS assumption in a TF bin has been proposed using438

spatial consistency of initial DOA estimates. It employs adaptive K-means based on AIC439

or noise-robust DBSCAN clusterings to group spatially consistent initial DOA estimates,440

which are derived by a SS-based DOA estimator. Each DOA estimate is weighted using its441

distance-to-centroid and cluster’s spread, and finally, the DOA estimates with the strongest442

weights are selected to be used in source counting and source direction estimation. The443

proposed metric is based on MS assumption over a relatively large TF region compared to444

conventional metrics, which are based on SS assumption over a small-size TF region. A445

novel use of density-based DBSCAN clustering in the context of source localization has also446
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been used to propose an autonomous evolutionary method for source counting and final447

source direction estimation. The evolutive DBSCAN uses DBSCAN iteratively for varying448

density threshold. Such variation makes it robust to a mixture of distributions with varying449

density. The evaluations using simulation and real recordings show that our proposed metric450

significantly improves the performance of source counting, compared to the baseline and the451

state-of-the-art metrics, and provides at least the same accuracy as the state-of-the-art for452

source direction estimation.453
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