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Abstract

The application of magnetic fields in inertial fusion experiments has led to re-

newed interest in fully understanding magnetised transport in laser-plasma

regimes. This motivated the development of a new laser magnetohydrody-

namic code PARAMAGNET, written to support investigations into classical

magnetised transport phenomena and laser propagation in a plasma. This

code was used to simulate laser-underdense plasma interactions such as the

pre-heat stage of magneto-inertial fusion. Alongside these simulations, this

thesis will present analytic focusing and filamentation models derived from

magnetohydrodynamics extended with classical magnetised transport coeffi-

cients. These results showed the focal length and filamentation growth length

shortened with magnetisation, a result of the magnetisation of the thermal

conductivity.

Further investigation of the transport properties using the diffusion approxi-

mation kinetic code IMPACT showed significant deviation of the growth rate

at intermediate values of magnetisation and non-locality, inexplicable using

fluid models. The kinetic code result motivated exploring the influence of the

high-order anisotropies of the distribution function (in terms of spherical har-

monics), ignored in conventional approximations. By using a recursivematrix

inverse method, corrections to the transport coefficients including all orders

of the electron distribution expansion were found. Analysis of the conductiv-

ity (κ), resistivity (α) and thermoelectric (β) coefficients showed deviation

by up to 50% from the classical form at intermediate magnetisation and non-

locality. The diffusive approximation of the IMPACT simulations was insuffi-

cient to capture the transport behaviour present in the theoretical high order

calculation.

Modern inertial fusion experiments work in regimes that are non-local and

susceptible to significant focusing exacerbated by magnetisation. The result-

ing filamentation has detrimental implications to laser absorption and themod-

ified non-local transport behaviour is a possible source of error in simulations.

The complex interplay between non-locality and magnetisation in transport

suggests using more terms of the spherical harmonic expansion in closures of

plasma equations. Particular consideration is given to the implications to iner-

tial fusion experiments. Together these results suggest the necessity of includ-

ing non-local magnetised transport in the modelling of high-energy-density

laser plasma experiments.
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Introduction

Producing commercially available energy from nuclear fusion is one of the great scien-

tific projects of our age. Fusion has the potential to safely produce all of Earth’s energy

needs without the burning of fossil fuels and without the production of large amounts

of radioactive by-products; while doing so from abundant or breedable hydrogen iso-

tope fuel. Today fusion experiments can be broadly classed into magnetic-confinement

(MCF) schemes and inertial-confinement schemes (ICF) which achieve fusion-relevant

conditions by very different confinement methods. While MCF lies outside the scope of

this thesis, an overview of ICF will be described in depth shortly herein. While ICF de-

vices have made great headway towards ignition, they have also provided an excellent

experimental platform for fundamental discovery science and a platform for stockpile

stewardship; all the while providing the context for the work in this thesis.

The core objective of this thesis is the theoretical and computational study of the effect

of magnetisation on transport in laser-plasma interactions. The development of inertial

fusion schemes instigated the thorough study of laser interactions and transport proper-

ties in plasmas. This in turn has led to the development of detailed thermal and magnetic

transport models to understand and correctly simulate the results of fusion experiments.

In an attempt to further improve the performance of inertial fusion schemes, magnetic

fields have been applied to long-pulse laser-plasma experiments, taking advantage of the

known property of the reduction in thermal transport across themagnetic field. However,

the high-frequency electromagnetic field of a laser and the slow, almost static applied

magnetic field used in such experiments creates a complex system that has not been fully

explored. It is the aim of this thesis to close the gap between theory and the parameter

space of experiments that are beginning to probe plasmas with ever higher laser energies

and magnetic field strengths.

This thesis introduces a new fluid plasma physics code with magnetised transport,

written for the purpose of simulating these regimes of high magnetisation and low mag-

netic pressure. Given the importance of laser interactions, the code was extended with a

laser solver to accurately simulate the long-pulse laser propagation present in current ex-

11



1.1. INERTIAL CONFINEMENT FUSION 12

periments. In addition to simulations, this thesis presents analytic investigations of mag-

netised corrections to laser-plasma phenomena; the results of which motivated exploring

kinetic effects using the kinetic code IMPACT. Kinetic theory provides a more accurate

model of plasma dynamics, especially at high frequencies and small scales. This in turn

motivated an analytic investigation the influence of higher-order terms on magnetised

transport which are ignored in most kinetic simulations.

It is hoped insights presented herein provide a deeper understanding of laser-created

collisional plasmas in the regime where magnetisation significantly affects the transport

dynamics. This work will conclude with a discussion on the influence these results have

in applications such as inertial fusion and laser-plasma experiments. Though the field of

plasma physics has a long history, the accurate modelling of dynamics still proves chal-

lenging. The core problem of closure in non-equilibrium plasmas presents fertile ground

for new physics and prompts the creation of new methods of simulation.

1.1 Inertial Confinement Fusion

The fusion of twonuclei occurswhen they collidewith the energy to overcome theCoulomb

barrier between the particles, allowing the attractive strong nuclear force to bind a set of

the constituent nucleons into a more energetically stable daughter product. The rate of

this process is significantly increased by quantum tunnelling, whereby the incoming par-

ticles can tunnel through the Coulomb barrier, reducing the amount of energy required by

each particle. Nuclear fusion in the sun is dominated by two processes, the proton-proton

chain reaction and the carbon-nitrogen-oxygen cycle [1]. Unfortunately for physicists, the

conditions in the core of the sun where these processes occur are not replicable in labora-

tories on Earth.

While the processes that power the sun are out of reach, other fusion processes have

muchhigher cross-sections for conditions achievable onEarth. The reactionmost amenable

to laboratory fusion is the reaction of a deuterium and a tritiumnucleus into anα−particle

and a neutron
2
1D + 3

1T → 4
2He+ n. (1.1)

This reaction has a very high cross-section relative to other light nuclei and so is the chosen

reaction in all potential fusion schemes. By considering the fusion energy gain versus

energy losses in a hypothetical power plant, the requirements for a viable fusion plant is

given by the Lawson Criterion [2]. It requires the product of fuel number density n and

energy confinement time τ to be above a critical value,

nτ >
12kbT

〈σv〉Eα
. (1.2)
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Here Eα is the energy of the alpha particle product, T is the fuel temperature and 〈σv〉
comes from the D-T fusion reaction rateW = ntnd〈σv〉, with deuterium and tritium num-

ber densities nd, nt, respectively.

Inertial confinement fusion attempts to reach the density and confinement time re-

quirements of the Lawson Criterion by confining a plasma with its own inertia, such that

it converges to a central ‘hotspot’ surrounded by cooler, denser fuel with the density and

temperature required for nuclear fusion to occur [3]. This confinement can be performed

using several approaches including Z pinches and high-power lasers. Whilst numerous

inertial fusion schemes exist, this thesis will remain in the context of direct-drive iner-

tial confinement fusion, indirect-drive inertial confinement fusion and magnetised liner

inertial fusion (MagLIF).

Inertial Fusion Schemes

In direct-drive inertial confinement fusion a fuel capsule filled with a mixture of deu-

terium and tritium is illuminated directly by an array of high-power 1015Wcm−2 nanosec-

ond laser pulses [4, 5]. The energy is absorbed at the surface of the capsule, illustrated in

figure 1.1, ablating material off the surface and forming a plasma corona. In order to con-

serve momentum, the inner material is compressed by a ‘rocket effect’, driving the fuel to

a high temperature hotspot, surrounded by a cooler, denser region. When the fuel ignites

in the centre, the subsequent production of alpha particles spread out, causing a ‘burn-

wave’ through the rest of the fuel. In this scheme, lasers propagate directly through the

corona, imprinting the laser heating profile onto the surface of the capsule. As such this

method is susceptible to hydrodynamic instabilities such as the Rayleigh-Taylor instabil-

ity, seeded by the non-uniform laser imprint and capsule surface roughness, which mix

up the plasma and cause non-uniform compression. This degrades confinement and can

lead to high-Z material from the shell mixing deep into the fuel, radiating away energy

from the core.

Indirect drive inertial confinement fusion instead has the high-power lasers illuminate

the interior of a gold ‘hohlraum’, shown in figure 1.1. This process creates soft X-rays that

drive the compression of the fuel capsule held in the centre of the hohlraum [6, 7, 8]. The

benefit of X-ray driven compression over direct-drive is the uniformity of the radiation

incident on the capsule surface, reducing the impact of laser-seeded hydrodynamic insta-

bilities. However by using a X-ray bath the energy coupling to the capsule is much lower

than direct-drive since the conversion of laser energy to X-rays by the hohlraum is not

perfectly efficient, with only a fraction (Lindl et al. cites a conversion efficiency of ∼ 15%

[8]) of the incident laser energy eventually driving the capsule compression. In addition,

in this process the laser is propagating through a plasma within the hohlraum, a result

of a gas-fill or from the ablation of the hohlraum wall. This means the laser can be fur-

ther susceptible to laser-plasma interactions (LPIs), focusing and backscatter as the beam

enters the hohlraum.

High-power lasers are not the only way to compress a fuel capsule however. A Z-
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Figure 1.1: Illustration of indirect and direct drive ICF methods, taken from Betti et al.
[6]. Indirect-drive (left) uses X-rays to compress a capsule, produced by laser-heating a
gold hohlraum. Direct-drive (right) uses direct illumination of the capsule by high-power
lasers. Reproduced from Betti et al. [6], with permission of Springer Nature.

pinch is a pulse power device that drives a very large current, with the Sandia National

Laboratory - based Z accelerator producing peak drive currents of 18MA. When this cur-

rent is passed through a cylindrical liner, it induces a very strong magnetic field. The

magnetic pressure of this field implodes the liner, compressing the fuel within to fusion

conditions (via PdV work). This convergence process lies at the heart of the MagLIF

scheme [9, 10, 11, 12]. Unlike the laser-driven methods described above, the convergence

is cylindrical, with a density that changes with ∼ (Ri/Rf )
2; by comparison in spherical

convergence the density changes as ∼ (Ri/Rf )
3. To account for this less efficient com-

pression, a pre-heat laser is used to heat the fuel in the capsule, pushing it onto a higher

adiabat. This entails laser propagation through a ‘window’ into the fuel, exciting similar

laser-plasma interactions and requiring a thorough understanding of thermal transport

in the core.

Inertial fusion experiments were initially invented to create burning thermonuclear

fuel, however these experimental setups have also found uses in creating exotic forms of

matter such as warm dense matter [13], studying astrophysical analogues in laboratory

astrophysics [14, 15] and testing equations of state [16, 17]. The understanding of the

physics of high-energy-density plasmas goes beyond nuclear fusion.

Given the large and complex nature of these experiments -with a great deal of different

physics operating at different time and length scales - theory and numerical simulation is

paramount in understanding and designing such experiments [18]. The accurate simula-

tion of high-energy-density physics on the world’s largest supercomputers is a rich area
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of science. With the advent of exascale computing, computational physics methods and

the design of codes will only become more important in plasma physics.

1.2 Magnetic Fields in Laser Plasma Experiments

Thusfar the performance of fusion schemes has been found wanting, with the neutron

production rate - the key sign that nuclear fusion has occurred - being lower than neces-

sary. The pursuit of better performance in ICF experiments has led to proposing the use

of applied magnetic fields [10, 12, 19, 20, 21].

Electrons in a magnetic field travel on circular Larmor orbits perpendicular to the di-

rection of the magnetic field. If the field is strong enough, the electron mean free path can

be effectively reduced to the radius of this orbit and the step-length of collisional trans-

port processes are reduced to this Larmor radius perpendicular to the magnetic field. In

this regime the plasma is magnetised and experiments can take advantage of the reduced

thermal conductivity in order to better confine the thermal energy. In doing so these

experiments aim to maintain higher temperatures, and hopefully overcome the Lawson

criterion threshold.

Thismagnetisation is quantified in terms of the dimensionlessHall parameter, defined

as the product of the electron cyclotron frequency ωe and the electron-ion collision time

τei

χ = ωeτei. (1.3)

When this exceeds the order of 1-10, collisional transport in the plasma becomes magne-

tised. Following the formalism of Braginskii [22] this magnetisation causes the thermal

conductivity in the plane perpendicular to themagnetic field direction, κ⊥ to deviate from

the classical isotropic form, κ by a factor that is a function of the Hall parameter,

κ⊥ ∼ κ

1 + χ2
. (1.4)

Aside from reducing the thermal conductivity, magnetisation of the plasma also induces

new transport phenomena such as Righi-Leduc heat flow and thermoelectric effects such

as the Nernst effect [16]. The Righ-Leduc heat flow is the flow of heat perpendicular to

both the temperature gradient and themagnetic field, and it arises from themagnetic field

rotating the heat flow vector as the electrons are deflected by the field. The Nersnt effect

represents the advection of a magnetic field by temperature gradients, more information

about these effects can be found in section 2.5. While the Nernst effect is inhibited for the

regime χ >> 1, it only requires a small value of magnetisation (χ << 1) to be significant.

These effects then feed into the dynamics of the plasma in ICF experiments through the

generalised Ohm’s law [23, 24].
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In a magnetised plasma the transport becomes anisotropic, with the magnetic field

breaking the spherical transport symmetry and providing a characteristic direction. This

results in tensor transport coefficients and combined these transport phenomena can give

rise to instabilities not present in unmagnetised plasmas, such as the magneto-thermal

instability [25] and the Tidman-Shanny instability [26] (which only requires χ << 1).

These instabilities require the feedback of out of phase magnetised transport phenomena

(such as the Nernst effect) that grow in the presence of large quasi-static plasma gra-

dients. Magnetised instabilities like the magneto-thermal instability have been found to

plague underdense laser-plasma simulations, growing to create steep non-linear profiles

in temperature which cause the simulation code to fail [27].

Even in the absence of an applied fields, magnetic fields can be generated sponta-

neously in inertial fusion plasmas by numerousmechanisms such as the Biermann battery

effect [28, 29, 30] and the electro-thermal instability [31]. They are observed in simula-

tions using fluid models, such as Walsh et al. [32] who observed over 104T fields induced

and driven into the core of ICF capsule implosions, where the Righi-Leduc effect cools

the hotspot. Kinetic models also see self-generated fields, via a density gradient non-local

mechanism not present in fluid models [33]. In these models magnetic fields can seed a

Weibel-like instability and significantly impact transport [34].

Experimentally, fields up to 85T have been observed by Lancia et al. with proton de-

flectometry in the plasma corona of a long-pulse laser-foil experiment at the LULI facilty

[35]. The thermal conductivity and magnetic field advection differed significantly from

simulations without magnetised transport terms. Meanwhile Igumenshchev et al. ob-

served fields up to 300T in nanosecond pulse direct-drive ICF experiments performed

at the OMEGA facility (based at the Laboratory for Laser Energetics at the University of

Rochester, USA). The ensuing magnetised transport was found to affect the growth of lo-

cal perturbations [28]. Indirect-drive ICF is likewise susceptible, with Manuel et al. mea-

suring Rayleigh-Taylor mixing that induced Biermann battery magnetic fields in regimes

present in ICF hohlraums [36]. Magnetisation of the plasma in fusion conditions is in-

evitable and can lead to measurable changes in the plasma dynamics in simulations and

experiments. Therefore incorporatingmagnetic field terms in simulations is necessary for

accurate plasma physics models in inertial fusion regimes.

Key experimental platforms for investigating applied magnetic fields and transport

are laser-gas-jet and laser-foil experiments. A simplified schematic for a laser-gas-jet can

be found in figure 1.2. In these experiments a laser propagates through an underdense

plasma, providing an analogy of the environment found in indirect-drive ICF hohlraums

aswell as replicating astrophysical conditions.

Gregori et al. [37] used a gas-jet setup to study thermal transport in underdense long-

pulse laser-plasmas, providing evidence for non-local transport that would map over to

ICF experiments where plasma conditions aremore difficult tomeasure. A> 10T applied

magnetic field was found by Froula et al. [38] to quench the non-local transport in a gas-

jet setup and Tang et al. used a magnetised laser-foil experiment to emulate the laser-

hohlraum interaction [39]. Theymeasured the ablation ofmaterial from a hohlraum-wall-
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Figure 1.2: This diagram shows a simplified schematic of the magnetised laser-gas jet
experiment. The laser (red) passes through a gas jet (blue) while a Helmholtz coil (grey)
induces a magnetic field (black arrows) parallel to the laser.

like foil, and found a magnetic field confined the plasma bubble, potentially preventing

the expansion of material into the ICF hohlraum.

Applying a magnetic field to a gas jet can also be performed using a capacitor coil,

the simplified schematic for which can be found in figure 1.3. These devices can produce

magnetic fields of strengthsmuch higher than conventional Helmholtz coils, with Fujioka

et al. [40] measuring fields on the order of kiloteslas. This provides another platform in

which very strong magnetic fields influence plasma dynamics.

Magnetised Inertial Fusion Schemes

The application of magnetic fields to a direct-drive experiments follows the simplified

schematic of figure 1.4, where a Helmhotz coil induces a field that is rapidly compressed

as the fuel capsule implodes.

The role of magnetic fields in direct-drive ICF has been found by Chang et al. [20]

and Hohenberger et al. [41] to increase fusion yields and increase the ion temperature

by restricting the thermal conductivity. They performed direct-drive implosions at the

OMEGA facility with a seeded magnetic field from a Helmhotz coil, illustrated in figure

1.5. As the fuel capsule converged, themagnetic fluxwas similarly compressed, magnetis-

ing the hotspot. The heat flow was suppressed, resulting in ion temperatures 15% higher

and neutron yields 30% higher than unmagnetised shots. Even if no magnetic field is ap-

plied, the self-generated fields induced during the plasma evolution are strong enough

to affect heat fluxes in the conduction zone and can be transported via the Nernst effect

[28].

The benefits of applied magnetic fields have also been investigated in the context of

indirect-drive ICF. In this case, the hohlraum of an indirect drive experiment is magne-

tised by an axial magnetic field from an external Helmholtz coil, a simplified schematic

for this setup is shown in figure 1.6. Perkins et al. [19] performed magnetised hohlraum

simulations that showedmagnetisation with∼ 10T fields relaxed the conditions required

for thermonuclear burn. Figure 1.7 illustrates the results of these simulations, it shows
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Figure 1.3: A simplified diagram of the capacitor coil setup used to magnetise a laser-gas
experiment. The laser (red) passes through a washer (grey) through which a very large
current pulse induces a strong magnetic field in a coil connecting the plates.

how the magnetisation of the hohlraum shifts the drop-off in yield so that implosions can

achieve ignition with inflight conditions that would otherwise only result in low yields.

The reduction in the perpendicular heat flow, localisation of alpha particle transport and

stabilisation of the Rayleigh-Taylor instability for high modes improve the conditions for

ignition.

Further experiments performed by Montgomery et al. [21] have found ≈ 7T fields

applied axiallywith the hohlraum can improve the laser couplingwith the hohlraumwall.

The higher electron temperatures measured decreased the laser energy losses via inverse

bremmsstrahlung. With greater coupling, the energy budget available to X-ray generation

for fuel capsule compression is higher. Simulations of this setup performed by Strozzi

et al. [42] corroborated the experimental result in the context of National Ignition Facility

ICF regimes and saw 12 times higher energy deposition into the D-T fuel. Again the laser

propagation through the intermediate plasma and its interaction with the wall ‘blow-

off’ plasma is the deciding factor that determines the improvement to coupling under

magnetic fields.

Like the laser methods described above, the MagLIF scheme [9, 10] relies on an axial

magnetic field to reduce the perpendicular heat flow in the D-T fuel within the liner. In

this concept, the D-T fuel lies in a capsule within a metal liner. A laser pulse pre-heats

the fuel under the magnetic field before the Z-pinch liner implosion; figure 1.8 shows an

idealised diagram of how the scheme works.

The concept has been tested at the Z-machine facility at SandiaNational Laboratory by
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Figure 1.4: This is a diagram of the magnetised direct-drive inertial fusion scheme. The
fuel capsule (blue) is directly irradiated by long-pulse lasers (red), ablating the surface
and compressing the fuel inside. The coil (grey) induces a magnetic field (black arrows)
parallel to the polar axis of the capsule.

Gomez et al. [12]. Experimental results found the scheme produced fusion-relevant con-

ditions with an applied field of ≈ 10T . However discrepancies between simulations and

the laser-coupling results remained, with only a fraction of expected pre-heat laser energy

coupling to the fuel. This was puported to be the result of unexpected backscatter from

LPIs. Laser pre-heat experiments performed by Sefkow et al. [43] and Harvey-Thompson

et al. [44] have found themagnetic field increases the laser energy coupling to the plasma,

in addition to the reduction of perpendicular thermal transport. However these experi-

ments also found discrepancy in laser propagation between simulations and experimental

results.

Thusfar we have seen the use of several laser-based fusion schemes, but results from

experiments lead to the question of the effect of the magnetic field on laser propagation

through the plasma itself. Studies of laser propagation in fusion conditions have not com-

monly incorporated magnetised transport terms into the laser dynamics, as such there is

a need to study the influence of magnetised transport on laser propagation.
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Figure 1.5: Schematic of a magnetised direct-drive ICF capsule experiment performed at
the OMEGA facility. A magnetic field is seeded by the coil before being compressed as
the capsule implodes. The implosion is diagnosed by an X-ray backlighter. Taken from
Hohenberger et al. [41], reproduced with permission of AIP Publishing.

Figure 1.6: This diagram shows a simplified schematic of the magnetised hohlraum
indirect-drive fusion scheme. The hohlraum (gold) is irradiated by an array of lasers
(red), producing a bath of X-rays (blue arrows) which compress a fuel capsule (blue cir-
cle). A magnetic field (black arrows) can be applied externally to the hohlraum.

1.3 Modelling Lasers and Plasmas

Key to designing and understanding the outcomes of the experiments described above is

the use of simulation codes. Plasmas exhibit a wide range of complex behaviour over an

enormous parameter space. To tackle theoretical predictions with analytic methods alone

limits one to idealised systems. As such numerical methods are an indispensable tool in

laser-plasma physics. With a better understanding of the physics from fully non-linear

simulations, one can gain valuable insights into the physics involved.
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Figure 1.7: Fusion yield against residual fuel kinetic energy in 2D ICF simulations per-
formed by Perkins et al. [19]. The ‘ignition cliff’ is shifted to the right as higher magnetic
fields are applied, showing that magnetic fields allow the fuel to withstand larger pertur-
bations while still producing a significant neutron yield. Reproduced from Perkins et al.
[19], with permission of AIP Publishing.

Approaches to Simulating Plasmas

To simulate plasmas, two broad approaches are in common use. The first, the fluidmodel

treats the plasma as a fluid [45]. In these numerical models the code solves the con-

servation equations for mass, momentum and energy. Fluid codes such as FLASH [46]

are fundamentally important in the simulation of plasma physics experiments, providing

explanations for observations. However for fluid models to be a closed set of partial dif-

ferential equations they require a closure relation; this relation requires the distribution

function for the species to be close to equilibrium. Furthermore for a single-fluid model

like the one used in this thesis, the plasmamust also be quasi-neutral. These requirements

are often broken in real experiments.

The second approach are kinetic models, these models are classed into particle-in-cell

(PIC) [47] and Vlasov-Fokker-Planck (VFP) codes [48]. PIC methods solve Hamilton’s

equations directly for macro-particles of the electrons and ions in the plasma. This allows

the ions and electrons to diverge arbitrarily from equilibrium whilst also self-consistently

including the electromagnetic field. Their downside is that they can be computationally

very costly and fail to easily include Coulomb collisions and sub-Debye length physics.

VFP models solve the VFP equation directly for the particle distributions. As the dis-

tribution function is six-dimensional, this model is computationally very costly. However

the dimensionality of the problem can be reduced by taking a spherical harmonic expan-

sion of the distribution, this approach is used in codes such as OSHUN [49] and IMPACT

[50]. These models are crucial to understanding the physics of ICF plasma physics be-

cause they can capture phenomena not present in fluid codes, such as non-local trans-

port and the dynamics of non-thermal particle populations. Non-Maxwellian popula-
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Figure 1.8: A simplified schematic of theMagLIF fusion scheme during the pre-heat stage.
A long-pulse laser (red) pre-heats the fuel (grey) inside a cylindrical liner (blue). A
magnetic field (black arrows) can be applied parallel to the laser during the pre-heat stage
to aid thermal energy confinement. The liner then implodes, compressing the fuel.

tions arise naturally in ICF plasmas through LPIs and fusion reactions, while also being

intrinsic to ICF schemes such as fast ignition. The very short timescales and lengthscales

of shock fronts of an ICF experiment can also mean the inter-particle collision frequency

may not be high enough to thermalise the plasma to local thermal equilibrium, produc-

ing regions where the plasma is far from a Maxwellian. In this case a kinetic model is

necessary for an accurate simulation. While PICmodels are used to simulate fast electron

populations [42], VFP models can naturally incorporate collisions and are also free from

the statistical distribution sampling noise present in PIC models.

The two most popular methods for simulating laser are ray-tracing and the paraxial

approximation. The first, ray-tracing methods, are popular due to their simplicity. In a

ray-tracing model the laser is modelled as a bundle of rays that represent paths normal

to the wavefront, and relies on the theory of geometric optics. Refraction and reflection

of the rays can be easily incorporated into a ray-tracing model by considering the local

refractive index, but the diffraction and interference of light cannot be simulated because

ray optics effectively assumes the wavelength→ 0.

The second laser simulation approach is the paraxial method [51]. This model solves

a reduced Helmholtz equation for the laser’s electric field, where the laser wavevector is

assumed to be approximately unidirectional. The benefit of the paraxial method is that
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is can provide the intensity of the laser field directly, rather than attributing an intensity

profile to a bundle of rays. In doing so this model can simulate diffraction, interference

and small-angle refraction. The downside however is this model is limited to underdense

regimes where the electron density is much less than a value known as the critical density

nc (i.e. ne << nc). This critical density is the electron density at which the plasma fre-

quency is equal to the laser frequency, further of which details can be found in section 2.1

and chapter 3. In recent years the work of Colaitis et al. has introduced a mixed-paraxial-

geometric laser model that may combine the best of both worlds [52].

In fluid and VFP models the laser is coupled to the plasma via extra source terms

whilst in PICmodels the electric field of the laser is incorporated self-consistently into the

solution of Maxwell’s equations. Couplingmechanisms such as inverse bremmstrahlung,

the ponderomotive force and resonance absorption must be included in fluid models by

using extra individual source terms, while kinetic codes must add a source termwhereby

the laser can couple to the electron distribution [53]. In ICF schemeswhere laser-coupling

is the driver for the plasma evolution, the accuracy of the coupling is of fundamental

importance.

Each approach has its limitations, none being perfect for every laser-plasma system

one might wish to investigate. Plasma physics in fusion experiments is inherently multi-

scale [18] with different phenomena having characteristic time and spatial scales that

range over a wide parameter space. This limits their predictive capacity and make full

simulations computationally very costly.

The Simulation Regime

The lasers driving the plasmas of the aforementioned experiments and relevant to this

thesis are long-pulse. This regime is typified by lasers with intensities approximately ∼
1015Wcm−2 with a pulse duration on the order of 1ns. This choice reflects the current

status of high-power laser systems used in the field of high-energy-density physics. The

lasers thatmake up theNational Ignition Facility (NIF) (based at the Lawrence Livermore

National Laboratory in theUSA), currently the largest andmost powerful ICF facility, gen-

erate nanosecond pulses of up to 1.8 MJ with a peak power of 500 TW with a wavelength

of 351 nm [54]. The Laser Mega-Joule (LMJ), a similar facility dedicated to indirect-drive

ICF, produces pulses of 1.5 MJ and a peak power of 400 TW at 1µm (frequency tripled

to 351 nm) [55]. These facilities represent the upper limit of current experimental ap-

paratus for high-energy-density physics, able to create matter at extremes of density and

temperature.

The experiments mentioned in this section made use of Helmholtz coils to produce

pulsed magnetic fields. These apparatus are however limited to field strengths in the

range of tens of Tesla, which will be the region of interest to this thesis. Though much

stronger magnetic fields have been produced with the aid of capacitor coils [40], they

lie out of the scope of this thesis since the plasma beta, the ratio of thermal to magnetic

pressure, is no longer very large. When the plasma beta is very small, magnetic pressure
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Figure 1.9: Magnetised laser self-focusing reported by Read [58] shows when the Nernst
effect is included (above) the beam does not focus, but does when it is ignored (below).
Reproduced from Read et al. [58], with permission of IOP Publishing

dominates the hydrodynamics, with the charged particles bound to guiding centres and

the excitation of magnetic plasma wave modes [56].

Furthermore, the plasmas under consideration are all underdense. This is the regime

where the electron number density ne is much smaller than the plasma critical density

nc (up to nc/4). This region of parameter space is of such interest because it lies in the

intersection of current laser technology and its applicability to inertial fusion schemes.

The corona of a direct-drive capsule [4], the ‘blow-off’ plasma and gas-fill plasma of an

indirect-drive hohlraum [8] and the fuel during the pre-heat stage of a MagLIF shot [43]

all have electron densities lower than the critical density. This underdense plasma allows

the use of paraxial laser-modelling methods introduced in the previous section, and the

relatively lowdensitymeans the laser absorption is dominated by inverse bremmsstrahlung.

This will simplify the modelling of the plasma in later chapters, where higher density,

overdense laser-plasma interactions are left out of the scope of this thesis.

Simulations of Magnetised Laser Propagation

Given the fundamental importance of lasers in this field, the study of laser-plasma in-

teractions has been the subject of a great of study and yielded a zoo of complex effects

[57]. These complicate the problem of simulating long-pulse laser-plasma experiments

and interpreting the outcome. One particular effect, self-focusing, will be explored in

depth in this thesis and its influence on experiments will be analysed in the context of

magnetisation in chapter 5. Read et al. [58] reported simulations using a coupled 2D

laser-fluid-plasma code, highlighting the role of Nernst advection of the magnetic field

on self-focusing, illustrated in figure 1.9. Furthermore, Perkins et al. showed the thermal

mechanism is significant in self-focusing [59]. This leads to the question: if the magneti-

sation of a plasma can reduce the thermal conductivity, then it should follow through to

the thermal focusing mechanism. This will be explored in much greater depth in chapter

5.
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Like focusing, when the beam has small scale non-uniformity, the resulting filamen-

tation may also show a magnetic field signature. Filamentation has been well studied

[60, 61, 62] and its effect on the coupling of lasers and inertial fusion plasmas well charac-

terised, however the work in magnetised plasmas remains wanting. Simulation methods

have been developed, [52, 63] but lack the incorporation of the extra transport terms de-

spite the recognition of their importance in hydrodynamics [23].

Small scale structures in the laser beam from speckles or seeded elsewhere can imprint

on the capsule in direct-drive experiments [5, 64, 65, 66], providing a source of hydrody-

namic instability. If the filamentation of lasers in the plasma corona are susceptible to

magnetised transport corrections, then this could exacerbate imprint and be detrimental

to compression stability. In an inertial fusion scenario, parametric instabilities plague fu-

sion yield performance [67, 68, 69]. Indirect-drive hohlraums may also be susceptible to

magnetised corrections to laser propagation that compound the production of these para-

metric instabilities. Performing simulations that can predict the behaviour of the afore-

mentioned phenomenawith the addition of magnetised transport termswould shed light

on their effect on fusion experiments.

1.4 Non-Local Transport and Magnetisation

Problems with the aforementioned fusion schemes remain, one notable problem is in the

difficulty of correctly calculating thermal transport in a laser-driven plasma. The non-

Maxwellian deviation of thermal transport from the classical Spitzer-Härm approxima-

tion has been known for many years, with work by Bell [70, 71] and Albritton [72, 73]

providing some of the first theoretical work. The electron distribution function is gener-

ally assumed be Maxwellian with only small deviations from local thermal equilibrium.

This local approximation holds in the regime LT >> λei, where the electron-ion collision

mean-free-path λei is much smaller than the temperature scale length LT defined as

1

LT
=

1

T

dT

dx
. (1.5)

More details on non-locality can be found in section 2.7.

In high-energy-density physics and ICF experiments this condition is broken [74],

with evidence of non-Spitzer-Härm heat flux limitation dating back to the 1970’s [75].

Experiments performed at the OMEGA facility found the non-local effect to be so sig-

nificant as to require an extra simulation model package to replicate the results of mea-

sured non-Spitzer-Härm thermal conductivity [76, 77]. Gregori et al. provided direct ex-

perimental evidence of non-local transport in an ICF-like gas-jet experiment driven by a

nanosecond 1.5 × 1014Wcm−2 laser [37], the temperature and density profiles showed

very good agreement with a VFP numerical model but replicated poorly by a flux-limited
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fluid model. Altogether these results imply non-locality is of paramount importance in

understanding long-pulse laser plasma interactions.

One approach to incorporate the a more accurate kinetic model into the analysis of

transport is the so called diffusion approximation. This approximates the full kinetic prob-

lem by considering an expansion of the VFP equation in terms a Cartesian tensor expan-

sion and truncating the expansion after only the first term.

fe(x, v, t) = f0(x, v, t) + f1(x, v, t) ·
v

v
(1.6)

In doing so the 6-dimensional partial differential equation becomes a simpler 4-dimensional

pair of equations that model the evolution of the isotropic and anisotropic contributions

to the electron distribution function. More details on this approximation can be found

in section 2.7 and 6.3. The diffusion approximation is commonly used in the analysis of

non-equilibrium plasmas because of the relative simplicity of the equation set.

Non-Local Transport Models

Simulations of plasmas in non-local regimes such as ICF hohlraums and Tokamak scrape-

off layers cannot accurately predict the heat flow due to this non-local nature. While nu-

merous models have been create to account for non-locality, advances in high-energy-

density physics are required to better understand how to close the hydrodynamic equa-

tions in systems far from equilibrium. Kinetic simulation codes such as KALOS, OSHUN

and IMPACT [49, 50, 78] can accurately reproduce this non-local transport, with andwith-

out the presence of a magnetic fields. Incorporating their calculations into the fluid codes

that are the workhorses of experimental design and interpretation is difficult because of

the large computational requirements of kinetic simulations.

Non-local models based on convolutions of the local thermal transport were the first

attempt at avoiding solving the full VFPwhile reproducing thermal transport [79, 80, 81].

These models require convolution over a large domain and have been found difficult to

generalise to 3D problems. Figure 1.10 shows the convolutional kernel used by Epperlein,

derived as a correction factor to Spitzer-Härm conductivity. While simpler than a full

VFP calculation, the convolutional kernel is chosen somewhat arbitrarily and there is little

insight into the physical mechanism.

Transport models derived from the simplified VFP equation such as the SNB model

[84, 85], theM1model [86] and the CMBmodel [87, 88, 89] aremore readily incorporated

into fluid codes [76]. The SNB model has also been readily extended to include magnetic

fields [90]. Comparisons of these models with fully kinetic codes, in both the magnetised

and unmagnetised cases, have however found errors. Detailed comparisons performed by

Sherlock et al. [91] andMarocchino et al. [92] found these reducedmodels could replicate

the characteristic flux limitation but significantly over-estimated the precursor heating in

front of the temperature gradient. Further tests performed by Brodrick et al. [93] showed

the SNB model to be more accurate than the eigenvector integral closure (EIC) [94] and

Landau fluid (NFLF) [95] models; however even when the heat flux is correctly calcu-
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Figure 1.10: The non-local (encapsulated in the parameter kλei) dependence of thermal
conductivity calculated by Epperlein [82]. Note the gradient of the drop compared to
previous models by Bell (dashed line a) [71] and Hammett and Perkins (dashed line
b)[83]. Reproduced from Epperlein et al. [82], with permission of the American Physical
Society.

lated, the underlying distribution function is far from accurate. These models are also all

reliant on the diffusion approximation, the validity of which is questionable in the face of

evidence found by Feugeas et al. [96]. In this work, 2D hotspot simulations showed the

diffusion approximation breaks down, and more terms in the polynomial expansion are

required to match an exact kinetic model.

Non-Locality and Laser Propagation

In laser propagation, the thermalmechanisms of self-focusing and filamentation of a laser

are mediated by the thermal conductivity; as such we expect these processes to be modi-

fied by a mixture of non-locality and magnetisation. Kinetic theory applied to linearised

filamentation models by Epperlein [97, 98] and corresponding simulations [99] show the

thermal mechanism becoming dominant because of a non-local reduction in thermal con-

ductivity. This can increase the growth rate of filamentation far above the local model,

which is illustrated in figure 1.11. This figure compares the growth rates of filamenta-

tion against wavenumber of three mechanisms, the first is for the thermal mechanism

derived from kinetic theory, the second is for the classical thermal mechanism derived

from a fluid model, and the third is the growth rate for filamentation resulting from the

ponderomotive force of the laser. Functional forms for these growth rates are discussed

in greater detail in sections 5.4 and 6.2. Methods have been derived to go beyond the dif-

fusive approximation; for linear waves in a plasma Epperlein defined a correction to the
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Figure 1.11: Non-local filamentation growth rates calculated by Epperlein [98] show the
kinetic thermal mechanism growth rate (a) is much higher than the classical thermal
mechanism rate (b) and ponderomotive mechanism (c) rates. Reproduced from Epper-
lein [98], with permission of AIP Publishing.

collision frequency that could go beyond the diffusion approximation and account for the

thewhole electron distribution expansion [82]. Bychenkov et al. then applied this method

to the decay of waves, and derived transport coefficients that were exact in the regime of

linear perturbations [100]. While useful for unmagnetised plasmas, this result has not

been applied to magnetised focusing, or to the explanation of the interplay between mag-

netisation and non-locality.

Furthermore, energydeposition by a laser into a plasma is dominated by inverse bremsstrahlung,

which has also been shown to skew the electron distribution away from a Maxwellian to-

wards a flat-topped ‘super-Gaussian’ distribution [53, 101]. This is a Gaussian distribu-

tion

f(v) ∝ exp(−cvm), (1.7)

but with m > 2. This is caused by inverse bremmsstrahlung preferentially heating elec-

trons close to the quiver speed of the laser field. This will also change the transport away

from the classical calculation, adding yet another source of non-Maxwellian behaviour in

laser-plasma experiments.

The Influence of Magnetic Fields

The Nernst effect and the Righi-Leduc heat flow in magnetised simulations are similarly

affected by non-local transport. Kho and Haines saw significant deviation from classical

coefficients in 1D VFP simulations, with the magnetic fields strongly coupled to the heat

flow [102, 103]. The deviation extends to indirect-drive ICF simulations. Simulations
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performed by Joglekar et al. of a pre-magnetised ICF hohlraum saw 3× enhanced mag-

netic field from Nernst advection itself amplified 2× as a result of non-locality [104]. The

heat flow is also strongly non-local, driving higher temperatures at the hohlraum axis.

Comparisons between simulated and experimental heat transport at NIF performed by

Farmer et al. [105] saw much better agreement with the non-local numerical model and

also found the Righi-Leduc heat flow was necessary to explain the results in this magne-

tised, non-local system.

The non-Maxwellian electron distribution results in the other magnetised transport

coefficients similarly diverging from their classical Braginskii form. Kinetic simulations

byHill and Kingham [106] and Strozzi et al. [42] includingmagnetic fields imply the non-

locality of these other magnetised transport effects significantly changes the dynamics in

both direct-drive and indirect-drive respectively. As such there is a need for a model that

can be used in codes that accurately reproduces the full range of magnetised transport

that is present in VFP simulations without the computational overhead.

Exact non-local linear models have been developed by Brantov et al. [107] and Frolov

et al. [108]. These do give transport coefficients but are limited to the linear regime of

plasmawave decay. The results of Brantov et al. are illustrated in figure 1.12, where the po-

sition of the characteristic ‘drop-off’ of the thermal conductivitywith non-locality changes

withmagnetisation. This result was obtained by considering the decay of linear perturba-

tionswith awavevector at 45 degrees to a constantmagnetic field in a uniformbackground

plasma.

Another approach followed by Brodrick et al. uses the SNB thermal transport model,

applying it to find a correction to the coefficient responsible for Nernst advection [109].

Thismethod relies on the strong coupling between heat flow andmagnetic fields, with the

electron fluid ‘dragging’ around themagnetic fields. This relies onHaines approximation

based on the similarity of the terms in Ohm’s law [110]. These methods all however rely

on the diffusive approximation, as such the electron distribution functionmust be close to

an isotropic Maxwellian, despite the magnetic field introducing an inherently anisotropic

term to the VFP equation. Magnetic fields complicate the creation of an accurate model of

non-local transport, with the complex interplay between non-locality and magnetisation

greatly influencing transport in plasmas.

1.5 Studies of Laser Propagation in a Magnetised Plasma

The over-arching theme of this thesis is how magnetic fields can influence the transport

of thermal energy and magnetic fields in long-pulse laser-plasma experiments. The first

result of this thesis will describe investigations into the laser propagation dynamics in

experiments under magnetic fields. The motivation for this work is the result of the ex-

periments described in the previous section where long-pulse lasers propagated through
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Figure 1.12: The normalised perpendicular thermal conductivity (with the symbol χ⊥) as
a function of non-locality parameter (kλei) for different values of magnetisation, as calcu-
lated by Brantov [107]. It shows the conductivity decreasing with both non-locality and
magnetisation. Reproduced from Brantov et al. [107], with permission of AIP Publishing

ICF plasma conditions. The pre-heat stage of a MagLIF experiment, a hohlraum with

a gas-fill in an indirect-drive experiment and a direct-drive coronal plasma all sit in the

regime of a collisional magnetised plasma.

The theory of self-focusing [59] suggests the magnetic field present in these experi-

ments should feed into the focusing dynamics via the thermal conductivity. The question

to answer is how does this happen? How does this effect experiments? It follows from the

theory of self-focusing that the similar phenomenon of laser filamentation should also be

exacerbated by the magnetisation of the thermal conductivity. Ideally one would want a

model of filamentation, supported by simulations that elucidated the influence of mag-

netisation.

The system of equations in this laser-plasma model is very complex and therefore

accurate predictions require the construction of a numerical model. This code, PARAM-

AGNET (PARAllel MAGnetised Newton-method Electron Transport) is a 3D magneto-

hydrodynamic code that incorporates full Braginskii electron transport with Epperlein

and Haines coefficient corrections [111]. This magneto-hydrodynamic model is coupled

to a paraxial laser model to allow the accurate simulation of long-pulse laser dynamics,

the full description can be found in Chapter 4. By using a 3D code, inherently 3 dimen-

sional effects such as Righi-Leduc heat flow can be simulated. Previous studies have ne-

glected magnetic field effects, assuming them to be irrelevant due to the low plasma beta

in such plasma regimes, however this thesis will present results suggesting this is not a

good approximation.

Alongside the numerical model, a theoretical model has been developed that eluci-

dates the effect of magnetised thermal conductivity on self-focusing and filamentation.

Together the simulation and theoretical results demonstrate that applied magnetic fields

can enhance the rate of growth in space of the filamentation instability as the laser propa-
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gates across the domain; the theoretical model is shown to be in qualitatively good agree-

ment with PARAMAGNET simulations. Figure 1.13 shows how the magnetic field effects

the focal length in laser propagation. The full results can be found in chapter 5. In in the

context of experiments, this result means the applied magnetic fields play a significant

role in the behaviour of lasers in underdense plasmas, despite the low plasma beta.

0 2 4 6 8 10

Magnetic Field Strength (T)

0.0

0.2

0.4

0.6

0.8

1.0
R
el
at
iv
e
F
oc
al

L
en
gt
h

Figure 1.13: The application of a magnetic field is found to shorten the self-focal length
of a laser propagating through a plasma. This plot is taken from chapter 5, where the
full results are described in detail. Reproduced from Watkins and Kingham [112], with
permission of AIP Publishing.

1.6 Studies of Non-Local Transport in Magnetised Plasmas

The second set of results presented herein will extend the thermal decay analysis to in-

clude non-local corrections, and so find amore accurate result formagnetised laser propa-

gation. The first step would be to find a diffusive approximation correction using a kinetic

code by performing the Epperlein-Short test [97]. Performing this test with the IMPACT

code meant simulating the decay of linear thermal perturbations over a range of modes

and comparing it to the local approximation. A phenomenological fit to the numerically-

simulation data yielded a correction factor as a function of the magnetisation and non-

locality parameter.

Past kinetic studies of laser filamentation such as Epperlein [98] neglected the influ-

ence of magnetic fields. With this correction, the dispersion relations and growth rates of

filamentation were found to diverge from the local approximation. Chapter 6 will show

these kinetic growth rates are higher in regions accessible to current laser-plasma exper-

iments. The growth rate of filamentation is a key metric of stability as a laser propagates

through a plasma. As such in the context of fusion experiments, these unaccounted-for
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kinetic effects can be detrimental to laser-plasma energy coupling and propagation in ex-

periments such as in MagLIF pre-heat and laser-gas-jets.

In previous studies of linear non-local corrections, Epperlein [82] only considered an

unmagnetised plasma, and did not calculate transport coefficients. Bychenkov [100] cal-

culated transport coefficients using Epperlein’s correction factor, again it lacked a mag-

netic field. Brantov [107] extended the theory to include magnetic fields but the result

relied on the diffusive approximation. Including both the magnetic field and the higher-

polynomial terms considerably complicates the problem, but this leaves an important

gap in the theory. Furthermore the resulting coefficients were calculated numerically,

such that there was no closed-form expression that could be used in a simulation code.

Though lineouts teased interesting results as to the combined non-localmagnetised effect,

the work lacked sufficient explanatory power.

The higher polynomial terms of the spherical harmonic expansion of the electron dis-

tribution are conventionally ignored in local fluidmodels. This thesis will also investigate

how they influence magnetised transport. Non-local transport models such as the SNB

model [84, 85, 90] also ignore the higher-order terms, sticking to the diffusion approxi-

mation. Chapter 6 will analyse the error that comes from ignoring these terms and how

their absence from the closure effects the Nernst effect, perpendicular thermal transport

and all the other transport coefficients.

Chapter 6 will show how the truncation of the distribution function expansion leads

to errors in the corresponding transport coefficients. Comparison of the truncated and

full expansion at intermediate non-locality values (kλei ≈ 10 − 100) will show signif-

icant deviation. This leads to transport coefficients varying significantly from expected

behaviour as reported by Brantov [107]. This suggests a complex interplay between the

localising effect of magnetic fields and the non-locality of non-Maxweillian distributions.

As an example, figure 1.14 shows a map of the correction factor to the diffusive approxi-

mation. The interplay between non-locality and magnetisation requires a more complete

treatment of transport for simulations to be accurate to experimental results.
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Figure 1.14: This 2D parameter map shows the correction factor for perpendicular trans-
port. The dependence on magnetisation χ and non-locality parameter η is not simple,
with a clear valley that widens as magnetisation increases. This plot is taken from the
results from chapter 6

1.7 Thesis Outline

• Plasma Physics Theory

This chapter will introduce the necessary plasma physics theory used in this thesis,

including a description of kinetic theory in plasmas and the derivation of the MHD

equations. The transport closures in a magnetised plasma will also be discussed.

• Laser Propagation in a Plasma

Laser propagation in terms of the slowly-varying envelope approximation will be

introduced and the paraxial equation derived from the Helmholtz model. The cou-

pling with a fluid plasma via the ponderomotive force and inverse bremsstrahlung

will be reviewed and their source terms in the fluid equation set introduced.

• Code Architecture and Testing

After introducing the numerical methods employed by the PARAMAGNET code,

the design and implementation of said methods will be described in detail. In this

chapter the code will be tested against several standard numerical MHD and laser

tests to examine the accuracy and capabilities of the code.
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• Magnetised Laser Self-Focusing and Filamentation

Theory and simulations are presented that analyse the influence of collisional mag-

netised effects on the phenomena of laser self-focusing in an underdense plasma.

The related phenomena of filamentation is likewise investigated under a magnetic

field using analytic theory and the simulation code.

• Non-local Corrections to Filamentation and Magnetised Transport

The kinetic code IMPACT is used to find corrections to fluid approximations and

delve deeper into the combined magnetisation and non-local physics. Kinetic the-

ory is used to extend the ideas of the previous chapter to investigate the combined

influence of non-locality and magnetisation beyond the diffusion approximation of

IMPACT.

• Conclusions

I conclude the thesis with a discussion of themajor results and their meaningwithin

a broader context of the field of plasma physics and fusion; endingwith a discussion

of future work and possible extensions.
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2

Plasma Physics Theory

This chapter will introduce the important theoretical background and equations lying at

the foundation of this thesis. The plasma state is characterised by being amacroscopically

quasi-neutral ensemble of charged particles. As such the electromagnetic interactions

between the charged particles lead to long-range electromagnetic forces, alongside the

short range collisional forces.

Kinetic theorywill be the framework used to describe the dynamics of this state ofmat-

ter. The starting point of this chapter will be the Vlasov-Fokker-Planck equation and an

introduction to the kinetic theory of plasmas, following with the derivation of the single

fluidmodel ofMagneto-Hydrodynamics. Alongside the basics of collisions and transport

phenomena, this chapter will include an introduction to magnetised and non-local trans-

port, focusing on the processes relevant to results of later chapters. This chapter will end

with the closure of the Magneto-Hydrodynamic equation set used in this thesis.

2.1 The Kinetic Theory of Plasmas

A plasma is a statistical ensemble of ions and electrons that undergo long-range interac-

tions via the Lorentz force

F = q(E+ v× B), (2.1)

for some particle of charge q.

Though the electrostatic force of a single particle has an infinite range, the collective

nature of an ensemble of charged particles means any charge imbalance will experience

shielding from oppositely - charged particles. Considering the thermal motion of charged

particles in the electric potential of a charge imbalance, this effect defines a characteristic

37
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length scale over which shielding occurs known as the Debye length

λD =

(

ǫ0kbTe
nee2

)1/2

, (2.2)

where the electron number density ne is in m−3 and the electron temperature Te is ex-

pressed in units of Kelvin. Physically the Debye length can be considered the length scale

of the screening of bare charges in plasma. Beyond a sphere of radius λD, the Debye

sphere, the plasma can be considered quasi-neutral.

The electric fields of this ensemble self-consistently adapt to the charge environment

of the collection of particles. As a result imbalances in charge excite plasma oscillations

with a characteristic frequency that act to re-establish quasi-neutrality. This frequency is

known as the plasma frequency

ωp =

(

nee
2

meǫ0

)1/2

. (2.3)

The plasma frequency defines a timescale above which the plasma can be considered

quasi-neutral.

These two parameters define the length and timescales above which we can define

the collective statistical state called a plasma. The most accurate model to describe this

N-particle system would be the Liouville equation under the action of a self-consistent

electromagnetic field. However, the requirements to solve a system in 6N dimensional

phase space is not necessary or possible. Instead this collective behaviour is best described

in terms of the distribution function, f(x, v, t), which represents the particle density in the

6-dimensional single-particle phase space. The evolution of distribution functions is the

subject of kinetic theory. A plasma is described kinetically by the Vlasov-Fokker-Planck

(VFP) equation

∂fα
∂t

+ vα · ∇fα +
qα
mα

(E+ vα × B) · ∇vfα =

(

∂fα
∂t

)

coll

(2.4)

for a speciesα. The collision operator on the right-hand-side is the Fokker-Planck operator

which will be introduced in section 2.3. There is a VFP equation for each species present

in the plasma, and represents the conservation of probability in phase space. The collision

term on the right-hand-side takes the form of the Fokker-Planck operator, which deter-

mines how theCoulomb collisions between particles in the plasma influence the evolution

of the distribution function. Intuitively while one would think the electric fields of every

particle should influence the evolution of the plasma, Debye shielding allows the sepa-

ration of the electromagnetic field into a microscopic, fluctuating component that forms

part of the collision term, and macroscopic fields that sit in the left hand side of the VFP

equation.

Themost accurate approachwould be to start straight from the VFPmodel of a plasma

and solve for the electron and ion distribution functions. However one can start with a

simpler hydrodynamic approximation. Very collisional plasmas can be assumed to have
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a distribution function close to a Maxwell-Boltzmann distribution, which for electrons is

fm = ne

(

1

2πv2th

)3/2

exp

(

− v2

2v2th

)

, (2.5)

with the standard deviation being the thermal speed defined as vth =
√

kbTe/me. This

allows the use of a fluid descriptionwhich can be derived by considering a small deviation

from equilibrium, this fluid model is known as Magneto-Hydrodynamics.

2.2 Magneto-Hydrodynamics

Deriving Magneto-Hydrodynamics (MHD) from kinetic theory consists of taking mo-

ments of the VFP equation. These moments are the macroscopic quantities found from

taking averages over the distribution; in particular the conserved quantities or mass, mo-

mentum and energy. However in taking successivemoments, eachmoment equation cou-

ples to the next. To create a closed system of equations, transport relations must be found

that couple to a lower-order moment; in MHD this is achieved with the Fokker-Planck

collision term.

Moments of the Vlasov-Fokker-Planck Equation

For a macroscopic fluid model the equations must describe the relationships between

macroscopic quantities. The moments are found by multiplying the distribution func-

tion by successive velocity variables vi and integrating over the whole of velocity space.

The first fewmoments below are number density, fluid velocity, total energy density, heat

and enthalpy flux and the stress tensor, respectively

n(r, t) =

∫

f(r, v, t)d3v, (2.6)

V(r, t) = 〈v〉 = 1

n

∫

vf(r, v, t)d3v, (2.7)

E(r, t) =
1

2
mn〈v2〉 = 1

2
m

∫

v2f(r, v, t)d3v, (2.8)

q(r, t) =
1

2
mn〈w2v〉 = 1

2
m

∫

w2vf(r, v, t)d3v, (2.9)

σij = mn〈wiwj〉 = m

∫

wiwjf(r, v, t)d
3v, (2.10)

where w is the ‘anomalous velocity’, the deviation from the mean velocity,w = v−V. In

general the nth moment of the distribution function is

〈vn〉 = 1

n

∫

vnf(r, v, t)d3v. (2.11)
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Taking the first moment of the VFP equation for species α yields the continuity equa-

tion
∂n

∂t
+∇ · (nV) =

∫ (

∂fα
∂t

)

coll

d3v. (2.12)

If there are no collisions that lead to a change in particle number of the species in question

i.e ionisation or recombination, then

∫ (

∂fα
∂t

)

coll

d3v = 0. (2.13)

The second moment can be found by multiplying the VFP equation bymv and following

the same routine to give

∂

∂t
(mnVj) +

∂

∂xi
(mn〈vivj〉)− qn(Ej + (V× B)j) =

∫

mvj

(

∂fα
∂t

)

coll

d3v. (2.14)

To put this equation into a more familiar form note that the velocity V is the sum of the

average (V) and ‘anomalous’ (w) parts v = w+V, therefore

〈vivj〉 = 〈(Vi + wi)(Vj + wj)〉
= ViVj + 〈wiwj〉,

remembering 〈wi〉 = 0 as it is an anomalous, random fluctuation. Putting this into the

equation and invoking the continuity equation allows the equation to be written

mn
∂Vi
∂t

+mnVj
∂Vi
∂xj

− qn(Ei + (V× B)i) = −∂σij
∂xj

+

∫

mvi

(

∂fα
∂t

)

coll

d3v. (2.15)

The stress tensor can be written in terms of the isotropic pressure p and anisotropic stress

πij ,

σij = pδij + πij . (2.16)

If the plasma is inviscid the anisotropic part is ignored and what is left is the momen-

tum equation,

mn
∂V

∂t
+mnV · ∇V− qn(E+V× B) = −∇p+ R. (2.17)

The collision term has been shortened to

R =

∫

mv

(

∂fα
∂t

)

coll

d3v. (2.18)

Which satisfies

R =
∑

β

Rαβ ,

since there are collisions with all other species. Also note self-collisions conserve momen-
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tum, hence Rαα = 0.

The third equation to be derived is the energy equation. However for this thesis the

energy equation will be transformed so that the subject is instead temperature. Since

Boltzmann’s constant kb is always associated with the temperature T , we shall for the

remainder of this thesis absorb it into the definition of T , which is thereby measured in

units of energy rather than degrees (thus kbT → T from here on). Using the following

definitions of thermal energy density, kinetic energy density and thermal heat flow,

ET =
1

2
mn〈w2〉 = 3

2
nT, (2.19)

EK =
1

2
nmV 2, (2.20)

q′ =
1

2
mn〈w2w〉 = 1

2
m

∫

w2wf(r, v, t)d3v, (2.21)

and the ideal gas law

p = nT. (2.22)

The temperature equation can be written

3

2
n

(

∂T

∂t
+V · ∇T

)

+∇ · q′ + p∇ ·V = Q, (2.23)

where the collision terms have been shortened to Q by using

Q =
1

2
m

∫

v2
(

∂fα
∂t

)

coll

d3v − R ·V. (2.24)

If this analysis is done for both the electron and ion VFP equations the result is a set

of six transport equations, three each for the electrons and ions.

∂ne
∂t

+∇ · (neVe) = 0, (2.25)

mene
∂Ve

∂t
+meneVe · ∇Ve + ene(E+Ve × B) = −∇pe + Re, (2.26)

3

2
ne
∂Te
∂t

+
3

2
neVe · ∇Te +∇ · q′

e + pe∇ ·Ve = Qe, (2.27)

∂ni
∂t

+∇ · (niVi) = 0, (2.28)

mini
∂Vi

∂t
+miniVi · ∇Vi − Zeni(E+Vi × B) = −∇pi + Ri, (2.29)

3

2
ni
∂Ti
∂t

+
3

2
niVi · ∇Ti +∇ · q′

i + pi∇ ·Vi = Qi. (2.30)

The Single Fluid Model

Thusfar the plasma can be seen as two inter-penetrating fluids. Using the fact that the

mass of the electron is much lower than that of a proton, it is justifiable to ignore the

electron inertia and define a simpler single fluid model with fluid velocity V and density
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ρ.

Sincemi >> me, the total plasma density is dominated by the ion density,

ρ = mini +mene ≈ mini. (2.31)

Likewise the total momentum then becomes the ion momentum, with the fluid velocity

the ion velocity (henceforth the subscript on Vi will be dropped)

ρV = miniVi +meneVe ≈ miniVi. (2.32)

Quasi-neutrality implies the number density of electrons and ions follows the relationship

Zni = ne, (2.33)

where Z is the average ionisation of the plasma. If the two continuity equations are

summed, the above approximations yield the total continuity equation

∂ρ

∂t
+∇ · (ρV) = 0. (2.34)

Considering charge continuity, one can define the charge density, current and relative

velocity

ρc = e(Zni − ne),

U = Ve −Vi,

j = ρcVi − eneU,

which means the charge continuity equation is

∂ρc
∂t

+∇ · j = 0. (2.35)

Since the plasma is quasi-neutral, ρc << ene and so

j = −eneU, (2.36)

which gives the quasi-neutrality condition

∇ · j = 0. (2.37)

The single fluid momentum equation is found by taking the sum of the fluid momen-

tum equations. This equation can be simplified by first applying quasi-neutrality, which

removes the electric field term. Momentum is conserved in collisions, and so the collision

terms cancel because they satisfy

Re = −Ri. (2.38)

After neglecting electron inertia and defining total pressure p = pe + pi and using the
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definition of the current, the momentum equation is

ρ
∂V

∂t
+ ρV · ∇V = −∇p+ j× B. (2.39)

The Energy Equation

To find the appropriate energy equation onemust beginwith the electron energy equation

eq. 2.27 and use the current definition, eq. 2.36, to remove the electron velocity. Then one

uses the heat flow in the ion frame

q = q′ − 5

2ene
pej. (2.40)

To find a total energy equation for the plasma, the cold ion assumption will be em-

ployed where Ti ≈ 0. The cold ion approximation is used throughout this thesis because

in laser-plasma regimes the thermal energy is dominated by the electron temperature,

and the heat flow dominated by the electron heat flow. While ions are also heated in the

presence of shocks [16], the simulations presented in this thesis do not enter the shock

regime. In this approximation the ion pressure can be ignored pi ≈ 0 and the ion energy

equation is removed. In this case the total thermal energy of the plasma is held by the

electron temperature. The energy equation is then

3

2
ne

(

∂Te
∂t

+V · ∇Te
)

+ p∇ ·V+∇ · q = Re · j/ene. (2.41)

Maxwell’s Equations

The evolution of electromagnetic fields in the plasma is determined by Maxwell’s equa-

tions

∇ · E =
ρc
ǫ0
, (2.42)

∇ · B = 0, (2.43)

∇× E = −∂B
∂t
, (2.44)

∇× B = µ0j+ µ0ǫ0
∂E

∂t
. (2.45)

As the plasma is quasi-neutral, the charge density on a scale above that of the Debye

length will be zero, ρc = 0. The temporal regime of interest in this thesis is that described

by low-frequency phenomena, where the characteristic timescale is much longer than the

plasma period, i.e ∂t << ωp. The displacement field in the Ampere-Maxwell law can be

ignored since the timescale of the plasma dynamics is far below the fast electron plasma
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period (1/ωp) timescale. This means Maxwell’s equations in plasmas become

∇ · B = 0, (2.46)

∇× E = −∂B
∂t
, (2.47)

∇× B = µ0j. (2.48)

2.3 Closure and Collisions

So far the system of equations is not closed as there is no equation that could be used to

eliminate heat flow q or the electric field E or the collision term Re from the system. The

conventional approach to close the system of equations is to use the Chapman-Enskog

expansion [113]. In this approach the distribution function is assumed to be approxi-

mately Maxwellian with only a small deviation. This approximation holds very well in

very collisional plasmas because collisions drive the distribution towards equilibrium. In

calculating collision terms, closure relations will be found that complete the model.

Collisions in Plasmas

The collisions between charged particles in a plasma are Coulomb collisions, where a

charged particle is scattered by the electrostatic field of another charged particle. Con-

sidering the single-particle motion of an electron in an electrostatic field, the collision

frequency of an electron with speed v from ions in a plasma is [22, 114]

νei(v) =
niΓei

v3
=

3
√
π

4τei

(vth
v

)3
, (2.49)

with the factor Γei, collision time τei, Coulomb logarithm ln Λ and thermal speed vth de-

fined as

Γei =
Z2e4 ln Λ

4πǫ20m
2
e

, (2.50)

τei =
12π3/2√

2

√
meT

3/2
e ǫ20

niZ2e4 ln Λ
, (2.51)

ln Λ = ln(4πneλ
3
D), (2.52)

vth =

√

Te
me

. (2.53)

The velocity dependence of the collision frequency is of the order v−3 and so slow, low en-

ergy particles are highly collisional whereas fast particles are collisionless. At the thermal

speed one can also see from this definition the temperature dependence of the collision

frequency is of the order T
−3/2
e . One can also define the mean free path of e-i collisions
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λei to be

λei = vthτei. (2.54)

Comparing the collision frequencies of ion-ion, electron-electron and ion-electron col-

lisions one can find they approximately follow the scaling [114]

νee ∼ νei/
√
2 >> νii ∼

√

me

mi
νei >> νie ∼

me

mi
νei. (2.55)

Since i-i and i-e collisions have a frequency much lower than e-i collisions (by factors
√

me/mi andme/mi respectively) it is possible to safely ignore them in approximations of

transport and collisional effects on the distribution function. This argument cannot how-

ever be applied to electron-electron collisions and so the e-e operator must be included.

The Fokker-Planck Collision Operator

The starting point to derive collision terms is first to derive the form of the collision op-

erator alluded to in eq. 2.4. For the plasmas in this thesis, Coulomb collisions are small-

angle, glancing collisions and the operator that very accurately models such collisions in

this regime is the Fokker-Planck operator

(

∂f

∂t

)

coll

= − ∂

∂v

(〈∆v〉f
∆t

)

+
1

2

∂2

∂v∂v

(〈∆v∆v〉f
∆t

)

. (2.56)

This operator is split into two terms that represent ‘drift’ and ‘diffusion’ of the distri-

bution function through velocity space. To transform the Fokker-Planck operator into ex-

plicitly Coulomb-collision form, the Rosenbluth potentialsHβ andGβ are used for species

β. The expressions 〈∆v∆v〉
∆t and 〈∆v〉

∆t are written in terms of these potentials thus

〈∆vi〉
∆t

= Γαβ
∂Hβ

∂vi
, (2.57)

〈∆vi∆vj〉
∆t

= Γαβ
∂Gβ

∂vi∂vj
, (2.58)

Gβ(v) =

∫

|v− vβ |fβ(vβ)dvβ , (2.59)

Hβ(v) =
m+mβ

mβ

∫

fβ(vβ)

|v− vβ |
dvβ , (2.60)

for collisions between species α and β. By using these forms the Rosenbluth form of the

Fokker-Planck equation becomes

(

∂fα
∂t

)

coll

= Γαβ

[

− ∂

∂vi

(

fα
∂

∂vj
Hβ

)

+
1

2

∂

∂vi

∂

∂vj

(

fα
∂

∂vi

∂

∂vj
Gβ

)]

. (2.61)

Furthermore, the cold ion approximationmeans aMaxwellian ion distribution is taken

to be a Dirac delta fi = niδ(vi) because the variance of the ion distribution vanishes. The
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Rosenbluth potentials reduce to

Gi(v) = niv, (2.62)

Hi(v) = ni/v. (2.63)

The Fokker-Planck operator for electron-ion collisions reduces to the Lorentz scattering

operator.
(

∂fe
∂t

)

coll

=
niΓei

2

∂

∂vi

[(

v2δij − vivj
v3

)

∂fe
∂vj

]

. (2.64)

Closure using a near-Maxwellian distribution

Closure is achieved via the Chapman-Enskog method [114], whereby the distribution

function is assumed to be approximately Maxwellian,

fe(x, v, t) = fm + δf. (2.65)

Spherical harmonics can be used to take advantage of the form of the Lorentz scatter-

ing operator. This operator is linear and has spherical harmonic eigenfunctions and so

expanding the distribution function in terms of spherical harmonics will simplify the col-

lision term.

fe(x, v, t) =
∞
∑

l=0

l
∑

m=−l

fml (x, v, t)Pm
l (cos θ)eimφ, (2.66)

Of particular importance to this thesis will be the use of the diffusive approximation. In

this approximation the expansion of the distribution function expansion is truncated after

l = 1 such that the terms l > 1 are ignored. If f0 is further assumed to be Maxwellian fm,

this becomes the local approximation. Using this local approximation in the VFP equation,

the expressions for the collisional force termsR and the heat flow q are obtained from the

moment definitions eq. 2.18 and 2.9 respectively.

The Collision Terms

The momentum exchange terms Re can be split into thermal and friction components

R = RT + Ru. (2.67)

Following Braginskii [22], these components are proportional to the temperature gradient

and current respectively

RT = −neβ · ∇T, (2.68)

Ru = α · j 1

ene
. (2.69)

The transport coefficients β and α are the thermoelectric tensor and the resistivity tensor

respectively. These coefficients are tensors because transport parallel and perpendicular
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to a magnetic field is not equal and so the transport becomes anisotropic.

Ohm’s Law

Ohm’s law is derived from the momentum equation for the electrons eq. 2.26. Ignor-

ing electron inertia and inputting the form of the collision term Re above yields the full

generalised Ohm’s law

ene(E+V× B) = −∇pe + j× B+
1

ene
α · j− neβ · ∇Te. (2.70)

The Heat Flow Equation

The electron heat flux is found from the moment definition eq. 2.9 and considering the

difference between intrinsic and extrinsic heat flow, eq. 2.40. Like the collision term Re it

is made up of two parts corresponding to thermal and frictional components

qe = qu + qT , (2.71)

where

qu = −β · jTe
e
, (2.72)

qT = −κ · ∇Te. (2.73)

These expressions close the system of equations, however the exact forms of the magne-

tised transport coefficients α, β, κ must now be specified. Alternative descriptions of the

derivation of the transport terms can also be found in Helander and Sigmar [114] or Boyd

and Sanderson [113].

2.4 Magnetised Transport

The Transport Coefficients

Electrons in amagnetised plasma travel on circular orbits in the plain perpendicular to the

direction of the magnetic field b̂. These orbits have a radius rL(= v/ωc), the Larmor radius

and orbit at the Larmor or cyclotron frequency, ωc,

ωc =
eB

me
. (2.74)

Electrons in a plasma are constantly performing Coulomb collisions with ions and

other electrons. In classical plasma theory, transport is a collisional process and it is pos-
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Figure 2.1: At lowmagnetisation (right), the electron mean free path changes little under
a magnetic field. When the magnetisation is very large, (left) the collisional transport is
‘constrained’ into a smaller region.

sible to parameterise the influence of the magnetic field in terms of a dimensionless pa-

rameter known as the Hall parameter

χ = ωcτei, (2.75)

which is a product of the electron-ion collision time and the electron cyclotron frequency.

This parameter is a measure of how magnetised the plasma is; when electrons undergo

Coulomb collisions, they hop onto a different Larmor orbit. If the Hall parameter is low,

(see figure 2.1) the magnetic field does not deflect the electron far from its path between

collisions, if the Hall parameter is large the electron is effectively ‘confined’ to a small

region, with the electron performing potentially many full orbits between collisions.

The deviation from isotropic, unmagnetised transport is encapsulated in the dimen-

sionless tensors αc,βc,κc,

α =
mene
τei

αc,

β = βc,

κ =
neTeτei
me

κc.

When the plasma is completely unmagnetised, such that χ → 0, the coefficients αc,κc

become diagonal and βc vanishes.

To better understand the effect the anisotropic, off-diagonal terms have on transport,

these coefficients can bewritten in a geometrywhere the basis is set by the direction of the

magnetic field. When a magnetic field is applied to a plasma it defines a preferred direc-

tion, breaking the isotropy of transport processes in a plasma and turning the transport

coefficients into tensors. The magnetic field direction is defined

b̂ =
B

|B| . (2.76)

Given this geometry it is possible to write the contraction of a general transport coefficient

η with a driving gradient s as

η · s = η‖b̂(b̂ · s) + η⊥b̂× (s× b̂) + η∧b̂× s. (2.77)
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Figure 2.2: The three components have directions parallel, perpendicular and cross-
perpendicular relative to the magnetic field. In this way one can define a perpendicu-
lar coordinate system based on the magnetic field direction b and the driving gradient
direction s.

This splits the transport into three terms, parallel η‖, perpendicular η⊥ and cross-perpendicular

η∧ to the magnetic field. These directions are illustrated in figure 2.2.

A Cartesian tensor form for this contraction will be useful when transitioning to a

numerical model,

ηij = η‖bibj + η⊥ (δij − bibj) + η∧ǫikjbk, (2.78)

which in full matrix form is

η =







η⊥ + (η‖ − η⊥)b2x −η∧bz + (η‖ − η⊥)bxby η∧by + (η‖ − η⊥)bxbz
η∧bz + (η‖ − η⊥)bxby η⊥ + (η‖ − η⊥)b2y −η∧bx + (η‖ − η⊥)bybz
−η∧by + (η‖ − η⊥)bxbz η∧bx + (η‖ − η⊥)bybz η⊥ + (η‖ − η⊥)b2z







(2.79)

The closure equations of the previous sectionwere derivedwithout the electron-electron

collision operator. While the assumption of no electron collisions applies for high-Z plas-

mas, the effect must be considered for low-Z plasmas. Calculating the magnetised trans-

port coefficients with a full electron-electron Fokker-Planck collision operator is not ana-

lytically feasible. Epperlein and Haines [111] used a numerical scheme to solve the elec-

tron Vlaslov-Fokker-Planck equation with electron-electron collisions and fitted a poly-

nomial expansion to the result to give expressions of the transport coefficients in terms of

the dimensionless Hall parameter. These functional forms have explicit dependence on

the Hall parameter and will be used later in the numerical model. The full coefficients

can be found in Appendix A. As an example, figure 2.3 shows the Epperlein and Haines

coefficients as functions of the Hall parameter for Z = 1.
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Figure 2.3: Shown here are the six magnetised transport coefficients plotted against the
Hall parameter. These coefficients are for a hydrogen Z=1 plasma as calculated by Epper-
lein and Haines [111]. In the limit χ→ 0, the ∧ coefficients vanish and the perpendicular
coefficients converge on a constant value.
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2.5 Magnetised Transport Phenomena

The magnetised form of the transport coefficients greatly complicates the possible be-

haviour with more terms and the appearance of thermoelectric transport β in Ohm’s law.

This section will discuss the different phenomena that appear out of these tensor coeffi-

cients.

Diffusive and Righi-Leduc Heat Flow

Considering eqs. 2.74 and 2.78, the heat flow now splits into three parts

qT = −κ‖∇‖Te − κ⊥∇⊥Te − κ∧b×∇Te. (2.80)

The first two terms are diffusive heat flow and the third term is the Righi-Leduc heat flow.

The diffusive nature is made clear with eq. 2.41 and looking only at the time derivative

and heat flow divergence terms. After substituting q, the result is a diffusion equation

3

2
ne
∂Te
∂t

= ∇ ·
(

κ‖∇‖Te + κ⊥∇⊥Te + κ∧b×∇Te
)

. (2.81)

Looking at the asymptotic forms of the perpendicular heat flow κ⊥ as χ → 0 and

χ→ ∞, Helander [114] has (for a Lorentz plasma)

κ⊥ =
neλ

2
ei

τei

128

3π
, χ << 1 (2.82)

κ⊥ =
neλ

2
ei

τei

13

4χ2
, χ >> 1 (2.83)

= ne
r2L
τei

13

4
. (2.84)

Using the length scale definition of the Hall parameter χ = λei/rL, it is clear at very

high magnetisation the characteristic diffusive ‘step-length’ switches from the electron-

ion mean free path λei to the Larmor radius rL. The Righi-Leduc heat flow q∧ acts per-

pendicular to both the magnetic field and the temperature gradient. It ‘deflects’ the flow

of thermal energy, rotating the temperature profile of the plasma in the plane perpen-

dicular to the magnetic field. As noted by Bissell [27], the Righi-Leduc heat flow can

dominate over the diffusive heat flow q⊥ when χ is very large. In the regime of χ >> 1,

the perpendicular thermal conductivity κ⊥ ∝ κ‖/χ
2 and the Righi-Leduc conductivity

κ∧ ∝ κ‖/χ.
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Ettingshausen Heat Flow

The Ettingshausen heat flow is a thermoelectric heat flow that results from the β∧ term of

eq. 2.72,

qE = −β∧
Te
e
b× j. (2.85)

This flow is associated with the advection of temperature down magnetic field gradients.

As noted by Bissell [115] this is made clear when eq. 2.85 is substituted into eq. 2.41 and

using Ampere’s law to get
3

2
ne
∂Te
∂t

+∇ · (vETe) = 0. (2.86)

This is an advection equation for temperature with an advection velocity

vE = − β∧
eµ0

∇B. (2.87)

However generally this term has found to play a relatively minor role.

The Nernst Effect

TheNernst effect likewise arises from the β∧ term. However instead it represents an advec-

tion ofmagnetic fields down temperature gradients. This has been used to infer a relation-

ship with diffusive heat flow, which has been used alongside non-local thermal transport

models for non-local corrections toNernst advection [109]. When the thermoelectric term

of Ohm’s law is substituted into Faraday’s law, one finds an advection equation

∂B

∂t
= ∇× (vN × B), (2.88)

with the characteristic velocity

vN = −β∧∇Te
eB

. (2.89)

Therefore the Nernst effect advects magnetic fields with velocity vN down temperature

gradients, concentrating the magnetic field in low temperature regions. Davies et al. [23]

andWalsh et al. [32] showed the Nernst effect plays a significant role in compressing self-

generated magnetic fields in ICF implosions, suggesting this once-neglected effect should

play a greater role in plasma physics simulations.

Resistive Diffusion

In resistive MHD the term 1
ene

α · j, in conjunction with Faraday’s and Ampere’s law (eqs.

2.47 and 2.48) can be combined to give an advection-diffusion equation

∂B

∂t
= vα × (∇× B) +

α⊥
e2n2eµ0

∇2B, (2.90)
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with the advection velocity

vα = − 1

e2µ0
∇
(

α⊥
n2e

)

. (2.91)

The second term on the right hand side of eq. 2.90 refers to the resistive diffusion

of the magnetic field. The advective term with velocity vα corresponds to the resistive

advection of the magnetic field in regions where the resistivity is non-uniform. While

small in general, the resistive advection can grow to be as fast as the frozen in flow near

shock fronts [23].

Biermann Battery Magnetic Field Generation

Though not a result of the collisional transport terms, the Biermann battery effect [116]

is an important magnetic field generation mechanism arising from the electron pressure

term in Ohm’s law (eq. 2.70). Though first discovered in the context of interstellar mag-

netic fields, the Biermann battery effect is significant in the regimes of laser-plasma inter-

actions and has been used as a means to induce∼ 100T magnetic fields with nanosecond

laser pulses [117].

Considering the electric field determined by the electronpressure gradient (also known

as the ambipolar electric field) in Ohm’s law

E = −∇pe
ene

, (2.92)

and using the ideal gas law pe = neTe with Faraday’s law (eq. 2.47), the Biermann mag-

netic field generation mechanism follows

∂B

∂t
=

1

ene
∇Te ×∇ne. (2.93)

From this expression one can see if the electron density and electron temperature fields

have non-parallel gradients, a magnetic field will be induced via the Biermann battery ef-

fect. In laser-generated plasmas, energy deposition via a laser heating mechanism will

locally heat a region of the plasma. With a very non-uniform density profile - as is com-

mon in laser-plasma interactions - magnetic field generation via this mechanism is one of

the most significant sources of magnetic fields in experiments. Even if a magnetic field

has not been imposed externally, this mechanism can magnetise the plasma, leading to

magnetised transport terms.
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2.6 The Single-Fluid Model

Finally, bringing together the results of the previous sections together, the set of equations

that describe a single-fluid magnetised plasma, and which will be used as the core set in

this thesis is thus:

The Continuity Equation

∂ρ

∂t
+∇ · (ρV) = 0 (2.94)

The Momentum Equation

ρ
∂V

∂t
+ ρV · ∇V = −∇pe + j× B (2.95)

Ohm’s Law

ene(E+V× B) = −∇pe + j× B+
1

ene
α · j− neβ · ∇Te (2.96)

Heat Flow Equation

qe = −κ · ∇Te − β · jTe
e

(2.97)

The Energy Equation

3

2
ne

(

∂Te
∂t

+V · ∇Te
)

+ pe∇ ·V+∇ · q = E · j (2.98)

Maxwell’s Equations

∇× E = −∂B
∂t

(2.99)

∇× B = µ0j (2.100)
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2.7 Non-Local Transport

The conventional derivation of fluid theory relies on the truncation of the spherical har-

monic expansion of the electron distribution function in velocity space and the assump-

tion that the isotropic part f0 is Maxwellian [118]. This local approximation holds in the

regime LT >> λei, where the electron-ion collision mean-free-path λei(∝ T 2
e ) is much

smaller than the temperature scale length LT , defined as

1

LT
=

1

T

dT

dx
. (2.101)

From this one can define the Knudsen number,

Kn =
λei
LT

. (2.102)

This number quantifies the degree of ‘non-locality’, in the regime of Kn << 1 the

electrons in the plasma experience sufficient Coulomb collisions such that the distribu-

tion function is approximately Maxwellian and therefore in local thermal equilibrium.

This condition however is frequently violated in high-intensity laser-plasma interactions

[70, 71], where the interaction can drive steep temperature gradients. Electrons with col-

lisional mean-free paths greater than the scale length of the gradient (where LT << λei),

stream down the temperature gradient without thermalising to the local distribution. As

a result there is an increase in these hotter electrons (coming from the tail of the dis-

tribution in a high temperature region) and a depletion in another region, resulting in

non-Maxwellian distribution functions and the break-down of classical transport. This

depletion of hot electrons in the tail of the distribution from the region of the temperature

gradient leads to a lower peak heat flux than expected from the Spitzer-Härm approxi-

mation qsh, [74],

qsh ∝ −neλeivth∇Te. (2.103)

The familiar Fourier law-type heat flow should also break down at sharp temperature

gradients such as shock fronts, as the heat flow would diverge. The heat flow should

saturate at approximately the free streaming heat flow qF ; the heat flow if all the electrons

moved at the thermal speed in the direction of the temperature gradient

qF =
1

2
menev

3
th

∇Te
|∇Te|

. (2.104)

A simple method of accounting for this reduction is to use a flux limiter fl, where the
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classical heat flow is reduced to some fraction of the free streaming heat flow [119],

1

q(x)
=

1

qsh(x)
+

1

flqF
. (2.105)

This however does not capture the effect of pre-heat, where heat flow is present even

before the temperature gradient. Most of the heat flow is carried by fast electrons with

speeds 3 to 5vth. Since the mean free path grows as λei ∝ v4, the less collisional, non-local

electrons are carrying the heat flow beyond the temperature gradient. An alternative non-

local thermal transportmodel that can capture this effect is through a convolutional kernel

[79]. In one dimension,

q(x) =

∫ ∞

−∞
W (x, x′)qsh(x

′)dx′. (2.106)

The difficulty in flux-limited or convolutional models is that the choice of limiter or

kernel is arbitrary, with no real physical basis for commonly used models, and some

choosing them to fit experimental data. While these models are simple, a VFP approach

is necessary to get correct results.

The reduction in thermal conductivity can also be cast in Fourier space for a temper-

ature perturbation mode with wavenumber k. This effectively recasts the peak thermal

flux reduction as a reduction of thermal conductivity for small length scale structures.

Epperlein and Short [81] found a non-local conductivity suppression factor relating the

Spitzer-Härm thermal conductivity κsh to the non-local thermal conductivity κnonlocal of

the form
κnonlocal
κsh

=
1

1 + a(
√
Zkλei)b

, (2.107)

with the parameters a, b obtained by fitting this function to a numerical VFP simulation.

The result is a reduction in thermal conductivity for higher modes (high kλei) meaning

short-wavelength scale structures saw reduced conductivity.

When magnetic fields are present in a plasma, the Larmor radius can become compa-

rable to the mean free path. In this highly magnetised regime the Larmor radius becomes

the characteristic step-length of diffusive transport. Given that the Larmor radius grows

as rL ∝ v and λei ∝ v4, the hotter electrons in the tail (with higher v) of the electron

distribution can be relatively unmagnetised while the bulk electrons are magnetised.

Under a sufficiently strong magnetic field the transport is localised in the plane per-

pendicular to the field, no matter how large λmfp. This quenching of non-locality is borne

out in a magnetised gas-jet experiment performed by Froula [38] and seen in kinetic sim-

ulations performed by Ridgers [101]. The regime where non-locality and magnetisation

are both significant is poorly understood.
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Laser Propagation in a Plasma

The results of successive chapters rely heavily on the theory of long-pulse laser propa-

gation and coupling to the plasma. This chapter will introduce the primary assumptions

that allows the analysis of laser propagation, before deriving the unidirectional - or parax-

ial - laser model. The plasma coupling mechanisms of inverse bremmsstrahlung and the

ponderomotive force will then be introduced before concluding with a brief description

of some of the important laser-plasma interactions that occur in the regimes of interest to

this thesis.

3.1 The Helmholtz Equation

Laser light is a monochromatic coherent electromagnetic wave, and so the starting point

will be Maxwell’s electromagnetic wave equation.

c2∇2E− c2∇(∇ · E) = 1

ǫ0

∂j

∂t
+
∂2E

∂t2
. (3.1)

Solving this equation exactly would be numerically too demanding because the spa-

tial and temporal resolution requirements would be too great and are unnecessary for

nanosecond pulse duration, high-power lasers used in laser-plasma physics experiments.

Several simplifying assumptions can be made to reduce this equation into the paraxial

laser equation.

The current in a plasma is determined by the flux of the electrons. The dielectric be-

haviour of the plasma can thus be found from the electron equation of motion. The sim-

plified equation of motion required for the fast electron response to the laser field is

me
∂(neVe)

∂t
= −eneE−meνeineVe. (3.2)

57
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The high-frequency response of a plasma to the oscillating laser fields justifies dropping

the pressure gradient term. Themagnetic field term is ignored because unless the plasma

is relativistic, it will be much smaller than the electric field contribution due to the factor

∼ v/c. Using the definition of the current in terms of electron velocity this can be recast

as
∂j

∂t
=
e2ne
me

E− νeij. (3.3)

Unfortunately, in order to have a closed set of equations the collision term must be

rewritten in terms of the electric field. In order to do this the current in the collision term

is approximated as

j ≈ − ene
meω2

l

∂E

∂t
, (3.4)

which only holds in the regime where the collision frequency νei is much less than the

laser angular frequency ωl. Therefore the wave equation can be written

c2∇2E =
e2ne
ǫ0me

(

E+
νei
ω2
l

∂E

∂t

)

+
∂2E

∂t2
. (3.5)

Given this describes a laser field, the electric field can be considered a product of the

fast temporal oscillation at the laser angular frequency ωl and a slowly varying ‘envelope’

E’(r), where in total E(r) = E’(r)e−iωlt. It is not necessary to resolve the fast oscillation of

the wave because the ωl timescale is much faster than the timescale of the plasma dynam-

ics. It is possible to integrate out the fast motion, giving an equation for the envelope of

the laser field. Time derivatives of E’ are ignored as the envelope is assumed to be slowly

varying.

It is here we make use of the paraxial approximation, whereby k · E = 0. This limits

the validity of this model to small angle refraction from the wavevector axis (to within

±15 degrees). While large angle refraction does occur in plasmas, the setups within this

thesis are securely within the small-angle regime. This approximation removes the ∇ · E
term in the wave equation. This leaves the Helmholtz equation

∇2E’+
ω2
l

c2
ǫE’ = 0. (3.6)

Where the dielectric function ǫ is defined as

ǫ = 1−
ω2
p

ω2
l

+ i
ω2
p

ω3
l

νei, (3.7)

when expressed in terms of the plasma frequency,

ωp =
e2ne
ǫ0me

. (3.8)
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3.2 The Paraxial Laser Model

The laser model relies on the slowly varying envelope approximation. It is possible to

write the electric field of a linearly polarised wave E’ in terms of the envelope ψ (the

magnitude in the axis of polarisation) and the phase φ(z). Without loss of generality the

direction of propagation is chosen to be along the z-axis which gives

E′(r, z) = ψ(r, z) exp iφ(z). (3.9)

The field is linearly polarised so it can be expressed as a complex scalar field. The

phase function φ is chosen such that

φ(z) =
ωl

c

√
ǫaz. (3.10)

The factor ǫa is the dielectric function at the axis (that is, r = 0). This expression is plugged

into the Helmholtz equation and the envelope is assumed to be slowly varying such that

|∂zz| << |k∂z|. (3.11)

This is equivalent to assuming the wavevector of the laser light is directed along z axis

and any variation away from this direction is small. This yields the paraxial transport

equation

2ik
√
ǫa∂zψ +∇2

⊥ψ + k2 (ǫ− ǫa)ψ = 0, (3.12)

where the vacuum wavenumber k is

k2 =
ω2
l

c2
. (3.13)

The paraxial transport equation allows one to use the intensity I of the laser field di-

rectly, calculated from the laser envelope ψ

I =
1

2
cǫ0η|ψ|2, (3.14)

with the speed of light c, the permitivity of a vaccum ǫ0 and η is the refractive index,

defined as

η =

√

1−
ω2
p

ω2
l

. (3.15)
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3.3 Gaussian Optics

In a vacuum the paraxial equation has a cylindrically symmetric solution known as a

Gaussian beam [120]. This solution will be important for the remainder of this thesis as

the model of the field of a laser pulse before it enters a plasma. This solution is

ψ(r, z) = ψ0
w0

w(z)
exp

( −r2
w(z)2

)

exp

(

−ikz − ir2

2R
+ iφ(z)

)

. (3.16)

This solution is defined in terms of the following parameters, the beam waist size

w(z) = w0

√

1 +
z2

z2r
, (3.17)

the beam radius of curvature

R(z) = z

(

1 +
z2r
z2

)

, (3.18)

the Rayleigh length,

zr =
kw2

0

2
, (3.19)

and the Gouy phase

φ(z) = arctan(
z

zr
). (3.20)

A map of the real part of the laser envelope ψ can be found in figure 3.1.

Figure 3.1: The real part of a Gaussian beam in a vacuum illustrated here shows how the
beam focuses to a focal point in the centre of the plot. The width of the beam at the focal
point defines the minimum beam waist ω0.
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3.4 Plasma-Laser Coupling

As the core of this thesis is an investigation of laser-plasma interactions, it is necessary to

introduce the interaction processes. The plasmas of interest here are all produced by long

pulse lasers with a laser wavelength of λl = 1µm. As such the laser intensity is moderate,

with a peak intensity around 1015Wcm−2 and a laser-plasma coupling parameter Iλ2l in

the region of 107W . To get a measure for the importance of special relativistic effects in

laser-plasma coupling, one can consider the magnitude of the electron quiver speed vosc,

this is the speed of oscillation of an electron in the electric field of the laser. With intensities

this low, relativistic effects can be ignored since the electron quiver speed relative to the

speed of light
vosc
c

=
eE

meωlc
= a0, (3.21)

is of the order O(10−2) and so the electron motion is firmly non-relativistic. The term

a0 is known as the normalised vector potential, and is commonly used in the theory of

laser-plasma interactions.

Chapter 2 introduced the concept of the plasma frequency ωp, which is the character-

istic frequency at which the electron fluid restores quasi-neutrality in a plasma. This pro-

vides a lower limit to the frequencies of electromagnetic radiation can propagate through

a plasma. This is because when the laser frequency ωl equals ωp, the electron current in

the plasma can cancel the displacement current in Ampere’s law, effectively quenching

the electric field of the laser. The length scale of this attenuation is called the skin depth

and is defined

δ =
c

ωp
(3.22)

The limit on frequency also defines an important parameter of laser-plasma interactions,

the critical density nc. This is the cut-off electron density at which the plasma frequency

equals the laser frequency. Using the definition of the plasma frequency, this density is

defined

nc =
ǫ0meω

2
l

e2
. (3.23)

While there are other mechanisms by which lasers can couple to a plasma and ex-

change energy, the parameter space of interest in this thesis limits the coupling to themost

significant processes in ICF regimes. In this thesis’ model, the laser affects the plasma

through two processes, the ponderomotive force [121] and inverse bremmstrahlung [2].

The ponderomotive force term appears in the plasma momentum equation and the in-

verse bremsstrahlung term in the energy equation.
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The Ponderomotive Force

The ponderomotive force is the result of the collective oscillation of the electrons in the

oscillating electric field of the laser. A spatially varying laser electric field envelope drives

electrons from regions of high intensity to regions of lower intensity. The timescale of

the laser oscillation period is so much higher than the timescale of the dynamics of the

plasma, one can temporally integrate over this collective motion to obtain a ponderomo-

tive potential. Gradients in this potential act as a force in the momentum equation.

The form of the ponderomotive force can be obtained from the second order terms of

the electron fluid momentum equation

mene
∂Ve

∂t
= −meneVe · ∇Ve − ene(Ve × B). (3.24)

Using themagnetic vector potentialB = ∇×A, and the first order oscillating field (quiver)

approximation Ve = − eE
meω

= eA
me

, the momentum equation becomes

mene
∂Ve

∂t
= −1

2

e2ne
meω2

l

∇A2. (3.25)

By integrating out the fast oscillation, this expression yields the ponderomotive force den-

sity, which can be written in terms of the laser field envelope ψ,

Fp = −
ω2
p

ω2
l

∇〈1
2
ǫ0E

2〉 = −ne
nc

1

2
ǫ0∇|ψ|2. (3.26)

This form shows the force as a negative gradient of a potential; on timescales much longer

than the laser oscillation period, the ponderomotive force can be thought of as an electric

field pressure on the electron fluid.

Inverse Bremsstrahlung

Inverse bremmsstrahlung (IB) is the inverse of the bremmstrahlung emission process.

This is a collisional absorption process, whereby an electron-ion Coulomb collision is

caused by the oscillating electric field of the laser forcing the electrons to quiver. In this

process a photon of laser light is absorbed by an electron scattered in the field of an ion.

IB acts as a source term in the plasma energy equation with energy from the laser light

absorbed by the plasma. For underdense plasmas in the regimes of interest in this thesis,

IB is the primary heating process.

To derive the form of the IB operator, consider the Langdon operator for the f0 equa-

tion [53], defined as
(

∂f0
∂t

)

IB

=
Av2osc
3v2

∂

∂v

(

g(v)

v

∂f0
∂v

)

. (3.27)

WithA = 2πneZe4

m2
e

and vosc =
eE0

meωl
, whereE0 is the laser field. In thismodel, the oscillating

laser field acts as a source term for the isotropic part of electron distribution function.

The IB heating term in the energy equation can then be derived in the same way as
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Figure 3.2: Diagram of a 3-wave parametric process, an intense laser photon decays into
two new waves. Taken from Pfalzner [2].

the rest of the energy equation, by taking the correct moment of the Landgon IB operator

and using a Maxwellian distribution for f0. The factor g(v) can be assumed to be 1 in the

regime within which these equations are derived (where vosc << vth). Therefore, using

the definition of the electron-ion collision time τei, the laser heating term is

(

∂E

∂t

)

laser

=
ω2
p

ω2
l

νei〈
1

2
ǫ0E

2〉 = ne
nc

1

2
ǫ0νei|ψ|2, (3.28)

where it has been put in terms of the laser field envelope ψ.

These two laser-plasma coupling terms allows the laser to deposit energy andmomen-

tum in the plasma, whilst other laser-plasma interactions do exist [121], on the long-pulse,

1ns timescales investigated in this thesis, they are negligible. The above forms also allow

the direct use of the slowly-varying laser field envelope ψ - calculated from the paraxial

equation - in the plasma coupling terms.

3.5 Parametric Laser-Plasma Instabilities

Parametric instabilities are caused by the non-linear interactions between intense laser

light and the plasma [122]. The refractive index of a plasma is dependent on the electron

number density, as such, light will refract in regions of inhomogeneous electron density.

In particular laser light finds itself refracted into electron density channels [62]. Small

density fluctuations scatter laser light, with the intense laser pump wave decaying into

two new waves. Depending on the kind of waves that are excited, these instabilities can

enhance laser absorption or enhance laser backscatter [123].
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This three-wave decay process is illustrated in figure 3.2. Because energy andmomen-

tum must be conserved, the incident (ω0,k0) and scattered (ω1,k1), (ω2,k2) waves must

satisfy the wavenumber and frequency matching relations

ω0 = ω1 + ω2, (3.29)

k0 = k1 + k2. (3.30)

The intensity of the incident wave (i.e the laser) has to exceed a certain threshold in

order for the parametric instability to occur, because collisional or collisionless damping

will act to damp the growth of an unstable mode. If the laser intensity is higher than this

limit, the amplitude of the parametric decay mode grows exponentially with a character-

istic growth rate.

A high-power pump laser in an ICF or laser-plasma experiment can decay via a num-

ber of different parametric instabilities. The processes of interest in the underdensemoderate-

intensity laser interactions described in this thesis, and most common in underdense ICF

experiments are stimulated Raman scattering and stimulated Brillouin scattering.

Stimulated Raman Scattering

Stimulated Raman scattering (SRS) is the parametric process where the incident pump

wave (with frequency ω0) decays into an electron plasma wave (with frequency ωp, the

plasma frequency) and lower-energy scattered electromagnetic wave (with frequency

ωs). It is the parametric resonance between the incident laser light with the normalmodes

of the plasma. The frequency matching relation

ω0 = ωs + ωp (3.31)

implies this instability can only occur if the initial pump frequency satisfies ω0 > 2ωp.

The dependence on the local plasma density (via the plasma frequency) also limits this

instability to the region in the plasma where ne ≈ nc/4 and below.

SRS is unstable because it acts as a feedback loop; small changes in electron density

δne oscillate, generating currents in the plasma which excite electromagnetic radiation

with frequency ω0 ± ωp. The combination of the incident and scattered electromagnetic

wave reinforce the density fluctuations through the ponderomotive force, completing the

loop. SRS can scatter light forward or backward, with backscattering the most important

for laser-plasma experiments. SRS has a peak growth rate at

γmax =
ω0

2
√
2

vosc
c

ne
nc
. (3.32)

This instability is problematic not only because it is detrimental to laser absorption, but

also because it generates hot electrons which can cause pre-heat.
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Stimulated Brillouin Scattering

Stimulated Brillouin scattering (SBS) is another resonant parametric instability where the

pump wave decays into an ion-acoustic wave and lower energy electromagnetic wave

[121] with the matching condition

ω0 = ωs + ωia, (3.33)

where the ion-acoustic frequency ωia = vskia is defined via the ion-acoustic sound speed

vs. In this mechanism the density fluctuation is associated with a low-frequency ion-

acoustic wave. This scattering off ion-acoustic modes is limited to the region where ne ≤
nc and has a peak growth rate (for backscattering)

γmax =
1

2
√
2

k0voscωia√
ω0k0vs

. (3.34)

For plasma conditions expected to be produced by high-power laser implosions at theNa-

tional Ignition Facility, the backscatter from both SBS and SRS is large enough to reflect a

significant portion of the laser light [8]. In both indirect and direct-drive ICF the coupling

of energy into the target is significantly decreased, as such these LPIs must be avoided for

good implosion performance.
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4

Code Architecture and Testing

For all but the simplest systems, the equations of plasma and laser physics are non-linear

and too complex to analytically calculate results. Therefore to examine the physical sys-

tem at the core of this thesis, it was necessary to build a coupled laser plasma code that

solves the complex set of equations. This chapter will introduce the numerical methods

used to solve systems of partial differential equations and how they are applied to plasma

and laser solving routines.

The equations in question are the extended-MHD equations alongside the paraxial

equation, the fullmodel can be found inAppendix B. The resulting algorithm is the PARA-

MAGNET (Parallel MAGnetised Newton method code for Electron Transport) code that

will be used to simulate systems of lasers and plasmas in the remainder of this thesis.

Before the code can be used on physical problems, numerical tests must be performed

to validate the accuracy of the model. This chapter will end with a description of numer-

ical test cases applied to the two parts of the code and the isolation of issues specific to

each module.

4.1 Numerical Methods

To solve a system of partial differential equations numerically, the fields subject to these

equations are decomposed onto a discretemesh. The values of these field variables at each

point are evolved according to a solution algorithm that acts as the discrete equivalent of

the partial differential equation which maps the field variables onto the solution of the

equation. The result is a linear or non-linear algebra problem with a very large number

of variables.

67
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Finite Difference Methods

In finite difference methods, equations are transformed into the numerical form by con-

verting derivatives to their finite-difference approximations. These rely on the Leibniz

definition of a derivative as the difference between two mesh points over the displace-

ment. In the limit of that displacement approaching zero, the difference converges to-

wards the exact derivative. In this method, a continuous field variable, u, is discretised

onto a mesh with a finite number of elements, uijk at mesh positions i, j, k.

There are a range of finite difference approximations, however the PARAMAGNET

code uses central differencing for the spatial derivatives, whereby the derivative at amesh

point is approximated using the difference between two points either side of it,

∂f

∂x
⇔ fi+1 − fi−1

2δx
. (4.1)

Distrete time-stepping in the model is achieved using the backward Euler step. This is an

implicit method in which time derivatives are approximated using,

∂f

∂t
= g ⇔ fn+1 − fn

δt
= gn+1, (4.2)

with spatial operators (such as g) taken at timestep n + 1. In the limit of δt → 0, δx →
0 the discrete equation, and the numerical solution obtained from a simulation, should

converge to the continuous result.

The Newton Method For Non-linear Equations

If the finite-difference approximation is applied to non-linear systems such as MHD, the

resulting discrete algebraic system is also non-linear. This requires an algorithm suitable

to large sparse non-linear matrix equations. The Newton-Raphson method [124] itera-

tively converges onto a solution of a non-linear matrix equation from an initial guess. The

univariate Newton-Raphson method is recognisable from school as a way of finding the

roots of a function, but the multi-variable form can be used to solve the non-linear matrix

equations found in computational physics.

If the field variables at timestep n are held in a solution vector vn and an implicit

time-stepping method used such as backward Euler step, the discrete form of the partial

differential equation can be represented as a matrix equation.

A(vn+1)vn+1 = B(vn+1)vn. (4.3)

The matricies A and B hold the discrete structure of the partial differential equation. Be-

cause the equation may be non-linear, these matrices are functions of vn+1. The Newton

method works by first defining a residual vector,

f(vn+1) = A(vn+1)vn+1 − B(vn+1)vn. (4.4)
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If the residual is Taylor expanded

f(vn+1 +∆vn+1) = f(vn+1) +
∂f(vn+1)

∂vn+1
∆vn+1 +O((∆vn+1)2), (4.5)

the Jacobian matrix can be defined as

J =
∂f(vn+1)

∂vn+1
. (4.6)

To find the ’root’ of this system of equations the terms in second order O((∆vn+1)2),

are ignored and

f(vn+1 +∆vn+1) = 0 (4.7)

is sought as this means eq. 4.3 is solved. Since these equations are non-linear, the solution

of the resulting linear matrix equation

J∆vn+1
k = −f, (4.8)

will only be an approximation and so successive approximations, with an appropriate lin-

ear matrix solver, must be made until the system converges within the specified tolerance,

therefore

vn+1
k+1 = vn+1

k +∆vn+1
k . (4.9)

is iterated over the index k until a satisfactory accuracy is reached. A common definition

of accuracy is to set an error threshold E0, and iterate until the error drops below this

value. Error can be defined as the 2-norm of the residual vector f or the difference vector

∆vn+1,

E = ||∆vn+1|| or E = ||f||. (4.10)

The Jacobian-Free Newton Krylov Method

The PARAMAGNET code itself does not evaluate the Jacobian directly but rather makes

use of the Jacobian-Free-Newton-Krylov (JFNK) method [125]. In this method the prod-

uct of the Jacobian with a vector v can be approximated using a Taylor expansion as

Ju ≈ 1

ǫ
(f(v+ ǫu) + f(v)) , (4.11)

with some specified small factor ǫ. Here the vector v comes from J = ∂f(v)
∂v .

This approximation allows one to use the Newton method without having to evaluate

and store the Jacobian. This comes at a price of having to give up preconditioning during

the linear solver stage and being limited to an unpreconditioned Krylov subspacemethod

such as GMRES [124] for the linear solver. Without a stored Jacobian matrix, standard

preconditioners cannot be calculated and so many more iterations may be needed before

the linear solver converges below tolerance. GMRES and similar methods are ideal in this

situation because they only require the residual vector and the Krylov subspace.
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TheKrylov subspace is the space of vectors formed from the repeatedmultiplication of

the matrixA and the vector b from the linear systemAx = b. A full description of iterative

linear solvers goes beyond the scope of this thesis, but a full in-depth introduction can be

found in Press et al. [124].

Writing high-performance linear and non-linear solvers is no small task however there

are several libraries available for such software that can easily be implemented into any

code. PARAMAGENT makes use of the PETSc library [126] for its sparse iterative linear

and nonl-linear solver routines. The library is compatiblewithMPI parallelisation andhas

a C API which made it a good choice for the problem at hand. In particular PARAMAG-

NET makes use of the GMRES iterative linear solver and the Newton iterative non-linear

solver routines which are run in parallel using MPI.

The Alternating-Direction Implicit Method

The paraxial laser equation (eq. 3.12) takes the form of a linear three-dimensional com-

plex parabolic equation. Being linear, the numerical solution can take advantage of simple

sparse matrix algorithms. However the problem is complicated by the second spatial di-

mension. This second spatial dimensionwill, using the finite difference scheme described

in this chapter, produce a pentadiagonal as opposed to tridiagonal matrix. It would be

possible to use a general sparse linear matrix solver, however a simpler solution will be to

use the alternating-direction implicit (or ADI) method.

In the ADI method, operator-splitting decomposes the pentadiagonal matrix prob-

lem into two separate tridiagonal problems, one for each spatial dimension [124]. The

two tridiagonal problems are then solved separately, making this a two-step solution al-

gorithm. Given a pentadiagonal matrix A0 formed from the application of an implicit

time-step method to a parabolic equation, the linear problem A0x = b0 is split into two

tridiagonal problems

A1x
n+1/2 = b1,

A2x
n+1 = b2.

The operators A1, A2 represent the operator A split into the two dimensions x, y respec-

tively. The key point is to feed the result of the intermediate step (xn+1/2) into the right-

hand side of the second step.
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4.2 The PARAMAGNET Code

Normalisation Scheme

The equations are first put into a dimensionless form by using a set of reference values.

This will remove the need to include dimensional constants in the numerical procedure.

n0, T0 and I0 represent arbitrary reference values of the density, temperature and laser

intensity. They are usually set to the initial values of density, temperature and peak laser

intensity respectively.

The reference thermal speed vth0, collision length λ0 and collision time τ0 are functions

of the reference density and temperature and are defined through

v2th0 =
T0
me

λ0 = vth0τ0

The normalisations can be found in table 4.1 and the full set of equations in dimensionless

form can be found in Appendix B.

t̃ = t
τ0

x̃ = x
λ0

ṽx = vx
vth0

B̃x = eBxτ0
me

j̃x = jx
en0vth0

ñ = n
n0

T̃ = T
T0

Ẽx =
eExτ20
meλ0

q̃x = qx
n0mev3th0

ψ̃ =
√

2I0
ǫ0c
ψ

Table 4.1: Table of variable normalisations in the PARAMAGNET code

Variable Storage

When using the above methods for multi-dimensional problems one can apply a row in-

dexing scheme to turn the three-dimensional array ofmeshpoints into a a one-dimensional

vector. The problem is turned into a matrix equation for which conventional matrix so-

lution methods can be used. The purpose of a row indexing scheme is to take each row

of a Cartesian mesh of cells and pack them under each other so that a nx × ny × nz array

of cells becomes a 1D vector of length nxnynz . If the number of physical fields (such as

temperature T , x-velocity Vx, density n etc. ) in the system is nv, the total length of this

vector then becomes nvnxnynz .

To extract a particular variable from a particular mesh cell when the data is packed in

this 1D structure we define the index p of a field variable with field index a ∈ [1, nv] and

mesh indicies i ∈ [1, nx], j ∈ [1, ny], k ∈ [1, nz] to be

p = a+ nv(i− 1) + nvnx(j − 1) + nvnxny(k − 1). (4.12)
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Boundary Conditions

When solving the Cauchy problem for a system of partial differential equations, the solu-

tion requires both initial and boundary conditions. In the PARAMAGNET code periodic,

reflective and outflow boundary conditions have been implemented.

A periodic boundary is an example of a Dirichlet condition. The value of a function

at one end of the domain is the same as the opposite end. So for some field u(x) in a one

dimensional domain x ∈ [0, L] then

u(0) = u(L).

A reflective boundary is aNeumann boundary conditionwhere the derivative is equal

to zero on the boundary. Physically thismeans any vector quantities that hit the boundary

are reflected back. Using the same approach above, at the left boundary x = 0 this is

∂u(x)

∂x

∣

∣

∣

∣

x=0

= 0.

An outflow boundary extrapolates the solution from the interior cell values. The sim-

plest method is to set the boundary ‘ghost’ cell value by linearly extrapolating the values

of the closest two interior cells. This condition allows flow to leave the domain, acting

as an absorbing boundary to energy and momentum. If a 1D domain is discretised into

N mesh points with field values ui, these boundary conditions are implemented in the

simplest finite difference approach by

u0 = uN−1,

uN = u1,

for periodic,

u0 = u2,

uN = uN−2,

for reflective, and

u0 = 2u1 − u2,

uN = 2uN−1 − uN−2,

for outflow conditions.

Parallelisation

In order to speed up the run time, the code PARAMAGNET utilises shared-memory par-

allelisation with the OpenMP library. In parallelisation the domain is split into blocks

of equal size and each thread of a computational node computes the solution of the algo-
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rithm in its own block. Because thememory is shared, cell values on the boundary of each

block is accessible to every thread, so no communication between nodes is necessary.

This however limits use to a single node since the code requires all data to be stored in

one memory location. This gives an upper limit to the memory requirements and thus an

upper limit to the size of the simulation. Othermethods such as distributed parallelisation

with MPI could be used to avoid this memory issue, but since the laser solver relies on a

direct linear matrix solver it requires access to the entire domain. Therefore distributed

memorymethods cannot be used without significantly more communication for the laser

solver stage; the decision was made to keep to shared-memory parallelisation to keep the

code simpler, with extensions to left for a later date.
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4.3 The Plasma Solver

The Plasma Equations

The MHD equations are a non-linear coupled set of partial differential equations. The

model begins with the fields distributed on a three-dimensional Cartesian mesh. The

numerical scheme applied to the plasma equations is the backward Euler step method for

time derivatives and central differences for the space dimensions. These methods convert

the equations into discrete forms that can be found in full dimensionless form inAppendix

B. In the discrete form the notation uses an upper index n for the timestep and i, j, k for

the mesh positions. The terms α, β, γ encapsulate the cell sizes

α =
∆t

2∆x
, (4.13)

β =
∆t

2∆y
, (4.14)

γ =
∆t

2∆z
. (4.15)

To simplify the writing and reading of the equations the central difference operator

will be used and is defined as

δxf = fi+1jk − fi−1jk (4.16)

for some general variable f. For the other dimensions x is replaced by y or z and the differ-

ences taken in j or k respectively. As an example the continuity equation, with variables

density (n) and velocity (Vx, Vy, Vz), becomes

nn+1
(

1 + αδxV
n+1
x + βδyV

n+1
y + γδzV

n+1
z

)

+
(

αV n+1
x δxn

n+1 + βV n+1
y δyn

n+1 + γV n+1
z δzn

n+1
)

= nn. (4.17)

The Plasma Solver Stage

When the implicit finite difference methods described in section 4.1 are applied to the

plasma equations, (the full discrete set of which can be found in Appendix B) the equa-

tions can be expressed as a large non-linear matrix equation

A(vn+1)vn+1 = B(vn+1)vn. (4.18)

The vector vn holds the state of the system (the values of all the variables at each mesh

point) at timestep n using the row indexing scheme described in section 4.2 and the vector

vn+1 holds the state of the system at timestep n + 1. For each timestep the vector vn is
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a known vector of constants and the aim is to solve for vn+1. This system is non-linear

because thematricesA andB are functions of the vector vn+1 and so an iterative non-linear

solution method is required; for this the PARAMAGNET code uses the JFNK method

supplied by the PETSc library [126]. A further virtue of the JFNK method is that it only

requires calculation of the residual vector f. This can be calculated directly form the finite-

difference equations of Appendix B without calculating the matrices A and B.

The choice of an implicit time-integration algorithm for the plasma solver was heavily

influenced by prior work by Bissell [115], who used an implicit time-integrator for simu-

lations of a similar equations set. In general an implicit time-integrator is ill-suited to ideal

MHD and hyperbolic problems and can suffer from numerical dissipation. While numer-

ical dissipation can be avoided by using higher resolution meshes, this greatly increases

the computational workload and the use of an explicit scheme is more appropriate.

The algorithm for the JFNK plasma solver can be found in Algorithm 1.

Algorithm 1 Implicit plasma (MHD) solver algorithm utilising a JFNK method

1: function JFNK(vn+1, vn)
2: while E > Etol do ⊲ Check if the error has converged within tolerance
3: ∆v = 0
4: f = FORMF (vn+1, vn) ⊲ Calculate the RHS residual vector
5: ∆v = GMRES(f) ⊲ Call the GMRES solver from the PETSc library
6: vn+1 = vn+1 +∆v ⊲ Update the solution vector
7: E = ||∆v|| ⊲ Calculate the error, the 2-norm of the update
8: end while

9: end function

4.4 The Paraxial Laser Solver

The Paraxial Equation

From chapter 3, the paraxial equation for a laser with wave number k is

2ik
√
ǫa∂zψ +∇2

⊥ψ + k2(ǫ− ǫa)ψ = 0. (4.19)

The dielectric ǫ and axial dielectric ǫa terms are defined as

ǫ = 1− n

nc
+ i

n

nc

νei
ωl

(4.20)

ǫa = 1− n0
nc

(4.21)

where ωl is the laser angular frequency, nc is the plasma critical density and n0 is the

initial plasma electron density. This allows us to define the dielectric in terms of a change
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in density relative to the reference value n0,

ǫ− ǫa =
δn

nc
=
n0
nc

− n

nc
+ i

nνei
ncωl

. (4.22)

The paraxial equation is a complex Schrödinger-type equation with the laser wavevec-

tor propagating parallel to the z-axis. Like the plasma equations, the paraxial equation

is turned into discrete form using finite differences and the solution ψ represented by a

mesh of complex variables ψk
ij , however unlike the plasma equations, the z-derivative in

eq. 4.19 is taken implicitly with a backward Euler step. This is because for the laser field ψ

to remain numerically stable as the solution algorithm ‘sweeps’ across the domain in the

z-direction, an unconditionally stable numerical method such as the implicit backward

Euler step is necessary for the z-derivative.

When central-differencing is used for the x, y dimensions and their derivatives, the

problem is reduced to a complex, linear pentadiagonal matrix problem. Because the

paraxial equation is 3-dimensional, we can use the ADI scheme to decompose this pen-

tadiagonal matrix into a two-step method. For each z ‘slice’ of the domain at position k,

two - much simpler - tridiagonal matrix equations are solved,

A1ψ
k+ 1

2 = b1, (4.23)

A2ψ
k+1 = b2. (4.24)

The index k + 1
2 represents a ‘half-step’, an intermediate solution that provides input to

the second equation. A1 represents the implicit step in xwhile A2 represents the implicit

step in y. The full form of these matrix equations derived from the paraxial equation are

α1ψ
k+ 1

2

ij + β1(ψ
k+ 1

2

i+1,j + ψ
k+ 1

2

i−1,j) = γ1ψ
k
ij + δ1(ψ

k
i,j+1 + ψk

i,j−1) (4.25)

α2ψ
k+1
ij + β2(ψ

k+1
i+1,j + ψk+1

i−1,j) = γ2ψ
k+ 1

2

ij + δ2(ψ
k+ 1

2

i,j+1 + ψ
k+ 1

2

i,j−1). (4.26)

Where the constants are defined as

α1 = 4ik
√
ǫa − 2

∆z

∆x2
+ k2δn

∆z

2nc
,

α2 = 4ik
√
ǫa − 2

∆z

∆y2
+ k2δn

∆z

2nc
,

β1 =
∆z

∆x2
,

β2 =
∆z

∆y2
,
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γ1 = 4ik
√
ǫa + 2

∆z

∆y2
− k2δn

∆z

2nc
,

γ2 = 4ik
√
ǫa + 2

∆z

∆x2
− k2δn

∆z

2nc
,

δ1 = − ∆z

∆y2
,

δ2 = − ∆z

∆x2
.

The Paraxial Solver Stage

Given this is a complex tridiagonal matrix problem one should simply be able to apply

the tridiagonal matrix algorithm [124]. However there is an added complication because

of the presence of the boundary conditions ∂ψ, defined on the edges of the domain in x

and y. For the laser field ψ, we choose periodic boundary conditions in the x, y directions.

To account for this condition, the tridiagonal linear solver will need to be modified such

that off diagonal terms - which represent the boundary values - are present in the matrix.

This can be achieved using the Sherman Morrison formula [124].

Periodic boundary conditions put non-zero terms in the far corners of the matrix, the

Sherman-Morrison formula treats these as a small change to a tridiagonal matrix. Given

a matrix A and an outer product uvT containing the corner values, the inverse of the sum

is

(A− uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
. (4.27)

This can be combined with the tridiagonal matrix algorithm to solve the matrix equation

quickly with small memory requirements. The Sherman-Morrison-Tridiagonal algorithm

to solve a tridiagonal matrix problem Ax = b, with periodic conditions, is described in

full in Algorithm 2.

Algorithm 2 The Sherman-Morrison-Tridiagonal algorithm

1: function SMT(A, b)
2: A11 = b1 +A11

3: ANN = ANN +A21A12/b0
4: y = tridiag(A, b) ⊲ Solve the intermediate equation Ay = b
5: u1 = −b1
6: uN = A12

7: q = tridiag(A, u) ⊲ Solve intermediate equation Aq = u
8: v0 = 1
9: vN = −A12/b0

10: x = y −
(

v·y
1+v·q

)

q ⊲ Apply the Sherman-Morrison formula

11: b = x ⊲ Re-write the solution x into the RHS vector b
12: end function

The laser field is solved at each timestep by sweeping across the domain in the z-

direction with a succession of linear solves at each value of the z with index k, using the
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SMT algorithm above. The full paraxial equation solver, using the ADI method can be

found in Algorithm 3.

Algorithm 3 Paraxial laser solver algorithm using the ADI method

1: function PARAXIAL(ψ, v)
2: for k = 1 : Nz do

3: for i = 1 : Nx do ⊲ Begin x−axis sweep
4: A1 = A1(v) ⊲ Calculate matrix A1 (eq. 4.22) using the plasma density
5: b1 = b1(ψ

k) ⊲ Calculate RHS vector b1 (eq. 4.22)

6: ψk+ 1

2 = SMT (A1, b1) ⊲ Solve the intermediate matrix problem
7: end for

8: for j = 1 : Ny do ⊲ Begin y−axis sweep
9: A2 = A2(v) ⊲ Calculate matrix A2 (eq. 4.23) using the plasma density

10: b2 = b2(ψ
k+ 1

2 ) ⊲ Calculate RHS vector b2 (eq. 4.23)
11: ψk+1 = SMT (A2, b2) ⊲ Solve the second matrix problem
12: end for

13: end for

14: end function

4.5 The Solution Algorithm

It is now possible to put all the previous algorithms together into the whole PARAM-

AGNET solver. The code begins by setting the initial conditions for the plasma v0 and

the laser field ψ. The boundary conditions for the plasma are then set with SetBoundary.

Within a time loop the laser field is updated first with the PARAXIAL solver, before call-

ing the JFNK plasma solver, which updates the plasma state. It is specified in the code

when and how frequently to output data and which variables to output. The output is

in both raw ASCII format and VTK format; this VTK format allows the user to view the

output using Paraview. See Algorithm 4 below for details.
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Algorithm 4 PARAMAGNET solution algorithm

1: v0 = InitialiseV (v0)
2: ψ = InitialiseLaser(ψ)
3: ∂v0 = SetBoundary() ⊲ Set initial and boundary conditions
4: for n = 1 :M do

5: PARAXIAL(ψ, vn) ⊲ Update laser field
6: JFNK(vn+1, vn, ψ) ⊲ Update the plasma state
7: if n = noutput then ⊲ Check if the code should output on this step
8: OutputV TK(vn, ψ)
9: OutputTXT (vn, ψ)

10: else

Continue
11: end if

12: end for

4.6 PARAMAGNET and Other Codes

The code described herein is by no means the first MHD code. While other MHD codes

exist for the simulation of laser-plasma interactions, PARAMAGNET was written to fill a

niche and quickly explore certain physics while applying a different numerical approach

to conventional MHD codes.

Mature MHD codes such as FLASH [46] (maintained at the University of Chicago)

are the product of many years of development and a large team. Though PARAMAGNET

cannot compare in terms of performance or overall features, FLASH lacks a paraxial laser

solver, opting instead for a ray-tracing model. At the time of writing FLASH also only

incorporates the resistivty, Biermann and Hall terms in the generalised Ohm’s law, while

PARAMAGNET includes the full Ohm’s law. The numerical solution methods employed

by FLASH are more advanced and accurate than those employed by PARAMAGNET, but

the small scale of this code allowed experimentation with the JFNK method. Implicit

methods like JFNK are common in the treatment of parabolic terms and are commonly

implemented with operator splitting, but the simplicity of the JFNK implementation does

make it attractive over some of the conventional implicit approaches used by FLASH.

Another code MHD code called CHIMERA [127] (maintained by Imperial College

London) was written specifically to simulate inertial confinement fusion experiments.

During the time of this PhD, CHIMERA was extended to include radiation transport and

the full Ohm’s law, including the Nernst effect and the Righ-Leduc heat flow. While there

is cross-over in the physics capability of this code and PARAMAGNET, CHIMERA again

still lacks the paraxial solver that was required for the investigations detailed in chapter

5.

While performance of PARAMAGNET lags behind these codes, the smaller scale al-
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lows a sole developer to experiment more and try out methods with a more focused ob-

jective. In this regard the PARAMAGNET code has performed very well, being a modern

C++ code with a small codebase (∼ 5000 lines) and without integration issues that can

plague large projects.

4.7 Code Testing: The Plasma Solver

Before applying the PARAMAGNET code to physical problems, just like all other numer-

ical software, it must be tested for accuracy. Errors in the algorithm or numerical scheme

can lead to incorrect results in final simulations. Physical simulation codes are tested by

standardised tests that attempt to replicate known results. An analytic comparison test is

the most common form of numerical test.

In an analytic comparison test, an exact analytic result is derived from a simplified

version of the Cauchy problem for the equation set. The code then simulates the system

with the same boundary and initial conditions and the result is compared to the analytic

expression from which one can calculate the error.

The plasma physics module solves the single-fluidMHD systemwith the extension of

Braginskii transport coefficients. BeingMHD, this system is not just a fluid solver but also

an electromagnetic solver. Ampere’s law and Faraday’s lawmix together electromagnetic

fields with the fluid fields of density, velocity and temperature; in turn the module must

also satisfy the property of a divergence-less magnetic field, as stipulated by Gauss’ law

for magnetism.

The MHD equations are a mixed system with hyperbolic and parabolic terms with 5

independent fields. The plasmamodule thereforemust robustly calculate the solution de-

spite terms with very different numerical behaviour. The plasma module tests described

below include a circular-polarised Alfvén wave test, the Orszag-Tang vortex test and a

temperature and magnetic field relaxation test.

Circular Polarised Alfvén Waves

An Alfvén wave is a cold plasma wave where the ions oscillate transversely under the

application of a magnetic field (B) parallel to the direction of the wave [128]. These

waves have the dispersion relation

ω2 = k2v2a, (4.28)

with the Alfvén speed

va =
B√

µ0mini
. (4.29)
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Circular polarised Alfvén waves have the useful property of being exact non-linear so-

lutions to the ideal MHD system of equations. The circular polarised waves were also

chosen because the analytic solution is non-zero for more of the terms in the ideal MHD

set. They also do not transfer energy into thermal energy so the temperature should re-

main constant and provided the solution algorithm works, they should not decay into

other modes via numerical errors.

To perform this ideal MHD test, all diffusive and transport terms were turned off,

as were all laser coupling terms and the Biermann battery term. The wave is initialised

propagating diagonally with the grid to capture any grid imprint that may be missed

when using a wavevector parallel to the Cartesian grid axes. The domain itself is the

unit square x, y ∈ [0, 1], with the number of cells equal to (nx, ny, nz) = (128, 128, 1). The

simulationwas chosen to evolve over a period of T = 1with nt = 1000 timesteps. Periodic

boundary conditionswere used on all dimensions and the full initial condition for this test

can be found in table 4.2.

ρ = 1 Vx = −0.1
√
2
2 cos(k‖x‖) Bx =

√
2
2 (1 + 0.1 cos(k‖x‖))

p = 0.1 Vy = −0.1
√
2
2 cos(k‖x‖) By =

√
2
2 (−1 + 0.1 cos(k‖x‖))

k‖x‖ = 2π(2x− 2y) Vz = −0.1 sin(k‖x‖) Bz = 0.1 sin(k‖x‖)

Table 4.2: Initial condition of the Alfvén wave simulations, these are normalised values
for the fields.

The results of this test are illustrated in figure 4.1, the 2D map shows a wave propa-

gating diagonally across the domain at time t = 0.5. Lineouts of the wave are shown in

figure 4.2 and one can see thesewavesmaintain the required sinusoidal form as they prop-

agate across the domain, however the amplitude does drop by approximately 5% over the

whole simulation time (in this simulation Tmax = 1), this comes from numerical errors

(specifically numerical dissipation) leading to losses in energy. The simulation time was

set to correspond to 5 wave propagation times, that is, the time taken for one wavelength

to propagate across the whole domain.

The equation set described in the previous chapters and solved by the plasmamodule

is not in conservative form, and the particular choice of finite-difference scheme employed

by the PARAMAGNET code is not inherently conservative. As such there is the potential

for mass, energy and momentum to be lost during a simulation. To see how well the

code fares in this regard, the Alfvén wave test results will also be used to investigate the

conservation properties of the plasma module.

The relative change in mass, momentum and total energy over the lifetime of the sim-

ulation gives a measure of how well the code conserves these quantities. Following the
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Figure 4.1: The total (normalised) magnetic field magnitude (|B|) of a circular polarised
Alfvén wave travelling diagonally in a two dimensional domain.

test used by Bissell [115], one can define the quantities

∆Q(t) =
Q(t)−Q(0)

Q(0)
, (4.30)

Q(t) =
∑

i,j,k

Qijk(t)

nxnynz
, (4.31)

where Qijk(t) represents the quantity at cell position i, j, k at time t. Plotting ∆Q for

mass, momentum and energy in figure 4.3, one can see the largest drop is in momentum.

Whilst there is minimal change in the total mass and energy during the simulation, the

momentum drops by approximately 7.5%. This can be attributed to the choice of implicit

time-integration method, which is known to produce numerical dissipation. While the

momentum losses in this advection test are larger than reported in other fluid codes such

as FLASH [46], the losses in energy and density are within acceptable (< 0.5%) limits for

the diffusion-dominated simulations of this thesis.

The Orzsag-Tang Vortex

A second common test for plasma physics codes is the Orzag-Tang vortex [129]. This

problem is useful for testing the shock-capturing capability of a plasma simulation. As the

system evolves sharp shock fronts form in density, velocity andmagnetic field, eventually

leading to a very turbulent plasma.

Like the Alfvén wave test, this is an ideal MHD problem but does not have an analytic

solution. This value of this test is to assess the code’s performance in very non-linear and

turbulent situations. The system is initialised in 2D with periodic boundary conditions



83 4.7. CODE TESTING: THE PLASMA SOLVER

0 20 40 60 80 100 120
x (normalised)

−0.100

−0.075

−0.050

−0.025

0.000

0.025

0.050

0.075

0.100

M
ag

ni
tu

de t=0.25
t=0.5
t=0.75

Figure 4.2: Diagonal lineouts of the total (normalised) magnetic field magnitude (|B|) for
three time points show the wave travelling to the right, maintaining its sinusoidal form.
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Figure 4.3: Lineouts of the total mass, momentum and energy of the plasma during the
Alfvén wave test show the code conserves mass and energy well, with some loss in mo-
mentum.

and a unit square domain x, y ∈ [0, 1] with mesh sizes (nx, ny, nz) = (256, 256, 1). The

initial conditions for the fields can be found in table 4.3.

ρ = 25
36π Vx = − sin(2πy) Bx = − 1√

4π
sin(2πy)

p = 5
12π Vy = sin(2πx) By = 1√

4π
sin(2πx)

Table 4.3: Initial condition for the Orszag-Tang vortex, these values apply to the nor-
malised variables

Figure 4.4 shows the results of the Orszag-Tang vortex test. By t = 0.5 the density,

velocity magnitude and magnetic field magnitude have wrapped up into very non-linear

profiles with the appearance of shock-like regions. The simulation of the Orszag-Tang

vortex stalled at t = 0.56 after the formation of the first few strong shock fronts.

In the later stages, a highly resolved simulation of this problem should produce two-

dimensionalMHD turbulence. At later times strong shockwaves should have formed and

passed through each other, creating turbulent flow features at different spatial scales. For
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comparison, compare the PARAMAGNET simulation of fig. 4.4 with the FLASH simula-

tion [46] of the same test (both show the simulation at t=0.5) in fig. 4.5. The PARAMAG-

NET code clearly has lost the fine-scaled shock fronts. This is troubling for the accuracy

of advective phenomena, especially in the regime of strong shocks. However given the

performance of the advection in the Alfven wave test above, the code is accurate if the

shock and turbulent regime is avoided.

Figure 4.4: These maps show the density, velocity magnitude and magnetic field magni-
tude during the Orzsag-Tang Vortex test at t = 0.5. Shock fronts have begun to form in
this very non-linear stage of the evolution. These variables are normalised according to
the scheme in table 4.1.

The hydrodynamic algorithmused by PARAMAGNET is not adequate to capture such

strong shock conditions. Figure 4.6 gives lineouts through the centre of the domain at

t = 0.5, and the characteristic peaks and troughs of the early-stage Orszag-Tang vortex

are clear.

Temperature and Magnetic field Relaxation

The third plasma solver test will verify the diffusive terms in the PARAMAGNET equa-

tions. Using a method introduced by Bissell [115], this test compares the decay of one-

dimensional linear perturbations in the temperature and magnetic fields. It has the ad-

vantage of testing the thermal diffusion, resistive diffusion, Nernst advection and Etting-

shausen effects simultaneously.

The system is initialised with a small perturbation on a uniform background under

a unidirectional magnetic field, such that Bz = B0 + δB(x) and T = T0 + δT (x). Once

laser-coupling, hydrodynamics, Biermann battery and Ohmic heating terms are turned

off, the equation set solved by PARAMAGNET reduce to the parabolic system

∂δB

∂t
= db∇2δB + aE∇2δT, (4.32)

∂δT

∂t
= dT∇2δT + aN∇2δB, (4.33)

with the coefficients are defined as

db =
α⊥

µ0e2n20
, aE =

β∧
e
, dT =

2κ⊥
3n0

, aN =
2T0β∧
3eµ0n0

.
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(a) Density map (b) Magnetic field magnitude map

Figure 4.5: Density (a) and magnetic field magnitude (b) maps produced by the FLASH
code during the Orszag-Tang test. These maps are taken at t = 0.5 when turbulence has
already begun to form, and small scale shocks are present in the density and magnetic
field profiles.

These are constants, the transport coefficients being functions of the uniform background

T0, B0, n0. If the system is Fourier transformed, the dispersion relation is found to be

ω± =
k2

2

[

−i(dT + db)±
√

−4aEaN − (db − dT )2
]

. (4.34)

This equation system can be solved analytically, in this case a sinusoidal initial condition

is used. For the purposes of this test, the positive root of the dispersion relation is taken

and the result is an exponentially decaying sinusoidal perturbation with a decay rate of

γ = ℑ[ω+]. The temperature and magnetic field perturbations are out of phase. Were the

negative root taken the fields would be in phase and the advection affects would enhance

the perturbations rather than contribute to their decay.

δT (t) = δT (0) exp−γt, δB(t) = δB(0) exp−γt .

The simulationdomainwas chosen to be 200µmwith amesh of (nx, ny, nz) = (512, 1, 1)

and periodic boundary conditions; the simulation time proceeded for 1ns. The back-

ground plasma and initial conditions for the fields can be found in table 4.4.

T = T0(1 + δ sin(2πx/Lx)) Bz = B0(1 + δ sin(2πx/Lx + π)) Lx = 200µm

B0 = 5T T0 = 20eV n0 = 1× 1025m−3

Table 4.4: Physical parameters used in the mode decay test

The results of this test can be found in figure 4.7. The code reproduced the decay of

the linear mode in both the temperature and magnetic field successfully.
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Figure 4.6: These lineouts show the values of the normalised density, velocity magnitude
and magnetic field magnitude for the central slice of the domain at time point t = 0.5.
While shock fronts have formed, the numerical dissipation has smoothed out the small-
scale turbulence characteristic of the late-stage Orszag-Tang vortex.

4.8 Code Testing: The Laser Solver

To test the accuracy of the laser solver, two analytically solvable problems will be com-

pared with the code output. The first of these is to reproduce the propagation of a Gaus-

sian beam in a vacuum. The envelope of the electric field of a laser with a radial Gaussian

profile can be derived exactly from the paraxial equation. The second test will be using

a parabolic density profile to compare the laser propagation in the presence of a plasma.

Like the Gaussian beam test this has an analytic solution when the electron number den-

sity (and thus the dielectric function) has a radial parabolic form.

Gaussian Beam

The functional form of a Gaussian beam can be found in the Laser Theory chapter §3.3. It
is an exact cylindrically symmetric solution to the vacuum paraxial equation. For this test

an initial condition is defined on the z = 0 boundary. The laser solver sweeps across the

domain in the z-direction. The boundary condition was chosen so that the focal point of

the Gaussian beam coincides with the centre of the domain.

By using the expression of a Gaussian beam defined in eqs. 3.14-3.18, the domain is

chosen to be four Rayleigh lengths zr in total, so that the left side of the domain (z = 0)
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Figure 4.7: The decay of a linear perturbation in themagnetic field and temperature shows
clear agreement with the theoretical result derived from a linearised model.

corresponds to the boundary condition

∂ψ = ψ(−2zr). (4.35)

Since this test models a laser in a vacuum, laser-plasma coupling is turned off. It is also

time-independent so only one time-step is required. A 3D domain is used for this simu-

lation with mesh size (nx, ny, nz) = (256, 256, 1024). Figure 4.8 shows a 2D slice through

the domain, in comparison with the analytic calculation. The intensity matches the theo-

retical result, including the position of the focal point and the beam divergence. An axial

lineout of the intensity can be found in figure 4.9, and the code simulates the intensity

profile of the theoretical calculation well, with some small under-prediction at the peak.

Figure 4.8: The laser intensity of a Gaussian beam compared with the output from the
paraxial laser solver. The intensity mapmatches the theoretical result, including the focal
point width (normalised in terms of the vacuum beam waist ω0) and beam divergence.



4.8. CODE TESTING: THE LASER SOLVER 88

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
z (zr)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ax
ia

l I
nt

en
si

ty
 (N

or
m

al
is

ed
)

Simulation
Theory

Figure 4.9: The axial intensity of a Gaussian beam compared to the paraxial laser solver
output shows some under-approximation at the focal point.

Parabolic Density Profile

It is possible to construct an analytic expression for the density profile for which a Gaus-

sian beamwill neither focus or defocus [120]. This will test the laser-plasma coupling via

the refractive index by reproducing a zero-focusing or defocusing Gaussian beam. Look-

ing at the definition of the paraxial equation, eq. 3.12. this implies ∇2ψ = −k20(ǫ − ǫ0).

Using this condition one can derive a density profile that should prevent any focusing

n(r) = n0

(

1 +
n2c

n20k
2ω2

l

r2
)

∀z (4.36)

This test uses the same setup as the previous Gaussian beam test above, however this

time the domain is no longer a vacuum and so the refractive index term is now turned on

(and can deviate from 1). The boundary condition for z = 0 is now set to be the focal spot

of a Gaussian beam of the form of eq. 3.14, such that the boundary condition ∂ψ is

∂ψ = ψ(0). (4.37)

The result of the test is illustrated in figure 4.10 where the uniform-density solution

is compared with the parabolic-density solution. With the presence of the non-uniform

density, the beam divergence has been cancelled exactly by the refractive index. Figure

4.11 shows a lineout of the axial intensity in both simulations. The simulation with a

parabolic profile, the axial intensity is a constant, whilst in the uniform density simula-

tion, the axial intensity drops as the beam diverges. This test shows the laser solver has

successfully replicated the expected theoretical result when the refractive index term is
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included in the paraxial equation.

Figure 4.10: Comparing the laser intensity of aGaussian beam in a plasmawith a parabolic
density profile and in a vacuum shows how the density profile exactly cancels the beam
divergence.

4.9 Summary

The PARAMAGNET code is a brand new C++, single-fluid plasma physics code coupled

to a paraxial laser solver. By using a JFNK method to solve the core plasma equations

the computational complexity was kept to a minimum and allowed a fully-implicit algo-

rithm. The lack of preconditioners for the non-linear matrix problem however restricts

the convergence rate of the nonlinear solver. In future, physics-based preconditioners

could be used to improve the convergence properties and the overall speed of the plasma

solver. When restricted to diffusion-dominated systems, such as described in chapter 5,

the implicit choice can be justified because of the stiffness of these systems. As a fully

JFNK plasma physics code, PARAMAGNET could also be used as a testbed for the JFNK

method in future simulation codes for terms with different mathematical properties.

The 3D paraxial solver utilising an ADI method allows the direct calculation of the

laser field, rather than inferring the field present by using Gaussian beam approximations

as is the case in ray-tracing methods. The direct matrix solver based on the tridiagonal

algorithm allows the very fast calculation of the laser field and is successfully parallelised

with the OpenMP shared-memory parallel library.

The PARAMANGET code was tested on a set of plasma and laser physics tests that
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Figure 4.11: Looking at the axial intensity, we see the parabolic density profile prevents
the beam diverging. In a vacuum the intensity drops as the beam diverges.

have been used as standard in other plasmaphysics applications. TheOrszag-Tang vortex,

an Alfvén wave, the diffusive relaxation of a perturbation, a Gaussian beam and a beam

in a parabolic density profile were all simulated to validate the accuracy of the code’s so-

lution. In all tests the code has performed well and converges to the expected analytic

results, thus providing the confidence to proceed with simulations of physical phenom-

ena.

Though accurate in reproducing the theoretical results, the code struggled with the

strong shock fronts present in the Orzag-Tang vortex. Whilst this for now limits the ap-

plicability to less extreme conditions, this could be solved with the use of a more robust

advection scheme in the plasma equations. The limitations in advection are the result

of the use of implicit time-integration scheme for the whole set of equations. Implicit

time-integration is beneficial for parabolic and diffusive-dominant problems because the

unconditionally stable character of implicit methods allows longer timesteps for stiff prob-

lems. While this is useful, these methods are numerically dissipative and fail for advec-

tion problems like the Orszag-tang vortex test. A better approach would be the use of

operator splitting to allow implicit time-integration for parabolic terms and explicit time-

integration methods for the rest of the problem.

In future, optimisation of the code to improve the speed and robustness would allow

its use in more general plasma physics applications. With this code completed, it is now

possible to bring fully 3D Braginskii-MHD simulations to bear on problems driven by

long-pulse lasers.
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Magnetised Laser Filamentation and

Self-Focusing

This chapter concerns the influence of the magnetised thermal conductivity on the prop-

agation of a nanosecond 1014Wcm−2 laser in an underdense plasma. These values were

chosen to replicate long-pulse experimental campaigns mentioned in the introductions

such as those of Froula et al. [130] and Gregori et al. [37].

This chapter will begin by deriving an analytic laser focusing model from the parax-

ial equation introduced in chapter 3, using both the thermal and ponderomotive mech-

anisms and will show the existence of a bifurcation of focusing behaviour in this mixed-

mechanism system. The analytic model shows the influence of the magnetic field arising

through the thermal conductivity. Given the model itself makes some approximations,

the use of the PARAMAGNET code is required to confirm the results in the non-linear

regime.

After studying focusing, the related phenomenon of filamentation will be introduced

and the dispersion relation calculated from an MHD model. By using a modified theory

to include collisional magnetisation, a similar magnetised thermal effect in the filamenta-

tion dispersion relation is found. The thermal mechanism is found to have an increased

spatial growth rate in a magnetised plasma, a result of the magnetisation of the thermal

conductivity. This chapter ends with a discussion on the effect of these results on recent

magnetised inertial fusion experiments. Some of the work in this chapter has been pub-

lished, and the results reproduced fromWatkins and Kingham [112] with the permission

of AIP publishing.

91
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5.1 Self-Focusing

Laser self-focusing in a plasma is the effect in which the laser causes the local plasma re-

fractive index to change. The beam then refracts into this channel in a process that feeds

back and becomes unstable and forms laser filaments [60, 131]. This process can occur

via thermal and ponderomotive mechanisms where the laser digs a channel in electron

density, changing the refractive index. It can also occur by a relativistic mechanismwhere

the relative mass increase of the electron results in a local refractive index change. This

process can be detrimental to the performance of ICF experiments as the non-uniformity

of the beam can seed hydrodynamic instabilities in direct drive[4] and the high-intensity

laser fields in the filaments can make the experiment more susceptible to parametric in-

stabilities [132].

The presence of laser propagation through a magnetised plasma in these experiments

leads to the question of the effect of the magnetic field on the laser propagation through

the plasma itself. The thermal mechanisms of self-focusing and filamentation of a laser

are mediated by the thermal conductivity [97]; as such one expects these processes to be

modified by the plasma magnetisation and importantly the factor κc⊥ introduced in the

magnetised transport theory section of chapter 2. There has been limited consideration of

the influence ofmagnetised transport effects in existing theoretical and simulation studies

of self-focusing, which will be considered in this chapter.

The model equations used for the following analysis come from a simplified set of the

MHD equations along with the paraxial equation. Given a laser with vacuum wavenum-

ber k0 and aplasmawith critical densitync, themomentum, energy andparaxialHelmholtz

equations become

min

Z

∂V

∂t
= −n∇⊥T − T∇⊥n− 1

2
ε0
n

nc
∇⊥|ψ|2, (5.1)

3

2
n
∂T

∂t
= −∇⊥ · q+

1

2
ε0
n

nc
νei|ψ|2, (5.2)

2ik0
√
ǫa∂zψ +∇2

⊥ψ + k20δǫψ = 0, (5.3)

q = −κ · ∇⊥T. (5.4)

The plasma coupling along the beam is minimal and so the gradient along the beam

can be ignored, this approximation is validwhen gradients along the z direction aremuch

smaller than perpendicular to the z axis. The thermoelectric term in the the heat flow has

also been ignored given that it is proportional to the current, and in this magnetised laser-

plasma system the curl of the magnetic field is small.

The quantity δǫ is the dielectric change and represents the plasma response to the laser

and ǫa is the dielectric function of the uniform initial density. Note the symbol ε0 is the
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vacuum permittivity.

Steady State Model

The propagation time of the laser through the plasma is effectively instantaneous and the

inertia terms of the plasma are small, therefore one can use a steady state model

n∇⊥T + T∇⊥n = −1

2
ε0
n

nc
∇ ⊥ |ψ|2, (5.5)

−∇⊥ · (κ · ∇⊥T ) =
1

2
ε0
n

nc
νei|ψ|2, (5.6)

2ik0
√
ǫa∂zψ +∇2

⊥ψ + k20δǫψ = 0. (5.7)

In the following analysis, the plasma and beam are cylindrically symmetric and the

aim is to find an expression for the self-focal length. The theory of self-focusing here fol-

lows from the approach described by He [120] for neutral media. The aim is to determine

the plasma response to the laser in terms of the density change δn.

Starting from the steady-state set of equations (5.5-5.7) but with the cylindrically sym-

metric approximation, the laser envelope ψ has the form

ψ = A(r, z)eik0S(r,z), (5.8)

|ψ|2 = A2 =
A2

0

α(z)2
e
− r2

a2
0
α2

, (5.9)

S = β(z)
r2

2
+ φ(z). (5.10)

The focal spot of the beam is the point at which the normalised Gaussian variance α2 is

a minimum. This minimum beam waist is a0. The functions in these expressions satisfy

the boundary conditions

α(0) = 1, (5.11)

φ(0) = 0, (5.12)

β(0) =
1

R
, (5.13)

A2(r, 0) = A2
0e

− r2

a2
0 . (5.14)

This approximation means the beam has a beam waist of size a0 positioned at z = 0

and a radius of curvature of the phase front of R. Using eq. 5.8 the paraxial equation (eq.

5.7) becomes the coupled pair

2∂zS +

(

∂S

∂r

)2

=
1

k20A

(

∂2A

∂r2
+

1

r

∂A

∂r

)

+ δǫ, (5.15)

∂zA
2 +A2

(

∂2S

∂r2
+

1

r

∂S

∂r

)

+
∂S

∂r

∂A2

∂r
= 0. (5.16)
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The dielectric variation δǫ can be represented by an expansion in terms of orders of r,

δǫ(z, r) = δǫ0(z) + δǫ1(z)r + δǫ2(z)r
2 +O(r3). (5.17)

By putting the expressions eqs. 5.10 and 5.09 into the first of eq. 5.15, one finds an

algebraic expression in powers of r. Equating the terms proportional to the orders of r

yields the following expressions

α′ = βα, (5.18)

β′ + β2 =
1

k20a
4
0α

4
+ δǫ2, (5.19)

2φ′ = − 2

k20a
2
0α

2
+ δǫ0. (5.20)

The primes represent derivatives with respect to z. Furthermore, by taking the derivative

of eq. 5.18 and using eq. 5.19,

α′′ =
(

β′ + β2
)

α =

(

1

k20a
4
0α

4
+ δǫ2

)

α. (5.21)

The Isothermal Model

It is useful to analyse a simplified case with which to compare [120]. For this purpose

this section will consider an isothermal plasma, with only the ponderomotive force as the

laser-plasma coupling. The momentum equation is then

T
∂n

∂r
= ε0

n

nc
r
|ψ|2
a20α

2
. (5.22)

which can be solved for the density

n = n0 exp

(

−ε0|ψ|
2

2Tnc

)

. (5.23)

This result, taken from He [120]. When the exponent is expanded, this gives a dielectric

change

δǫ = −δn
nc

= δǫ0 + δǫ2 =
n0ε0A

2
0

n2c2Tα
2

(

1− r2

a20α
2

)

. (5.24)

It is possible now to put this expression into eq. 5.21 and find an equation for the focal

width α,
α′′

α
=

1

k20a
4
0α

4
− n0ε0A

2
0

n2c2Ta
2
0α

4
. (5.25)

This equation can be solved by multiplying by 2α′ and integrating to get α2. After using

the equations 5.18 - 5.20 and the boundary conditions to find the constants this is

α2 =

(

1

R2
+

1

k20a
4
0

− n0ε0A
2
0

n2c2Ta
2
0

)

z2 +
2

R
z + 1. (5.26)
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Which yields the focal length by finding the minimum of α2

zf =

(

−1

R
±
√

n0ε0A2
0

n2c2Ta
2
0

− 1

k20a
4
0

)

(

1

R2
+

1

k20a
4
0

− n0ε0A
2
0

n2c2Ta
2
0

)−1

. (5.27)

The Thermal Focusing Mechanism

Moving now to the thermal mechanism, the temperature equation is included and now

there is both ponderomotive and IB coupling to the plasma. This model was first intro-

duced by Perkins [59] but will be extended to analyse the influence of magnetic fields. In

the formalism of Braginskii [22] the electron heat flow driven by a temperature gradient

splits the familiar Fourier law into the parallel (κ‖), perpendicular (κ⊥) and Righi-Leduc

(κ∧) terms relative to the direction of the magnetic field b,

q = −κ‖b(b · ∇T )− κ⊥b× (∇T × b)− κ∧b×∇T. (5.28)

We now introduce the the coordinate system, which is made up of the angle θ between the

magnetic field b and the plane perpendicular (r) to the laser wavevector k, which satisfies

the relations (illustrated in figure 5.1)

sin θn = r× b,

cos θ = r · b.

Figure 5.1: Geometry of the self-focusing calculation, with the laser wavevector k, the
magnetic field direction b and the angle θ between the magnetic field and the plane per-
pendicular to k

The heat flow in these coordinates also takes advantage of the slowly varying enve-

lope approximation, whereby plasma gradients (induced by the laser field) parallel to

the wavevector can be ignored as they are very small relative to gradients in the plane
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perpendicular to the wavevector. The heat flow becomes

q = −
(

κ‖b cos θ + κ⊥b× n sin θ + κ∧n sin θ
) ∂T

∂r
. (5.29)

The radial divergence of the heat flow gives the energy balance equation

−1

r

∂

∂r

(

r{κ‖ cos2 θ + κ⊥ sin2 θ}∂T
∂r

)

= ε0
n

2nc
νei|ψ|2. (5.30)

When the applied magnetic field is parallel with the direction of the laser wavevector (i.e

cos2 θ = 0), the problem becomes cylindrically symmetric, so the energy balance equation

becomes

−1

r

∂

∂r

(

rκ⊥
∂T

∂r

)

= ε0
n

2nc
νei|ψ|2. (5.31)

This equation and themomentum equation are nonlinear, therefore to find an analytic

solution the momentum and energy equations are linearised with small perturbations

about a background constant density and temperature

T = T0 + δT, (5.32)

n = n0 + δn, (5.33)

with these approximations the energy and momentum equations become

n0
∂δT

∂r
+ T0

∂δn

∂r
= −ε0

n0
2nc

∂|ψ|2
∂r

, (5.34)

− 1

r

∂

∂r

(

rκ0⊥
∂δT

∂r

)

= ε0
n0
2nc

ν0ei|ψ|2. (5.35)

κ0⊥, and ν
0
ei are the constant thermal conductivity and collision frequency, as functions of

the background density and temperature.

Following the analysis of the last section, these equations are used to find a dielectric

change which can be plugged into eq. 5.15. After substituting the linearised momentum

equation into the linearised energy equation, the equation for the density change is

1

r

∂

∂r

(

r
∂δn

∂r

)

=
1

2

n0
T0nc

ε0|ψ|2
(

n0ν
0
ei

κ0
+

4

a20α
2

(

1− r2

a20α
2

))

. (5.36)

In order to solve this equation the close-to-axis approximation is required

|ψ|2 ≈ A2
0

α2

(

1− r2

a20α
2

)

. (5.37)

eq. 5.36 is then integrated twice to find δn and the second order dielectric variation re-

quired to find the equation for the beam variance is then

δǫ2 = −1

8

(

n0
nc

)2 ε0A
2
0

n0T0α2

(

n0ν
0
ei

κ0
+

4

a20α
2

)

. (5.38)
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This is then used with eq. 5.21

α′′ =
c1
α3

− c2
α
, (5.39)

with the constants defined as

c1 =
1

k20a
4
0

− 1

2

(

n0
nc

)2 ε0A
2
0

T0a20
, (5.40)

c2 =
1

8

(

n0
nc

)2 ε0A
2
0

n0T0

n0ν
0
ei

κ0⊥
. (5.41)

This can be written
(

dα2

dz

)2

= −c2α2 lnα2 + c3α
2 − c1. (5.42)

In order to find an analytic result, the natural log is approximated to be

α2 lnα2 ≈ α2(α2 − 1), (5.43)

which holds in the region α ∈ [0, 1] and yields

(

dα2

dz

)2

= −c2α4 + (c3 + c2)α
2 − c1, (5.44)

and the solution is found to be

α2 = d1 + d2 sin(d3z + d4), (5.45)

with constants d1 − d4 defined as

d1 =
1
R2 + c1 + c2

2c2
, (5.46)

d2 =

√

d21 −
c1
c2
, (5.47)

d3 =
√
c2, (5.48)

d4 = arcsin

(

1− d1
d2

)

. (5.49)

In the case of a long geometric focus, such that the Rayleigh length is very long relative to

the propagation distance (R→ ∞), these expressions are reduced to

d1 =
1

2
(1 +

c1
c2
), (5.50)

d2 =
1

2
(1− c1

c2
), (5.51)

d3 =
√
c2, (5.52)

d4 =
π

2
. (5.53)
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Figure 5.2: From this PARAMAGNET laser-plasma simulation, one can see that as the
laser propagates through the plasma it undergoes self-focusing. This laser intensity map
shows how a magnetic field influences the self-focal point. The 10T plot shows the focal
point pulled far back, with a peak intensity at ≈ 2.5mm

The result of the derivation is

α2(z) =
1

2

(

1 +
c1
c2

)

+
1

2

(

1− c1
c2

)

cos(
√
c2z). (5.54)

This expression gives the variance (α2) of the beam along the propagation direction, the

focal point zf of the beam being the z position where the variance is a minimum

zf =
π

2
√
c2
. (5.55)

To put this result in context, eq. 5.54 gives the variance of the Gaussian beam. This

shows that the width of the beam focuses then defocuses periodically leading to the laser

profile of fig. 5.2 . The constant c2 defined in eq. 5.41 determines the wavelength of the

periodic shape and given that it is a function of the thermal conductivity, the magnetic

field lengthens and shortens the wavelength via this conductivity.
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5.2 Magnetised Thermal Self-Focusing

The constants in the equation 5.54 contained the thermal conductivity. Since the self-

focal length is dependent on the thermal conductivity, a magnetic field will change the

position of the self-focal spot by reducing the conductivity. For a particular choice of

density and temperature the focal length decreases as the magnetic field increases with

the dependence ∼ √
κ. Following the formalism of Braginskii [22] this magnetisation

causes thermal transport to deviate from the classical isotropic form,

κclas =
128

3π
ζ(Z)nevthλei. (5.56)

This is the product of the electron number density ne, the electron thermal speed vth, the

electron-ion collision length λei and the function ζ(Z) which is

ζ(Z) =
Z + 0.24

Z + 4.2
. (5.57)

Along with the factor 128/3π, this is taken from Epperlein [81] and accounts for an

electron - electron collisional correction to the conductivity; henceforth this constant will

be κ(1) = 128
3π ζ(Z). The thermal conductivity becomes anisotropic to a degree dependent

on the Hall parameter. The functional form of the magnetised perpendicular thermal

conductivity is

κ⊥ = κclasκ
c
⊥(χ,Z). (5.58)

The factor κc⊥(χ,Z) corresponds to a normalised Hall parameter dependent correction to

account for the magnetisation. In the analysis and the numerical simulations that follow

the explicit expression of this term is the Epperlein and Haines form [111] obtained via

a polynomial fit to a numerical solution of the electron Vlasov-Fokker-Planck equation.

However, unlike in the Epperlein-Haines expression, it will be taken to be the normalised

form such that κc⊥(0, Z) = 1.

If the thermal conductivity in the expression for the focal length (eq. 5.55) is replaced

with this magnetised form, the focal length becomes a function of magnetisation. When

written in more intuitive form in terms of the peak laser intensity I0 and the electron-ion

collision length λei, it is

zf = π
nc
n0
λei

√

cn0T0
I0

√

κ(1)
√

κc⊥. (5.59)

The factor κc⊥ appears in the expression for the focal length, therefore as the thermal

conductivity decreases with increasing magnetisation, the focal length will shorten. With

a greatly reduced heat flow, gradients in the temperature profile are maintained. This

leads to a higher pressure gradient and deeper electron density channel formation. The
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Figure 5.3: The focal length of the beam relative to the unmagnetised case shows the
focal length decreases with an increasing magnetic field strength. In a plasma with 1
keV electron temperature and density of 1× 1020cm−3 the length drops sharply, at lower
temperatures the gradient becomes shallower. Reproduced from [112], with permission
of AIP publishing.

refractive index changes more and the beam refracts with a shorter focal length.

This is illustrated in fig. 5.3. According to eq. 5.59, for a Z = 1, 1 keV temperature,

1×1020cm−3 number density plasma the focal length of a 1µmwavelength, 1×1014Wcm−2

Gaussian beam under a 2 Tesla axial field (magnetising the plasma to a Hall parameter of

χ = 4.8) is 0.2 of the unmagnetised focal length. In the highly magnetised regime corre-

sponding to χ >> 1, κ⊥ ∝ 1
χ2 and so the relative focal length is inversely proportional to

the applied field strength B.

Looking at the intensity of the laser as it undergoes self focusing also shows significant

impact of the magnetic field. The axial intensity of a Gaussian beam normalised to the

initial peak intensity follows the expression

I(z, r = 0)

I0
=

1

α(z)2
. (5.60)

Therefore the axial intensity can be found from eq. 5.60 and this is plotted in fig. 5.4 for a

0,5 and 10 Tesla applied field with the same parameters as fig. 5.3. Comparing the three

curves, the axial intensity grows tomultiple times the initial intensity over amuch shorter

length scale as the applied magnetic field increases.

Simulations of the Self-Focusing of a Gaussian Beam in a Magnetised Plasma

To compare this theory with the non-linear regime a simulation was performed with the

PARAMAGNET Eulerian magnetised laser-plasma code. The PARAMAGNET code is a
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Figure 5.4: The normalised axial laser intensity from the analytic model shows the focus-
ing of the beamwhen an axial magnetic field is applied with a field strength of 0T, 5T and
10T. The beam focuses over a shorter distance when the magnetic field strength increases.
Reproduced from [112], with permission of AIP publishing.

fluid plasma - paraxial laser simulation code and is described in detail in chapter 3. The

parameters for the simulations can be found in table 5.1.

Domain Plasma Laser

Lx = 1mm n0 = 1× 1020cm−3 I0 = 1× 1014Wcm−2

Lz = 3mm T0 = 20eV λl = 1µm

tmax = 1ns Z = 1 ωwaist(0) = 100µm

Bz = 0, 5, 10T

Table 5.1: Physical parameters used in self-focusing simulations

A 1 µm wavelength laser with a cylindrical Gaussian profile and peak intensity of

1× 1014Wcm−2 is incident on a pre-ionised Z = 1, 20 eV plasma with an initially uniform

electron density of 1× 1020cm−3. The beam has an initial waist size of 100 µm at the edge

of the simulation domain and propagates through the 3 mm plasma under an applied

magnetic field of 0,5 and 10T orientated parallel to the beam wavevector. Fig. 5.5 shows

the comparison between the axial laser intensity extracted from the simulation after 100ps

and the analytic model given by eq. 5.60. Two cases are compared, one with a 10T field

applied axially with the beam and the other without a magnetic field. In the magnetised

simulation the position of the focal point matches closely with the model but the model

breaks down when it hits a singularity (an artefact of the approximations eq. 5.37 and

eq.5.43) which comes from a pole in eq. 5.60. At this point the simulation begins to see
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Figure 5.5: The normalised axial laser intensity is compared for the simulated and analytic
models for an unmagnetised laser focusing over 3 mm and for a laser-plasma magnetised
with a 10T axial field. The analytic model shows good agreement with the simulation up
to the first focal point where the analytic model breaks down. The simulated axial inten-
sity starts to oscillate as the bean focuses into and defocuses out of the density channel.
Reproduced from [112], with permission of AIP publishing.

oscillating behaviour where the beam focuses and defocuses in and out of the density

channel. The switch from the rising to oscillating behaviour that the simulation exhibits

at z ≈ 2.3 cannot be capturedwith such a simple analytic model. The unmagnetised cases

match closely, with a minor rise in axial intensity as the beam focuses.

Despite the approximations made in the derivation of eq. 5.54 the fully nonlinear

PARAMAGNET simulation shows Eq. 6.55 reproduces the correct focal point position but

underestimates the gradient of the intensity increase leading up to the focal point. This is

a result of the approximation made in eq. 5.43. As with the analytic model the intensity

grows significantly over the spatial scale of the simulation to multiple times the initial

intensity. The simulation domain was chosen as 3 mm to be similar to laser-underdense

plasma experimental conditions such as the preheating stage ofMagLIF [43]. This implies

the laser propagating in such an experiment will focus significantly over the length of

several millimetres in a way not present without consideration of the magnetisation of

the thermal conductivity.
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5.3 Focusing Bifurcation

Looking more closely at the equations of the previous section shows more nuanced be-

haviourwhen one adds the extra terms for the thermalmechanism. The equation describ-

ing the spatial evolution of the beam waist in the mixed-mechanism system,

α′′ =
c1
α3

− c2
α
, (5.61)

can be decomposed into two first order equations. In Hamiltonian form this is the pair

α′ = p, (5.62)

p′ =
c1
α3

− c2
α
. (5.63)

Where the constants c1, c2 are those defined in eqs. 5.40 and 5.41. This pair of non-linear

ODEs exhibits a bifurcation at a critical value of the parameter c1. The phase portraits

of this equation system in the subcritical and supercritical regimes are shown in figure

5.6. Physically, the subcritical case (when c1 < 0) represents a stable saddle point in the

phase portrait, with the beam diverging. When c1 > 0 the beam ocillates and the phase

portrait exhibits centres. This can be written in the form x =

[

p

α

]

. The fixed points xf of

this system are at

xf =

[

0

±
√
c1
c2

]

Linearising around the fixed points, the corresponding coefficient matrix Gxf is

Gxf =

[

0 1

±2c2
2

c1
0

]

The nature of the solution around these fixed points is found by the trace and determinant

of this matrix.

Tr(Gxf ) = 0,

Det(Gxf ) =
2c22
c1
.

Therefore the fixed points are centres for c1 > 0 or saddle points for c1 < 0. This change of

behaviour across this critical value means there is a Hopf bifurcation. The phase portrait

for this system is shown in figure 5.6.
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Figure 5.6: On the left, the phase portrait shows saddle points when c1 = −1. The system
undergoes a Hopf bifurcation as c1 crosses 0, whereupon the phase portrait shows centres
(right).

Physical interpretation

The physical interpretation of this Hopf bifurcation is a qualitative change in behaviour.

When the parameter c1 < 0 the laser is in a subcritical region that represents a diverging

beam. When this parameter crosses the critical value and enters the supercritical regime

(c1 > 1), the laser beam shows oscillating behaviour. This oscillation shows itself as

centres in the phase portrait. This appearance of oscillating behaviour can be seen in the

PARAMAGNET simulation of fig. 5.5.

The parameter c1 represents the strength of the ponderomotive coupling between the

plasma and laser, indeed it also appears in the purely ponderomotive focusingmechanism

introduced in the isothermal model of eq. 5.25. As such the transition from diverging to

oscillating behaviour can be viewed as one driven by ponderomotive coupling. The pa-

rameter c2 by comparison, represents the relative importance of the thermal mechanism

on the focusing behaviour of the laser (the collision frequency only shows up in the defini-

tion of c2 in eq. 5.41 ). Interestingly, the bifurcation fromadiverging beam to an oscillation

one does not depend on c2, and so the critical value at which the laser bifurcation occurs

is not affected by thermal effects.

For practical purposes, the parameter c1 could be used as a means of deciding what

laser and plasma parameters would best serve an experiment, either to obtain the oscilla-

tion and laser trapping in a channel, or to obtain a purely diverging beam.
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Figure 5.7: This surface plot of the laser intensity shows small perturbations growing as
the laser propagates, eventually the laser intensity splits into filaments.

5.4 Filamentation

The phenomenon of self-focusing is closely related to the filamentation of a laser. As with

focusing, filamentation proceeds by the laser digging a density channel and so changing

the local refractive index. However instead of a single Gaussian beamlet or macroscopic

profile, filamentation considers small perturbations in the laser field and how they grow.

An example can be found in figure 5.7, where a small perturbation causes the large beam

to break up into smaller laser filaments.

As in the previous chapter, the analysis of filamentation will start with a steady state

model. The dielectric change δǫwill again take centre stage as the plasma response to the

laser, within which the effect of the magnetic field should be present.

A Steady State Model

The starting point is the steady state model of the previous sections

n∇⊥T + T∇⊥n = −1

2
ε0
n

nc
∇⊥|ψ|2 (5.64)

−∇⊥ · (κ · ∇⊥T ) =
1

2
ε0
n

nc
νei|ψ|2 (5.65)

2ik0
√
ǫa∂zψ +∇2

⊥ψ + k20δǫψ = 0 (5.66)
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The aim is to find the plasma response δǫ in terms of the laser envelope ψ. In the case

of filamentation the density n, temperature T and laser envelope ψ are perturbed by the

inhomogeneous beam profile. The dielectric change δǫ follows from the definition of the

dielectric function in a plasma

δǫ = −δn
nc
. (5.67)

To derive the spatial growth rate γ of the filamentation of a perturbationmode k⊥ per-

pendicular to the laser with wavenumber k0, we follow the approach taken by Epperlein

[81, 98]. In this case the steady-state equations are linearised with

T = T0 + δTe(ik⊥·x−γz), (5.68)

n = n0 + δne(ik⊥·x−γz), (5.69)

ψ = ψ0 + (δψ1 + iδψ2)e
(ik⊥·x−γz), (5.70)

where the ‘background’ envelope ψ0 is real. These lead to a set of linear equations

2k0γδψ2 − k2⊥δψ1 − k20
δn

nc
ψ0 = 0, (5.71)

2k0γδψ1 + k2⊥δψ2 = 0, (5.72)

n0δT + T0δn = −ε0
n0
nc
ψ0δψ1, (5.73)

κ0 : k⊥k⊥δT = ε0
n0
nc
ν0eiψ0δψ1. (5.74)

These equations are then used to derive the filamentation dispersion relation with

spatial growth rate γ,

4k20γ
2 = k20k

2
⊥

(

n0
nc

)2 ε0|ψ0|2
n0T0

(

1 +
n0ν

0
ei

κ0 : k⊥k⊥

)

− k4⊥. (5.75)

Here the thermal mechanism is represented by the term including the collision frequency

ν0ei and ponderomotive mechanism is represented by the term unity. From this relation

one can see the ponderomotive mechanism will dominate when n0ν0ei/κ
0 : k⊥k⊥ << 1

and the thermal mechanism will dominate in regimes where this term is >> 1.

What we shall see in the next section however, is that the appearance of a magnetic

field can modify the magnitude of the term n0ν
0
ei/κ

0 : k⊥k⊥. Thus in regions where the

ponderomotive force might normally be dominant, the thermal mechanism can acquire a

correction that makes it far larger.
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5.5 Magnetised Thermal Filamentation

The effect of the magnetic field appears through the thermal conductivity κ
0
. Since the

electrons in a magnetic field travel in orbits the collisional transport perpendicular to the

magnetic field is reduced. This in turn means temperature gradients are steeper since the

thermal dissipative mechanism is reduced. With steeper pressure gradients the change in

density is faster, and so too the filamentation rate. The degree to which the magnetic field

affects filamentation is dependent on the magnitude of the field and the angle between

the field and the perturbation wavevector k⊥.

This expression can be simplified by defining the angle θ between the magnetic field

direction and the perturbation vector k⊥, such that

κ0 : k⊥k⊥ = k2⊥κclas(κ
c
‖ cos

2 θ + κc⊥ sin2 θ). (5.76)

Considering now only the magnetic fields parallel with the laser wavevector (when

the angle θ = π/2) the dispersion relation can be written

4k20γ
2 = k20k

2
⊥

(

n0
nc

)2 2I0
cn0T0

(

1 +
1

λ2eiκ
(1)κc⊥k

2
⊥

)

− k4⊥. (5.77)

Where the vacuum intensity definition has been used,

I =
1

2
cε0|ψ|2. (5.78)

This dispersion relation includes both the ponderomotive and thermal mechanisms, with

the latter modified by the normalised magnetised thermal conductivity κc⊥.

Fig. 5.8 shows the spatial growth rate of a 1 × 1014Wcm−2 laser undergoing filamen-

tation due to the thermal mechanism alone under a 0, 5 and 10T applied axial field. With

an electron density of 1 × 1020cm−3 and a temperature of 1 keV this corresponds to Hall

parameters of χ = 0, 11.9 and 23.9. It is plotted against the perturbation wavelength, de-

fined as λ⊥ = 2π
k⊥

, normalised with the laser wavenumber k0. The thermal mechanism

dispersion relation is obtained by ignoring the factor of unity in eq. 5.77. As the term κc⊥
is reduced throughmagnetisation themaximumgrowth ratewill increase and the growth

ratewill cutoff at higher perturbationwavenumbers. Indeed themaximum spatial growth

rate under a 10 Tesla field is ∼ 1.3 orders of magnitude greater than the unmagnetised

plasma.

In the highlymagnetised case where approximately κc⊥ ∼ 1/χ2 the maximum thermal

growth rate is

γmax ≈ n0
nc

√

I0
2cn0T0

χ√
κ(1)λei

. (5.79)
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Figure 5.8: The filamentation growth rate of the thermal mechanism plotted against the
perturbation wavelength shows that as the applied magnetic field increases, the peak
growth rate increases and the cutoff is shifted to shorter wavelengths. Reproduced from
[112], with permission of AIP publishing.

It is instructive to look at the combined effect of both the ponderomotive and thermal

mechanisms and their influence on the growth e-folding length, defined as

Lg = (2γ)−1. (5.80)

This parameter allows the comparison of the susceptibility of experimental parameters to

this instability. We define an experiment to be susceptible to filamentation if the length

scale of the plasma through which the laser propagates is smaller than a couple of e-

folding lengths (1/γ). This is because if the length scale of the plasma is very short

(<< Lg), the instability will not grow sufficiently large over the experimental domain.

However if the domain is > Lg the initial perturbation grows to multiple times its origi-

nal amplitude over the domain, possibly transitioning to the nonlinear regime and signif-

icantly changing the plasma profile in the process.

Fig. 5.9 shows the growth length against perturbation wavelength for an applied axial

magnetic field with a strength of 0, 5 and 10T. Superimposed onto the plot is a line repre-

senting 2mm. This has been chosen as this is a characteristic experimental scale length in

laser plasma experiments with magnetic fields [38, 41, 104]. Therefore the region of the

plot above this line is stable to this instability since the length is too short for the instability

to grow significantly over the length scale.

As can be seen in fig. 5.9 a significant proportion of the growth length curve dips into

the unstable region. The effect of themagnetic field appears as a lowering of the instability

growth length at longer perturbationwavelengthswhereas the combinedponderomotive-
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Figure 5.9: The dispersion relation shows the relationship between the growth length and
perturbation wavelength for combined ponderomotive and thermal mechanisms. As the
magnetic field is increased, the longer wavelength modes have a shorter growth length,
meaning magnetised experiments are more susceptible to long perturbation wavelength
filamentation. Reproduced from [112], with permission of AIP publishing.

thermal mechanism cutoff (where the combined mechanism growth rate equals zero)

provides a lower limit to the influence of the magnetic field. This means that under a

magnetic field the longer wavelength perturbation modes will grow faster and an exper-

iment in which these modes are present will be more susceptible to filamentation.

Simulations of Filamentation in a Magnetised Plasma

To verify the linear analysis of this magnetised effect, the PARAMAGENT code was used

to simulate a uniformly irradiated plasma. The full parameters of this simulation can be

found in table 5.2.

Domain Plasma Laser

Lx = 0.2mm n0 = 1× 1020cm−3 I0 = 1× 1015Wcm−2

Lz = 0.4mm T0 = 20eV λl = 1µm

tmax = 100ps Z = 1 k⊥ = 10π/Lx

Bz = 0, 5, 10T

Table 5.2: Physical parameters used in filamentation simulations

A uniform 1 µm laser field of intensity 1 × 1015Wcm−2 with small (0.1%) harmonic

perturbations heated the plasmawith initial uniform electron density 1×1020cm−3 under

a magnetic field parallel to the laser wavevector. The initial perturbation wavelength has
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Figure 5.10: PARAMAGNET filamentation simulation (linear regime). This plot shows
output from a PARAMAGNET simulation of the deviation of the laser intensity away
from the uniform background. Evident is the filamentation of a uniform laser with 0.1%
perturbations for the unmagnetised (top), 5T (middle) and 10T (bottom) cases show the
laser filaments with a shorter growth length as the magnetic field increases. Reproduced
from [112], with permission of AIP publishing.

been chosen as representative of longer-wavelength laser inhomogeneity such as those

seeded by the disintegration of the target window in MagLIF [44]. The use of local Bra-

ginskii transport in the theory and simulations presented above is justified in the regime

where the electron mean free path or Larmor radius is smaller than the perpendicular

wavelength. In the simulation above the parameters k⊥λei, k⊥rL (with rL the Larmor ra-

dius) are 0.022 and 0.15 respectively. As such the use of Braginskii transport in the fluid

simulations is justified.

Fig. 5.10 shows the output from the PARAMAGNET simulation after 100ps, It shows

the difference between the normalised laser intensity and the initial background under

three different field strengths. The 10T field has caused the beam perturbations to grow to

50% of the uniform background intensity over a length of only 0.4 mm; whilst the unmag-

netised case sees little variation over the same length. Using the output of the simulation

at 100ps, where the background temperature had reached an average value of ≈ 730 eV,

eqs. 5.79 and 5.80 yield a growth length of 0.35 mm of the unmagnetised case, 0.09 mm

for 5T and 0.05 mm for 10T.

The Effect of Magnetised Filamentation on Experiments

Parametric instabilities such as Stimulated Raman Scattering (SRS) and Stimulated Bril-

louin Scattering (SBS) have an intensity threshold. The choice of laser intensity in the

pre-heat stage is partially to undercut this threshold and mitigate the influence of SRS
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and SBS backscatter. This backscatter can reduce the absorption of the laser light into

the MagLIF fuel cell by scattering it out of the fuel and also reducing the depth of the

penetration of the laser into the fuel cell.

Therefore themagnetisation can lead tomore backscatter as the local filament intensity

exceeds the parametric instability threshold; as such the laser penetrationwill shorten and

the absorption less effective compared to the unmagnetised case.

In a hohlraum environment the effect of magnetic fields can likewise influence laser

propagation and absorption. In such experiments themagnetic field can be applied exter-

nally [20, 41] or self-generated [29]; the orientation of themagnetic fieldwill not be exactly

parallel to the laser wavevector as investigated in this work, however the influence of the

magnetised thermal conductivity will similarly drive down the instability threshold for

thermal regime filamentation, attenuated by a trigonometric factor to account for orienta-

tion. Taking as example the parameters of the magnetised helium gas-fill hohlraum sim-

ulations performed by Strozzi [42], the maximum thermal filamentation growth length

is 0.82 mm, relative to the hohlraum length of 1 cm.

Furthermore, in direct drive experiments the laser uniformity is important for en-

suring the reduction of laser-imprint seeded hydrodynamical instabilities[4]. The phe-

nomenon of laser filamentation can cause small scale non-uniformity to grow in the un-

derdense coronal plasma.The magnetisation increases the spatial growth rate of filamen-

tation thus putting greater constraints of laser uniformity in the case of an experiment

with an applied magnetic field.

5.6 Summary

In summary, this chapter investigated how the effect of amagnetised thermal conductivity

influences the propagation of a laser through an underdense plasma in regimes common

in magnetised high energy density physics experiments. By using an analytic model of

the self-focal point of a Gaussian beam derived from a steady-state fluid-plasma paraxial-

laser model, the focal point is shown to shorten by a factor proportional to the square root

of the perpendicular thermal conductivity of themagnetised plasma; this is a direct result

of the anisotropic magnetised transport of Braginskii. This in turn means for a highly

magnetised plasma, the focal length relative to the unmagnetised case is approximately

inversely proportional to themagnetic field strength parallel to thewavevector of the laser.

Using the PARAMAGNET laser-plasma transport code, simulations of this self focus-

ing effect were performed with a Gaussian laser in a plasma with a range of magnetic

field strengths. In these simulations, the self-focal point from the analytic model is re-

trieved whilst showing nonlinear behaviour such as repeated defocusing and refocusing

not present in the analytic model. The quantitative difference in focusing behaviour re-

sulting from magnetisation of the thermal conductivity is manifest.
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In recent years the use of magnetic fields has been suggested as a means to improve

the performance of inertial confinement fusion experiments. Of particular interest is the

pre-heat stage of the MagLIF scheme [9]. The MagLIF scheme necessarily has the laser

pre-pulse propagating through a low Z plasma with a coaxial 10T magnetic field. The

purpose is to pre-heat the fuel and as such uniform and deep penetration is required

for effective heating. In such experiments the plasma is strongly magnetised and given

the laser wavelength and intensity sits well within the unstable region of thermal regime

filamentation. In the filament the local intensity can reachmultiples of the initial intensity.

Taking as example the parameters of pre-heat experiments performed on theOMEGA-

EP laser [44], a 1.3 × 1014Wcm−2 intensity laser propagating through a plasma with

ne = 2.5 × 1020cm−3(0.025nc) under an axial magnetic field of 7.5T. When a tempera-

ture of 400 eV is used, the maximum thermal growth length calculated using eq. 5.79 is

1.01 mm, much smaller than the scale length of the 8mm D2-gas filled tube used in the

experiment. This means the pre-heat stage is susceptible to significant self-focusing due

to the magnetisation of the thermal conductivity.

The second half of this chapter derived a linear model of thermal filamentation of a

laser. The resulting dispersion relation follows the same asymptotic dependence of the

normalised thermal conductivity. This leads to an increase in the thermal mechanism

growth rate as electrons are increasingly magnetised. When combined with the pondero-

motive mechanism and the effect of magnetisation, the filamentation of long-wavelength

perturbations is particularly significant. Simulations performedwith the PARAMAGNET

code of the linear regime of filamentation yields an order of magnitude shortening of the

e-folding length for even low values of the Hall parameter in the range of 0.1-1.

When considering these effects in the context of magnetised laser fusion experiments,

it is found they sit in regimes susceptible to significant laser focusing exacerbated bymag-

netisation. The resulting filamentation produces localised intensities much higher than

the threshold for parametric instabilities. These instabilities are detrimental to laser ab-

sorption and penetration by the laser by backscattering the laser light out of the fuel or

hohlraum. As such it is important in the modelling of high-energy-density laser plasma

experiments to include the influence of full thermal magnetised transport, not just on the

plasma but also on the laser propagation.
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Non-localCorrections to Filamentation

and Magnetised Transport

The theoretical and simulation results thus far have been predicated on the MHDmodel,

however the very high ordermodes present in filamentation simulations and experiments

are known to drive the electron distribution function significantly far from a Maxwell-

Boltzmanndistribution. This non-locality of the electron species introduces the possibility

of significant errors in understanding the dynamics of laser-plasma interactions.

This chapter will introduce non-locality and the diffusive-approximation kinetic code

IMPACT. This code is then used to simulate thermal decay in such a way as to capture

the kinetic effects on filamentation described in the previous chapter. This code however

is limited to the diffusion approximation, as such it ignores all terms in the expansion of

the distribution function above the first. This chapter will then investigate the influence

of the higher order terms on magnetised transport.

Beginning with a linear problem, a continued matrix inverse method is used to calcu-

late corrections to the collision frequency in a magnetised plasma. By re-summing up all

the higher order terms into these corrections, it will be possible to measure their effect on

magnetised transport. This chapter ends with the calculation of the full set of transport

coefficients and explores the deviation they have compared to classical local approxima-

tions. The results of the IMPACT simulations and their interpretation in the regimes of

plasma experiments has been reproduced fromWatkins and Kingham [112] with the per-

mission of AIP publishing.

113
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6.1 Kinetic Effects in Filamentation

Kinetic effects on thermal transport are important in laser-produced plasmas [93, 101,

104]. Small scale structures in laser filamentation in the thermal regime mean the cor-

responding temperature profile will have characteristic length scales of the same mag-

nitude as the electron-ion collision length. In unmagnetised plasmas this kinetic correc-

tion has been found to significantly alter filamentation [98, 99]. In this regime heat flow

becomes non-local and the kinetic modification to the thermal conductivity must be in-

cluded. Therefore a useful question to ask is the influence of non-local transport effects

on the magnetised thermal mechanism filamentation.

The non-locality of thermal transport in the absence of magnetic fields is encapsu-

lated in the dimensionless non-locality parameter kλmfp, defined as the product of the

wavenumber of a perturbation in the plasma temperature k and the electron delocalisa-

tion mean free path λmfp =
√
λeeλei =

√
Zλei. This can also be called the Fourier-space

Knudsen number. For higher values of this parameter the thermal conductivity drops off

relative to the Spitzer-Härm result according to an expression introduced by Epperlein

[97], where a plasma heated by inverse bremsstrahlung showed a deviation that followed

the form,
κnl
κsh

=
1

1 + (30
√
Zkλei)4/3

. (6.1)

However, when aplasma ismagnetised the heat flowof the plasma is localised [33, 85].

These two effects, the reduction of the heat flow via non-locality and via magnetisation

combine and the dual influence on filamentation must be considered. Kinetic, magne-

tised thermal transport has been considered by Brantov[107] however only a simplified

phenomenological form is required. Consider a phenomenological function for the ther-

mal conductivity perpendicular to the magnetic field relative to the local, unmagnetised

conductivity
κ⊥nl

κclas
=

a

1 + b(
√
Zkλei)c + dχe

. (6.2)

This model includes the combined effect of the reduction from the magnetisation (χ) and

non-locality (kλei). The assumption taken here is that magnetisation acts to reduce con-

ductivity (perpendicular to the magnetic field) in the same way as non-locality, in that

they both represent the characteristic length scale of diffusive process. The phenomeno-

logical form is found as the result of combining eq. 6.1 and eq. 2.84.
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6.2 IMPACT simulations

In order to find the parameters a, b, c, d, e the Epperlein-Short test [97] is performed. The

Epperlein-Short test aims to find the non-local thermal evolution of a 1D plasma using

a numerical VFP model. Given the requirements for a magnetised plasma, we use the

IMPACT VFP code[50]. IMPACT solves the electron VFP equation in the diffusion ap-

proximation alongside the full Maxwell’s equations allowing the inclusion of magnetic

field phenomena.

We use Brodrick’s [93] approach, in which a 1D hydrogen (Z=1) plasma is initialised

with a small (0.1%) sinusoidal temperature perturbation and is allowed to decay over

multiple collision times. The parameters of the simulation are listed in table 6.1.

Domain Plasma

k⊥λei = 0.01, 0.1, 1, 10, 100 n0 = 1× 1020cm−3

Lx = 10π
k⊥λei

λei T0 = 100eV

tmax = 5τei
(k⊥λei)2

Z = 1

χ = 0, 0.1, 1, 2, 10

Table 6.1: Physical parameters used in IMPACT simulations

A static and uniform magnetic field of varying strengths is applied perpendicular to

the temperature perturbation. The decay rate of the sinusoidal perturbation is propor-

tional to the thermal conductivity of the plasma via

κ⊥nl

κclas
=

γnl
γclas

. (6.3)

The local unmagnetised decay rate for a sinusoid with wavenumber k is defined as

γclas =
2

3
k2

128

3π
ζ(Z)vthλei. (6.4)

The thermal speed vth and the electron-ionmean-free-path are defined in chapter 2, while

the correction factor ζ(Z) is defined in eq. 5.57.

The non-local decay rate γnl is found by fitting (with a least-squares fit) a decaying

sinusoid to the output of the IMPACT simulations. The output from the IMPACT simu-

lations are shown in Fig. 6.1. The function eq. 6.2 is fitted to the data and the values are

found to be a = 1.12, b = 2.73, c = 1, d = 3.72, e = 1.4. The result is overlaid on fig. 6.1.

The use of the diffusion approximation on the IMPACT code limits the accuracy of the

decay in the high kλei regime, as such the data is fitted to runs up to values of kλei = 10.

An interesting feature of figure 6.1 is the data points rise as kλei before dropping off to the
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Figure 6.1: The kinetic decay rate of a small (perpendicular, k⊥) temperature perturbation
relative to the local analytic result against the non-locality parameter. Data for IMPACT
simulations with five different Hall parameters, 0, 0.1,1,2 and 10. The fit is overlaid on
the data. The magnetisation localises and reduces the thermal conductivity, the non-local
drop off of the conductivity is shifted down and to the right. Reproduced from [112],
with permission of AIP publishing.

asymptotic value in the limit kλei → ∞. This feature is not captured exactly by the simple

monotonic phenomenological form used to fit the data (eq. 6.1). It does however antici-

pate non-monotonic results that will be presented later in section 6.6, where the inclusion

of higher-orders in the distribution expansion provide a explanation.

The thermal filamentation dispersion relation using this non-local expression now has

both a magnetisation and non-locality parameter dependence and the growth rate is plot-

ted in fig. 6.2. In the local limit (kλei << 1) the curves all plateau with a value deter-

mined by the magnetisation. As the non-locality parameter increases the curve drops off,

the point where the curve begins to drop off is shifted to the right at higher magnetisation

values. This is the result of the magnetisation localising the thermal conductivity.

Looking now at the plot of the dispersion relation of thermal filamentation in isolation

in fig. 6.2 , the most obvious difference as compared to the local thermal mechanism is

the much higher peak growth rate. Also unlike the local case in fig. 5.8 where the curve

flattened to a constant at long wavelengths, the kinetic growth rate converges towards the

local rate at longer wavelengths. Whilst this is subdued in the magnetised curves, the

influence is still noticeable. In the absence of a magnetic field the dispersion curve cutoff

is shifted far to the left and has a higher peak growth rate.

If we now compare the mixed ponderomotive and thermal growth length curves be-

tween fig. 5.9 and fig. 6.3 the differences compared with the local case are most evident at

longer perturbation wavelengths. The curve shows some deviation from the local curve
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Figure 6.2: The filamentation growth rate of the kinetic thermal mechanism (solid lines)
plotted against the perturbation wavelength shows that in the unmagnetised case, the
peak growth rate is greater relative to the local case (dashed lines) and the cutoff is shifted
to shorter wavelengths. This nonlocal effect is suppressed in the magnetised curves. Re-
produced from [112], with permission of AIP publishing.

in the long wavelength region whilst the low wavelength cutoff is unchanged.
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Figure 6.3: The combined ponderomotive and thermal filamentation dispersion relation
with the kinetic corrections (solid lines) shows some deviation from the classical case
(dashed lines) in the longer wavelength region. Reproduced from [112], with permission
of AIP publishing.

6.3 Non-local Magnetised Transport Corrections

Calculating plasma behaviour directly by solving the VFP equation, though accurate, is

too computational demanding because of the 6-dimensional phase space occupied by the

distribution function fe. As such methods such as the diffusive approximation have been

popular, computationally tractable kinetic models that are more accurate than fluid ap-

proaches. The deviation from an isotropic Maxwellian motivates the use of a Cartesian

tensor expansion of the distribution function,

fe(x, v, t) = f0 + f1 ·
v

v
+ f2 :

vv

v2
+ ... (6.5)

The anisotropy in the distribution is contained in the terms f1 andhigher. The diffusion approximation

truncates this expansion at so that all terms above f1 are ignored, i.e

fe = f0 + f1 ·
v

v
.

This significantly simplifies the problem and is far more amenable to computational mod-

els. While this approximation ismore accurate thanfluidmodels, the inherently anisotropic

nature of magnetic fields means their influence on the fn, n > 1 terms may be significant.

The second part of this chapter will analyse the influence of the higher-order terms
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(n > 1) of the expansion on magnetised transport. These terms are ignored in local fluid

models but also in conventional non-local transport models such as the SNB model [84,

90]. This chapterwill examinewhether ignoring higher terms in the expansion introduces

error in magnetised transport effects such as the Nernst effect and perpendicular thermal

transport. To incorporate the higher order terms, this analysis will consider the linearised

electron VFPmodel with a magnetic field. This will enable the use of a continued fraction

method introduced by Epperlein [82], used previously in local linear theories without a

magnetic field [100, 133].

The inclusion of a magnetic field acts as a localisation mechanism [38], and thus com-

plicates the creation of an accurate model to simulate non-local transport by adding an

anisotropic effective mean free path. One can follow Epperlein [134] and start with the

non-locality parameter of the last section,

η = kλei(v). (6.6)

It has been defined with the symbol η for brevity in the rest of the chapter. The thermal

value is ηth = kλei(vth). Modes with high values of η will be less collisional and the

electrons unable to relax to be locally Maxwellian.

Magnetised Form of the Electron VFP

In the diffusion approximation the electron VFP equation becomes the two equations

∂f0
∂t

+
v

3
∇ · f1 +

1

3v2
∂

∂v

(

v2a · f1
)

= Ce0, (6.7)

∂f1
∂t

+ v∇f0 + a
∂f0
∂v

+ ω × f1 = −νeif1 + Ce1, (6.8)

where the electromagnetic fields are defined as

a = − e

me
E, (6.9)

ω = − e

me
B. (6.10)

From the f1 equation (eq. 6.8), if the time dependence is ignored, such that f1 is

instantaneously calculated from f0, it can be shown that

f1 = − 1

νei(v)
M

(

v∇f0 + a
∂f0
∂v

)

. (6.11)

Given this definition of f1, it is possible to calculate the fluxes of charge (current, j) and

thermal energy (the intrinsic heat flow, q’), and in turn the transport coefficients using
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the moment expressions [135],

j = −e4π
3

∫ ∞

0
f1v

3dv, (6.12)

q =
4π

3

me

2

∫ ∞

0
f1v

5dv, (6.13)

q’ = q+
5Te
4e

j. (6.14)

The magnetic field has been incorporated into a ‘magnetisation matrix’M defined as

Mij =
χiχj

χ2
+

(

δij −
χiχj

χ2

)

1

1 + χ2
− ǫikjχk

1 + χ2
, (6.15)

in terms of the components of the Hall vector χ, defined earlier in terms of the Larmor

frequency vector ω and the collision frequency νei as

χ =
ω

νei(v)
. (6.16)

Where one can similarly define the thermal valueχth = χ(vth). The three terms of thisma-

trix represent the fluxes parallel, perpendicular and cross-perpendicular to the magnetic

field respectively, and follow the magnetised transport terms of chapter 2.

Considering the influence on linear perturbations to the electron fluid, this analysis

follows the derivation used by Epperlein [111, 136]. After linearising the isotropic part f0

about a Maxwellian distribution i.e

f0 = fm + δf0,

and performing a Fourier transform, the f1 equation is

f̂1 = − 1

νei(v)
M

[

ikvδf̂0 + â
∂fm
∂v

]

. (6.17)

Where the Maxwellian fm is defined in terms of the uniform background density and

temperature n0, T0, with vth =
√

T0/me. A useful qualitative parameter with which one

can approximate the magnetised non-local effect is

η⊥ =
kλei(v)

1 + χ(v)2
. (6.18)

This parameter, defined in the plane perpendicular to the magnetic field, combines both

dimensionless parameters that control the degree of locality. Looking at the velocity de-

pendence, one can see χ ∝ v3 and η ∝ v4 and so the mixed-timescale localisation param-

eter η⊥ has a velocity dependence that is not a simple power-law.
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6.4 Calculating the Local Transport Coefficients

The transport coefficients are recovered by forming the Onsager transport relations from

moments defined by eqs. 6.12-6.14. The Onsager form is then transformed into the classi-

cal transport coefficient form, which will be recognisable from eqs. 2.97-2.98. By working

with a linearised model, where there is a uniform background with sinusoidal pertuba-

tions of size δ, the electric field that corresponds to the electron pressure gradient can be

separated out of the δf̂0 term by considering the form of Ohm’s law. Denoting this field

by eneE
′ = −∇pe and using the ideal gas equation of state, in Fourier space it becomes

Ê
′
= ik

T0
e

(

δT̂

T0
+
δn̂

n0

)

, (6.19)

from which one can define

â′ = −eÊ
′

me
= −ik T0

me

(

δT̂

T0
+
δn̂

n0

)

. (6.20)

The total electric field is now a∗ = a′ + a. To simplify the analysis, the velocity is re-

parameterised such that ṽ = v/vth and the equation becomes,

f̂1 = − ṽ4

νT vth
M

[

ik
δT̂

me

1

2
(ṽ2 − 5)− a∗

]

fm, (6.21)

where νT = νei(vth). In order to simplify the integration procedurewhilst takingmoments

of this equation, the following integral be used

n0
v3th

〈Mṽn〉 = 4π

∫ ∞

0
Mṽnfmdṽ. (6.22)

If this expression is now used alongside the moment definitions of heat flow and current,

eqs. 6.12 and 6.13, these fluxes can be written,

ĵ

(

− 3

ev4th

)

=
n0

νT v4th

[

〈Mṽ7〉a∗ − ik
δT̂

me

1

2

(

〈Mṽ9〉 − 5〈Mṽ7〉
)

]

(6.23)

q̂

(

6

mev6th

)

=
n0

νT v4th

[

〈Mṽ9〉a∗ − ik
δT̂

me

1

2

(

〈Mṽ11〉 − 5〈Mṽ9〉
)

]

. (6.24)

This transport pair can now be put into the Onsager [114] form,

ĵ = σE∗ + iρkδT̂ (6.25)

q̂ = iζkδT̂ + µE∗. (6.26)
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In this form each thermodynamic flux (j,q) is driven by thermodynamic forces (E, δT )

that are mediated by matrix-valued transport coefficients σ,ρ,µ, ζ. It will however be

of more use to use the classical transport forms common in the literature. Inverting the

current equation eq. 6.25 and re-expressing the heat flow equation in terms of the intrinsic

heat flow q′, Bychenkov [100] derives

en0E
∗ = αj− n0iβkδT̂ , (6.27)

q̂′ = −iκkδT̂ − βj
T0
e
. (6.28)

The classical forms for the thermal conductivityκ, the resistivityα and the thermoelectric

coefficient β are put in terms of the Onsager coefficients,

α = en0σ
−1 (6.29)

κ = −(ζ + µσ−1ρ) (6.30)

β = −eσ−1ρ. (6.31)

By collecting the terms of the above equations, one can see the coefficients have the form,

α =
3meνT
e

〈Mṽ7〉−1, (6.32)

κ =
n0v

2
th

νT 12

[

〈Mṽ11〉 − 〈Mṽ9〉〈Mṽ7〉−1〈Mṽ9〉
]

, (6.33)

β =
1

2

[

]〈Mṽ7〉−1〈Mṽ9〉 − 5I
]

, (6.34)

Without loss of generality, the magnetic field can be considered to lie along the z-

axis, in which case the magnetisation matrix moment integral 〈Mṽn〉 can be more simply

written as,

〈Mṽn〉 =







〈ṽn〉⊥ −〈ṽn〉∧ 0

〈ṽn〉∧ 〈ṽn〉⊥ 0

0 0 〈ṽn〉‖







The individual elements are integrals over a Maxwellian with the form,

〈ṽn〉‖ = 4π

∫ ∞

0
ṽnf̃mdṽ, (6.35)

〈ṽn〉⊥ = 4π

∫ ∞

0

ṽn

(1 + χ2
thṽ

6)
f̃mdṽ, (6.36)

〈ṽn〉∧ = 4π

∫ ∞

0

χthṽ
n+3

(1 + χ2
thṽ

6)
f̃m, dṽ (6.37)

with f̃m = (2π)3/2 exp−ṽ2/2 and χth = χ(vth).

When the correction factors are included, the corrected transport coefficients are cal-
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culated by using the modified forms,

〈ṽn〉‖ = 4π

∫ ∞

0

ṽn

H‖
f̃mdṽ, (6.38)

〈ṽn〉⊥ = 4π

∫ ∞

0

ṽn

H⊥(1 + χ2
thṽ

6)
f̃mdṽ, (6.39)

〈ṽn〉∧ = 4π

∫ ∞

0

χthṽ
n+3

H∧(1 + χ2
thṽ

6)
f̃m, dṽ (6.40)

Finally, using these expressions for each individual coefficient parallel, perpendicular

and cross-perpendicular to the field, the normalised coefficients are

αc
‖ =

3

〈ṽ7〉‖
(6.41)

αc
⊥ =

3〈ṽ7〉⊥
〈ṽ7〉2⊥ + 〈ṽ7〉2∧

(6.42)

αc
∧ =

3〈ṽ7〉∧
〈ṽ7〉2⊥ + 〈ṽ7〉2∧

(6.43)

κc‖ =
1

12

[

〈ṽ11〉‖ −
〈ṽ9〉2‖
〈ṽ7〉‖

]

(6.44)

κc⊥ =
1

12

[

〈ṽ11〉⊥ −
(〈ṽ9〉2⊥〈ṽ7〉⊥ + 2〈ṽ9〉⊥〈ṽ9〉∧〈ṽ7〉∧ − 〈ṽ9〉2∧〈ṽ7〉⊥

〈ṽ7〉2⊥ + 〈ṽ7〉2∧

)]

(6.45)

κc∧ =
1

12

[

〈ṽ11〉∧ −
(〈ṽ9〉2∧〈ṽ7〉∧ − 〈ṽ9〉2⊥〈ṽ7〉∧ + 2〈ṽ9〉∧〈ṽ7〉⊥〈ṽ9〉⊥

〈ṽ7〉2⊥ + 〈ṽ7〉2∧

)]

(6.46)

βc‖ =
1

2

〈ṽ9〉‖
〈ṽ7〉‖

− 5

2
(6.47)

βc⊥ =
1

2

[〈ṽ9〉⊥〈ṽ7〉⊥ + 〈ṽ9〉∧〈ṽ7〉∧
〈ṽ7〉2⊥ + 〈ṽ7〉2∧

]

− 5

2
(6.48)

βc∧ = −1

2

[〈ṽ9〉⊥〈ṽ7〉∧ − 〈ṽ7〉⊥〈ṽ9〉∧
〈ṽ7〉2⊥ + 〈ṽ7〉2∧

]

(6.49)
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6.5 Calculating the High-Polynomial Corrections

The methodology described above can be extended to incorporate the higher-order terms

by finding a correction factor that sits in the matrix M. Finding this correction will first

require a review of continued fractions, before delving into their generalisation to matri-

ces.

Continued Fractions

In the linear regime the Vlasov-Fokker-Planck equation can, using the SH expansion, be

represented as an infinite set of coupled linear equations. The system can written in the

form of a recurrence relation [82],

fl+1 + alfl + blfl−1 = 0. (6.50)

In the unmagnetised case, this recurrence relation has the corresponding continued frac-

tion

fl
fl−1

=
− al

bl +
− al+1

bl+1 +
− al+2

bl+2 + ...

. (6.51)

Each successive equation in the hierarchy contributes to the fraction, which can be shown

to converge at infinity. This form is used by Epperlein [82] to calculate a correction fac-

tor H(η) to the collision frequency that ‘sums up’ the contributions of the entire infinite

hierarchy of linear equations, and finds it to be approximately

H(η) =

√

1 +
(πη

6

)2
. (6.52)

By analogy with this unmagnetised result, the aim will be to define a trio of modified

collision frequenciesH‖(η, χ), H⊥(η, χ), H∧(η, χ), that encapsulate the effect of the higher-

order terms. The magnetisation matrix would then become

Mij =
1

H‖

χiχj

χ2
+

1

H⊥

(

δij −
χiχj

χ2

)

1

1 + χ2
− ǫikjχk

1 + χ2

1

H∧
. (6.53)

The H functions would then follow through to the calculation of the coefficients via the

moment integrals (eqs. 6.38-6.40). The question is how to calculate these H functions

from the infinite hierarchy of linear equations that come out of the SH expansion of the

magnetised VFP.
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Spherical Harmonics and the KALOS Formalism

Constructing a recurrence relation that will apply to amagnetised plasmawill require the

KALOS formalism. The KALOS formalism [78] solves the electron Vlasov-Fokker-Planck

equation by decomposing the distribution function into spherical harmonics,

fe(x, v, t) =
∞
∑

l=0

l
∑

m=−l

fml (x, v, t)Pm
l (cos θ)eimφ, (6.54)

and solving the resulting non-linear systemof equations numerically to an arbitrary choice

of order of harmonic. After linearising, the KALOS system of equations become, for l ≥ 1,

∂fml
∂t

= Am
l +Bm

l + Cm
l + Em

l , (6.55)

Cm
l = − l(l + 1)

2
νei(v)f

m
l , (6.56)

Am
l = −

(

l −m

2l − 1

)

v
∂fml−1

∂x
−
(

l +m+ 1

2l + 3

)

v
∂fml+1

∂x
, (6.57)

Em
l =

eEx

me

∂fm
∂v

. (6.58)

Following the analysis of Epperlein, the electric field term Em
l will only appear in the

l = 0 equation. The collision term Cm
l only contains contributions from e-i collisions,

under the assumption the e-e collisions only contribute weakly to terms l > 0. For the

magnetic field term, there are two forms depending on the value ofm, form = 0,

Re(B0
l ) = − e

me
l(l + 1)(BzRe(f

1
l ) +ByIm(f1l )), (6.59)

and form > 0,

Bm
l = −ieBx

me
mfml − e

2me

[

(l −m)(l +m+ 1)(Bz − iBy)f
m+1
l − (Bz + iBy)f

m−1
l

]

.

(6.60)

Using a Fourier transform this set becomes an algebraic recurrence relationwhere each

fml is coupled to fm+1
l , fm−1

l , fml+1 and f
m
l−1. This problem is simplified by considering a

uniform magnetic field directed along the z-axis, Bz ; if this analysis is limited to low-

frequency waves one can assume the Fourier transform of the time derivative term in eq.

6.55 is ignorable. Then at each order of l > 1 there is the 5-point recursion relation of the

form,

l(l + 1)

2
fml + iη

[

l −m

2l − 1
fml−1 +

l +m+ 1

2l + 3
fml+1

]

− χ

2

[

(l −m)(l +m+ 1)fm+1
l − fm−1

l

]

= 0.

(6.61)
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The Matrix Recursion Relation

This problem can be recast as a matrix recursion relation, with a vector fl of length l + 1

with elements f0l , f
1
l , f

2
l , .... This recursion relation will have matrix coefficients of size

(l + 1) × (l + 1). The objective, in analogy with the continued fraction method above, is

to close the recursion relation with a matrix that contains contributions from all orders of

fl where l > lmax. This will entail finding a recursion relation closure of the form,

fl+1 = Sl+1fl, (6.62)

such that only the l = 1 equation is necessary and all the information from the higher

modes is contained in the matrix Sl+1. In this way the influence of the entire infinite set

can be included in only the first two orders.

For each order of l, eq. 6.61 has the matrix form,

Mlfl + iηNlfl−1 + iηPlfl+1 = 0. (6.63)

The matrixMl is tridiagonal with size (l + 1)× (l + 1) and defined as

Ml =







...
χ
2 ,

l(l+1)
2 , −χ

2 (l −m)(l +m+ 1)

...







The matrices Nl and Pl are diagonal, with the diagonal elements (withm ∈ [0, l])

Nm
l =

l −m

2l − 1
(6.64)

Pm
l =

l +m+ 1

2l + 3
(6.65)

Using the closure relation it is possible to convert the recurrence relation to the form,

(Ml + iηPlSl+1) fl = −iNlfl−1, (6.66)

and by comparisonwith the above equation from this one can find thematrix Sl+1 defined

in terms of a matrix continued fraction,

Sl = − (Ml + iηPlSl+1)
−1 iηNl. (6.67)

However it will be useful to introduce a secondary form using the matrix G, defined as

Gl =Ml + iηPlSl+1, (6.68)

which follows the matrix recursive definition

Gl =Ml + η2PlG
−1
l+1Nl+1. (6.69)
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Comparing this equation to eq. 6.50, one can see the analogy with a continued fraction of

the form of eq. 6.51

Gl =Ml + η2Pl

(

Ml+1 + η2Pl+1G
−1
l+2Nl+2

)−1
Nl+1.

One can see from this definition that if the plasma is perfectly local, i.e η = 0, thematrix

Gl is equal toMl and there is no need for a recursive definition as there is no coupling to

successive orders of l. The following KALOS relations are used to close the system at the

first order (l = 1),

fxl = f0l , (6.70)

fyl = 2Re(f1l ), (6.71)

fzl = −2Im(f1l ), (6.72)

and map the elements of G1 to the Cartesian coordinate system. It must be emphasised

now that the matrix G represents the deviation from the diffusive approximation, so that

if the maximum number of harmonics was one, i.e lmax = 1, thenGwould be the identity

matrix.

Incorporating the f0 Equation

So far, there has been no mention of the f0 equation and the influence it will have on the

correction factors. f0 is assumed to be a local Maxwellian in fluid and simple non-local

models [136], however the non-local deviation from a Maxwellian must be included and

as such the f0 equation must form part of the equation set. The linearised f0 equation in

Fourier space is

∂δf̂0
∂t

+ i
v

3
k · f̂1 = Cee[δf̂0]. (6.73)

Assuming a BGK e-e collision operator, the Laplace transformof the above equation yields

sδf̂0 − δf̂m(0) + i
v

3
k · f̂1 = −νeeδf̂nl. (6.74)

Where δf̂nl represents the non-local contribution to the deviations from global equilib-

rium. The initial condition is represented by a perturbed, sinusoidal Maxwellian

δf̂m(0) = δm̂(0)fm =

[

δn̂(0)

n0
+
δT̂ (0)

T0

1

2
(
v2

v2th
− 3)

]

fm. (6.75)

The linearised f1 equation similarly is

ikvδf̂0 − â
v

v2th
fm = −νeiM−1f̂1. (6.76)

If the deviation from the global f0 is taken as the sum of local Maxwellian and non-local
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parts, δf0 = δfm + δfnl, and δf0 is eliminated, this leaves

−νei
[

K+M−1
]

f̂1 =

[

ikvδQ̂− â
v

v2th

]

fm, (6.77)

the factor δQ̃ is defined as

δQ̂ =
δm̂(0) + νeeδm̂

s+ νee
, (6.78)

and the matrix K is defined as

Kij =
kikjv

2

3νei(s+ νee)
. (6.79)

It is possible to use the quasi-static approximation for f0 inwhich one can assume δQ̂ =

δm̂. Whilst the value of s is large at high frequency, for a quasi-collisional plasma s << νee

and s can be dropped without detrimentally effecting the values of the coefficients [137].

In this case the matrix K becomes kikjλeiλee/3 = kikjZλ
2
ei/3. In this case, the non-local

influence of the f0 equation on f1 is held within the matrix K. It is possible to invert

K+M−1 such that the elements of K are held within the H functions.

Calculating the Correction Factors

By comparing the magnetisation matrix M defined in eq. 6.53 and modifying it to in-

cluded the influence of the matrix K, the form of the H functions are

H‖ = Gzz +
Zη2

3
, (6.80)

H⊥ =
G2

xy + (Gxx +
Zη2

3 )2

(Gxx +
Zη2

3 )(1 + χ2)
, (6.81)

H∧ = −
(G2

xy + (Gxx +
Zη2

3 )2)χ

Gxy(1 + χ2)
. (6.82)

Thematrix elementsGij correspond to the Cartesian elements of the matrixG1 calculated

recursively from eq. 6.69. Therefore the termsGij correspond to the corrections from l > 1

and thematrixK corresponds to the corrections from the f0 equation. These functions can

then be used in eq. 6.53 to define a new magnetisation matrix for the f1 equation.

The H functions are evaluated by calculating the recursive definition of Gl (eq. 6.69)

as a function of η, v, χ up to an arbitrarily large value of l. A numerical calculation is

performed up to l = 200, for a mesh of values of these parameters across a wide range of

scales. The result of the H functions are plotted in figures 6.4, 6.5a and 6.6a and lineouts

for the magnetised coefficients are shown in figures 6.5b and 6.6b.

For H‖, as shown in figure 6.4 there is no dependence on χ. This is to be expected

given the magnetic field has no effect on the component parallel to the field. Reassuringly

the functional form of H‖ matches exactly the result of Epperlein, where the value of H‖
rises monotonically as the non-locality parameter increases.
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Figure 6.4: The dependence ofH‖ against non-locality parameter η. This logarithmic scale
show that as the plasma becomes more non-local, at very high values of η the correction
factor rises linearly.

(a) Dependence of H⊥ on magnetisation χ and
non-locality η. This 2D map shows the emer-
gence of a valley at approximately η = 10, and
deepens as magnetisation increases.
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(b) Lineouts of H⊥ for different magnetisation
values against non-locality. Forχ = 30 the curve
is non-monotonic, with a clear shift to higher η
as magnetisation increases

Figure 6.5: The perpendicular correction factor H⊥ as a function of non-locality η and
magnetisation χ.
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(a) Dependence of H∧ on magnetisation χ and
non-locality η. H∧ similarly shows troughs be-
ginning atχ = 5 that again only appear at values
of η > 10

10−2 10−1 100 101

ηth

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5
H∧  at Different Magnetisations

χ=0
χ=0.1
χ=1
χ=5
χ=10
χ=30

(b) Lineouts of H∧ for different magnetisation
values against non-locality. H∧ shows a clear
shift to higher η as the magnetisation χ in-
creases.

Figure 6.6: The cross-perpendicular correction factor H∧ as a function of non-locality η
and magnetisation χ.

The H⊥ and H∧ functions however show a very different picture, as functions of χ

they showmuch more complex behaviour. In figure 6.5a,H⊥ shows a clear ‘valley’ along

a strip as χ increases. If we look at lineouts of this function in figure 6.5b, in the absence

of a magnetic field it resemblesH‖ but as the magnetisation increases, it shifts to the right

and forms a minimum where its value is lower than the local (η = 0) value.

The functional form ofH∧ in figure 6.6b shows a similar ‘shift’ to higher non-locality η,

as magnetisation χ, increases. This is clearer in the plot of 1/H∧ in fig. 6.7 where the drop-

off value of ηth shifts to the right. This means magnetisation maintains the value of the

transport perpendicular to both the magnetic field and the driving gradient, countering

the non-local quenching.

Convergence of the Correction Factors

Given the diffusive approximation corresponds to ignoring all terms with l > 1, an im-

portant question is how the infinite continued fraction differs from this truncated version.

How do the correction factors change as higher orders are included and does the result

converge? The convergence of H‖, shown in figure 6.8, shows that even including up to

l = 3 still results in significant under-prediction for non-locality parameters ηth > 10. It

is clear there is significant deviation at intermediate values of non-locality, entirely the

result of missing higher-order modes that are ignored in almost all closures and transport

models.

Similar plots for the H⊥ and H∧ factors are shown in figures 6.9 and 6.10. Again one

can see that there is significant deviation away from unity in the region ηth > 10, with

more terms in the expansion converging in the limit l → ∞. This shows that the diffusive

approximation for the perpendicular factors (where l = 1) also suffers from errors when

compared to a calculation where terms l > 1 are included.



131 6.5. CALCULATING THE HIGH-POLYNOMIAL CORRECTIONS

10−2 10−1 100 101 102

ηth

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50
1/H∧  at Different Magnetisations

χ=0
χ=0.1
χ=1
χ=5
χ=10
χ=30

Figure 6.7: Lineouts of 1/H∧ for different magnetisation values against non-locality. The
inverse ofH∧ more clearly shows how the cross perpendicular term ∧ disappears at high
values of ηth, with magnetisation shifting the drop-off to higher values of ηth
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Figure 6.8: Convergence ofH‖ asmore terms are included. Notice the l = 3 curve plateaus
to a finite value at high ηth, truncating the expansion at l = 3 would result in significant
errors.
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Figure 6.9: Convergence of H⊥ for the value χ = 10 as more terms are included. Though
this factor converges faster than H‖, adding extra terms does still show how more than
l = 1 is necessary.
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Figure 6.10: Convergence of 1/H∧ for χ = 0 as more terms are included. The inverse
is plotted here for clarity, and it shows significant deviation compared to the diffusive
approximation for values ηth > 1.
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Figure 6.11: The black lines show the local parallel transport coefficients calculated by
Epperlein and Haines in the Lorentz approximation. The non-local results presented in
this paper are shownwith dashed blue lines. The non-local correction has led to resistivity
growingwith η and thermal conductivity and the thermoelectric termdropping off to zero
as η increases.

6.6 The Corrected Transport Coefficients

With theseH functions, the transport coefficients in the linear regime can be recalculated

using the expressions eqs. 6.41-6.49 and the modified moments eqs. 6.38-6.40. The first

step will be to compare them to the coefficients calculated by Epperlein and Haines [111].

This will show how non-locality and the expansion truncation changes thermal conduc-

tivity, resistivity and the thermoelectric effect.

Figures 6.11 and 6.12 show the comparison between the Epperlein and Haines coeffi-

cients [111] and the new corrected forms. Figure 6.11 plots the normalised parallel coeffi-

cients against non-locality and reassuringly as the non-locality parameter η → 0 the new

coefficients converge on the Epperlein and Haines values in the Lorentz limit (Z → ∞).

Figure 6.12 focuses on the perpendicular and cross-perpendicular coefficients in the local

approximation and again show a reassuring equivalence with the Epperlein and Haines

dependence on the thermal Hall parameter χth = χ(vth). This is apart from the highly

magnetised cross-perpendicular resistivityα∧ where it peaks at amuch higher value. This

divergence from the result of Epperlein and Haines was also seen in previous work [136].

While the values converge asymptotically, the intermediate deviation corresponds not to

non-locality but to the difference between the fitted form of [111] and the calculation in

[136].

Figure 6.13 plots the parallel coefficients against non-locality parameter. Given there

is no dependence onmagnetisation for the parallel terms, the dependence on ηth = η(vth)

is monotonic. The parallel thermal conductivity and thermoelectric coefficient decrease,

with β‖ dropping sharply at ηth ≈ 0.05. The resistivity mirrors the thermal conductivity

with a steady increase with increasing non-locality.



6.6. THE CORRECTED TRANSPORT COEFFICIENTS 134

10−3 10−2 10−1 100 101
χth

3×10−1

4×10−1

6×10−1

αc
⟂

10−3 10−2 10−1 100 101
χth

10−3

10−2

10−1

100

101

αc
∧

10−3 10−2 10−1 100 101
χth

10−2

10−1

100

β
c ⟂

10−3 10−2 10−1 100 101
χth

10−2

10−1

β
c ∧

10−3 10−2 10−1 100 101
χth

10−2

10−1

100

101

κc
⟂

10−3 10−2 10−1 100 101
χth

10−1

100

κc
∧

Figure 6.12: Comparison of the perpendicular and cross-perpendicular transport coeffi-
cients (blue dashed lines) presented in this paper, with the Epperlein and Haines results
(solid black lines) in the Lorentz limit.
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Figure 6.13: The parallel transport coefficients as a function of non-locality ηth. β‖ drops
quickly with ηth before changing sign, while α‖ and κ‖ asymptotically have a linear depe-
nence on ηth

The perpendicular and cross-perpendicular resistivity, shown in figures 6.14a and

6.14b, reveal the signs of the complex interplay between magnetisation and non-locality.

The most significant feature of the magnetised non-local coefficients in this linear regime

is shared by both the thermal conductivity and thermoelectric coefficients. All four show

a peak, with a value greater than the local (ηth = 0) value, which appears and grows as

χth increases, illustrated in lineouts figures 6.14c, 6.14d,6.14e and 6.14f. This in turn shifts

the curves to higher values of η. This non-monotonic dependence appears as magnetisa-

tion grows. Plots of the functional dependence can be found in figs. 6.15a, 6.15b, 6.15c,

6.15d, 6.15e, 6.15f. In particular the sign-changing behaviour of the β coefficients in 6.15c

and 6.15d shows how the switch appears. The value of ηth at which this happens remains

approximately the same.

6.7 Implications For Laser-Plasma Experiments

The explanation for these effects lies in the coupling between different directions in amag-

netised plasma. Themagnetic field term in the VFP is skew-symmetric, coupling together

different Cartesian components. When this is repeated in the recursion relation there is

a coupling in the plane perpendicular to the magnetic field and back again ad infinitum.

The localising nature ofmagnetisation perpendicular to the direction of themagnetic field

leads to a minimum in H⊥ and the corresponding non-monotonic behaviour with non-
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(a) These lineouts ofα⊥ for differentmagnetisa-
tion values show an inflection point at ηth ≈ 0.1
when χth > 15
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(b) When α∧ is magnetised, a drop appears at
ηth ≈ 0.05, with the depth of the valley larger at
higher values of χth
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(c) Peaks in β⊥ appear when χth > 0, before
eventually changing sign at a value of ηth that
depends on the value of χth
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(d) Lineouts of β∧ tend to zero at very high ηth
at all values of χth. The swing from positive to
negative is more extreme at higher χth.
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(e) Lineouts of κ⊥ show a peak with a value
up to twice the local value, with a position that
shifts to the right as magnetisation increases.
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(f) Though κ∧ vanishes at high ηth for all mag-
netisation values, the drop off shifts to the right
as magnetisation increases.

Figure 6.14: Lineouts of the non-local magnetised transport coefficients under different
magnetisations
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(a) α⊥ grows quickly with ηth but with an in-
flection point at ηth ∼ 0.1

(b) α∧ shows a valley around ηth ∼ 1 but note
how its minimum rises with χth

(c) β⊥ quickly changes sign at around ηth ∼ 1,
note how this value changes in 0 < χth < 5.

(d) β∧ shows a valley at ηth ∼ 0.2 that emerges
as the plasma is magnetised

(e) It is difficult to see the features of κ⊥ on this
log-linear scale, however the moving peaks are
still clear

(f) κ∧ has a wider drop-off with χth than κ⊥ for
ηth < 0.1.

Figure 6.15: 2D colourmaps of the dependence of the magnetised transport coefficients
on non-locality ηth and magnetisation χth
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locality in the transport coefficients. In particular, the reversal of the β coefficients corre-

sponds to the value of ηth where 〈Mṽ9〉 = 5〈Mṽ7〉 in eq. 6.22. As the moments 〈ṽn〉 are
functions of the non-locality parameter ηth, there is a point where the thermoelectric term

in the Onsager forms cancels out. Whilst the reversal of the β sign has been reported be-

fore in unmagnetised plasmas [138], it has not been seen for the full magnetised transport

coefficients.

This also implies the Nernst effect switches direction at high values of ηth, since the

thermal conductivity κ does not reverse in a similar manner, there is advection against

heat flow. As an example, consider the Nernst effect acting on a single temperature mode

δT ; as the wavenumber of the mode increases, we can see from figure 6.15d that at some

point - dependent on the value of magnetisation - the Nernst effect will act in anti-phase

to the thermal diffusion.

In the context of laser-plasma experiments, experiments have been performed in both

ICF-like [130] and MagLIF schemes [11] where the magnetisation parameter χ is of the

order> 10. Comparing the temperature and density scales and the expected non-locality,

magnetised plasma physics experiments frequently enter regimes where the transport

coefficients differ by up to a factor of 2 because of the effects described above. If in addition

the Nernst (driven by β∧) and Cross-Nernst (driven by β⊥) are as significant as recent

simulations suggest [32, 106], their reversal of direction will further change the dynamics

away from what conventional simulations suggest.

6.8 Summary

The small-scale structures that appear in filamentation suggests a kinetic treatment to ac-

curately predict growth rates. The theory of the fluid approximation was very sensitive

to the wavenumber of the perturbation and unmagnetised investigations by previous au-

thors have shownusing kinetic corrections is required. The natural extension to the results

of the previous chapter necessitate using a kinetic code to explore the corrections thatmay

appear when entering non-local regimes. The requirements for simulating collisional-

timescale decay phenomena under magnetic fields led to the use of the IMPACT code.

Using the IMPACT code, the Epperlein-Short test was used to simulate the deviation

of thermal decay from the expected classical magnetised value. These are diffusive ap-

proximation simulations of the thermal decay of sinusoidal temperature perturbations in

a plasma. They show the combined effect of a decreased thermal conductivity, character-

istic of both magnetisation and non-locality, but also see a small peak before dropping-off

at high Knudsen numbers. When the simulation results are fitted to an phenomenological

extension of the perpendicular thermal conductivity, this provides a phenomenological

model that extends previous non-local work to include magnetic effects. When this fit

is used in the filamentation dispersion relation it shows even shorter e-folding lengths in
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the long-wavelength limit compared to the local dispersion relation. These results demon-

strate the necessity of kinetic models for accurate transport results, despite the localising

effect of magnetisation.

The question of the diffusive approximation remains. For electron distributions close

to an isotropic Maxwellian, the diffusive approximation is accurate and justifiable. How-

ever, when applying inherently anisotropic magnetic fields, and when the perturbation

modes go to very large non-locality values, the reliability of the diffusive approximation

fails. Indeed, the fitted functional form used in this chapter showed unsatisfactory devi-

ation from the ad-hoc expectation and motivated going to extra terms in the distribution

function expansion.

To summarise the effect of the extra polynomial terms, in the linear regime the influ-

ence ofmagnetised non-locality can be aggregated into three correction functionsH‖, H⊥, H∧.

This is performed using amatrix recursionmethod to all orders of the spherical harmonic

expansion.thereby extending the work of Brantov [107]. These corrections represent the

non-locality parallel, perpendicular and cross-perpendicular to the appliedmagnetic field

respectively and can be considered modified collision frequencies. Using these to derive

the corrected transport coefficients, one can show they differ from the classical approxi-

mation. The unexpected non-monotonic dependence on non-locality as these coefficients

become increasingly magnetised has not been seen before in the literature. This does

however resemble the results of the IMPACT simulations where a peak was seen in the

thermal conductivity curves against non-locality. While the IMPACT results are limited

to the diffusion approximation, this non-monotonicity provides an explanation to the IM-

PACT simulations. The transport coefficients in turn show significant, non-monotonic,

deviation of up to 50% from the diffusive approximation at intermediate non-locality val-

ues (kλei ≈ 10− 100) and would lead to as-yet unseen transport phenomena in the linear

regime.

Though this chapter looked only at the case of a magnetic field perpendicular to the

wavevector of a perturbation, these results could be extended to an arbitrarily-directed

magnetic field. In this case, the recurrence relation would include more terms and the

H function corrections would include contributions from all elements of the matrix G.

Furthermore, this work could be improved by using a more accurate e-e collision term in

the f0 equation. The BGK e-e operator used in the analysis of section 6.5, though simple

to use, is not as accurate as a Fokker-Planck operator so a comparison of the results under

the different e-e operators is necessary.

By incorporating the higher-ordermodes into transport calculations, these results present

a possible source of error in simulations of plasmas under magnetic fields. While only

working in the linear regime, these results can be used directly in the analysis of damping

of waves in plasmas. Overall, this result provides motivation for the closer study of the

terms ignored inmost fluid closures. The primary conclusion from this chapter is that it is

necessary to use higher-order terms of the spherical harmonic expansion when construct-

ing a closure in magnetised plasmas. Inertial fusion experiments today work in regimes

where the transport in the plasma is non-local. With the use of very strong magnetic
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fields, a better understanding of the interplay between non-locality and magnetisation is

required.



7

Conclusions

In long-pulse laser-plasma experiments, the accurate simulation and prediction of trans-

port phenomena is of utmost importance. They are fundamental to the design of exper-

iments and interpretation of their results. With the introduction of magnetic fields into

experiments, more complex models of transport phenomena are required. In order to

answer these questions, the core of this thesis has been the simulation of magnetisation

phenomena and laser propagation.These led to an investigation into the interplay of mag-

netic fields and non-locality in transport.

Results of a new laser-plasma simulation code, described in this thesis delivered in-

sights into howmagnetisation can be detrimental to laser propagation in plasmas. Further

study using a kinetic code supported the hypothesis there is a non-local influence even in

magnetised transport. An analytic study utilising higher terms of a spherical harmonic

expansion demonstrated the inadequacy of the diffusive approximation in magnetised

plasma experiments. These results show the importance of including magnetisation phe-

nomena in simulation codes and the necessity of greater study of non-local magnetised

transport in fusion plasmas.

7.1 A Simulation Code For Magnetised Transport

The first step in this thesis was the construction of a 3D laser-plasma simulation code.

This code, PARAMAGNET, used a single-fluid MHD plasma solver with full Braginskii

electron transport coupled to a paraxial laser solver via the ponderomotive force and in-

verse bremsstrahlung. This code enabled the simulation of three-dimensional long-pulse

laser-plasma interactions in the underdense regime. Using a paraxial laser field allowed

the direct calculation of laser-plasma coupling terms, as such the laser intensity can be

retrieved directly from the magnitude of the laser field, making the intensity calculation

141
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trivial relative to other laser simulationmethods. This however limited the laser physics to

approximately unidirectional laser problems. The alternating-direction-implicit method

was chosen as the algorithm for the laser solver because it reduced the 3D evolution to

a simple linear tridiagonal complex-valued matrix problem. The direct solution of this

matrix method however prevented the use of distributed-memory parallelism with MPI

because the domain decomposition method used in the laser solver would require access

to the whole domain.

The MHD solver’s fully implicit model struggled with strong shock areas where fine

resolution was required to prevent the solver crashing unpredictably. The Jacobian-Free-

Newton-Krylov method employed as the nonlinear solver was simple to write however

without a preconditioner many more steps were required for convergence of the non-

linear solve step. In general, the JFNK method was not suited to hyperbolic problems.

Otherwise for strongly parabolic problems the MHD solver was robust and provided an

all-in-one solver for the entire extended MHD equation set. The laser solver by compar-

ison would be ideal for complex laser dynamics such as vortex beams because the laser

field is solved directly and the resolution requirements are less stringent than aHelmholtz

solver or Maxwell solver.

This code, despite the numerical flawsmentioned above, enabled the accurate study of

laser propagation presented in this thesis, inclusive of the flux-limited magnetised trans-

port effects. In future the paraxial solver could be made more powerful if coupled with a

grid refinement method such as adaptive mesh refinement to better simulate small scale

laser physics. The inclusion of non-local models discussed in this thesis into the transport

terms would also extend the capability of this code to simulate arbitrary laser-plasma

physics problems of interest to the laser-plasma community.

7.2 Long-Pulse Laser Propagation in Magnetised Plasmas

The first application of the new PARAMAGNET code was to simulate the laser propaga-

tion physics in the regimes of a MagLIF pre-heat scenario. This was done by simulating

the propagation of a Gaussian long pulse beam in a magnetised underdense fuel capsule.

An associated analytic model based on a simplified equation set produced a focusing

Gaussian beam solution that provided an explanation for the mechanism responsible.

Initial simulations with the PARAMAGNET code showed a clear signature of the ef-

fects first observed by Read [27] where Nernst advection increased beam focusing. How-

ever the magnetisation of the thermal conductivity was found to have a more significant

effect on reducing the self-focal length. When an axial field was applied this shortening

followed an approximately linear relationship with the field strength B. With a reduced

perpendicular thermal conductivity, the pressure gradient produced by the laser heat-

ing was maintained. As a result a deeper density channel was formed, earlier leading to
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stronger focusing. The analytic model replicated the simulations before the breakdown

of the linear approximations, that is a linear perturbation to a uniform background.

Following the focusing simulations, filamentation simulations were performed by ini-

tialising small harmonic perturbations over a wide range of wavenumbers on a uniform

laser background. These were to represent modes of inhomogeneity present in all real

laser pulses. With a magnetic field applied parallel with the laser wavevector, magne-

tised transport terms contributed to the evolution of the plasma, and by extension the

laser field. The magnetised thermal conductivity reduced the transport of thermal en-

ergy, and the Nernst effect advected the magnetic field into lower-temperature regions,

reducing the local magnetic field strength.

The initial harmonic perturbations grew into laser filaments, the magnitude of their

peak laser field grewwith a greater spatial growth rate under a magnetic field. The phys-

ical mechanism for this result was obtained from a linearised paraxial-MHD model and

showed good agreement with PARAMAGNET simulations. The source of this filamen-

tation growth was for the same as self-focusing, with the same approximately linear re-

lationship with parallel field strength. As such, the filamentation e-folding length short-

ened as the magnetic field strength increased. The instability spectrum showed long-

wavelength perturbations affected most, with micron-scale non-uniformity growing at

multiple times the unmagnetised rate.

In the context of inertial fusion experiments like MagLIF, they have a configuration

where the magnetic field applied to the fuel is parallel to the pre-heat laser, and so mag-

netisation of the fuel is detrimental to effective laser-coupling. The faster growth rates of

filamentation increases backscatter by pushing the local laser intensity towards the para-

metric instability threshold. For direct-drive, uniform heating is necessary to avoid seed-

ing hydrodynamic instabilities. If magnetisation increases focusing in the underdense

corona during a direct-drive laser pulse, the uniformity of laser intensity will be detri-

mentally effected. Non-uniform structures will grow to sizes that can seed hydrodynamic

instabilities in the fuel capsule.

In the introduction, this thesis described a need for an investigation into the 3D laser-

plasma coupling under magnetic field. In response, these simulations and theoretical

results identified unexplored effects in laser-plasma coupling necessary for explaining

highly-magnetised experiments. These results support the need for inclusion of magne-

tised transport terms in simulations of long pulse laser-plasma experiments.

In future, further development of the results described in this thesis would require the

inclusion of a parametric laser-plasma instability model that can calculate the growth and

loss of laser energy from SRS, SBS and CBET. This is necessary to support the hypothesis

that magnetised filamentation leads to increased parameteric instability backscatter and

would provide a more accurate model for laser-plasma coupling. In addition, performing

direct-drive laser imprint simulations would shed light on the degree that magnetisation

can unintentionally increase inhomogenous laser imprint on the fuel capsule surface, and

by extension its role in seeding the surface Rayleigh-Taylor instability. In terms of the

simulation model, additions to the laser solver to deal with propagation near the critical
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surface and terms to deal with reflection would increase the capability of the code.

7.3 Non-local Corrections to Magnetised Transport

The thermal transport results of the laser propagation section indicated investigating non-

local effects with the kinetic code IMPACT. The small scale filament simulations implied

the importance of non-local transport in their evolution, this is because of the relatively

large Knudsen number of such filament structures. To explore this further, the IMPACT

diffusive-approximation code was used to simulate the thermal decay of linear harmonic

perturbations under a magnetic field and the results compared with the local approxima-

tion via the Epperlein-Short non-locality test. The numerically-derived result was fitted

to an phenomenological extension of the perpendicular thermal conductivity.

The IMPACT simulations found an even shorter thermal e-folding length, the result of

the combined reduction from bothmagnetisation and non-local transport suppression. In

plasmaswhere the thermal focusingmechanism is dominant and for longer filamentation

perturbation wavelengths, the kinetic thermal e-folding length is reduced up to a factor

of 2. These regimes are regularly accessed in long-pulse laser-plasmas and so susceptible

to such kinetic, magnetised effects.

For electron distributions close to an isotropic Maxwellian, the diffusive approxima-

tion is accurate and justifiable. However when applying inherently anisotropic magnetic

fields and with perturbation modes that go to very large values of non-locality (kλei),

the reliability of the diffusive approximation fails. By using the spherical harmonic ex-

pansion of the electron VFP used in the KALOs formalism of Bell [78], one can derive

a recursively-defined correction to the collision frequencies parallel, perpendicular and

cross-perpendicular to the magnetic field. Analogous to a continued fraction used by

Epperlein [82], this method ‘re-summed’ the contributions to a linear magnetised ki-

neticmodel, thus encapsulating themagnetised non-local behaviour fromall higher-order

terms into a correction factor. This factor was in turn used to calculate corrected transport

coefficients in the linear regime following the formalism introduced by Bychenkov [100].

The corrected transport coefficients showed significant deviation of up to 50% from the

expected results at intermediate values of the non-locality parameter. They showed non-

monotonic dependence on non-locality, deviating from any other previously reported

results while also providing an explanation for peaks observed in the magnetised ther-

mal conductivity seen in the above IMPACT simulations. The deviation from classical

transport greatly modifies the expected transport of charge, heat and magnetic fields in a

plasma, therefore for simulations to accurately reproduce experimental results transport

models must be developed that incorporate these effects.

Inertial fusion experiments today work in regimes where the transport in the plasma

is non-local. With the use of very strong magnetic fields, a better understanding of the in-
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terplay between non-locality andmagnetisation is required. As an example, if the Nernst-

effect reversal observed in chapter 6 is considered in terms of aMagLIF implosion, the flux

of magnetic field out of the hot fuel core will be slower than expected. What’s more, if

the thermal filamentation are reconsidered with the thermal conductivity result of chap-

ter 6, the peak in magnetised thermal conductivity could decrease the peak filamentation

e-folding length over and above what is presented in chapter 5.

Despite the localising effect of magnetisation, these unexpected results demonstrate

the necessity to use kinetic models to look at non-Maxwellian behaviour; thus justifying

the need defined in the introduction. Questions however remain, such as can a more ana-

lytic expression be derived for the non-local correction? Is it possible extend this method

to non-linear variations? Even in the face of many years of study, the field of plasma

physics still provides a rich world of stones unturned.
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A

The Transport Coefficients

This appendix covers the form of the dimensionless transport coefficients used in the

PARAMAGNET code of chapter 3. The functional form the transport coefficients used

in this thesis were determined by Epperlein and Haines [111] by solving the Vlaslov-

Fokker-Planck equation numerically then fitting a polynomial expression in terms of the

dimensionless Hall parameter to the results. They used the expansion

ǫ =

n
∑

j=0

αjχ
j+s





d
∑

j=0

ajχ
j





−r

(A.1)

and found the values of n, d, r and s that best fit the numerical result. The Hall parameter

is dimensionless and defined as

χ = ωcτei (A.2)

The functional dependence on theHall parameter can be found in table A.1 and the values

of the parameters are tabulated in table A.2.

A.1 The Transport Coefficients as Functions of the Hall Parame-

ter

αc
‖ = α0 αc

⊥ = 1− α′
1χ+ α′

0

χ2 + a′1χ+ a′0
αc
∧ =

χ(α′′
1χ+ α′′

0)

(χ3 + a′′2χ
2 + a′′1χ+ a′′0)

8/9
(A.3)

βc‖ = β0 βc⊥ =
β′1χ+ β′0

(χ3 + b′2χ
2 + b′1χ+ b′0)

8/9
βc∧ =

χ(β′′1χ+ β′′0 )
χ3 + b′′2χ

2 + b′′1χ+ b′′0
(A.4)

κc‖ = γ0 κc⊥ =
γ′1χ+ γ′0

χ3 + c′2χ
2 + c′1χ+ c′0

κc∧ =
χ(γ′′1χ+ γ′′0 )

χ3 + c′′2χ
2 + c′′1χ+ c′′0

(A.5)
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A.2 Numerical Values

The functions have a set of numerical coefficients that are tabulated below. The primes

refer to the the coefficient type, no prime is the parallel component; one prime is the per-

pendicular component and twoprimes is the third ’wedge’ component. These valueswere

calculated for several values of the ionization Z. The PARAMAGNET code only includes

ionization values of Z=1 to 8.

Z=1 2 3 4 5 6 7 8

α0 0.5061 0.4295 0.395 0.3750 0.3618 0.3524 0.3454 0.3399
α′
0 1.37 1.58 1.68 1.74 1.78 1.80 1.82 1.84
α′
1 3.03 3.21 3.17 3.15 3.14 3.13 3.12 3.11
a′0 2.77 2.78 2.78 2.78 2.78 2.79 2.79 2.79
a′1 6.72 6.70 6.47 6.37 6.33 6.29 6.26 6.23
α′′
0 2.66× 102 4.91× 102 6.30× 102 7.06× 102 7.23× 102 7.57× 102 7.94× 102 8.17× 102

α′′
1 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53
a′′0 3.28× 103 3.72× 103 3.79× 103 3.67× 103 3.37× 103 3.28× 103 3.25× 103 3.20× 103

a′′1 3.46× 103 6.69× 103 8.99× 103 1.02× 104 1.06× 104 1.11× 104 1.17× 104 1.22× 104

a′′2 3.66× 102 5.54× 102 6.75× 102 7.35× 102 7.44× 102 7.69× 102 7.93× 102 8.25× 102

β0 0.7029 0.9054 1.018 1.092 1.146 1.186 1.218 1.244
β′0 1.05× 103 1.38× 103 1.55× 103 1.64× 103 1.71× 103 1.74× 103 1.73× 103 1.79× 103

β′1 6.33 6.33 6.33 6.33 6.33 6.33 6.33 6.33
b′0 3.71× 103 3.80× 103 3.80× 103 3.74× 103 3.72× 103 3.64× 103 3.53× 103 3.57× 103

b′1 4.11× 103 7.05× 103 8.75× 103 9.73× 103 1.07× 104 1.11× 104 1.13× 104 1.17× 104

b′2 5.15× 102 6.42× 102 6.90× 102 7.07× 102 7.31× 102 7.35× 102 7.29× 102 7.34× 102

β′′0 2.54 4.40 3.37 3.43 3.20 3.05 2.92 2.82
β′′1 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
b′′0 2.87 2.43 1.46 1.06 0.848 0.718 0.629 0.565
b′′1 3.27 5.18 4.34 3.92 3.66 3.48 3.33 3.21
b′′2 7.09 9.34 8.65 8.27 8.02 7.83 7.68 7.55
γ0 3.203 4.931 6.115 6.995 7.68 8.231 8.685 9.067
γ′0 6.18 9.30 10.02 9.14 8.60 8.57 8.8.4 7.93
γ′1 4.66 3.96 3.72 3.60 3.53 3.49 3.49 3.43
c′0 1.93 1.89 1.66 1.31 1.12 1.04 1.02 0.875
c′1 2.31 3.78 4.76 4.63 4.62 4.83 5.19 4.74
c′2 5.35 7.78 8.88 8.80 8.80 8.96 9.24 8.84
γ′′0 4.01 2.46 1.13 0.628 0.418 0.319 0.268 0.238
γ′′1 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
c′′0 0.661 0.156 0.0442 0.018 9.63× 10−3 6.25× 10−3 4.61× 10−3 3.71× 10−3

c′′1 0.931 0.398 0.175 0.101 7.02× 10−2 5.51× 10−2 4.65× 10−2 4.10× 10−2

c′′2 2.50 1.71 1.05 0.775 0.646 0.578 0.539 0.515

Table A.1: The numerical values of the constants used in the transport coefficients



B

Finite Differenced Equations

This appendix covers the normalised system of equations of the coupled plasma-laser

model solved by the PARAMAGNET code. They are presented in dimensionless form,

using the normalisation scheme described in table 4.1. All together, the equations of the

model are:

The Continuity Equation

∂n

∂t
+∇ · (nV) = 0 (B.1)

The Momentum Equation

Rn

(

∂V

∂t
+V · ∇V

)

= −1

2
∇nT + j× B− 1

2
Sln∇|ψ|2 (B.2)

The Energy Equation

3

2
n

(

∂T

∂t
+V · ∇T

)

+ nT∇ ·V+ 2∇ · q = 2 (E+V× B) · j+ Sl
n2

T 3/2
|ψ|2 (B.3)

Ohm’s Law

n (E+V× B) = −1

2
∇nT + j× B+

n

T 3/2
αc · j− 1

2
β · ∇T (B.4)

Heat Flow

q = −1

4
T 5/2κc · ∇T − 1

2
β · jT (B.5)
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Maxwell’s Equations

∇× B = µ̃j (B.6)

∂B

∂t
= −∇× E (B.7)

The constants that appear in the equations above are defined

R =
mi

Zme
µ̃ =

e2n0
me

µ0 Sl =
I0

cncT0

With a dimensionless set of equations, it is now possible to transform them into a

discrete form suitable to numerical solution. The numerical methods are described in

detail in chapter 4. The finite difference scheme with backward-Euler time discretisation

and central differences for spatial derivatives leads to the discrete form of the equations

on a Eulerian Cartesian mesh. For vector equations, only the x-component is show for the

sake of brevity. The finite difference equations can be simplified with the three cell-size

constants, α, β, γ, defined as

α =
∆t

2∆x
, (B.8)

β =
∆t

2∆y
, (B.9)

γ =
∆t

2∆z
, (B.10)

with the central difference operator,

δxf = fi+1jk − fi−1jk. (B.11)

The Continuity Equation

nn+1
(

1 + αδxV
n+1
x + βδyV

n+1
y + γδzV

n+1
z

)

+
(

αV n+1
x δxn

n+1 + βV n+1
y δyn

n+1 + γV n+1
z δzn

n+1
)

= nn (B.12)

The Momentum Equation

Rnn+1
(

V n+1
x − V n

x + αV n+1
x δxV

n+1
x + βV n+1

y δyV
n+1
x + γV n+1

z δzV
n+1
x

)

=

− 1

2

(

αnn+1δxT
n+1 + αTn+1δxn

n+1
)

+∆tjn+1
y Bn+1

z −∆tjn+1
z Bn+1

y − 1

2
Sln

nαδx|ψ|2

(B.13)
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The Energy Equation

3nn+1

2

(

Tn+1 − Tn + αV n+1
x δxT

n+1 + βV n+1
y δyT

n+1 + γV n+1
z δzT

n+1
)

+

2
(

αδxq
n+1
x + βδyq

n+1
y + γδzq

n+1
z

)

+ nn+1Tn+1
(

αδxV
n+1
x + βδyV

n+1
y + γδzV

n+1
z

)

− 2
(

En+1
x + V n+1

y Bn+1
z − V n+1

z Bn+1
y

)

jn+1
x − 2

(

En+1
y + V n+1

z Bn+1
x − V n+1

x Bn+1
z

)

jn+1
y −

2
(

En+1
z + V n+1

x Bn+1
y − V n+1

y Bn+1
x

)

jn+1
z = Sl

nn

T 3/2
|ψ|2 (B.14)

Ampere’s Law

βδyB
n+1
z − γδzB

n+1
y = ∆tµ̃jn+1

x (B.15)

Faraday’s Law

Bn+1
x + βδyE

n+1
z − γδzE

n+1
y = Bn

x (B.16)

Ohm’s law

nn+1
(

En+1
x + V n+1

y Bn+1
z − V n+1

z Bn+1
y

)

+
nn+1α

2∆t
δxT

n+1 +
Tn+1α

2∆t
δxn

n+1−

jn+1
y Bn+1

z + jn+1
z Bn+1

y − nn+1

(Tn+1)3/2
(

αn
xxj

n+1
x + αn

xyj
n+1
y + αn

xzj
n+1
z

)

+

nn+1

3∆t

(

αβnxxδxT
n+1 + ββnxyδyT

n+1 + γβnxzδzT
n+1
)

= 0 (B.17)

The Heat Flow Equation

qn+1
x = −(Tn+1)5/2

4∆t

(

κnxxαδxT
n+1 + κnxyβδyT

n+1 + κnxzγδzT
n+1
)

− Tn+1

4

(

βnxxj
n+1
x + βnxyj

n+1
y + βnxzj

n+1
z

)

(B.18)
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