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Abstract

Three major difficulties are identified with an established echelon form approach (see Hannan (1987)) to specify-
ing a Vector Autoregressive Moving Average, VARMA, model for an observed time series. A family of state space
representations, valid for each integer, h, is introduced, and collectively referred to as multistep state space represen-
tations. This family includes as its special case, with h = 0, a state space representation introduced earlier by Akaike
(1974), and, with h = 1, that introduced by Cooper and Wood (1982). Appropriate generalizations of the notions
of minimality, McMillan degree, left matrix fraction description and Kronecker indices, as applicable individually to
each member of this family, are presented. The reverse echelon form and state space representation corresponding
to the Kronecker indices for each h are derived, and the former illustrated with three examples of standard VARMA
processes. The question of how the presence of zero constraints on the coefficients of a reverse echelon form may be
detected solely from an inspection of the Kronecker indices is examined. A canonical correlation procedure proposed
originally by Akaike (1976) for h = 0 is considered for estimating the Kronecker indices with each h. The efficacy
of the estimation procedure is investigated by a simulation study. A procedure is suggested for implementing the new
approach introduced in this paper with an observed time series, and three different applications of this approach are
outlined. This approach is also related to some of its alternatives, including the Kronecker invariants of Poskitt (1992)
and the scalar component approach of Tiao and Tsay (1989).
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1. Introduction

Let y(t) = [y1(t), . . . , ys(t)]>, t ∈ {1, . . . ,T } denote an observed multivariate time series of dimension s ≥ 1 and
length T ≥ 1. Suppose that y(t) is a part-realization of a discrete-time process, {y(t)}, satisfying the following assump-
tion:

Assumption 1. That {y(t), t ∈ Z} is a vector autoregressive moving average process of order (p, q),VARMA(p, q)
process,

p∑
u=0

A(u)y(t − u) =

q∑
u=0

B(u)ε(t − u), (1)

where Z ∈ {0,±1,±2, . . . } is a set of all integers, A(0) = B(0) = Is, an s × s identity matrix, the A(u) and B(u) are
matrices of coefficients such that if

a(z) =

p∑
u=0

A(u)zu, b(z) =

q∑
u=0

B(u)zu,
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[a(z) b(z)] is left coprime, det[a(z)] , 0, |z| ≤ 1, det[b(z)] , 0, |z| < 1, and {ε(t)} is a sequence of uncorrelated random
variables, each with mean zero and a positive definite covariance matrix, Ψ.

As in Hannan [21], let

k(z) = a(z)−1b(z) =

∞∑
j=0

K( j)z j, K(0) = Is,

define the corresponding rational transfer function, and R(u) = E{y(t + u)y(t)>}, t, u ∈ Z, the covariance function.
Then, {y(t)} has the infinite moving average representation:

y(t) =

∞∑
j=0

K( j)ε(t − j), (2)

and which is one of the several different solutions to the difference equation (1). It will also be convenient to set
K( j) = 0, if j < 0. The matrices, K( j), occurring on the right of this representation define the impulse response
coefficients of {y(t)}.

As is well-known, a major stumbling block in modelling the observed multivariate time series by a VARMA
process is that k(z) remains unaltered if a(z) and b(z) are pre-multiplied by a non-singular matrix, u(z), though the
‘coprime’ assumption means that u(z) need only be unimodular, a matrix with a constant determinant (see Hannan
[21]). The problem of specifying a unique VARMA model to fit an observed time series is consequently recognized
as non-trivial.

A unique model may be specified if the degrees, (p, q), of [a(z) b(z)] are known a priori, and a model identification
procedure given in Hannan [21] applies. Such prior information would, however, be rarely available. There are
also (see Lütkepohl and Poskitt [30]) several important problems with this procedure. An alternative echelon form
approach avoids many of these problems and provides a ‘black box’ representation for k(z) together with a state space
representation for {y(t)} in which the observation error process coincides with the innovation process, {ε(t)}. This
approach, henceforth called the standard echelon form approach, or, more succinctly, the standard approach, has also
been described as ‘canonical to the problem of VARMA model specification in Hannan and Deistler [22].

From the point of view of specifying an appropriate model for an observed time series, however, this approach
suffers from the following three distinct difficulties, henceforth referred to as Difficulty 1, Difficulty 2, and Difficulty
3, respectively:

Difficulty 1. A lack of choice. A ‘one-size-fits-all’ methodology to model specification is adopted and only a single
model is prescribed. An analyst may instead prefer to gain a better understanding of the uncertainty present in
choosing an appropriate ‘black box’ model by having a choice of specifying a range of different models, each uniquely
specified, rather than (see Cox [15]) ‘force unique answers’ to questions involving uncertainty.

Difficulty 2. Overparameterisation. The standard approach classifies the parameters of the specified model in two
categories: constrained and unconstrained. For an observed time series, the former category of parameters do not
require estimation, as they are constrained to equal zero or one; those in the latter category, by contrast, require
estimation since they are treated as unknown but freely varying. However, simple examples of rational transfer
functions given in Section 4 show that the number of unconstrained parameters so specified can be much larger than
necessary, and vanishing parameters can be classified as unconstrained. The consequent parameter redundancy would
increase parameter estimation errors and, in turn, impact further statistical inferences drawn from the estimated model,
including prediction errors. Lütkepohl and Poskitt [30] have earlier suggested a graphical procedure to get around this
difficulty; this procedure is, however, rather ad hoc and involves visually identifying potentially vanishing coefficients
from a full model estimated initially by the standard approach.

Difficulty 3. Structural rigidity. The standard approach imposes a straitjacket on the specified model by requiring that
its AR and MA polynomials have identical row degrees. An analyst may perceive such a restriction as rather limiting
and may instead prefer to have the flexibility of specifying a ‘black box’ representation in which the row degrees of
AR and MA polynomials differ by a constant, c, say, where c could vary and it need not equal zero. A further variation
would be to enable c to assume two or more value, for example, to let c = c1 for a subset of these rows and c = c2 for
the remaining rows, where c1 , c2; in general c could be a vector.
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A three-fold impact of the difficulties described above should be noted, and which, with minor modifications,
apply also to the approach of Akaike [4] : First, a range of ad hoc procedures for fitting VARMA-like models have
attracted much attention; see, for example, Peña and Box [31], Tiao and Tsay [43]. Although such procedures have
a place in multivariate time series analysis, they cannot substitute for specification of a suitable ‘black box’ model.
Secondly, some analysts find the task of fitting a VARMA model daunting and on occasion opt not to even pursue
this possibility. Thirdly, VAR models are frequently used as a substitute for fitting a VARMA model. As stated in
Lütkepohl and Poskitt [30], however, there are several reasons why the VARMA class may often be preferred; to save
space, these reasons are not discussed here.

This paper seeks to boost and enhance the standard approach, and, also, the approach of Akaike [4], by addressing
Difficulties 1-3 discussed above.

Our results are based on the pioneering work of Akaike [2], who established that a given VARMA(p, q) model may
be represented in a state space form, and vice versa. A family of h-step state space representations for a VARMA(p, q)
model, valid for each h ∈ Z, is introduced in Section 2. For convenience, we refer to this family collectively as
multistep state space representations, and its members as multistep state space forms. This family includes the rep-
resentation given by Akaike [2] as a special case with h = 0, and that given by Cooper and Wood [14] with h = 1.
However, the state vector in our representation has dimension n(h) = max(p, q− h + 1)s . By contrast, the state vector
in Akaike’s representation has dimension n(0) = max(p, q + 1)s and that in Cooper and Wood’s representation has
dimension n(0) = max(p, q)s. As the state space representation and the associated Kalman filter find applications
in a variety of different problems (see Harvey [24]), the notion of a multistep representation may be of independent
interest.

Sections 3 and 4 extend to each h ∈ Z an exposition of the standard approach given in Hannan and Deistler [22]
for h = 1. Thus, the structure of multistep state space forms is discussed in Section 3, where h-step generalizations of
some key concepts in Systems Theory are given for each h ∈ Z. Also, Section 4 introduces a family of h-step echelon
VARMA and state space representations for k(z), valid for each h ∈ Z. This family includes the representations given
in the standard approach as a special case with h = 1, and that given in Akaike [4] with h = 0. However, by varying h,
it is possible to specify a unique representation for each h in exactly the same way as with the standard approach. The
number of possible VARMA models, and the associated state space forms, that could be specified is large, countably
infinite. Difficulty 1 could thus be overcome by specifying a finite number of such ‘multistep’ models for an observed
time series.

This last-mentioned possibility also enables Difficulties 2 and 3 to be addressed, as further explained below:
The row degrees of AR and MA polynomials in the h-step echelon VARMA representations differ by a constant, c,
say , for each h ∈ Z, where c = 0, if h = 1, but c , 0, for all h , 1. The first part of Difficulty 3 could thus
be overcome by considering multistep echelon VARMA models for a range of different values of h. An explicit
mathematical expression for the number of unconstrained parameters, dπ(h), say, requiring estimation in an h-step
echelon representation, with each h ∈ Z, is given in Section 4. The precise numerical value of dπ(h) depends upon the
nature of generating VARMA process, {y(t)}, and the value of h. Its minimum, however, need not necessarily occur
for h = 1. Difficulty 2 could, in principle, be thus side-stepped by first evaluating dπ(h) for several different values
of h and then choosing the value of h which minimizes dπ(h). Section 4 also illustrates with three specific examples
Difficulties 1, 2 and 3 with the standard approach, and presents results demonstrating how multistep echelon forms
contribute towards overcoming these difficulties.

The coefficients in echelon VARMA model with two successive values of h are related to each other in Section 5
and theoretical results which can help determine the vanishing parameters in a systematic fashion are derived.

The estimation of echelon models from an observed time series is considered in Section 6, where the canonical
correlation procedure proposed originally by Akaike [4] for h = 0 is generalized to each fixed h ∈ Z. The effectiveness
of the estimation procedure with observed time series of moderate length is examined in Section 7 by a simulation
study. Section 6 also includes a discussion of why a related procedure suggested earlier in Tsay [45], see, also, Piccolo
and Tunnicliffe Wilson [32], differs in important respects from that introduced here.

The question of how to specify and select an appropriate echelon model to fit an observed time series is discussed
in Section 8, where three different applications of the approach suggested in this paper are also outlined, and, in
addition, the multistep echelon forms are related to an alternative S CM approach suggested in Tiao and Tsay [43],
and the Kronecker invariants of Poskitt [33].

A brief summary and conclusions of the paper are given in Section 9.
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2. Multistep State Space Representation for a VARMA Process

The following theorem extends to each h ∈ Z the state space forms introduced earlier by Akaike [2] for h = 0 and
Cooper and Wood [14] for h = 1. In this theorem (see Hannan [19] and Box and Jenkins [12]), for each u > 0,

ŷt−h(u) =

∞∑
j=u

K( j)ε(t − h + u − j), h ∈ Z, (3)

denotes an optimal linear predictor of y(t − h + u) based on {y(t − h − j), j ≥ 0}, and ŷt−h(u) = y(t − h + u), if u ≤ 0.

Theorem 1. Let {y(t)} satisfy Assumption 1. Then, for each h ∈ Z, {y(t)} admits a state space representation defined
as follows:

y(t) = Ω(h)xh(t) + eh(t), (4)
xh(t + 1) = F(h)xh(t) + V(h)z(t), (5)

where, with m = max(p, q − h + 1), z(t) = ε(t − h + 1), and A( j) = 0, j > p, or j < 0,

xh(t) =
[
ŷt−h(h)> ŷt−h(h + 1)> . . . ŷt−h(h + m + 1)>

]>
(6)

V(h)> =
[
K(h)> K(h + 1)> . . . K(h + m + 1)>

]
,

Ω(h) = Ω =
[
Is 0 . . . 0

]
,

eh(t) =

h−1∑
j=0

K( j)ε(t − j), h ≥ 1, (7)

eh(t) = 0, h ≤ 0, (8)

F(h) = F =



0 Is 0 . . . 0
0 0 Is . . . 0
...

...
...

. . .
...

0 0 0 . . . Is

−A(m) −A(m − 1) −A(m − 2) . . . −A(1)


.

Proof. The theorem follows by noting that ŷt−h(u) satisfies the following difference and updating equations:

ŷt−h(u) = −

p∑
j=1

A( j)ŷt−h(u − j) +

q∑
j=u

B( j)ε(t − h + u − j), 1 ≤ u ≤ q, (9)

where the second sum to the right of (9) vanishes if u > q, and

ŷt−h+1(u − 1) = ŷt−h(u) + K(u − 1)ε(t − h + 1), u ≥ 1.

Although a strict definition of what is a state vector is currently not available, this term is used in Theorem 1 in the
same sense as used in Akaike [2] and Caines [13]. For each h > 1, however, xh(t) shares the following two properties
with the corresponding standard state vector with h = 1, albeit in a somewhat restricted sense: (i) it is a function of
the past h-step removed, {y(t − h − j), j ≥ 0}; (ii) it provides a sufficient statistic for prediction h-steps ahead and
beyond of {y(t + j), j ≥ 0}. In additon, the observation error process, eh(t), coincides with the h-step prediction error,
y(t + h − 1) − ŷt−1(h), and it is serially correlated, though uncorrelated with the state vector, xh(t). While its special
structure has implications for parameter estimation, it is not germane to applications discussed below.

By contrast, if h ≤ 0, the state vector is ‘anticipative’, meaning it is a function not only of the past, {y(t− j), j ≥ 1},
but also of the 1 − h ‘future’ values, {y(t), y(t + 1), . . . , y(t − h)}. Hence, property i) above holds in a modified sense.
However, since these future values are unobserved at time (t − 1), property ii) fails and xh(t) is not sufficient for
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prediction of {y(t + j), j ≥ 0}. This last property is reflected in equation (8), where the observation error process, eh(t),
vanishes.

Let x̄h(t) = U(h)xh(t), where U(h) is a conformal non-singular matrix. Theorem 1 then still holds if x̄h(t) replaces
xh(t), provided V̄(h) = U(h)V(h), F̄(h) = U(h)F(h)U(h)−1 and Ω̄(h) = Ω(h)U(h)−1 also replace V(h), F(h) and
Ω(h). The state vector, xh(t), is thus not unique. However, Reinsel [38], Yamamoto [51] and [13] discuss different
applications of this result with h = 0 and 1.

3. Structure of Multistep State Space Forms

A formal definition of an h-step state space representation is given below in Definition 1 for a fixed h ∈ Z, together
with that of the associated multistep state space representation:

Definition 1. A process, {y(t), t ∈ Z} is said to admit an h-step state space representation for a fixed h ∈ Z if the
following conditions are satisfied:

(a) y(t), for all t, may be written as in (4), where xh(t), the h-step state vector, is of finite dimension, n(h), say, and
satisfies (5), though not necessarily given by (6);

(b) the matrices F(h),Ω(h) and V(h) do not depend on t;

(c) the observation error process, eh(t), satisfies (7), if h ≥ 1, or (8), h ≤ 0, where {ε(t)} denotes a sequence of
uncorrelated random variables, each with mean zero and a positive definite covariance matrix, Ψ.

If, in addition, the h-step representation holds for a collection of values of h, then {y(t)} is said to admit a multistep
state space representation.

If h = 1, the standard prediction error form of a state space system results from the above definition, and the h-step
representation generalizes this basic system to each h ∈ Z.

For h ≥ 1, the state vector, xh(t), depends on {ε(t − h − j), j ≥ 0} and hence on the entire past history up to t − h of
{y(t)}. For h ≤ 0, however, it depends on {ε(t + j), j = 0, 1, . . . ,−h}, the unrealized future and concurrent innovations,
and, also, on the past innovations, {ε(t− j), j ≥ 1}. The resulting state vector may be postulated, for example, to reflect
the effects of possible future ‘shocks’ in financial markets.

It may be noticed that Definition 1 does not invoke Assumption 1. The well-known equivalence between a state
space form and a VARMA process, however, readily extends to all h ∈ Z, and we may show that a process, {y(t)},
satisfying Definition 1also admits a VARMA(n(h), n(h) + h− 1) representation for each h ∈ Z. The proof is omitted as
it is similar to that given in Akaike [2] for h = 0 and Caines [13] for h = 1.

The standard concepts of observability, reachability, minimality and McMillan degree readily extend to an h-step
state space system by recognizing that these concepts are defined independently of the nature of z(t), the state noise,
but which equals ε(t) for a one-step system and ε(t − h + 1) for an h-step system:

Thus, for each h ∈ Z, let

Q(h) =



K(h) K(h + 1) K(h + 2) . . . . . .
K(h + 1) K(h + 2) K(h + 3) . . . . . .
K(h + 2) K(h + 3) K(h + 4) . . . . . .

...
...

...
. . .

...
...

...
. . .


(10)

be an infinite-dimensional block Hankel matrix with the block in its (i, j)th position being K(h + i + j − 2), i, j ∈
{1, 2, . . . }.

Also, let f (h + i − 1, j) be an infinite-dimensional row vector denoting the row in the jth position of the ith block
of rows of Q(h), j ∈ {1, . . . , s}, i ∈ {1, 2, . . . }. We may write

Q(h)> = [ f (h, 1)>, f (h, 2)>, . . . , f (h, s)>, f (h + 1, 1)>, f (h + 1, 2)>, . . . , f (h + 1, s)>, . . . ].
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Further let Qn(h)n(h)(h) = [K(h + i + j − 2)], i, j ∈ {1, . . . , n(h)}, be a sub-matrix in the top left n(h) × n(h) corner
of Q(h), where n(h) denotes the dimension of the h-step state vector, xh(t). Then, as with h = 1, an h-step state space
system is said to be minimal if Qn(h)n(h)(h) is of rank n(h) and the rank of Q(h) for a minimal system also equals n(h).

For a fixed h ∈ Z, let

k∗h(z) =

∞∑
j=1

K( j + h − 1)z− j,

and let
k∗h(z) = a∗h(z)−1b∗h(z) (11)

denote a left matrix fraction description of k∗h(z), where a∗h(z) and b∗h(z) are polynomial matrices.
The standard theory, see Hannan and Deistler [22], applies to k∗h(z) and the factorization (11) is said to be irre-

ducible if [a∗h(z), b∗h(z)] only have unimodular matrices as their left divisors, and now a∗h(z) and b∗h(z) are also said to
be left coprime. Moreover, the degree of the determinant of a∗h(z), τ(det[a∗h(z)]), is an invariant for all irreducible left
matrix fraction descriptions of k∗h(z) and it equals the dimension, n(h), say, of a minimal h-step state space system.
We accordingly call n(h) the h-step McMillan degree. To avoid redundancy, we assume that the factorization (11) is
irreducible.

Next, let

k̃h(z) = z1−hk∗h(z).

It readily follows from (11) that k̃h(z) admits a left matrix factorisation as follows:

k̃h(z) = a∗h(z)−1b#
h(z), (12)

where b#
h(z) = z1−hb∗h(z) is a Laurent polynomial matrix and, with p(h) denoting the degree of a∗h(z), the coefficients,

A∗h(u), say, of a∗h(z) satisfy the following equations for u ∈ {h, h + 1, . . . } :

p(h)∑
j=0

A∗h( j)K(u + j) = 0.

Corresponding to factorization (12), it is also possible to express y(t) as a ‘forward’ difference equation in y(t +

1), . . . , y(t + p(h)), ε(t), ε(t + 1), . . . , ε(t − p(h) + h − 1). The details are omitted to save space. Suffice to say that such
a representation generalizes to each h ∈ Z that known for h = 1 (see Hannan and Deistler [22]).

If Definition 1 holds and ||F(h)|| < 1, where ||A|| denotes the Euclidian norm of a matrix, A, an h-step state space
representation for each h ∈ Z also provides a realization of the transfer function, k∗h(z), as follows:

k∗h
(
z−1

)
= Ω(h)[Is − F(h)z]−1V(h).

Hence, we may write, for each fixed h ∈ Z and all j ≥ h,

K( j) = Ω(h)F(h) j−hV(h). (13)

A simple test of minimality of an h-step system may also be given (see Hannan and Deistler [22]). Let

C(h) = [Ω(h)>, F(h)>Ω(h)>, . . . ]>, D(h) = [V(h), F(h)V(h), . . . ].

Also let, for i ∈ {1, . . . , n(h)},

Cn(h)(h)> = [F>(h)i−1Ω(h)>] , Dn(h)(h) = [F(h)i−1V(h)]

be the corresponding finite-dimensional block matrices, consisting of the first n(h) blocks of C(h) and D(h), respec-
tively. An h-step state space system is said to be observable if Cn(h)(h) is of rank n(h) and reachable if Dn(h)(h) is of
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rank n(h). An h-step state space system is then minimal if and only if it is both observable and reachable. Moreover,
we have, from (13),

Q(h) = C(h)D(h), (14)
Qn(h)n(h)(h) = Cn(h)(h)Dn(h)(h).

The representation (14) enables analytical properties of Q(h) to be studied from the corresponding properties of the
’system’ matrices C(h) and D(h). It is applied in Section 5 for establishing a rank stability property of Q(h) as h ∈ Z
increases.

4. Multistep Echelon VARMA and State Space Representations

The following result enables (see Hannan [21], Tuan [48] an h-step echelon VARMA representaion, and, also, an
h-step echelon state space representation, to be derived for {y(t)}, individually with each h:

y(t) = Q(h)εt−h + L(h)ε(t−h−1), (15)

where y(t) =
[
y(t)> y(t + 1)> . . .

]>
, yt =

[
y(t)> y(t − 1)> . . .

]>
, L(h) = [K(h + i − j − 1)], i, j ∈ {1, 2, . . . }, is a

block Toeplitz matrix, Q(h) is given by (10) and ε(t) and εt are defined analogously to y(t) and yt, respectively.
The undelying idea is to express a linear function of the term on the left of equation (15) in terms of another linear

function of the second term to its right. This is done by constructing a suitable basis for the row space of Q(h), for
each h, and applying this basis to eliminate the first term to the right of this equation. This suitable basis is henceforth
referred to as a canonical basis. As Q(h) is block Hankel, the canonical basis is selected by finding (see Akaike [2, 4]
and Solo [41]) the first maximum set of linearly independent rows which span the row space of Q(h).

For a fixed h ∈ Z, let
Qπ(h) = [ f (h + i, j), i ∈ {0, . . . , nh( j) − 1}, j ∈ {1, . . . , s}]

define the canonical basis. Denote the collection of all nh( j) by the following vector:

π(h) =
[
nh(1) . . . nh(s)

]>
, (16)

and the rank of Q(h) by their sum, n(h) = nh(1) + · · · + nh(s).
Clearly, π(h) is a multiindex which describes the dependence structure of the row space of Q(h). Moreover, the

numerical value of nh( j), for each j, gives the exact number of rows in the jth position of each block of Q(h) that
are included in the canonical basis. If nh( j) vanishes for some j then no f (h + i, j), i ∈ {0, 1, . . . } are selected in the
basis for that j. For h = 1, the nh( j) are known as the Kronecker indices (see Hannan and Deistler [22]), and n(h)
as the McMillan degree. We follow this standard terminology and refer to the nh( j), for each fixed h ∈ Z, as h-step
Kronecker indices of Q(h), or of k(z) , and n(h) as the h-step McMillan degree.

Let S ∈ {1, . . . , s},

n(h, j, k) =

min{nh( j) + 1, nh(k)}, j > k,
min{nh( j), nh(k)}, j ≤ k.

(17)

Also, let
S h( j) = {k : n(h, j, k) ≥ 1, k ∈ S }

denote the set of values of k for which n(h, j, k) is strictly positive, and let

Qπ( j, h) = { f (h + i, j), i ∈ {0, . . . , n(h, j, k) − 1}, k ∈ S h( j)}, (18)

denote a subset of Qπ(h).
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For a fixed h ∈ Z and each j ∈ S , f (h + nh( j), j) is readily seen to be linearly dependent on the rows of Qπ( j, h).
Hence, by a standard argument, unique constants, α̃h jk(u), u ∈ {0, . . . , n(h, j, k) − 1}, say, may be found such that

f (h + nh( j), j) +
∑

k∈S h( j)

n(h, j,k)∑
u=1

α̃h jk(u − 1) f (h + u − 1, k) = 0. (19)

Let p(h) = max[nh( j), j ∈ {1, . . . , s}], α̃h j j(p(h)) = 1, and Ãh(u) = [α̃h jk(u)], j, k ∈ {1, . . . , s}, ; u ∈ {0, . . . , p(h))}
be an s × s matrix which bring together the constants defined by (19) for all j ∈ S . We then have, for each h ∈ Z,[

Ãh(0) Ãh(1) . . . Ãh(p(h)) 0
]

Q(h) = 0,[
Ãh(0) Ãh(1) . . . Ãh(p(h)) 0

]
y(t) =

[
B̃h(0) B̃h(1) . . . B̃h(h + p(h) − 1) 0

]
ε(t−h−1), (20)

where [
B̃h(0) B̃h(1) . . . B̃h(h + p(h) − 1) 0

]
=

[
Ãh(0) Ãh(1) . . . Ãh(p(h)) 0

]
L(h). (21)

From (19) and (21) , it follows that Ãh(p(h)) is lower triangular with 1’s down the main diagonal and B̃h(p(h)+h−1) ≡
Ãh(p(h)).

An h-step echelon VARMA representation for {y(t)} may now be found by setting t̃ = t + p(h), q(h) = p(h) + h −
1, Ah(u) = Ãh(p(h) − u), u ∈ {0, . . . , p(h)}, Bh(u) = B̃h(q(h) − u), u ∈ {0, . . . , q(h)} and reversing equation (20). Let
αh jk(u) and βh jk(u) denote the entries in the ( j, k)th positions of Ah(u) and Bh(u), respectively.

Theorem 2 below gives the formal skeletal structure of an h-step echelon VARMA representation for {y(t)}. and
Corollary 1 gives the total number of unconstrained coefficients, dπ(h), say, in this representation. For an observed
time series, the latter can guide the choice of an appropriate h, and, also, help judge the extent to which Difficulty 2
may be overcome by an h-step representation with h , 1:

Theorem 2. Let {y(t)} satisfy Assumption 1. Corresponding to the h-step Kronecker indices given by (16), {y(t)}
admits the following unique (reversed) h-step echelon VARMA representation, valid for each h ∈ Z,

p(h)∑
u=0

Ah(u)y(t − u) =

q(h)∑
u=0

Bh(u)ε(t − u), (22)

in which Ah(u) = [αh jk(u)], Bh(u) = [βh jk(u)], j, k ∈ {1, . . . , s}, are matrices with coefficients satisfying the constraints
given below:

(i) αh jk(0) = βh jk(0),

(ii) αh j j(0) = 1,

(iii) αh jk(u) = 0, u > nh( j),

(iv) αh jk(u) = 0, 0 ≤ u ≤ nh( j) − n(h, j, k), n(h, j, k) ≤ nh( j), j , k,

(v) βh jk(u) = 0, u > q(h).

Corrollary 1. Let {y(t)} satisfy Assumption 1. For each h ∈ Z, the total number of unconstrained coefficients in the
h-step echelon representation, (22), is given by

dπ(h) =

s∑
j=1

dπ( j, h),

where dπ( j, h) = dAπ( j, h) + dBπ( j, h), and, for j ∈ {1, . . . , s},

dAπ( j, h) =

s∑
k=1

n(h, j, k), dBπ( j, h) = {nh( j) + h − 1}s

denote the number of unconstrained autoregressive, AR, and moving average, MA, parameters, respectively, in the
jth equation of (22).
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A state space representation for y(t) may also be specified for each h from the corresponding canonical basis for
Q(h). Theorem 3 below gives the actual representation. The proof is omitted as it is similar to that available with
h = 0 in Akaike [4] and with h = 1 in Hannan and Deistler [22] and Solo [41]:

Theorem 3. Let {y(t)} satisfy Assumption 1. For each h ∈ Z, y(t) admits an h-step state space representation defined
as follows:

(a) the state vector is given by xh(t) = Qπ(h)εt−h,

(b) V(h) consists of the first s columns of Qπ(h),

(c) Ω(h) has 1 in (u, vh(u))th place and 0’s everywhere else, u ∈ {1, . . . , s}, where vh(1) = 1, vh(u) = vh(u−1)+nh(u−
1), u > 1,

(d) F(h) = [F jk(h)] j, k ∈ {1, . . . , s}, where, with αh1,n(h, j,k) = [αh jk(nh( j) − 1), . . . , αh jk(nh( j) − n(h, j, k) + 1)],

F j j(h) =

[
0 Inh ( j)

−αh j j(nh( j)) −αh1,n(h, j,k)

]
,

F jk(h) =

[
0 0

−αh jk(nh( j)) −αh1,n(h, j,k)

]
, j , k.

The (reversed) h-step echelon form, (22), retains some of the main properties of the standard echelon form with
h = 1, and possesses some additional properties. Let

ah(z) =

p(h)∑
j=0

Ah( j)z j, bh(z) =

q(h)∑
j=0

Bh( j)z j,

denote the respective characteristic polynomials of the Ah( j) and Bh( j), and put

kh(z) = ah(z)−1bh(z).

For each h ∈ Z, kh(z) encodes k(z), meaning kh(z) ≡ k(z), and a unique left matrix fraction description of k(z) is
obtained in which the degree of the jth row of ah(z) is nh( j) and that of bh(z) is nh( j) + h− 1. For h , 1, the two could
differ from each other. Also, a range of different echelon VARMA models may be fitted by allowing h to vary. Hence,
Difficulty 1 and the first part of Difficulty 3 with the standard echelon form technology could be overcome. Also, in
principle, Difficulty 2 could be side-stepped by choosing the value of h that minimizes dπ(h). The question of how to
choose an appropriate h is, however, more complex as parameter estimation errors are also involved, and a detailed
discussion is deferred to Section 8.

The term (h−1)s occurring in dBπ( j, h) reflects the fact that K(1), . . . ,K(h−1) are treated as unknown when h > 1
and would need to be parameterized and estimated, but, if h < 1, the values of K(0), . . . ,K(−h) are fixed and known.

Vaninskii and Yaglom [50] (see also Pourahmadi [36, p. 289]), give conditions under which the number of non-
zero canonical correlations between the past, {y(t), t ≤ 0}, and the future beyond h, {y(t), t ≥ h}, h ≥ 1, of a univariate
stationary process is finite. A left matrix fraction description of k(z) is, however, not discussed there, whose main
focus differs from ours.

Next, three specific examples of standard VARMA processes, called Example 1, Example 2 and Example 3,
respectively are considered to demonstrate Difficulties 1-3 with the standard approach, and to show also how multistep
echelon forms contribute towards overcoming these difficulties.

Example 1. VAR(1) process: Suppose that

k(z) = (Is − Az)−1 =

∞∑
j=0

A jz j,

where A is a fixed matrix such that rank(A) = s, det(Is − A) , 0, |z| ≤ 1.
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Example 2. V MA(1) process: Suppose that
k(z) = Is + Bz,

where B is a fixed matrix such that rank(B) = s, det(Is + Bz) , 0, |z| < 1.

Example 3. VARMA(1, 1) process: Suppose that

k(z) = (Is − Az)−1(Is + Bz) = Is +

∞∑
j=1

A j−1(A + B)z j,

where A and B are fixed matrices such that s = rank(A) = rank(B) = rank(A + B), and, with a(z) = Is − Az, b(z) =

Is + Bz, det(a(z)) , 0, |z| ≤ 1; det(b(z)) , 0, |z| < 1, [a(z) b(z)] is left coprime.

The following groups of results describe how Theorem 2 may be applied to these examples:

(i) The process defined by Assumption 1 may be associated with Examples 1, 2 and 3 by imposing the following
restrictions:

Example 1: p = 1, q = 0, and A(1) = −A.

Example 2: p = 0, q = 1, and B(1) = B.

Example 3: p = 1, q = 1, A(1) = −A and B(1) = B.

(ii) The multistep Kronecker indices, nh( j), for these three examples are as follows:

Example 1: For all j ∈ S , nh( j) = 1 − h, if h ≤ 0, nh( j) = 1, if h ≥ 0.

Example 2: For all j ∈ S , nh( j) = 2 − h, if h ≤ 2, nh( j) = 0, if h ≥ 2.

Example 3: For all j ∈ S , nh( j) = 2 − h, if h ≤ 1, nh( j) = 1, if h ≥ 1.

(iii) If only the multistep indices, nh( j), are treated as known, and not the K( j), the following h-step echelon VARMA
representations may be specified for each h ∈ Z by Theorem 2:

Example 1: A full VARMA(−h + 1, 0) model for all h ≤ 0, and a full VARMA(1, h) model for all h ≥ 1, giving
dπ(h) = (1 − h)s2, h ≤ 0, dπ(h) = (1 + h)s2, h ≥ 1.

Example 2: A full VARMA(2−h, 1) model for all h ≤ 2, and a full VARMA(0, h−1) model for all h > 2, giving
dπ(h) = (3 − h)s2, h ≤ 2, dπ(h) = (h − 1)s2, h ≥ 3.

Example 3: A full VARMA(2 − h, 1) model for all h ≤ 1 and a full VARMA(1, h) model for all h > 1, giving
dπ(h) = (3 − h)s2, h ≤ 1, dπ(h) = (h + 1)s2, h ≥ 2.

(iv) If, on the other hand, the K( j) are treated as known, then the following additional constraints may be realized,
and we get, in each example, kh(z) ≡ k(z), for all h ∈ Z:

Example 1: K( j) = A j, j ≥ 0, [Ah(0), Ah(1)] ≡ [Is,−A], all h,
Ah( j) ≡ 0, 2 ≤ j ≤ −h + 1, h < 0; Bh( j) ≡ 0, 1 ≤ j ≤ h, h > 0.

Example 2: K(1) = B, K( j) = 0, j > 1, Ah(0) ≡ Is, [Bh(0), Bh(1)] ≡ [Is, B], all h,
Ah( j) ≡ 0, j ≥ 1, h < 2; Bh( j) ≡ 0, 2 ≤ j ≤ h − 1, h > 2.

Example 3: K( j) = A j−1(A + B) j ≥ 1, [Ah(0), Ah(1)] ≡ [Is,−A], [Bh(0), Bh(1)] ≡ [Is, B], all h, Ah( j) ≡ 0, 2 ≤
j ≤ 2 − h, h < 1; Bh( j) ≡ 0, 2 ≤ j ≤ h + 1, h > 1.
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Difficulties 1-3 are palpably illustrated by the three examples given above.
Difficulty 1: Only a single model, VARMA(1, 1), is specified in all three examples by the standard approach.
Difficulty 3: The row degrees of the AR and MA polynomials specified by the standard approach equal 1 in all

three examples and do not differ from each other; moreover, the profile of Kronecker indices with h = 1 is identical
in these three data generating processes and the standard approach also fails to discriminate between them.

Difficulty 2: The standard echelon form specifies that dπ(h) = 2s2 in Example 1 and Example 2. However,
when the K( j) are treated as known, Bh(1) vanishes in Example 1 and Ah(1) in Example 2, and the actual number of
unconstrained coefficient in these two examples equals s2. Thus, in both these examples, s2 vanishing coefficients are
specified as unconstrained by the standard approach.

The multistep echelon models, by contrast, help overcome these difficulties:
A wide range of different VARMA models, as listed above in (iii), could be specified in all three examples by

varying h, and Difficulty 1 could be overcome. The row degrees of AR and MA polynomials specified by Theorem 2
are unequal in all three examples when h , 1, and Difficulty 3 could also be overcome.

Difficulty 2 may also be overcome by observing that dπ(h) takes its smallest value with h = 0 in Example 1 and
with h = 2 in Example 2. By contrast, dπ(h) is minimized in Example 3 with h = 1, and which now is an appropriate
choice to make. This example thus shows that the multistep echelon forms enhance the standard approach rather than
replace it and the latter approach, if indicated, may still be implemented within the overall framework of the former
approach. A similar comment also applies to the approach of Akaike [4] which is suitable for Example 1, as h = 0 is
an appropriate choice in this example.

5. Identifying Vanishing Coefficients in Multistep Echelon Forms

We examine whether the Kronecker indices for two or more values of h could provide information about possibly
vanishing coefficients in an echelon VARMA model specified with a fixed h by Theorem 2. To this end, explicit
scenarios describing how the h-step Kronecker indices, nh( j), change as h varies are considered, initially for just two
consecutive values of h, but subsequently also for all h ∈ Z. First, however, some basic properties of these indices are
considered.

A lower bound on the values of nh( j) when h ≤ 0 is given below in Lemma 1, which follows readily by noting that
K( j) = 0, j < 0, K(0) = Is:

Lemma 1. Let {y(t)} satisfy Assumption 1. For each h ≤ 0, j ∈ S , nh( j) ≥ −h + 1.

The following lemma may be useful at parameter estimation stage, since its main result is often required in some
standard software packages:

Lemma 2. Let {y(t)} satisfy Assumption 1 and suppose that for a fixed h ∈ Z, the nh( j) are such that nh(1) ≤ nh(2) ≤
. . . ≤ nh(s). Then Ah(0) = Bh(0) = Is, an identity matrix. Conversely, if for some j < k, nh( j) > nh(k), then αh jk(0) is
not constrained to vanish for these j and k.

An important property of the multistep Kronecker indices is established in the following theorem, which shows
that as h increases by one to h + 1, the corresponding values of nh( j) and n(h, j, k), for all j, k ∈ S , either do not change
or decrease by one.

Theorem 4. Let {y(t)} satisfy Assumption 1 and suppose that h ∈ Z is a fixed integer. Then:

(a) for j ∈ S ,
0 ≤ nh( j) − nh+1( j) ≤ 1,

(b) for j, k ∈ S ,
0 ≤ n(h, j, k) − n(h + 1, j, k) ≤ 1,

that is, nh( j) − nh+1( j) and n(h, j, k) − n(h + 1, j, k) either equal 0 or 1, for j, k ∈ S .
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Proof. Let
Q∗π(h + 1) = { f (h + 1 + u, j); u ∈ {0, . . . , nh( j) − 1}, j ∈ S }.

By the Hankel structure of Q(h + 1), Q∗π(h + 1) ⊂ Q(h + 1), and we have, for j ∈ S ,

f (h + 1 + nh( j), j) +
∑

k∈S h( j)

n(h, j,k)∑
u=1

α̃h jk(u − 1) f (h + u, k) = 0.

However, by our hypothesis, only the rows defined by Qπ(h + 1) are linearly independent within Q(h + 1), and we
have, for j ∈ S ,

f (h + 1 + nh+1( j), j) +
∑

k∈S h+1( j)

n(h+1, j,k)∑
u=1

α̃h+1 jk(u − 1) f (h + u, k) = 0.

Hence, we get Qπ(h + 1) ⊆ Q∗π(h + 1) and nh+1( j) ≤ nh( j), for j ∈ S . Next, let Q̃π(h) = { f (h + u, j); u ∈ {0, . . . , nh( j)−
2}, j ∈ S }, where if nh( j) ≤ 1, for some j ∈ S , then no rows for that j are included in Q̃π(h). We have, Q̃π(h) ⊂ Qπ(h),
since, if not, the values of nh( j) may be uniformly reduced by one and a contradiction would ensue. Similarly, let
Q̃π(h+1) = { f (h+u+1, j); u ∈ {0, . . . , nh( j)−2}, j ∈ S }. Part (a) now follows by recognising that Q̃(h+1) ⊆ Qπ(h+1),
and that this last result in turn implies that nh+1( j) ≤ nh( j)− 1, j ∈ S . Part (b) now follows from Part (a) and (17).

In the light of Theorem 4, it would be useful to distinguish between the following three sets, for each fixed j ∈ S ,
and each fixed h ∈ Z:

S E( j, h) = {k : n(h + 1, j, k) = n(h, j, k), k ∈ S },

S L( j, h) = {k : n(h + 1, j, k) = n(h, j, k) − 1, k ∈ S },

S̃ E( j, h) = S E( j, h) ∩ S h( j).

The number of elements of S Eh( j) and S Lh( j) are denoted by d(S E( j, h)) and d(S L( j, h)), respectively. We also let
Q∗π( j, h + 1, h) = { f (h + i + 1, j); i ∈ {0, . . . , n(h, j, k) − 1}, k ∈ S h( j)} denote a submatrix of Qπ( j, h), the latter being
defined in (18).

Suppose that j ∈ S L( j, h), but S̃ E( j, h) , ∅ is non-null. Now, f (h + nh( j), j) is simultaneously linearly dependent
on the rows of Qπ( j, h) and Qπ( j, h + 1). The following lemma establishes an equivalence between these two linear
dependency relations by showing that each row ofQπ( j, h + 1) ∩ Qπ( j, h)c is in turn linearly dependent on the rows of
Qπ( j, h), where Qπ( j, h)c denotes the complement of Qπ( j, h). Also, Theorem 5 relates αh+1 ji(u) to αh ji(u), for each
fixed u.

Lemma 3. Let {y(t)} satisfy Assumption 1. Suppose that the following conditions are satisfied for a fixed j ∈ S and a
fixed h ∈ Z:

(i) j ∈ S L( j, h),

(ii) S̃ E( j, h) , {∅} is non-null.

Then:

(a) Qπ( j, h) ∩ Qπ( j, h + 1)c = { f (h, k), k ∈ S h( j)},

(b) Qπ( j, h + 1) ∩ Qπ( j, h)c = { f (h + nh(k), k), k ∈ S̃ E( j, h)},

(c) for k ∈ S̃ E( j, h), f (h+nh(k), k) is linearly dependent on the rows of Qπ(k, h), where Qπ(k, h) is a subset of Qπ( j, h).

Proof. Parts (a) and (b) follow from the definition of Qπ( j, h). Also, under (i) and (ii), nh+1(k) = nh(k) and n(h, j, k) =

nh(k), for k ∈ S̃ E( j, h), and part (c) follows from this result since it implies that f (h + nh(k), k) precedes f (h + nh( j), j),
for k ∈ S̃ E( j, h), and hence Qπ(k, h) is a subset of Qπ( j, h).
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Theorem 5. Suppose that the conditions stated in Lemma 3 are satisfied. Then, for all i ∈ S h( j) and u ∈ {nh( j) −
n(h, j, i) + 1, . . . , nh( j)},

αh+1 ji(u) = αh ji(u) +
∑

k∈S̃ E ( j,h)

αh+1 jk(nh( j) − nh(k))αhki(nh(k) − nh( j) + u), (23)

where αhki(nh(k) − nh( j) + u) = 0, if, for an i ∈ S h( j), f (h + u, i) < Qπ(k, h).

Proof. The theorem follows directly from (17) and part (c) of Lemma 3.
Suppose instead that j ∈ S E( j, h), but S L( j, h) , {∅} is non-null. Now, nh+1( j) = nh( j) and f (h+nh( j), j) is linearly

dependent on the rows of Qπ( j, h), and f (h + 1 + nh( j), j) on those of Qπ( j, h + 1). However, Qπ( j, h + 1) is a proper
subset of Q∗π( j, h + 1, h), Qπ( j, h + 1) ⊂ Q∗π( j, h + 1, h), and excludes some rows which belong to the latter. Lemma 4
below shows that each of these excluded rows is, nevertheless, linearly dependent on the rows of Qπ( j, h + 1).

Lemma 4. Let {y(t)} satisfy Assumption 1. Suppose that the following conditions are satisfied for a fixed j ∈ S and a
fixed h ∈ Z:

(i) j ∈ S E( j, h),

(ii) S L( j, h) , {∅} is non-null.

Then

(a) Q∗π( j, h + 1, h) ∩ Qπ( j, h + 1)c = { f (h + n(h, j, k), k), k ∈ S L( j, h)},

(b) for k ∈ S L( j, h), f (h + n(h, j, k), k) is linearly dependent on the rows of Qπ(k, h + 1), where Qπ(k, h + 1) is a subset
of Qπ( j, h + 1).

Proof. Part (a) follows from the definition of Qπ( j, h+1) and Q∗π( j, h+1, h). The proof is completed by demonstrating
that, under the hypothesis of the lemma, nh+1(k) = nh(k) − 1 and n(h, j, k) = nh(k), for k ∈ S L( j, h).

Theorem 6. Under the conditions stated in Lemma 4, for i ∈ S h+1( j) and u ∈ {nh+1( j)− n(h + 1, j, i) + 1, . . . , nh+1( j)},

αh+1 ji(u) − αh ji(u) = −
∑

k∈S L( j,h)

αh jk(nh( j) − n(h, j, k) + 1)αh+1ki(nh+1(k) − u + 1), (24)

where αh+1ki(u) = 0, if, for i ∈ S h( j), f (h + nh+1( j) − u + 1, i) < Qπ(k, h + 1).

Proof. The theorem follows directly from (19) and part (b) of Lemma 4.
A special case of Theorem 5 occurs when the following condition holds:

n(h + 1, j, k) = n(h, j, k) − 1, k ∈ S . (25)

Now, Qπ( j, h + 1) ∩ Qπ( j, h)c = {∅} , a null set and second term to the right of (23) vanishes. Analogously, a special
case of Theorem 6 occurs when the following condition holds:

n(h + 1, j, k) = n(h, j, k), k ∈ S . (26)

Now, Qπ( j, h + 1) ∩ Qπ( j, h)c = {∅} , a null set, and second term to the right of equation (24) vanishes. Moreover, in
both cases, βh+1 jk(u) may also be related to βh jk(u), by invoking equation (21). Hence, Theorems 7 and 8 given below
hold, where the former applies under condition (25) and the latter under condition (26):

Theorem 7. Suppose that conditions stated in Lemma 3 hold but S̃ E( j, h) = {∅} is null. Then:

(a) αh+1 jk(u) = αh jk(u), u ∈ {nh+1( j) − n(h + 1, j, k) + 1, . . . , nh+1( j)}, k ∈ S h+1( j), (27)
(b) αh+1 jk(u) = αh jk(u) ≡ 0, u ∈ {0, . . . , nh+1( j) − n(h + 1, j, k)}, k ∈ S ,

nh+1( j) − n(h + 1, j, k) ≥ 0,
(c) αh jk(nh( j)) ≡ 0, k ∈ S ,

(d) βh+1 jk(u) = βh jk(u), u ∈ {0, . . . , nh( j) + h − 1}, k ∈ S .
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Theorem 8. Suppose that conditions stated in Lemma 4 hold but S L( j, h) = {∅} is null. Then:

(a) αh+1 jk(u) = αh jk(u), u ∈ {0, . . . , nh( j)}, k ∈ S }, (28)
(b) βh+1 jk(u) = βh jk(u), u ∈ {0, . . . , nh( j) + h − 1}, k ∈ S ,

(c) βh+1 jk(nh( j) + h) ≡ 0, k ∈ S .

An important situation where Theorem 7 applies occurs if. for each j ∈ S . j ∈ S L( j, h). Analogously, if for each
j ∈ S , j ∈ S E( j, h), then Theorem 8 applies for all j ∈ S Corollaries 2 and 3 given below summarise the results:

Corrollary 2. Suppose that {y(t)} satisfies Assumption 1 and nh+1( j) = nh( j) − 1, j ∈ S and a fixed h ∈ Z. Then, the
results (a)-(d) given in Theorem 7 hold for j ∈ S .

Corrollary 3. Suppose that {y(t)} satisfies Assumption 1, and nh+1( j) = nh( j), j ∈ S and a fixed h ∈ Z. Then, the
results (a)-(c) given in Theorem 8 hold for j ∈ S .

Corollaries 2 and 3 may be extended to three or more values of h by making specific assumptions concerning the
behaviouir of nh( j) as h changes. Theorem 9, below considers a ’boundary’ situation in which, for some h̄ ∈ Z, the
multistep indices decrease monotonically for all h < h̄ and remain stable for all h ≥ h̄.

Theorem 9. Let {y(t)} satisfy Assumption 1. Suppose that there exists an h̄ ∈ Z such that:

nh( j) = nh−1( j) − 1, j ∈ {1, . . . , s} and h < h̄, (29)
nh+1( j) = nh( j), j ∈ {1, . . . , s} and h ≥ h̄. (30)

Then

(a) the VARMA representation specified by Theorem 2 with each h , h̄ coincides with that specified for h = h̄ and
the results (a)-(d) given in Theorem 7 hold for j ∈ S and h < h̄ and the results (a)-(c) given in Theorem 8 hold for
j ∈ S and h ≥ h̄.

(b) for each h , h̄, the reduction in the number of unconstrained parameters as a result of adopting the procedure
given in (a) above is as follows:

dπ(h) − dπ(h̄) = |h − h̄|s2.

Under Assumption 1, the rank, n(h), of Q(h) is finite for each h ∈ Z and it cannot increase as h increases. It may
thus be expected to stabilize for some h0 ∈ Z, meaning n(h) = n(h0), for h ≥ h0. Theorem 10 below shows that the
aforementioned intuition could be correct and gives a criterion for recognizing h0 from a record of n(h), h ∈ Z. A
referee for a previous version of this paper supplied the proof given below, which is based on the decomposition (14)
of Q(h). Thanks are, however, also due to Professors J. Partington (Leeds), V. Peller (Michigan State) and N. Young
(Leeds) for their respective proofs of this theorem, which to save space are omitted.

Theorem 10. Let Assumption 1 hold. Suppose that there is an h0 ∈ Z, such that n(h0) = n(h0 + 1). Then, n(h) =

n(h0), h ≥ h0.

Proof. On noting that Q(h0 + 1) is obtained by omitting the first block of rows of Q(h0) and using the decomposition
(14), we have Q(h0 + 1) = C(h0)F(h0)D(h0). Now, the hypothesis that n(h0) = n(h0 + 1) implies that both C(h0)
and C(h0)F(h0) have column rank n(h0) and hence that F(h0) is non-singular. The theorem now follows by writing
Q(h) = C(h0)F(h0)h−h0 D(h0), for all h ≥ h0.

Theorem 9 is readily seen to apply to the three examples given in section 4, with h̄ = 0, Example 1, h̄ = 2,
Example 2, h̄ = 1, Example 3, and yield the same zero constraints as are satisfied by the Ah(u) and Bh(u). Moreover,
for each h , h̄, the corresponding values of dπ(h) given in these three examples is in agreement with that given in
Theorem 9. Theorem 10 applies also to these three examples with h0 = h̄; to save space the corresponding numerical
values of n(h) are not shown here. Corollaries 2 and 3, in addition, apply sequentially to these three examples; the
former with h = h̄ − i − 1, and the latter with h = h̄ + i, i ∈ {0, 1, . . . }, and for the resulting pair of values of h and
h+1, yield the same constraints as may be derived when the impulse responses, K( j), are treated as known. Moreover,
when collected together, the resulting constraints give the same result as stated earlier by Theorem 9. The details are
omitted to save space.
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6. Estimation of Multistep Kronecker Indices

Akaike [4] earlier suggested a procedure for estimating the Kronecker indices with h = 0. This procedure is
generalized below to each fixed h ∈ Z. There are four reasons for considering this generalization. First, instead
of Q(h), an equivalent Hankel matrix, Γ(h) = [R(h + u + v − 2)], u, v ∈ {1, 2, . . . } is considered. Secondly an
examination of the dependence structure of the rows of Q(h) is avoided and replaced by a canonical correlation
analysis between vectors of ‘past’ and ‘future’ variables. Thirdly, multiple hypothesis tests are not required and a
model selection criterion, called DIC, is introduced for checking whether a canonical correlation vanishes. Fourthly,
the procedure is formulated in a ‘non parametric’ framework, that is, without assuming a parametric model for the
observed time series. Despite the known criticisms (see Hannan [20] and Solo [42]), a non-parametric approach may
be preferred in the present context because a main motivation for estimating the multistep Kronecker indices occurs
at the VARMA model specification stage. By contrast, the alternative approach considered in Hannan and Kavalieris
[23] is parametric, cumbersome to implement and involves the fitting of different VARMA models for estimating these
indices.

The vector of ‘past’ variables, ηt(h), ‘future’ variables, θt, and their block Hankel covariance matrix, Γ(h), are
defined as follows for each t ∈ Z and an h ∈ Z:

ηt(h) = [y(t − h)>, y(t − h − 1)>, . . . ]>, θt = [y(t)>, y(t + 1)>, . . . ]>,
Γ(h) = E{θtηt(h)>} = [R(h + u + v − 2)], u, v ∈ {1, 2, . . . }.

In practice, ηt(h) and θt are truncated at a large integer, M, say, and the following finite-dimensional vectors,

ηt(h,M) = [y(t − h)>, . . . , y(t − M)>]>, θt(h,M) = [y(t)>, . . . , y(t + M − h)>]>,

are considered instead for each h ∈ [−H,H] together with their block Hankel matrix covariance matrix, Γ(h,M) =

E{θt(h,M)ηt(h,M)>} = [R(h + u + v − 2)], u, v ∈ {1, . . . ,M}, where H denotes another large integer. The choice of
H and M is subjective. However, H should be large enough to ensure that the h-step McMillan degree, n(h), would
not change for all h > H. Also, M may be chosen to be sufficiently large and such that it does not exclude any rows
of Γ(h) that could be linearly independent of their antecedents. Following Akaike [4], M may be chosen by an initial
application of the minimum AIC procedure (see Akaike [1]) for selecting the order, m̃ , say, of an initial autoregression
that may be fitted to the observed time series. Now, M should not be smaller than m̃.

The DIC criterion suggested in Akaike [4] applies only with h = 0. The following generalisation of DIC, called
DIChα applies with each fixed h ∈ Z, and obtained by replacing a constant of 2 occurring in the definition ofDIC by
a real number, α (see Bhansali and Downham [11]):

DIChα(v) = −T log{1 − rh(v + 1)2} − α{(M − h + 1) s − v}, (31)

where the constant, (M − h + 1)s, in the definition of DIChα above represents the dimension of ηt(h,M). and rh(v +

1), v ≥ 0, denotes the next canonical correlation between ηt(h,M) and θt(h,M) to be judged to be positive, given that
rh(1), . . . , rh(v), the first v canonical correlations, are already found to be positive. Akaike [4] gives a step-by-step
algorithm for estimating the Kronecker indices with h = 0, and which readily extends to each h ∈ Z. For brevity, only
a brief outline of the procedure to be adopted is given below:

Let θ∗(h, u−1) denote some (u−1) components of θt(h,M) such that the canonical correlations between θ∗(h, u−1)
and ηt(h,M) are positive, where h ∈ [−H,H] is a fixed integer. Also, let θu denote the next ‘untested’ component of
θt(h,M), and set θ#(h, u) = [θ∗(h, u−1)>, θu]>. Initially, u = 1, θ∗(h, u−1) = {∅}, the null vector, and θ#(h, u) = [y1(t)]>.
Now check whether or not the canonical correlation associated with θu is positive by a canonical correlation analysis
between θ#(h, u) and ηt(h,M). This will entail inspecting the sign of DIChα(u − 1). If DIChα(u − 1) is negative,
the optimal linear predictor, θ̂u, say, of θu based on ηt(h,M) is judged to be linearly dependent on the corresponding
predictors of the components of θ∗(h, u − 1), the antecedents of θu. For appropriate values of i and n̂h(i), write
θu = yi(t + n̂h(i)), adopt n̂h(i) as an estimate of nh(i) and discard yi(t + j), j ∈ {n̂h(i), n̂h(i) + 1, . . . } from θt(h,M). If
some components of θt(h,M) still remain, put θ#(h, u) = [θ∗(h, u− 1)>, θu+1]>, where θu+1 denotes the next unchecked
component of θt(h,M), and repeat the procedure described in the last sentence with this new θ#(h, u). Conversely, if
DIChα(u − 1) is non-negative, accept θu as the uth element of θ∗(h, u), set θ∗(h, u) = [θ∗(h, u − 1)>θu]>, and continue
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with θ#(h, u + 1) = [θ∗(h, u)>, θu+1]> in place of θ#(h, u). For the chosen value of h, the procedure is completed once
θt(h,M) is exhausted, that is, after no components of θt(h,M) remain unchecked or discarded. Now, increase the value
of h by one to h + 1 and repeat the procedure with this new value, and continue until h = H, when the indices for all
the chosen values of h have been estimated.

Akaike et al. [6] gives a software, called Program CANOCA, for implementing the original algorithm of Akaike
[4]. This software was modified and extended for use with each fixed h ∈ Z.

Cooper and Wood [14] (see also Fuchs [18], Tsay [45]) have suggested a test of whether rh(v + 1) vanishes.
The arguments given there for a χ2 approximation to the asymptotic distribution of the test statistic are, however,
heuristic and lack a rigorous justification. There is also a problem of simultaneous inference (see Bhansali [9]) with
the hypothesis-testing approach introduced there. The DIChα criterion by-passes the aforementioned simultaneous
inference problem, and, also, possesses a relatively simple structure.

Tsay [45] (see also Toscano and Reisen [44]) has earlier suggested a related extension to that given above of
Akaike’s original algorithm. The notion of multistep Kronecker indices and the associated multistep echelon forms
are, however, not discussed there. In addition, a problem of simultaneous inference mentioned above is also present
with the procedure suggested there, which seeks to find a vanishing canonical correlation by increasing and decreasing
the value of h in steps of one.

Identification of system matrices and state dimension by computationally-effective procedures has attracted atten-
tion lately (see Van Overschee and De Moor [49]). Deistler et al. [16] and Bauer et al. [7] consider an ‘autoregressive’
estimate of the state by a regression of θt(h, k) on ηt(h, k), with h = 1 and k chosen by an order selection criterion.
The main application, however, of the method suggeseted there, which readily extends to any h ∈ Z, is likely to be
for prediction and interpolation and not for estimation of h-step Kronecker indices, which is the main focus of the
procedure proposed above.

7. Plan and Results of a Simulation Study

An extensive simulation study was carried out for examining how effective the estimation procedure given in
Section 6 is with an observed time series. Although a total of 17 different models were considered, including the
models simulated in Hannan and Kavalieris [23]. detailed results reported in Section 7.2 are confined to only three
processes described below in Section 7.1 .

7.1. Computational Setup
The three processes considered are henceforth called Experiments 1, 2 and 3 respectively. Their parameters,

A(1), . . . , A(p); B(1), . . . , B(q) and Ψ, are given below, row by row, with symbol ϑ used to denote this operation; for
example, ϑ[I2] = [1, 0; 0, 1]:

Experiment 1.

p = 1, q = 0, s = 2, ϑ[A(1)] = [−0.79, 0.68;−0.29,−0.51], ϑ[Ψ] = [0.061, 0.022; 0.022, 0.058].

Experiment 2.

p = 1, q = 1, s = 3, ϑ[B(1)] = [−0.55, 0.0, 0.0; 0.0, 0.0, 0.0; 0.0, 0.0, 0.0],
ϑ[A(1)] = [−0.36, 0.0, 0.0;−0.22,−0.73,−0.12;−0.16, 0.0,−0.42],
ϑ[Ψ] = [0.51,−0.11, 0.11;−0.11, 0.27, 0.14; 0.11, 0.14, 0.77].

Experiment 3.

p = 0, q = 1, s = 2, ϑ[B(1)] = [0.8, 0.7,−0.4, 0.6], ϑ[Ψ] = [4.0, 1.0; 1.0, 2.0].

Experiment 1 simulates a simplified model for the Mink-Muskrat data suggested in Harvey [24, p. 251]; Experi-
ment 2 is similar to that considered by Tsay [45]; Experiment 3 is Example 2.1 of Reinsel [38].

The subroutine G05HDF of the NAG library was invoked for simulating a set of T observations, with T = 200, 500
and 1000, from each experiment, and the multistep Kronecker indices were estimated by the h-step generalization of
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Program CANOCA of Akaike et al. [6]. The DIChα criterion was applied with α = 2, 3, 4 and ln T for determining
the number of non-vanishing canonical correlations. We set H = 2 and M = m̃ + h + 1, if h ≥ 1, and M = m̃ + 1, if
h ≤ 0, where m̃ denotes the order of an initial autoregression selected by AIC. This choice helped to ensure that the
respective dimensions of the vectors ηt(h,M) and θt(h,M) equal m̃ + 2, for all h ≥ 0, and m̃ + 2 − h, for all h ≤ 0. The
latter choice helped to ensure that the common dimension does not decrease as h decreases, which would have been
the case if M had been held fixed instead for all h. For brevity, however, we denote the estimated indices simply by
π̂(h), and suppress their dependence on α, m̃ and M. The total number of simulations for each (Experiment, T, h, α)
configuration was 1000.

Three principal aims of the simulation study are as follows: first, to examine how effective the canonical correlation
analysis procedure is for estimating the multistep Kronecker indices; second to investigate how useful the resulting
estimates are for specifying an appropriate echelon VARMA model to fit an observed time series, and for overcoming
Difficulties 1, 2 and 3 with the standard approach; third to examine the extent to which a simultaneous interpretation
of these indices is feasible for applying the theoretical results of Sections 4 and 5 to an observed time series. Although
the relative efficacy of the models specified by the standard approach and those specified from the estimated multistep
Kronecker indices was also investigated, to save space, we do not report the detailed simulation results here.

7.2. Simulation Results

Fig. 1 displays histograms of the observed frequencies of selecting the various multistep Kronecker indices for
Experiments 1, 2 and 3; the corresponding theoretical frequencies are also shown by a bold line. To save space,
however, Fig. 1 only shows the results with h = 0, 1 for Experiment 1, h = 1 for Experiment 2 and h = 1, 2 for
Experiment 3. More detailed results, namely those with all h ∈ [−2, 2] and individually for each of Experiments 1, 2
and 3, are, nevertheless, available on the journal website.

The degree of agreement between the estimated and theoretical indices may be seen to depend upon the following
three main factors, and, also, on an interaction between them: 1) the nature of the generated process, especially the
strength of dependence between the corresponding rows of Q(h); 2) the value of T ; 3) the chosen value of α.

Theorem 9 applies with h̄ = 0 to Experiment 1 and h̄ = 2 to Experiment 3. There is evidence to suggest that the
estimated indices in these two experiments are closer to the theoretical when h is adjacent to h̄ than when it is away
from it. Although this theorem does not apply to Experiment 2, the theoretical indices for h ≤ 0 accord with condition
(29), but not condition (30).

Thus, for Experiment 1, the observed frequencies are in close agreement with the theoretical, especially when
(T = 1000, α = ln T ). Moreover, although the degree of agreement is less good with (T = 200, α = ln T ), it is still
quite high for all h ≤ 1, and the discrepancy occurs mainly with h = 2.

For Experiment 3, the estimated indices with h = 1 and h = 2 agree with the theoretical for all three values of
α and T = 1000, or 500; in addition, the same holds with T = 200, but only when h = 2. For each T , however,
the frequency of estimating the correct theoretical indices decreases as h takes smaller values, especially if α = ln T ,
and, even with T = 1000, the McMillan degree is underestimated. The agreement between these two sets of indices
improves somewhat if α = 3, but this occurs only for T = 1000; the frequency of underestimating the McMillan
degree is noticeably high for T = 200 and h = −2, or h = −1.

The estimated indices for Experiment 2, by contrast, largely do not accord with the theoretical. This somewhat
negative finding could, however, be attributed to the nature of the simulated VARMA(1, 1) process: the MA coefficient,
B(1), is not of full rank, and det[A(1)] = 0.11, implying that the AR coefficient is close to being singular.

If the results for h = 2 are excluded, it is possible to specify an echelon VAR(1) model for Experiment 1 by an
inspection of the estimated multistep Kronecker indices. The standard approach, with h = 1, by contrast, specifies
a full echelon VARMA(1, 1) model. A main reason for discounting the results for h = 2 is that the number of
unconstrained parameters, dπ(h), is much higher for this value of h than h = 0.

The simulation results for Experiment 3 caution against a universal use of α = ln T when estimating the multistep
Kronecker indices, and support the use of a range of different values for this purpose. In addition, the estimated
indices with h = 1 and h = 2 specify an echelon V MA(1) model for all three values of T . A sole use of h = 1, by
contrast, leads to a full echelon VARMA(1, 1) model with 8 unconstrained coefficients. Although different echelon
VARMA models could also be specified for h ≤ 0, the number of unconstrained coefficients for each is much larger
than that for the echelon V MA(1) model and they could be excluded on this ground.
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For Experiment 2, an inspection of the estimated indices for h = −2,−1 and 0 also enables a full echelon VAR(1)
model with 9 free coefficients to be specified with all three values of T . By contrast, a variety of different patterns
of estimated indices were observed with h = 1, and a unique model to fit was troublesome to specify. The most
frequently selected pattern with all three values of T was π̂(h) = [0, 1, 1]> and it specified an echelon VARMA(1, 1)
model with 10 free coefficients.

The simulation results, nevertheless, do not provide evidence to suggest that the estimated indices for any fixed
value of h, say h = 1, are consistently closer to the theoretical than other values. The estimated indices for different
values of h may be expected to be correlated with each other from general statistical considerations, and which, in
turn, can obscure the appearance of actual indices. Care will thus need to be exercised when interpreting these indices
simultaneously. On occasion, the estimated indices for a particular value of h may need to be deemphasized, especially
if the corresponding estimates do not seem to conform with those for the remaining values. As with Experiments 1
and 3, the number of unconstrained parameters, dπ(h), requiring estimation for that h may be examined for making
this judgement.

8. Implementation and Applications of Multistep Echelon Forms

The multistep echelon forms and state space representations introduced in this paper offer a two-fold advantage
over the existing approaches to specifying a ‘black box’ VARMA model for an observed time series: First, enhanced
information about the underlying data generating process is provided by the family of transfer functions, kh(z), intro-
duced in Section 4, especially about how the unknown transfer function, k(z), is embedded in this family. Second,
the problem of model specification can be approached systematically, and in a manner comparable to that used for
univariate time series and VAR models (see Lütkepohl [28]). In particular, freedom to use a model selection criterion
for choosing an appropriate model for the observed time series is available. Although the latter possibility does exist
at present, the choice is confined only to models with h = 0 and h = 1, and equivalent to (see Akaike [5], Söderström
[40]) a hypothesis test with a pre-determined level of significance. The new approach introduced in this paper, by
contrast, enables an effective application of such criteria, as further discussed below.

As a first step, the canonical correlation procedure given in Section 6 should be applied and estimated multistep
Kronecker indices, n̂h( j), say, computed, together with the associated estimates, n̂(h, j, k), say, of n(h, j, k) and d̂π(h),
say, of dπ(h). The estimated indices should then be plotted, grouped according to the values of h, and supplemented
with the values of d̂π(h). A table displaying the values of n̂(h, j, k), should also be constructed and examined. An
aim here is to explore the possibility of detecting vanishing coefficients in the underlying echelon forms by applying
the theoretical results of Section 5, but with the estimated indices. Care will need to be exercised, however, when
interpreting the estimated Kronecker indices. As discussed in Section 7, a too detailed an interpretation of their plot
should be avoided. Nevertheless, the hope is that this initial inspection will help in reducing the number of echelon
VARMA models that should be considered to a relatively small value, HR, say. For relatively small time series,
however, H will be small, and HR could equal 2H + 1. Some guidance on how to choose the constants, H and M, has
already been given in Section 6. In practice, this will be a matter of judgement, which could be amended, as necessary,
after an initial inspection of the estimated Kronecker indices by repeating the estimation procedure with new values.

Let δi denote the vector of unknown parameters in the ith retained model, i ∈ {1, . . . ,MR}, including the residual
error covariance matrix, Ψi. Also, let δ̂i denote the corresponding vector of a maximum likelihood estimate of δi, and,
in particular, Ψ̂i that of Ψi. The actual model to be adopted for the observed time series should be that model which
minimises the following modified Akaike information criterion, for i ∈ {1, . . . ,HR},

AICα(i) = T ln{det(Ψ̂i)} + α{(d(δ̂i))}, (32)

where ln{det(Ψ̂i)} denotes the natural logarithm of the determinant of Ψ̂i, d(δ̂i) denotes the number of estimated
parameters in the ith retained model, that is, the number of elements in δ̂i and, as in (31), α > 1 is a constant. In
simulation results, not shown here, the generated model was selected with a very high frequency by the procedure
described above. Furthermore, in comparison with the model specified by the standard approach, the model specified
according to this approach was also selected far more frequently. We have, in addtion, also applied this procedure
to three well-known data sets given in Reinsel [38, pp. 299-314]. The detailed results are, however, omitted to save
space.
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Instead of specifying a single ‘black box’ VARMA model for the observed time series, as discussed above, the
HR models that are retained after an inspection of the estimated multistep indices could also be employed for the
following alternative applications:
(a) Model Averaging: This alternative was recommended by a referee. It seeks to combine, in a suitable fashion, the
respective information content of the retained HR models. It is particularly relevant for multistep prediction by forecast
combination. A procedure discussed in Yamamoto [51] may be applied for constructing the multistep forecasts from
each model. The final forecast, at each lead time, would then be a simple average of these HR forecasts. A further
variation would be to construct a weighted average of these forecasts by specifying a suitable weight function.
(b) Model Uncertainty: A Bayesian approach to the general problem of model uncertainty (see Draper [17])) may be
applied to the family of ‘black box’ VARMA models introduced in this paper. A main difficulty, however, would be
how to specify not only the prior distributions for the vector of unknown parameters of each model, but also the prior
plausibility of the models themselves. One possibility would be to elicit both these priors after the ‘black box’ models
have been specified. We note also that although Ravishankar and Ray [37] consider a Bayesian approach to a fixed
degrees model, there is currently little work on a Bayesian approach to ‘black box’ models.

A ‘frequentist’ alternative (see Pötscher [35]) could, in principle, be also applied to this problem. However, it
would need to be recognised that the ‘black box’ VARMA model that is selected by an application of the AICα

criterion is obtained from an inspection of the estimated multistep Kronecker indices.
A third alternative (see Poskitt and Tremayne [34]), is to build a portfolio of ‘closely competing’ black box

VARMA models introduced in this paper. To save space, however, we defer a detailed discussion of these three
approaches for future research.
(c) VARMA Model Fitting: If {y(t)}, does not satisfy Assumption 1, but it is a linear process defined in (2), then
(see Hannan [21]) a finite rank approximation to the Hankel matrix, Q(h), appearing in (10) is provided by an h-
step echelon form with each h ∈ Z. A potential statistical application of such an approximation is for estimating the
impulse response coefficients of a vector time series. Killian [26], Sims and Zha [39] advocate the use of a VAR model
for this purpose. However, the new approach introduced in this paper may be preferable when the first few impulse
responses, K( j), appear to be discrepant from the remaining values. This ability, which is not available with a standard
VAR model (see Lütkepohl [29]), may be required when a transitory ‘bed-in’ period is needed before the long-term
effects of a ‘shock’ applied to a system are visible. The transitory effects may be modelled by the moving average
polynomial, bh(z), and the long-term effects by the autoregeressive polynomial, ah(z). Moreover, the unequal row
degrees for these two polynomials, which are admitted in a multistep echelon form, offer the flexibility of modelling
the potential unequal impact of these two effects.

If k(z) is not rational, then, instead of applying (9) iteratively for constructing multistep forecasts, a separate
h-step state space form could be fitted for each prediction lead time, h ≥ 1. Such a procedure has the advantage
(see (7)) of producing the corresponding h-step prediction error, eh(t) , as observation error, which now defines (see
Bhansali [10]) a relevant modelling objective. Moreover, the corresponding state space representation for h ≤ 0 may
also be considered (see section 3) for modelling the potential influence of the unrealized h + 1 concurrent and future
innovations, ε(t + j), j ∈ {0, 1, . . . ,−h}. A procedure of this type should provide an alternative to a ‘Direct’ method
of fitting a new autoregression for each step of prediction (see Ing and Wei [25]), and known to enjoy an asymptotic
optimality property. Although the underlying idea was earlier suggested in Bhansali [8], the procedure given there is
rather ad hoc. The procedure suggested here, by contrast, is justified within the unified framework of multistep state
space representations.

It should be noted that the nh( j), for each fixed h, are not invariant to a change in the order of individual components
of y(t), and their numerical values can change if this order is permuted. Following Poskitt [33], it is possible to define
the h-step Kronecker invariants, Ξ(h)π(h) = [πh(r(1), . . . , πh(r(s)))]>, for each h, such that πh(r(1)) ≤ · · · ≤ πh(r(s)),
where r(1), . . . , r(s) denotes a permutation of the first s integers, {1, . . . , s}, and Ξ(h) the corresponding permutation
matrix. For the particular value of h being considered, these do not change under any rearrangement of the component
time series. Nevertheless, Theorem 4 shows that the permutation matrix, Ξ(h), could itself change as h changes, and
the corresponding h-step and h′-step invariants for a pair of values, h , h′, could differ. A special case, however,
occurs when conditions (29) and (30) hold; now Ξ(h) = Ξ(h̄), for all h ∈ Z. Also, if Theorem 10 applies for some
h0 ∈ Z, and, in addition, π(h) = π(h0), for all h ≥ h0 then Ξ(h) = Ξ(h0), for all h ≥ h0.

A related S CM approach of Tiao and Tsay [43] (see also Li and Tsay [27], Tsay [46]) works with a transformed
series, z(t) = Uy(t), say, where U is an unknown non-singular matrix; the implied VARMA model for {y(t)} after U
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has been estimated may not, however, be in a simple form. By contrast, S CM’s of order (ph( j), qh( j)) are specified
directly by Theorem 2 for all j ∈ S , where ph( j) = nh( j), qh( j) = nh( j) + h − 1, and a main criticism of the standard
approach (see Tsay [47]), that it only admits S CM’s with equal AR and MA orders is overcome by this result for all
h , 1.

A main advantage of the multistep echelon form representation is that it is justified in the predictor space frame-
work of Akaike [3]. The S CM approach, by contrast, is rather ad hoc, and if a proper account is taken of the
parameters required for specifying the transformation matrix, U, the S CM’s may not be any less parsimonious than
the standard echelon form (see Lütkepohl and Poskitt [30]). The latter is a special case of the approach proposed in
this paper, and, at the same time, it also enables the main aim of introducing the S CM approach to be accomplished.

9. Summary and Conclusions

A principal aim of the new approach introduced in this paper is to strengthen the existing echelon form approaches
to specifying a ‘black box’ VARMA model for an observed time series, as they suffer from the three difficulties
described in Section 1. The hope is that the new approach would also enhance practical applications of VARMA
processes for modelling multivariate time series and reach a level somewhat closer to that enjoyed by their univariate
counterpart.

The main suggestion is that instead of specifying a single model by an existing approach, a range of different mul-
tistep echelon forms are specified and fitted, including, as required, the models specified by the existing approaches.
If a single VARMA model is to be finally chosen, then a model selection criterion, supplemented, as necessary, by
a graphical procedure, may be used for achieving this goal. The former is known to balance the risk of increased
parameter estimation errors due to choosing a model with too many parameters against the risk of an increased bias
due to a model with too few parameters, and this advantage can be potentially useful for multivariate time series.

Alternatively, as discussed in Section 8, the information contained in the different multistep echelon forms may be
combined by applying a ‘model averaging’ procedure, or to account for the uncertainty in specifying an appropriate
VARMA model. In addition, it is also possible to recognize that there may not be a ‘true’ VARMA process generating
the observed time series, and apply a VARMA model fitting procedure for estimating the impulse response function
or multistep prediction.

A first step in implementing the new approach is to estimate the multistep Kronecker indices, introdued in Section
4. Simulations show that the multistep canonical correlation procedure may be applied for estimating these indices
for a range of different values of an integer, h. Care will, however, need to be exercised when inspecting a plot of
the estimated indices, as the estimates with adjacent values of h could be mutually correlated, and a too detailed an
interpretation of this plot should be avoided. Nevertheless, an inspection of these indices is expected to be useful for
the various applications described above.

Moreover, in comparison with the S CM approach of Tiao and Tsay [43], the proposed approach has an advantage
of being theoretically justified in the framework of Wiener-Kolmogorov prediction theory, and it also permits the main
aim of introducing the former approach to be achieved.

The family of multistep echelon forms introduced in this paper thus provide a natural extension of the existing
approaches to fitting a ‘black box’ VARMA model. However, by augmenting the range of possibilities currently
available for specifying and selecting such models, it should serve as a useful addition to the modeling toolbox for
data analysis.
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Fig. 1: Histograms of the estimated h-step Kronecker indices in 1000 realizations of Experiments 1,2 and 3
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