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Abstract

In applications of multiple regression, one of the most common goals is to

measure the relative importance of each predictor variable. If the predictors

are uncorrelated, quantification of relative importance is simple and unique.

However, in practice, predictor variables are typically correlated and there

is no unique measure of a predictor variable’s relative importance. Using a

transformation to orthogonality, new measures are constructed for evaluating

the contribution of individual variables to a regression sum of squares. The

transformation yields an orthogonal approximation of the columns of the pre-

dictor scores matrix and it maximizes the sum of the covariances between the

cross-product of individual regressors and the response variable and the cross-

product of the transformed orthogonal regressors and the response variable.

The new measures are compared with three previously proposed measures

through examples and the properties of the measures are examined.
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1. Introduction

An important question that statistical consultants and researches commonly face

after conducting a multiple regression analysis is which variable contributes most

to predict or explain the criterion variable. For example, a chemist may raise the

question of the relative importance of temperature and concentration in determining

the rate of reaction. The term importance is recognized in the literature as having

various possible meanings. A predictor may be considered important if the corre-

sponding regression parameter is statistically significant. A second definition judges

a predictor as more or less important on the basis of its practical impact on the

response. It has been argued that the question of relative importance is even more

common than the question of statistical significance (e.g. Healy (1990)).

Numerous methods have been proposed for evaluating the relative importance

of regressors. The two most obvious methods are the beta weight method, which

simply looks at the beta coefficients of variables that have been standardized to have

variances of one, and the zero-order correlation method, which looks at the corre-

lation between individual variables and the response. General statistical packages

automatically include these statistics in their output from a regression or correlation

analysis, making them convenient to use. However, as noted by Lipovetsky and Con-

klin (2015), multicollinearity can make these measures practically meaningless since,

for example, high collinearity can change signs and inflate the values of regression co-

efficients in comparison with pair correlations between the regressors and response.

Other evaluation methods include product measures (Pratt, 1987), usefulness (Dar-

lington, 1968), structure coefficients (Courville and Thompson, 2001), dominance

analysis (Budescu, 1993), orthogonal counterparts (Gibson, 1962; Johnson, 1966),

relative weight analysis (Johnson, 2000), Shapley value regression (Lipovetsky and

Conklin, 2001) and random forests (Liakhovitski et al., 2010). When predictors are

uncorrelated, these measures lead to the same result and have the desirable property

that their measures of the individual contributions of the predictor variables sum

to R2, the proportion of the variation in the response that the regressors explain.

However, the measures can give quite different results for correlated regressors.

Reviews of work on relative importance are given in Johnson and LeBreton

(2004), Nathans et al. (2012), Grömping (2007), Lipovetsky and Conklin (2010) and

Stadler et al. (2017), and a good older overview is given by Darlington (1968). As
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noted by Johnson and LeBreton (2004), there is no unique solution to the problem of

evaluating relative importance, so identifying good measures must be based on the

logic behind their development, their properties and shortcomings, and the apparent

sensibility of the results they yield.

In this paper we develop new measures of relative importance and compare them

with well-regarded alternatives. The new measures are based on transformations

that yield orthogonal variables that are closely related to the original regressors. In

consequence they have much in common with the orthogonal counterparts measure

proposed by Gibson (1962) and the relative weights measure of Johnson (2000). The

main difference is that the new measures use the values of both the regressors and

the response in determining the transformation, while the measures of Gibson (1962)

and Johnson (2000) ignore the response when determining the transformation and

use only the values of the regressors. Intuitively, there should be benefits in letting

the response influence the transformation, as the purpose of the transformation is

to help evaluate the relationship between regressors and the response.

The new measures proposed here are compared with the orthogonal counterparts

measure (Gibson, 1962), and the relative weights measure (Johnson, 2000) and also

with the dominance analysis measure proposed by Budescu (1993). The relative

weights measure and dominance analysis are widely recommended procedures for

estimating the relative importance of predictor variables (Tonidandel and LeBre-

ton, 2010; Nathans et al., 2012). Comparison is made through examples and by

examining theoretical properties.

In Section 2 we describe the measures of Gibson (1962), Johnson (2000) and

Budescu (1993) and add insights into these measures. In Section 3 we describe the

new measures and in Section 4 they are compared with other measures. Some of

the measures have a rotation invariance property, whereby an orthogonal rotation

can be applied to some variables without affecting the relative weights assigned to

un-rotated variables. The rotation invariance property is described in Appendix A.

Concluding comments are given in Section 5.

2. Three Measures of Relative Importance

In this section we describe the orthogonal counterparts measure, the relative weights

measure and the dominance analysis measure. The orthogonal counterparts measure
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and the relative weights measure each form the basis of new measures that we

propose in Section 3.

We assume that the response, Y , and regressors X1, . . . , Xk are related through

the regression equation

Y |X = β0 + β1X1 + . . .+ βkXk + ϵ, (1)

where X = (X1, . . . , Xk)
T and ϵ is random error and has variance σ2. We suppose

there are n data, so that the model can be written in matrix form as:

y|X = β01+Xβ + ϵ (2)

where 1 is an n×1 vector of 1’s, y is an n×1 vector of responses, X = (x1, . . . ,xk)

is an n× k matrix of known values of X1, . . . , Xk, β is a k × 1 vector of regression

coefficients (whose values are unknown) and ϵ is an n × 1 vector of independent

random errors. The coefficient β0 is irrelevant for regressors’ relative importance,

so, to simplify notation, throughout this article we assume that Y and X1, . . . , Xk

have been centered to have sample means of 0. Then the least squares estimate of

β is β̂ = (XTX)−1XTy and var(β̂) = σ2(XTX)−1.

2.1 Orthogonal Counterparts (OC) measure

Gibson (1962) and R.M. Johnson (1966) suggested a method for obtaining a set of

orthonormal predictors that are closely related on a one-to-one basis with the original

set of predictors. The new predictors can be considered as ‘orthogonal counterparts’

to the original regressors. To approximate the relative importance of the original

predictors, the response variable is regressed on the new orthonormal variables.

The proportion of the predictable variance in the response that is accounted for by

each orthogonal counterpart can be taken as the importance measure of the original

regressors. Details are as follows.

Suppose a set of orthonormal n× 1 vectors z1, . . . , zk must be chosen to

maximise
k∑

i=1

xT
i zi (3)

and let A is the symmetric square-root of XTX. (That is, A is a symmetric

matrix whose diagonal elements are positive and AA = XTX.) Then, putting
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Z = (z1, . . . , zk), it can be shown [see, for example, Garthwaite et al. (2012)] that

Z = XA−1. (4)

Each column of Z has a mean of 0 since each column of X has a mean of 0.

Gibson (1962) and Johnson (1966) assume that the Xi have been standardised

to each have the same sample variance, when the maximisation in (3) is equivalent

to

maximise
k∑

i=1

cor(Xi, Zi), (5)

where ‘cor’ denotes sample correlation, and so it is also equivalent to

minimise
k∑

i=1

ϵ̃Ti ϵ̃i, (6)

where ϵ̃i is the residual when Xi is regressed on a single predictor with sample

values zi. Based on (5), Gibson (1962) describes z1, . . . , zk as “the set of orthogonal

factors . . . having the highest degree of one-to-one correspondence with the correlated

predictors.” Based on (6), z1, . . . , zk are the best-fitting orthogonal representation

of X (Johnson, 2000) and are termed the ‘orthogonal counterparts’ of x1, . . . ,xk. .

In the remainder of this paper we will assume that Y and each X variable have

been standardised to have unit length. That is, yTy = xT
i xi = 1 for i = 1, . . . , k.

Let β̂Z = (β̂z1, . . . , β̂zk)
T denote the vector of regression coefficients from regressing

Y on Z, so β̂Z = (ZTZ)−1ZTy = ZTy. Then β̂zi is called the beta weight of

Zi (i = 1, . . . , k) and the squared beta weight, β̂2
zi, is the variation in Y that is

explained by Zi. Hence the squared beta weights are a natural measure of the

relative importance of the Z variables. Each Z variable is paired with an X variable,

and the Orthogonal Components (OC) measure takes these squared beta weights

as a measure of the importance of the X variables, defining the relative importance

of Xi as β̂2
zi. The sum of these importance weights equals the variation in Y that

is explained by a multiple linear regression with X1, . . . , Xk as the independent

variables (or, equivalently, with Z1, . . . , Zk as the independent variables).

J.W. Johnson (2000) argues that the OC measure can assign relative weights

that are inappropriate when the original X variables are highly correlated, and gives

examples where some variables are assigned weights that seem too low. However, the

OC measure appears to give sensible weights to theX variables when the correlations
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between variables are not high. Also, recent work by Garthwaite and Koch (2016)

implies that the OC measure has an attractive ‘rotation invariance’ property. When

some variables have strong collinearities, they can be transformed into non-collinear

variables via orthogonal rotation of coordinate axes. Only axes corresponding to

variables involved in the collinearities need to be rotated, and Garthwaite and Koch

(2016) show that the rotation has no effect on the Z-variables that correspond to

un-rotated axes. The predictable variation in Y is also unaffected by the rotation,

so the OC measure has the property that the relative importance is unchanged

for those X variables associated with un-rotated axes. (Further detail is given in

Appendix A.) This has the following implications for the OC measure.

• Sometimes collinear variables can be transformed into meaningful variables

that are not collinear through a rotation of the axes associated with them. This

can lead to relative weights that are a transparently reasonable representation

of the importance of the different variates. Moreover, the relative weights are

unchanged for those variables that are not involved in the rotation.

• Since axes could be rotated to remove collinearities without affecting the rela-

tive weights of the other variables, multicollinearities do not affect the relative

weights that the OC measure gives to variables not involved in the collineari-

ties.

Garthwaite et al. (2012) suggest a criterion for choosing z1, . . . , zk that is similar,

but not identical, to the criterion in (3): Choose z̃1, . . . , z̃k to

maximise
k∑

i=1

(xT
i z̃i)

2 (7)

under the constraint that they are orthonormal vectors and xT
i z̃i > 0 for i =

1, . . . , k. They refer to the transformation from x1, . . . ,xk to the resulting z̃1, . . . , z̃k

as the cos-square transformation. It has an attractive duplicate invariance property.

Suppose the set of vectors {x1, . . . ,xi} is increased by adding the set of vectors

{xi+1, . . . ,xk} where each of the vectors xi+1, . . . ,xk is identical to xi. With the

cos-square transformation, this duplication of xi has no effect on the transformed

values of x1, . . . ,xi−1 (i.e z̃1, . . . , z̃i−1 are unchanged.)

Thus, for example, if X1 and X2 are measurements of, say, a patients blood

pressure before and after a meal, then the two variables will be very highly correlated.
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The duplicate invariance property means that whether one or both blood pressure

measurements are included in the regression model has little impact on those Z

variables that are paired with the other X variables. As the orthogonal Z variables

that maximize (3) will generally be very similar to those that maximize (7), we might

expect the OC measure to usually be fairly insensitive to variable duplication.

2.2 Relative Weights (RW) measure

The Relative Weights (RW) measure of J.W. Johnson (2000) is based on the same

Z variables that are calculated for the OC measure. That is, z1, . . . , zk are the

orthonormal variables that maximize
∑k

i=1 x
T
i zi and, as they are orthogonal, the

relative importance of Zi in predicting Y is clearly β̂2
zi. However, while the OC

measure simply takes β̂2
zi as the relative importance of Xi, the measure of Johnson

(2000) takes into account all the correlations between the X and Z variables. From

the criterion that determines the Z variables, the correlation between Xi and Zi

should be high, but this correlation could still be well below 1 if the X variables

display collinearities or high intercorrelations. Also, Xi might not be the only X

variable that has a marked correlation with Zi.

Let λij denote the correlation between Xi and Zj. The transformation from X to

Z has the unexpected property that λij = λji for all i, j (see, for example, Johnson

(1966)). This leads to the useful consequence that
∑k

i=1 λ
2
ij =

∑k
j=1 λ

2
ij = 1. The

RWmeasure divides the relative importance of Zj amongst theX variables according

to the square of their correlations with Zj, so the relative importance weight that

Xi derives from Zj is λ
2
ijβ̂

2
zj. (This indeed partitions the relative importance of Zj,

as
∑k

i=1 λ
2
ijβ̂

2
zj = β̂2

zj.) The full relative importance weight of Xi is obtained by

summing the relative importance weights that it derives from all the Z variables.

Thus, under the RW measure, the relative importance of Xi is given by

RW of Xi =
k∑

j=1

λ2
ijβ̂

2
zj. (8)

The λ2
ij in equation (8) may be regarded as the squares of regression coefficients

rather than the squares of correlation coefficients, as

E(Xi |Z) = λi1Z1 + · · ·+ λikZk (9)
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Figure 1 Relationships between the X, Z and Y variables for three regressors when

Y is regressed on the Z variables and each X variable is regressed on the Z variables

whenXi is regressed on Z1, . . . , Zk. When Johnson (2000) proposed the RWmeasure

he used the regression model in equation (9) to motivate its construction. However,

we prefer to view the λ2
ij as squared correlations because correlation is a symmetric

relationship while the regression in equation (9) is a one-directional relationship and

shows how the Z variables determine Xi. When viewed as a regression, the rela-

tionships between the X, Z and Y variables is illustrated in Figure 1 and shows no

direct link between the X and Y variables. When the λ2
ij are viewed as squared cor-

relations, the links between the X and Z variables are two-directional associations,

thus giving links from the X variables to Y .

Applications in which the RW measure has been used are reported in Johnson

and LeBreton (2004) and Krasikova et al. (2011). Part of the attraction of the RW

measure is that it typically gives similar results to the dominance analysis measure of

Budescu (1993), even though Budescu’s measure and the RW measure are calculated

in very different ways. As Johnson (2000, p.15) suggests, “it is encouraging that two

measures that have very different definitions and calculations produce very similar

solutions”, and Johnson and LeBreton (2004, p.251) argue that the closeness of

results indicates that the two measures are measuring the same construct. We next

describe the dominance analysis measure.
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2.3 Dominance Analysis (DA) measure

The Dominance Analysis (DA) measure evaluates the importance of a regressor

Xi by considering the increase in R2 that results from adding Xi to regression

submodels, where R2 is the proportion of the variation in Y that is explained by the

regression. For correlated regressors, the increase in R2 will generally depend upon

which regressors are in the submodel before Xi is added. The DA measure considers

all the different submodels that could be formed from every possible subset of X

variables that excludes Xi. It defines the weight (relative importance) of Xi as the

average increase in R2 from adding Xi to each of these submodels.

The DA measure was proposed by Budescu (1993) and is sometimes referred

to as the ‘general dominance measure’. It is equivalent to a measure developed

by Lindeman et al. (1980). The measure is well-regarded. For example, Johnson

(2000, p.4) writes that “The average increase in R2 associated with the presence of

a variable across all possible models is a meaningful measure that fits the definition

of relative weight”. At the same time, it could be argued that the importance of a

regressor in a particular regression model should not be determined by its importance

in smaller submodels, but by its importance in the full model. As noted earlier, the

DA measure and the RW measure are generally very similar in the weights they

assign to variables, although an example in Section 4 illustrates that this is not

always the case.

The most commonly stated criticism of the DA measure is that it is computa-

tionally demanding. This is because there are (2k−1) regression models that should

be fitted in order to evaluate the relative importance of each variable. When Linde-

man et al. proposed his relative importance measure in 1980, fitting models with all

combinations of variables was only practical when the number of variables was fewer

than 5 or 6. Since then, advances in computer power has substantially increased

that number, so currently it takes only 0.28 seconds to fit all submodels of 12 re-

gressors using software developed by Grömping et al. (2006). However, it was not

possible to use Gromping’s software with models containing 25 regressors and with

20 regressors the general dominance measure could not be calculated. Moreover, the

number of variables that are included in regression models has increased substan-

tially, especially with interest in ‘big data’. One possibility is to examine a sample of

submodels rather than examining all possible submodels. This approach has proved
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effective when using Shapley value regression to measure relative importance (Con-

klin et al., 2004), another measure where, in principle, all possible submodels should

be examined. Simulations we have conducted suggest that the DA measure can be

well-approximated by examining 500 random sequences for entering variables into

the regression model.

3 New Measures of Relative Importance

Three new measures are proposed here. All are based on transformations that yield

orthogonal variables – the first and third are very similar to the OC measure of

Gibson (1962) and R.M. Johnson (1966); the second is very similar to the RW

measure of J.W. Johnson (2000). The main difference is that the new measures use

transformations that are determined by cross-products of the X and Y variables,

rather than ignoring Y in choosing the transformation. The third new measure uses

weights to alter the balance of the different cross-products when forming orthogonal

variables.

The estimated regression coefficient β̂ for regressing Y on X = (X1, . . . , Xk)
T is

β̂ = (XTX)−1XTy (10)

and the regression sum of squares (RegSS) is

yTX(XTX)−1XTy. (11)

Let (y1, . . . , yn)
T = y and let Y be an n×n diagonal matrix with diagonal elements

y1, . . . , yn. The RegSS can also be rewritten as:

1TYXT(XTX)−1XTY1 (12)

where 1 is a vector of ones.

Both the OC and RW measures construct orthogonal vectors z1, . . . ,zk that

corresponds closely to the original predictors x1, . . . ,xk on a one-to-one basis. The

way the z1, . . . , zk are chosen ignores the values of Y , even though the reason for

constructing z1, . . . , zk is to partition the RegSS. With our new measures, a set

of orthogonal vectors w1, . . . ,wk is chosen so that Ywi is closely related to Yxi.

Suppose Y is regressed on w1, . . . ,wk and that wij is the jth component of wi.

Then wi’s contribution to the RegSS from the jth sample is (yjwij)
2. Our new
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measures take (yjwij)
2 as a first estimate of the contribution of Xi to the RegSS

from the jth sample. (The OC and RW measures equivalently take (yjzij)
2 as a first

estimate of Xi’s contribution to the RegSS from the jth sample, where zij is the jth

component of zi.) Hence, as yjwij is the jth component of Ywi, it is appropriate

to focus on Yw1, . . . ,Ywk in the criterion for choosing w1, . . . ,wk. It is for this

reason that we want Ywi and Yxi to be closely related.

We also wantW = (w1, . . . ,wk) to be a linear transformation ofX = (x1, . . . ,xk),

so that regression models withw1, . . . ,wk as explanatory variables and with x1, . . . ,xk

as explanatory variables give identical predictions, residuals and regression sums of

squares. Hence, analogous to equation (3), we choose W so that
∑k

i=1(Ywi)
T(Yxi)

is maximized subject to the constraints that WTW = Ik and W = XC for some

k × k non-singular matrix C. The following result is proved in Appendix B.

Theorem 1. Under the constraints that W = XC and WTW = Ik, the value of

W = (w1, . . . ,wk) that maximizes
∑k

i=1(Ywi)
T(Yxi) is

W = X(XTX)−1/2G, (13)

where

G = Ψ(ΨTΨ)−1/2 (14)

and

Ψ = (XTX)−1/2XTYYX. (15)

We should note that the X variables are standardised but ||Yxi|| typically varies

with i. Hence the X variables are given equal importance in maximising
∑k

i=1 x
T
i zi

(as with the OC and RW measures) but here, in maximising
∑k

i=1(Ywi)
T(Yxi),

Xi is given greater importance when ||Yxi|| is large than when it is small. This

has the benefit that those X variables that are most highly correlated with Y are

given greater weight when choosing the wi. (We could scale the X variables so that

||Yxi|| is the same for each Xi, but that would lose this benefit.)

3.1 First new measure (NM1)

In the same way that the OC measure views zi as the counterpart of xi (i = 1, . . . , k),

our first New Measure (NM1) views Ywi as the counterpart of Yxi (i = 1, . . . , k).

The RegSS when Y is regressed on wi is {1TYwi}2 = (yTwi)
2. As {w1, . . . ,wk}
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are a set of orthonormal vectors, (yTwi)
2 is the RegSS both when Y is regressed

on w1, . . . ,wk and when Y is regressed on x1, . . . ,xk. NM1 defines the relative

importance of Xi as

NM1: Relative importance of Xi = (yTwi)
2. (16)

Like the OC measure, NM1 has a rotation invariance property. Specifically, if an

orthogonal rotation is applied to some of the X variables, the relative importance of

the other X variables is unchanged if relative importance is measured using NM1.

This result is proved in Appendix A, where further detail of rotation invariance is

given. As with the OC measure, it means that collinearities do not affect the relative

importances that NM1 gives to variables not involved in the collinearities.

3.2 Second new measure (NM2)

While NM1 allocates all the RegSS of Wj to Xj, our second new method, NM2,

divides the RegSS of Wj between the X variables according to their association

with Wj. As Z = X(XTX)−1/2, from equation (13) we have that W = ZG. (This

is an attractive representation of W because Z is a set of orthonormal vectors and

G = (g1, . . . , gk) is an orthogonal matrix.) Thus,

wj = Zgj, (17)

As noted in Section 3, z1, . . . , zk correspond closely to x1, . . . ,xk on a one-to-one

basis, so wj should generally be highly correlated with Xgj. Also, as gi and gj are

orthogonal for i ̸= j, typically wj will not be closely associated with Xgi for i ̸= j.

NM2 divides the RegSS of Wj between X1, . . . Xk to reflect the squares of the

sample correlations between Xgi and wj (i = 1, . . . , k). Let rij denote the sample

correlation between Xgi and wj. It is readily shown that

rij =
gTi (X

TX)1/2gj
[gTi X

TXgi]
1/2

. (18)

The proportion of Wj’s RegSS that NM2 attributes to Xi is r
2
ij/

∑k
ℓ=1 r

2
ℓj, so NM2

defines the relative importance of Xi as:

NM2: Relative importance of Xi =
k∑

j=1

r2ij(y
Twj)

2∑k
ℓ=1 r

2
ℓj

. (19)
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IfXi has low correlations with the otherX variables, the NM1 and NM2 measures

will give similar relative importance to Xi. However the relative importances that

they assign to Xi can differ markedly if Xi is highly correlated with some of the X

variables. This will be seen in Section 4.

3.3 Third new measure (NM3)

If an X variable has a small regression coefficient in the multiple regression of y

on all the X variables, then dropping that variable from the regression model can

be attractive. With the NM1 and NM2 measures (and also the OC and RW mea-

sures), the orthogonal counterparts of all variables can change markedly if any X

variables are discarded, which might be undesirable in some situations. Our third

new measure, NM3, takes account of the size of regression coefficients when form-

ing orthogonal counterparts, so that the inclusion or exclusion of variables with

small regression coefficients has little effect on the orthogonal counterparts of other

variables.

As in equation (10), let β̂ denote the estimated regression coefficient for regress-

ing Y on X = (X1, . . . , Xk)
T and put β̂ = (β̂1, . . . , β̂k)

T . While NM1 and NM2

choose W = (w1, . . . ,wk) to maximize
∑k

i=1(Ywi)
T(Yxi), with NM3 we choose

W# = (w#
1 , . . . ,w

#
k ) to maximize

∑k
i=1 |β̂i| (Yw#

i )
T(Yxi). Thus, with NM3, the

importance of the correlation between (Yw#
i ) and (Yxi) depends upon the size of

β̂i.

If we let x#
i = |β̂i|xi, then

∑k
i=1 |β̂i| (Yw#

i )
T(Yxi) =

∑k
i=1(Yw

#
i )

T(Yx#
i ), and

the maximization problem is analogous to the maximisation problem addressed in

Theorem 1. Put X# = (x#
1 , . . . ,x

#
k ). Then replacing W with W# and X with X#

in equations (13)-(15) yields the value ofW# that maximizes
∑k

i=1 |β̂i| (Yw#
i )

T(Yxi).

NM3 views (Yw#
i ) as the counterpart of (Yx

#
i ) (i = 1, . . . , k) and evaluates the

relative importance of Xi as the value of R2 when Y is regressed on w#
i . Thus,

NM3: Relative importance of Xi = (yTw#
i )

2. (20)

The NM3 and the DA measures are the only measures we examine that explicitly

use the multiple regression of Y onX = (X1, . . . , Xk)
T . Using this regression model

seems sensible, since the purpose of the measures is to evaluate the contribution of

each variable to this regression.
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4 Examples

In this section we apply the measures of relative importance to several datasets.

In Section 4.1 we examine straightforward application of the measures, using three

datasets that have clear structures. In Section 4.2 we examine how relative im-

portance changes under orthogonal rotation of some variables and under variable

selection.

4.1 Fixed models

Each dataset consists of 1000 data drawn from a multivariate normal distribution

with a mean vector of zeros and variance-covariance matrix Σ, where Σ varies

with the dataset. The first component of a datum is the response, y, and the

other components are the explanatory variables, x1, . . . , xk. We first describe each

dataset by giving the sample correlation matrix R̂, the multiple regression model

that relates Y to the explanatory variables, the value of R2 for that regression, and

the regression coefficients for univariate regressions when Y is regressed separately

on one x-variable at a time. We also note salient features of the dataset. After

this brief description of the datasets, we tabulate the relative importance that the

different measure allocate to each variable. The results are then discussed.

Example 1.

In this first dataset, Y correlates highly with X1 and its correlations with X2 and X3

are much lower. Also, X1 has much the biggest regression coefficient in a multiple

regression of Y on X1, X2. There is marked correlation between the X variables.

The sample correlation matrix is

R̂ =

Y X1 X2 X3
1.000

0.847

0.419

0.382

0.847

1.000

0.701

0.697

0.419

0.701

1.000

0.483

0.382

0.697

0.483

1.000


Y

X1

X2

X3

The fitted standardized multiple regression model is:

Ŷ = 1.380X1 − 0.351X2 − 0.411X3 (R2 = 0.865)
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and the univariate regression models are

Ŷ = 0.847X1, Ŷ = 0.419X2, and Ŷ = 0.382X3.

Example 2.

There are just two explanatory variables in this dataset. The Y variable is highly

correlated with X1 but uncorrelated with Z1. Together, X1 and X2 give a multiple

regression equation that predicts Y perfectly.

The sample correlation matrix is

R̂ =

Y X1 X2
1.000

0.893

0.450

0.893

1.000

0.803

0.450

0.803

1.000


Y

X1

X2

The fitted standardized multiple regression model is:

Ŷ = 1.499X1 − 0.755X2 (R2 = 1.00)

and the univariate regression models are

Ŷ = 0.893X1, and Ŷ = 0.450X2.

Example 3.

In this example, Y is almost a perfect linear function of the last five X variables

(X2, . . . , X6) while Y is more highly correlated with X1 than the other X variables.

Also, the largest correlations between the X variables are the correlations involving

X1.

The sample correlation matrix is

R̂ =

Y X1 X2 X3 X4 X5 X6

1.000

0.805

0.681

0.669

0.702

0.702

0.698

0.805

1.000

0.581

0.572

0.601

0.605

0.598

0.681

0.581

1.000

0.352

0.361

0.392

0.386

0.669

0.572

0.352

1.000

0.372

0.384

0.365

0.702

0.601

0.361

0.372

1.000

0.428

0.422

0.702

0.605

0.392

0.384

0.428

1.000

0.400

0.698

0.598

0.386

0.365

0.422

0.400

1.000



Y

X1

X2

X3

X4

X5

X6
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The fitted standardized multiple regression model is:

Ŷ = 0.010X1+0.277X2+0.266X3+0.272X4+0.261X5+0.269X6 (R2 = 0.936)

and the univariate regression models are

Ŷ = 0.805X1, Ŷ = 0.681X2, Ŷ = 0.669X3

Ŷ = 0.702X4, Ŷ = 0.702X5, and Ŷ = 0.698X6.

Results from the three examples.

The relative importance given to each variable by the six different measures are

given for each example in Table 1. Advocates of the RW measure argue that one

of its strengths is that it generally gives similar results to the DA measure. Table 1

shows that this was also the case for our examples, but the table shows that the NM2

measure also gave similar results to DA. Indeed, for Examples 1 and 3 the relative

importances assigned by DA are a little closer to those of NM2 than to those of

RW. The results of the other measures (OC, NM1 and NM3) are often fairly similar

to each other, especially those of OC and NM3, as in Examples 1 and 2. At the

same time, NM1 is notably similar to DA in example 3, while NM3 gives radically

different results to all other measures in that example.

In each of the examples, at least one variable’s contribution to predicting Y was

small but it was correlated with variables that were better predictors. Then the

variable’s relative importance was generally higher when measured by RW, DA or

NM2 than when measured by OC, NM1 or NM3. This can be seen in Example

1, where X2 and X3 are poor predictors, and in Example 2, where X2 is a poor

predictor. The NM1 and NM3 measures, though conceptually quite similar to the

OC measure, can give evaluations that are clearly more sensible than those of the

OC measure. This is illustrated in Example 2, where the OC measure evaluates the

relative importance of X1 as 100% and the relative importance of X2 as 0%. This

is inappropriate, since X1 on its own cannot explain all the variation in Y , while

the combination of X1 and X2 can explain all the variation in Y , clearly showing

that X2 contributes usefully to the multiple regression model. The NM1 and NM3

measures evaluate the contribution of X2 as small, but non-zero. The larger values
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Table 1: Relative importances given by the orthogonal counterparts (OC), relative

weights (RW) and dominance analysis (DA) measures and by three new measures

(NM1, NM2 and NM3) in Examples 1–3

OC RW DA NM1 NM2 NM3

Example 1

X1 0.856 0.642 0.665 0.764 0.669 0.864

X2 0.008 0.115 0.101 0.061 0.105 0.000

X3 0.002 0.108 0.099 0.040 0.091 0.001

Example 2

X1 1.000 0.798 0.798 0.930 0.830 0.989

X2 0.000 0.202 0.202 0.070 0.170 0.011

Example 3

X1 0.124 0.137 0.170 0.172 0.159 0.001

X2 0.163 0.160 0.152 0.143 0.147 0.184

X3 0.155 0.153 0.145 0.146 0.149 0.177

X4 0.167 0.164 0.158 0.160 0.162 0.199

X5 0.163 0.160 0.155 0.160 0.161 0.187

X6 0.165 0.162 0.156 0.155 0.157 0.188

given to X2 by the RW, DA and NM2 measures are perhaps a better reflection of

X2’s contribution, since on its own X2 explains 20.3% of the variation in Y .

In Example 3, it is arguable whether X1 is useful for predicting Y . On the

one hand, X1 makes little contribution to the multiple regression model while, on

the other hand, it is the best univariate predictor of Y . NM3 gives X1 a relative

importance that is close to 0, which might be considered appropriate in view of the

multiple regression model. Other measures give it a much higher relative importance;

indeed, DA and NM1 evaluate it as the most important predictor which, to the

writers, seems inappropriate. Example 3 also shows that the RW and DA measures

are not always in close agrement: while DA evaluates X1 as the most important

variable in the regression model, RW evaluates it as the least important.

4.2 Orthogonal rotation and variable selection

Two examples are examined in this section. In the first, two of the explanatory
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variables are highly correlated and we consider both the model with the original

variables and the model that results from rotating the correlated variables. Measures

of relative importance are applied to both models and their differences are examined.

In the second example, one variable has a regression coefficient that does not differ

significantly from 0 (at the 5% level of significance). We examine how dropping this

variable from the model effects the relative importances of the other variables.

Example 4. Orthogonal rotation

The Longley dataset (Longley, 1967) is well-used as an example of highly collinear re-

gression. The dataset contains annual values of various US macroeconomic variables

for the years 1947-1962. Here we use five of its variables: npe (number of thousands

of people employed), GNP1 (GNP price deflator), GNP2 (GNP in millions of dol-

lars), npue (number of thousands of unemployed people) and npa (number of people

in the armed forces). We take npe as the response variable and initially take the

other four variables as the explanatory variables.

The following is the sample correlation matrix for these variables:

R̂ =

npe GNP1 GNP2 npue npa

1.000

0.971

0.984

0.502

0.457

0.971

1.000

0.992

0.621

0.465

0.984

0.992

1.000

0.604

0.446

0.502

0.621

0.604

1.000

−0.177

0.457

0.465

0.446

−0.177

1.000



npe

GNP1

GNP2

npue

npa

The fitted standardized multiple regression model is:

n̂pe = 0.173GNP1 + 0.998GNP2 − 0.227npue− 0.109npa, (21)

for which R2 = 0.986.

The correlation matrix shows that there is a strong collinearity between two of the

explanatory variables, GNP1 and GNP2. Collinearity can radically affect the values

of parameter estimates and will inflate their variances. Transforming variables to

remove collinearity is consequently attractive and here we replace GNP1 and GNP2

by the variables

X1 = (GNP1 +GNP2)/
√
2 and X1 = (GNP1 −GNP2)/

√
2.
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Table 2: Relative importances of variables before and after rotation

OC RW DA NM1 NM2 NM3

Relative importances before rotation

GNP1 0.400 0.390 0.390 0.527 0.361 0.088

GNP2 0.526 0.417 0.411 0.371 0.393 0.888

npue 0.023 0.099 0.104 0.046 0.139 0.005

npa 0.036 0.079 0.081 0.042 0.092 0.004

Relative importances after rotation

X1 0.922 0.682 0.687 0.891 0.550 0.967

X2 0.004 0.014 0.015 0.007 0.183 0.004

npue 0.023 0.161 0.156 0.046 0.146 0.004

npa 0.036 0.128 0.128 0.042 0.107 0.011

This is equivalent to multiplying the original variables by the orthogonal rotation

matrix,

Γ =


1√
2

1√
2

0 0

1√
2

− 1√
2

0 0

0 0 1 0

0 0 0 1

 .

The new variables X1 and X2 are uncorrelated.

Regressing npe on the transformed set of variables gives the equation

n̂pe = 1.681X1 − 0.054X2 − 0.227npue− 0.109npa. (22)

Theory implies that the regression coefficients of the unrotated components (npue

and npa) should be unchanged – comparison of equations (21) and (22) shows that

this is indeed the case. Also, the R2 value is again 0.986. However, with some

measures of relative importance, the importances of npue and npa in the pre-rotation

model (equation (21)) will differ from their importances in the post-rotation model

(equation (22)). This can be seen in Table 2, where the relative importances given

by our six measures of importance are presented.

In line with theory, the table shows that the relative importances given by the

OC and NM1 measures to npue and npa are unchanged by the rotation of GNP1
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and GNP2. With the other measures, the relative importances given to npue and

npa do change, though the degree of change varies with the measure. With NM3

the importance values change by a large proportion (e.g. from 0.004 to 0.011),

though the changes are small in absolute terms. With the RW and DA measures

the changes are quite large - noticeably larger (at least three times larger) than with

the NM2 measure. Interestingly, values given by the NM2 measure are straddled by

the before/after values given by the RW and DA measures, and are quite close to

the averages of the before/after values given by both the RW measure and the DA

measure. For example, the RW measure gives before/after values of 0.079 and 0.128

to npa, and their average is relatively close to the values 0.092 and 0.107 that NM2

gives to npa.

Example 5. Variable selection

Wood (1973) presents data from a process variable study of a petroleum refinery

unit. The dependent variable (Y ) is the octane value of the petroleum produced and

there are four independent variables: three relate to feed composition (X1, X2, X3)

and the fourth relates to process conditions (X4). Eighty-two observations were

taken, giving the following sample correlation matrix:

R̂ =

Y X1 X2 X3 X4

1.000

−0.870

0.392

−0.638

0.629

−0.870

1.000

−0.589

0.449

−0.337

0.392

−0.589

1.000

−0.298

0.161

−0.638

0.449

−0.298

1.000

−0.722

0.629

−0.337

0.161

−0.722

1.000



Y

X1

X2

X3

X4

After centring the variables, regression of Y on the four independent variables gave

Ŷ = −0.824X1 − 0.172X2 − 0.097X3 + 0.309X4, (R2 = 0.905) (23)

as the regression model. There is clear evidence that X1, X2 and X4 should be

included in the regression model (p < 0.0002 for each of these three variables) but

whether X3 should be included is debatable. The null hypothesis that the regression

coefficient for X3 is zero is rejected only at significance level 0.07. Omitting X3 from

the model gives the regression equation

Ŷ = −0.841X1 − 0.163X2 + 0.372X4, (R2 = 0.902). (24)
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Table 3: Relative importances of variables before and after omitting X3

OC RW DA NM1 NM2 NM3

Relative importances before omitting X3

X1 0.593 0.515 0.518 0.488 0.439 0.685

X2 0.012 0.066 0.064 0.009 0.051 0.060

X3 0.121 0.146 0.150 0.160 0.178 0.000

X4 0.180 0.179 0.173 0.250 0.238 0.161

Relative importances after omitting X3

X1 0.640 0.570 0.578 0.604 0.542 0.665

X2 0.016 0.075 0.075 0.017 0.072 0.074

X4 0.246 0.257 0.248 0.281 0.287 0.162

The top half of Table 3 displays the real importance assigned to the different

X-variables by the different measures when all four X-variables are included in the

regression model. Surprisingly, all but one of the measures gives X3 a higher relative

importance than X2, even though X3 is the variable whose inclusion in the model

is tenuous. The NM3 measure is the exception. It gives X3 a relative importance

of 0.0, which concords fully with the inference that X3 can reasonably be omitted

from the regression model.

The lower half of Table 3 shows the relative importances assigned to X1, X2 and

X4 after X3 has been omitted from the model. In the whole of the table, the RW and

DA measures are strikingly similar in all their evaluations. It is also the case that

all measures evaluate X1 as the most important variable and X2 as the second most

important (both before and after omitting X3). In other respects though, there is

limited agreement across measures. For example, NM1 and NM2 agree quite closely

in their evaluations of X1 and X4, but NM1 is similar to OC in its evaluation of X2,

while NM2’s evaluations of X2 are similar to those of RW, DA and NM3.

With most measures, the relative importance of X3 is far greater than the differ-

ence between the R2 values of the models in equations (23) and (24). Hence, with

those measures the omission of X3 must substantially increase the relative impor-

tance of at least one X-variable. As X3 has higher absolute correlation with X4

than with X1 or X2, it might be anticipated that omitting X3 would increase the
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relative importance of X4 more than that of X1 or X2. This is indeed the case for

the OC, RW and DA measures, but not for NM1, NM2 or NM3. It seems then, that

the effects on relative importance of omitting a variable are somewhat unpredictable

and can vary markedly with the choice of measure.

5 Conclusion

Six measures for evaluating the relative importance of predictor variables in a re-

gression have been examined. From the examples presented in Section 4, it is clear

that usually there is some consensus between them – variables given a high relative

importance by one measure are usually given a high relative importance by other

measures, and similarly for low relative importance. At the same time, in each ex-

ample there were differences between the measures in their evaluations, and some

differences were substantial.

The following correlation matrix combines results from Tables 1–3 to give an

overview of the similarity between the different measures. It gives the correlation

between each pair of measures for the contributions recorded in Table 1 and the top

halves of Tables 2 and 3. (The lower halves of Tables 2 and 3 are ignored to avoid

double-counting of data.)

OC RW DA NM1 NM2 NM3

OC

RW

DA

NM1

NM2

NM3



1.000

0.981

0.982

0.978

0.981

0.932

0.981

1.000

0.999

0.976

0.988

0.903

0.982

0.999

1.000

0.977

0.990

0.897

0.978

0.976

0.977

1.000

0.984

0.845

0.981

0.988

0.990

0.984

1.000

0.889

0.932

0.903

0.897

0.845

0.889

1.000


The correlations between methods are very high in general, and the correlation

between the RW and DA methods is especially high (0.999), showing the high

concordance between these two methods that has been found in previous studies

(Krasikova et al., 2011; Johnson, 2000). The other striking feature of the corre-

lations is the comparatively low correlation between NM3 and each of the other
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methods (never exceeding 0.94), indicating that NM3 gives a distinctive perspective

on the contributions of variables.

Occasionally, common sense shows that an evaluation is unreasonable. For in-

stance, in Example 2 the OC measure evaluated the relative importance of X1 as

100% and that of X2 as 0%. This is clearly inappropriate, as all the variation in Y

could not be explained by X1 on its own, but could be explained by the combina-

tion of X1 and X2. Often though, the evaluations of the different measures all seem

reasonable and how to choose between them is not clear-cut, because there are no

known ‘correct’ evaluations with which to make comparison. As noted by Johnson

and LeBreton (2004, page 240), “Because there is no unique mathematical solution

to the problem [of evaluating relative importances], these indices [measures] must

be evaluated on the basis of the logic behind their development, the apparent sen-

sibility of the results they provide, and whatever shortcomings can be identified.”

Properties of the different measures and features of the data set should also be taken

into account.

The following arguments favour different measures.

1. The DA and RW measures have been the most widely recommended mea-

sures in recent years, partly because they typically give similar evaluations,

suggesting that there is an underlying construct that they both appraise. The

examples presented here support that rationale, as they give further evidence

that the two measures generally give similar results – there is only one case

(variable X1 in Example 3) where the DA and RW evaluations differ appre-

ciably. The RW measure is simpler and easier to implement than the DA

measure.

2. The OC and NM1 measures have the rotation invariance property so, with

either measure, multicollinearities have little affect on the relative weights

given to variables not involved in the collinearities.

3. In constructing the new measures (NM1–3), the aim was to improve upon the

OC and RW measures by letting Y influence the transformation to orthogo-

nality, rather than determining the transformation from just the values of the

regressors. This was motivated by the observation that the transformation’s

purpose is to help evaluate the relationship between Y and the regressors, so
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both should be taken into account in forming the transformation. On that

basis, NM1 is to be preferred over OC, since in other respects the construction

of the two measures are very similar. Similarly for NM2 and RW.

4. In the examples, a feature of NM3 is that it gave low relative importance to

variables that might reasonably be omitted from the regression, which could be

considered an attractive characteristic. In Example 5, for instance, it gaveX3 a

relative importance of 0.000 while other measures gave it a relative importance

of 0.121 or more. Similarly, in Example 3, predictions of Y are not improved by

including X1 in the regression model, but only NM3 gave X1 a low evaluation.

Taking account of the above points, the NM3 measure is recommended when

there are some independent variables whose inclusion or exclusion from the regres-

sion model is debateable. When it is clear which independent variables should

feature in the regression, but there is high multicollinearity among a subset of them,

then the NM1 measure is recommended because it has the rotation invariance prop-

erty, though its choice in preference to the OC measure (which also has the rotation

invariance property) is close. In other circumstances, one of the RW, DA and NM2

measures should be used and we recommend the RW measure – the three measures

are likely to give very similar evaluations of relative importance and the RW measure

is widely recommended for its simplicity and ease of use (Tonidandel and LeBreton,

2010).

The new measures presented here and ideas behind them could be adapted to

give other measures of potential value. In particular, any of the OC, RW and NM2

measures could be modified to use regression coefficients as weights when forming

orthogonal counterparts, in the same way that NM3 is derived from NM1. The

weighting scheme could also be generalised to use the (|β̂i|)α as weights (where the

βi are the multiple regression coefficients). Setting α equal to 0 would correspond

to ‘no weighting’, and increasing α would increase the importance of the weighting.
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Figure 2(a) Points before rotation with

X1, X2 as axes.

X1
∗

X2
∗

Figure 2(b) Points after rotation with

X∗
1 , X

∗
2 as axes.

Appendix A: Rotation invariance property

An orthogonal rotation of axes X1, X2 to axes X∗
1 , X

∗
2 is illustrated in Figures 2(a)

and 2(b). In Figure 2(a), the positions of 10 points (x1, x2) are plotted and new

axes X∗
1 and X∗

2 are shown. The new axes are obtained by rotating the original

axes X1 and X2 (by 45o in this case). Figure 2(b) shows the same 10 points, but

drawn with X∗
1 and X∗

2 as the horizontal and vertical axes. It can be seen that

rotation of axes changes the correlation between variables: Figure 2(a) shows that

the points are highly correlated when expressed in terms of X1 and X2, while Figure

2(b) shows that the correlation is low when the points are expressed in terms of

X∗
1 and X∗

2 . Consequently, orthogonal rotation can be used to remove or reduce

collinearity between variables.

We only need to rotate those variables that are involved in collinearities. For

example, suppose there is just one collinearity and it involves only the first d of the

k explanatory variables. Then axes are rotated using a rotation matrix, Γ say, that

has the following block-diagonal form:

Γ =

Γd 0

0 Ik−d

 , (25)

where Γd is an orthogonal matrix of order d and Ik−d is a (k − d) order identity

matrix.

Rotation produces new variables that are linear combinations of the original
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predictors. The rotation matrix should be chosen in such a way that the variables

that are created have meaningful interpretation. For example, if only the first two

predictors X1 and X2 are responsible for one collinearity then Γd can be set as:

Γd =

 1√
2

1√
2

− 1√
2

1√
2

 (26)

This rotation creates two meaningful variables, the first one is proportional to X1+

X2 and the second one is proportional to X2 −X1.

In terms of the original variables, X1 and X2, the ten points in Figure 2 form

the data matrix: −0.48 −0.42 −0.24 −0.18 −0.12 0.18 0.18 0.24 0.36 0.48

−0.48 −0.41 −0.41 −0.07 0.07 0.14 0.21 0.14 0.41 0.41

 . (27)

Post-multiplying this data matrix by Γd in equation (26) gives the points in terms

of the new variables X∗
1 and X∗

2 : −0.68 −0.59 −0.46 −0.18 −0.04 0.22 0.27 0.27 0.55 0.63

0.00 0.01 −0.12 0.08 0.13 −0.03 0.02 −0.07 0.04 −0.05

 .

The sample correlation between X1 and X2 is 0.951, while the sample correlation

between X∗
1 and X∗

2 is 0. (The correlation between the sum and difference of two

variables that have been standardised to have equal variances is always 0.)

With the majority of measures of importance, rotating some explanatory vari-

ables will change the relative importance of every variable. However, results in

Garthwaite and Koch (2016) show that with the OC measure only the relative im-

portances of variables involved in the rotation are changed – the relative importances

are unchanged for those variables that are not involved in the rotation. Theorem 2

(below) shows that NM1 also has this rotation invariance property.

Lemma 1. If H is a positive-definite matrix and Γ is an orthogonal matrix of the

same dimension as H, then (ΓTHΓ)−1/2 = ΓTH−1/2Γ.

Proof. (ΓTH1/2Γ).(ΓTH1/2Γ) = ΓTH1/2(ΓΓT)H1/2Γ = ΓTHΓ, so (ΓTHΓ)1/2 =

ΓTH1/2Γ. Hence, (ΓTHΓ)−1/2 = (ΓTH1/2Γ)−1 = Γ−1H−1/2(ΓT)−1 = ΓTH−1/2Γ.

2
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Lemma 2. Suppose X∗ = XΓ. Under the constraints that W∗ is a linear trans-

formation of X∗ and that (W∗)TW∗ = Ik, the value of W∗ = (w∗
1, . . . ,w

∗
k) that

maximises
∑k

i=1(Yw
∗
i )

T(Yx∗
i ) is

W∗ = WΓ, (28)

where W is defined by equations (13), (14) and (15).

Proof. Let Ψ∗ = [(X∗)TX∗]−1/2(X∗)TYYX∗ and put G∗ = Ψ∗[(Ψ∗)TΨ∗]−1/2.

Now, [(X∗)TX∗]−1/2(X∗)T = [ΓTXTXΓ]−1/2ΓTXT = ΓT[XTX]−1/2ΓΓTXT (from

Lemma 1), so

[(X∗)TX∗]−1/2(X∗)T = ΓT[XTX]−1/2XT. (29)

Hence, Ψ∗ = ΓT[XTX]−1/2XTYYXΓ = ΓTΨΓ, where Ψ is defined in equa-

tion (15). Thus G∗ = ΓTΨΓ[(ΓTΨΓ)(ΓTΨΓ)]−1/2 = ΓTΨΓΓT[ΨΓΓTΨ]−1/2Γ

(from Lemma 1), so G∗ = ΓTΨ[ΨΨ]−1/2Γ = ΓTGΓ, where G is defined by equa-

tion (15). Now the proof of Theorem 1 does not require the fact that the X vari-

ables have been standardised to have unit variance. Hence the result of the the-

orem also applies to W∗ and X∗. It follows that W∗ = (X∗)T[(X∗)TX∗]−1/2G∗

so, from equation (29), W∗ = X[XTX]−1/2ΓG∗. As G∗ = ΓTGΓ, this gives

W∗ = X[XTX]−1/2ΓΓTGΓ, so W∗ = WΓ, where W is defined by equation (13).

2

If say, just the first d of k explanatory variables are rotated, then the rotation

matrix Γ has the block-diagonal structure in equation (25). Then, from Lemma 2,

(w∗
d+1, . . . ,w

∗
k) = (wd+1, . . . ,wk). When Y is regressed on (w∗

1, . . . ,w
∗
k), the con-

tribution of w∗
i to the RegSS is the same as the RegSS from a univariate regression

of Y on w∗
i , because w

∗
1, . . . ,w

∗
k are an orthogonal set of vectors. Under NM1, this

RegSS is taken as the relative importance ofX∗
i in a regression of Y on (X∗

1 , . . . , X
∗
k).

Similarly, when Y is regressed on (X1, . . . , Xk), NM1 evaluates the relative impor-

tance of Xi as the RSS from a univariate regression of Y on wi. As w∗
i = wi for

i = d + 1, . . . , k, NM1 has the rotation invariance property given in the following

theorem.

Theorem 2. If an orthogonal rotation is applied to some of the X variables, the

relative importance of the other X variables is unchanged if relative importance is

measured using NM1.
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Appendix B: Proof of Theorem 1

Preliminary lemma:

Lemma 3. If W = XC and WTW = Ik, then W = X(XTX)−1/2G where G is a

k × k orthogonal matrix. The converse also holds: if W = X(XTX)−1/2G and G

is an orthogonal matrix, then WTW = Ik.

Proof of Lemma 3. For the first part of the lemma, let G = (XTX)1/2C. Then C =

(XTX)−1/2G andW = X(XTX)−1/2G. Also Ik = WTW = GT(XTX)−1/2XTX(XTX)−1/2G =

GTG. This implies that G is orthogonal, as required. The converse is imme-

diate: if W = X(XTX)−1/2G and G is an orthogonal matrix, then WTW =

GT(XTX)−1/2XTX(XTX)−1/2G = GTG = Ik. 2

Proof of Theorem 1. From Lemma 3, W = X(XTX)−1/2G where G is an or-

thogonal matrix. Put G = (g1, . . . , gk), so wi = X(XTX)−1/2gi. Also, de-

fine ψi = (XTX)−1/2XTYYxi for i = 1, . . . , k. Then
∑k

i=1(Ywi)
T(Yxi) =∑k

i=1(g
T
i (X

TX)−1/2XTYT)(Yxi) =
∑k

i=1 g
T
i ψi. As G is an orthogonal matrix,

it is immediate from Theorem 1 in Garthwaite et al. (2012) that
∑k

i=1 g
T
i ψi is max-

imised when G = Ψ(ΨTΨ)−1/2, where Ψ = (ψ1, . . . ,ψk). Thus equation (15)

defines Ψ. 2
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