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Abstract

A successful humoral immune response requires reciprocal signaling between T helper 

cells and B cells. Tlie first signal is antigen specific and is mediated by the interaction 

between the T cell receptor and antigen in association with major histocompatibility 

complex on B cells. The subsequent signals are provided by the costimulatory molecules 

CD40 and CD28 and their respective ligands. CD40L which is expressed on activated T 

helper cells interacts with CD40 on B cells providing the essential signal for thé induction 

of B cell activation and immunoglobulin -production. The importance of the CD40- 

CD40L interaction has been shown in patients suffering from X-linked 

immunodeficiency with hyper-IgM (HIGMl). The disease is characterized by the 

inability of B cells to undergo immunoglobulin isotype switching. Affected males 

experience recurrent infections and most infections are of bacterial origin, but HIGMl 

patients are also unusually susceptible to infections with opportunistic pathogens and 

often suffer from Pneumocystis carinii pneumonia and Cryptosporidium intestinal 

infection. Mutations in CD40L molecules are responsible for hyper IgM syndrome in 

humans.

To study the role of the CD40-CD40L interaction in vivo and to derive an animal model 

for HIGMl, I generated CD40 deficient mice using homologous recombination in 

embryonic stem (ES) cells. A targeting vector was constructed using an 8  kb CD40 

genomic fragment. The G418 resistance gene (NEC) was inserted into the 3rd exon to 

disrupt the CD40 gene and to allow selection. The targeting vector was transfected into 

ES cells and G418 resistant clones were isolated - and screened for homologous 

recombination by Southern blot analysis. Chimaeric mice were generated by injection of 

targeted ES cell clones into blastocysts. Germline transmission was obtained and 

heterozygous mutant mice hred to generate CD40 deficient mice.

Flow cytometric analysis of lymphocytes in CD40 deficient mice revealed normal 

development of B and T lymphocytes. CD40 deficient mice were immunized with KLH



and assessed for germinal centre formation. CD40 deficient mice did not generate 

germinal centres. Analysis of serum immunoglobulin levels showed that CD40 deficient 

mice displayed reduced levels of isotype switched immunoglobulins compared to wild- 

type mice. These results confirm the crucial role of the CD40-CD40L interaction in 

humoral immunity.

CD40 is also expressed on other antigen presenting cells and the involvement of the 

CD40-CD40L interaction in cell-mediated immunity was determined in CD40 deficient 

mice infected with Mycobacterium Bovis (BCG). Although CD40 deficient mice 

survived mycobacterial infection, the increased numbers of bacilli in spleen and lungs 

and the reduced production of IFN-y in response to mycobacterial infection indicates that 

CD40 deficient mice are more susceptible to infection with BCG than control mice.
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1: Introduction

Chapter 1 : Introduction

1.1 Acquired immune responses

The immune system can be divided into innate and acquired inununity. The effectors of 

innate immunity consists of non-specific activities of complement, natural killer cells and 

different phagocytic cells. In contrast, acquired, or specific, immunity is capable of 

recognizing and selectively eliminating foreign microorganisms and molecules. It 

displays specificity, diversity, memory and self/nonself recognition. Specific immunity 

can be divided into humoral and cell-mediated immunity. The humoral branch of the 

immune system involves B lymphocytes which recognize whole antigen via cell-surface 

immunoglobulin receptors. Antigen uptake and processing by B lymphocytes via surface 

immunoglobulin, is followed by presentation on MHC class II and interaction with T 

helper cells. This subsequently leads to proliferation and differentiation of B 

lymphocytes into antibody-secreting plasma cells and memory cells. Cell-mediated 

immunity involves both T-cytotoxic (Tc) and T-helper (Th) lymphocytes, and, in 

contrast to B lymphocytes, T lymphocytes only recognize antigen in association with 

MHC class I and II via surface T cell receptors. Activation of T helper cells via their T 

cell receptors requires presentation of antigen in association with MHC class II on 

antigen presenting cells (APCs), such as B cells, dendritic cells and macrophages. These 

cognate interactions lead to secretion of cytokines which aid in the activation of antigen 

specific cytotoxic T cells.

The interaction between the T cell receptor (TCR) and antigen in association with MHC 

class n  on B cells is the first step in the mutual activation of antigen specific T and B 

cells. In order to complete this mutual activation several costimulatory molecules are 

needed. The most important receptor-ligand molecules on T and B cells are CD40-CD40 

Ligand, and CD28/CTLA-4-CD80/CD86.
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1.2 Identification of ceiis required for induction of humoral 
immunity

Experiments performed in the 1960s and 1970s demonstrated that different types of cells 

must cooperate to generate a humoral immune response. Before B and T cells were 

defined, evidence that distinct subpopulations of cells were required to generate an 

antibody response came from adoptive-transfer experiments done by Henry Claman and 

co-workers. In the these experiments, irradiated mice were reconstituted with either 

syngeneic thymus cells alone, or bone marrow cells alone, or spleen cells alone, or with 

a mixture of thymus and bone marrow cells. The mice were then immunized with 

SRBCs (Sheep Red Blood Cells) and the ability of these reconstituted mice to produce 

antibodies against SRBCs was tested in a hemolytic plaque assay. Mice reconstituted 

with thymus cells alone had only a slight restoration in their ability to produce anti-SRBC 

antibodies, and mice reconstituted with bone marrow cells alone failed to produce anti- 

SRBC antibodies. However, mice reconstituted with both thymus and bone marrow cells 

gave a response as good as mice reconstituted with spleen cells (Claman et a l, 1966; 

Claman et a l, 1967). These experiments demonstrated that both thymus and bone 

marrow cells were necessary for the induction of the humoral response.

Claman’s experiments showed that both thymus and bone marrow cells were necessary 

to generate a humoral antibody response, but they did not identify which population of 

cells produced antibodies. The importance of an intact thymus, for the antibody response 

to SRBC, was shown by performing neonatal thymectomy in mice. Neonatal 

thymectomy in mice reduced the ability to make antibodies against SRBC to about 5-10 

percent of the normal response. This defect could be corrected in the adult mice by 

injection of either thymus cells or thoracic-duct cells, but not by bone marrow cells 

(Miller er a/., 1968). Mitchell and J. F. A. P. Miller (1968) subsequently demonstrated 

that bone marrow cells were the source of antibody producing cells. Irradiated and 

thymectomized mice were reconstituted with various populations of cells and immunized 

with SRBC, after which the spleen cells were assayed for plaque formation in response
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to SRBC. Instead of thymus cells, thoracic-duct lymphocytes were used as an enriched 

source of T cells. These experiments showed that the thoracic-duct cells and bone 

marrow cells in combination could generate the antibody response, confirming Claman’s 

findings. They then went one step further to identify the antibody-producing population 

by repeating the experiment with thoracic-duct lymphocytes and bone marrow cells of 

different MHC haplotypes. CBA (H-2'') mice were thymectomized and irradiated and 

reconstituted with CBA (H-2*') bone marrow cells. Two weeks later, these mice were 

injected with (CBA x C57BL/6)F1 thoracic-duct cells (H-2‘̂ ) and SRBCs. Five days 

later the spleens of the reconstituted mice were removed and tested for the presence of 

cells producing antibodies against SRBC. By treating the spleen cells with antibody to 

the H-2‘" or H-2*’ MHC, it was possible to deplete the two populations selectively and 

determine the effect of each depletion on the antibody response to SRBC. Depletion of 

H-2'' cells removed both populations and abolished the antibody response to SRBC. 

However, removal of H-2*’ thoracic-duct cells did not affect the response. These results 

demonstrated that the bone marrow cells provided the antibody-forming cells (now 

known as B cells) and that the thoracic-duct cells provided T helper cells for generating 

the humoral response.

Further proof of the existence of two interacting subsets of lymphocytes involved in 

antibody production was provided by experiments using hapten-carrier conjugates which 

enabled immunologists to determine that the generation of a humoral antibody response 

required the associative recognition by T helper cells and B cells, each recognizing 

different epitopes on the same antigen (Rajewsky et al. 1969, Mitchison et al. 1971, Katz 

et al. 1970). One of the earliest findings with hapten-carrier conjugates was that a hapten 

(small organic compound) had to be chemically coupled to a carrier (protein) molecule to 

induce an antibody response to the hapten. A second important observation was that in 

order to generate a secondary antibody response to a hapten, the animal had to be 

immunized with the same hapten-carrier conjugate used for the primary immunization. If 

the secondary immunization was with the same hapten but conjugated to a different
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unrelated carrier, no secondary anti-hapten antibody response occurred. Thus, even 

though the animal was seeing the hapten for the second time, it was only able to 

recognize the hapten when coupled to the same carrier. This phenomenon is called the 

carrier effect. The carrier effect could be circumvented by immunizing the animal 

separately with the unrelated carrier. For example, the animal was immunized with DNP- 

OVA (day 0) and then immunized with BGG (unrelated carrier, day 7) and finally 

immunized with DNP-BGG (DNP-unrelated carrier, day 28). The secondary anti-DNP 

antibody response was now as high as if the animal had been immunized with DNP- 

OVA on day 0 and day 28 with an intermediate immunization of OVA (day 7) (Rajewsky 

et ai, 1969, Katz et ai, 1970). The carrier effect was also demonstrated in an adoptive- 

transfer model (Mitchison 1971a, Paul et al., 1970). Mice were immunized with NIP- 

CGG and spleen cells from these mice (donors) were injected into irradiated syngeneic 

recipients. These recipients were then immunized with NIP-CGG (homologous 

conjugate) or NIP-BSA (heterologous conjugate) and the anti-NIP antibody response 

was measured. An anti-NIP antibody response was only elicited if the recipients were 

immunized with the homologous conjugate (NIP-CGG). Mitchison (1971b) also showed 

that the injection of spleen cells obtained from mice immunized with BSA (carrier- 

primed) together with spleen cells from mice immunized with NIP-OVA (hapten-primed) 

into irradiated syngeneic recipients immunized with NIP-BSA elicited an anti-hapten 

antibody response, thereby bypassing the carrier specificity of the primary NIP-OVA 

immunization. These results demonstrated that carrier-primed cells could be raised 

independently of hapten-primed cells (i.e. carrier-primed and hapten-primed cells are 

distinct populations) and that carrier-primed cells could interact with hapten-primed cells 

(in the recipient) raised independently of the carrier-primed cells. By repeating the 

adoptive-transfer experiment described above, using an allotype marker on carrier- 

priiiicd cells, Mitchison demonstiated that carrier-primed cells (BSA-primed) did not 

produce an anti-hapten antibody (Mitchison, 1971b). Thus, the carrier-primed cells 

appeared to serve only as helpers and not as precursors of the anti-hapten antibody 

forming cells. Adoptive transfer experiments investigating the effect of anti-T-cell
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antiserum and complement treatment of carrier-primed cells or hapten-primed cells, 

revealed that the secondary anti-hapten antibody response was inhibited if carrier-primed 

cells were treated with anti-T-cell antiserum and complement, whereas treatment of 

hapten-primed cells had no effect on the anti-hapten antibody response. This provides 

further evidence that carrier-primed cells (helper cells) are thymus-derived cells while the 

anti-hapten producing cells are thymus independent (marrow-derived) (Raff, 1970, 

Mitchison, 1970c).

These experiments concerning thymus-bone marrow interactions and hapten-carrier 

conjugates led to the concept that two types of lymphocytes cooperate in the induction of 

an antibody response. As induction of an antibody response required the hapten to be 

chemically coupled to the carrier molecule it was assumed that antigen (hapten-carrier 

conjugate) was recognized by two specific receptors, one on the B cell and one on the T 

helper cell. This cellular cooperation hypothesis envisioned a B cell binding to the hapten 

and a T helper cell binding to carrier epitopes, with the hapten-carrier conjugate bridging 

the two cells, which would then lead to activation of the B cell (Mitchison, 1971b; 

Rajewsky, 1971). The discovery of MHC restriction between T helper cells and B cells 

(described below) meant that the cellular cooperation hypothesis was not sufficient and 

that any model of T-B cell interaction had to include a role for MHC class II molecules. 

The current model of T-B cell cooperation in the generation of antibody responses to 

protein antigens and hapten-protein conjugates involves presentation of peptides in 

association with MHC class II molecules. Antigen specific B cells bind the hapten- 

protein conjugate (via the hapten determinant) on membrane Ig molecules. After binding, 

the hapten-protein conjugate is internalized, processed in an endosomal pathway and 

peptides are presented to T helper cells in association with MHC class II molecules on 

the surface of the B cell. A T helper cell then recognize the processed peptide in 

association with MHC class II molecules via the T cell receptor and B cell activation 

results from interaction between molecules on the surface of the T and B cell, and by 

cytokines released by the T cells.
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The use of hapten-carrier systems enabled Katz and co-workers (Katz et a l,  1973) to 

show that carrier-primed T cells could only cooperate with hapten-primed B cells, if the 

T and B cells had identical MHC haplotypes. Adoptive transfer of BGG-primed T cells 

from strain A (H-2“) into an (A x B)F1 (H-2*^) recipient, followed by the transfer of 

DNP-KLH-primed B cells derived from strain A (H-2“) or from strain B (H-2*’). The 

recipient mice were then immunized with DNP-BGG, and the secondary response to 

DNP was measured. One complication which initially made the experiment unworkable 

was the allogeneic effect. The transferred strain A T cells recognized the strain B 

allogeneic MHC antigens of the FI recipient as foreign and could potentially activate the 

host B cells nonspecifically. This problem was solved by irradiating the (A x B)F1 

recipient after transfer of the BGG-primed strain A T cells. The irradiation eliminated 

unprimed alloreactive T cells whereas primed T cells, which were less susceptible to 

irradiation, survived. Strain A (H-2") or strain B (H-2**) B cells from DNP-KLH-primed 

mice were now transferred into the FI recipient, and the secondary response to DNP was 

measured. The results revealed that carrier-primed T helper cells with haplotype H-2" 

could only assist hapten-primed B cells in generating an anti-DNP antibody response if 

the B cells shared the same MHC haplotype (H-2"). Subsequent experiments using 

congenic H-2 mouse strains revealed that the portion of the H-2 complex which was 

crucial for the interaction between carrier and hapten-primed cells involved the I region, 

now known to code for MHC class B genes (Katz et al, 1974).

The discovery of monoclonal antibodies produced by hybridomas (Kohler et a l, 1975) 

allowed the identification and analysis of lymphocyte populations expressing different 

membrane proteins. These surface proteins were initially recognized as markers for 

lymphocytes subpopulations, but further analysis revealed that they also played 

important roles in the effector functions of these cells (The Leucocyte Antigen Facts 

Book, Barclay e ta l,  1997).
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1.3 Reciprocal signaling between T helper cells and B cells

The critical role of CD4* T helper cell activity for B cell activation and function became 

apparent when it was shown that direct physical interaction between T cells and B cells 

was necessary, since B cells proliferated when co-cultured with mitogen activated T 

cells, but not when cultured with the supernatant from these activated T cells (Clement et 

al., 1984). The use of membranes from activated T cells could replace whole activated T 

cells, and induce B cell proliferation (Brian, 1988). Suggesting that membrane molecules 

on activated T cells interacted directly with membrane molecules expressed on B cells, in 

order to induce B cell proliferation. The critical role of CD40 was later confirmed when 

activated T cells were rendered incapable of inducing B cell proliferation, due to the 

inhibitory effect of a soluble CD40-Ig molecule. The ligand on T helper cells was found, 

by use of the soluble CD40-Ig, to be expressed only on activated T helper cells (Noelle et 

al., 1992).

In addition to the CD40-CD40L interaction, another T and B cell receptor/ligand 

interaction has been found to be important for the mutual regulation of T and B cells. 

This involves CD28/CTLA-4 which is expressed on T cells and CD80/CD86 which is 

expressed on B cells (Lenschow et al., 1996).

Interactions between T and B cells must be regulated in order to prevent activation of 

self-reactive or bystander cells and experiments have shown that, to initiate activation of 

antigen specific T and B cells, distinct signals are required. The first signal is antigen 

specific and is mediated by the interaction between the T cell receptor/CD3 complex and 

antigen bound on MHC class II expressed by B cells. This induces the expression of 

CD40L on T cells. CD40L then interacts with CD40 which then upregulates the 

expression of CD80 and CD8 6  on the B cell. The T cell receives a signal through CD28 

mediated by the upregulated expression of CD80 and CD8 6  on the B cell. CD80/CD86 

interacting with CTLA-4, on the T cell, is thought to be a negative regulator of T cell 

activation. The activated T cell starts to secret cytokines, which further induces the
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upregulation of CD80/CD86 on the B cell. The final result is fully activated antigen 

specific T and B cells (Clark & Ledbetter, 1994; Durie et al., 1994; Lenschow et al., 

1996). Another possible sequence of events after the initial interaction between the T cell 

receptor/CD3 complex and antigen bound on MHC class H, is that CD80/CD86 binds to 

CD28/CTLA-4. This induces the upregulation of CD40L on the T cell and CD40L would 

then signal through CD40, inducing CD80/CD86 upregulation of expression, which 

would then result in amplification of the T cell response (Hollenbaugh et a i, 1994)

Experimental evidence that supports the two models described above is presented here. 

The presence of CD40 and MHC class II on resting B cells, or the T cell receptor/CD3 

complex and CD28 on T cells is insufficient to initiate mutual activation (Fuchs & 

Matzinger, 1992). Antibodies that cross-link CD3, resembling activation through TCR, 

induce expression of CD40L (Roy etal., 1993) which then interact with CD40 on the B 

cell. CD40 cross-linking induces the expression of CD80 (Ranheim & Kipps, 1993) and 

CD8 6  (Azuma et a i, 1993) on the B cell. In vitro studies on the regulation of CD40L 

were carried out using pigeon cytochrome C (PCC) TCR transgenic T cells. (Roy et a i,  

1995). In the presence of antigen presenting cells (APC), the addition of PCC induced 

CD40L expression on the T cells, an effect which could be inhibited by the addition of 

antibodies to MHC class H, CD4 or LFA-1. Antibodies that blocked CD80, CD8 6  and 

CTLA-4-Ig did not interfere with the PCC-induced upregulation of CD40L. As a result 

of PCC-induced upregulation of CD40L, B cells were induced to upregulate both CD80 

and CD8 6 . The upregulation of CD80 and CD8 6  could be blocked by an anti-CD40L 

mAB. These results suggest that interaction between the T cell receptor/CD3 complex 

and antigen bound on MHC class II induces the expression of CD40L and that 

costimulation by the CD80-CD28 interaction is not required for the expression of 

CD40L. This is in contrast to the findings that human T cells activated by mAb to the 

TCR/CD3 complex require a CD80-CD28 signal for the upregulation of CD40L (de et 

a l,  1993).
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The models for mutual activation of T and B cells described above are obviously very 

simplified models. CTLA-4 has a higher affinity for CD80/86 than CD28 and the 

addition of anti-CTLA-4 mAh to in vitro model systems of T cell activation generally 

leads to increased T cell proliferation, indicating that CTLA-4 is a negative regulator of T 

cell activation. This is confirmed by experiments showing that CTLA-4 deficient mice die 

at 2-4 weeks of age due to uncontrolled lymphocyte proliferation (Lenschow et al., 1996; 

Linsley & Golstein, 1996; Waterhouse et al., 1995). Adhesion molecules, such as 

CDl la/18-CD54 (LFA-l-ICAM-1), are also required for the interaction between T and B 

cells to occur (Barrett et a i, 1991). This reciprocal signaling may occur in the peripheral 

lymphoid T cell area, where CD40L^ T cells have been identified in both mice and 

humans, or in the light zones of germinal centres, where CD40L^ T cells have also been 

found (Lederman et a l, 1992a; Van et a l, 1993).

The central role of CD40L in initiating the clonal expansion and differentiation of B cells 

into antibody forming cells and memory cells is important, but it is equally important that 

B cells mature into “competent” antigen presenting cells by expressing high levels of 

costimulatory molecules (CD80/CD86), thereby inducing maximal T cell activation and 

cytokine production.

1.4 Structure of CD40 and cellular distribution

CD40 is a member of the tumor necrosis factor receptor (TNFR) family of receptors that 

include TNFRl, TNFR2, nerve growth factor receptor (NGFR), CD30, CD27, Fas and 

others. Members of the TNF receptor family are type-I membrane proteins and have a 

characteristic repeating extracellular cysteine-rich domain (Beutler & van, 1994). CD40 

is a 50 kDA protein that was first identified in 1986 by monoclonal antibodies which 

were found to induce proliferation in B cells (Clark & Ledbetter, 1986; Ledbetter et a l ,  

1987). A human cDNA clone encoding CD40 was isolated and it was found to encode a 

type-I membrane protein of 277 amino acids. Type-I membrane proteins are 

characterized by having the C-terminal part of the protein on the intracellular side of the
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membrane and the N-terminal part of the protein on the extracellular side of the 

membrane. The amino terminal region contains a 19 amino acid hydrophobic signal 

peptide, followed by a 193 amino acid extracellular domain including 22 cysteine 

residues and two potential N-linked glycosylation sites. The transmembrane part of 

CD40 consists of 22 hydrophobic residues and the cytoplasmic domain a 62 amino acids 

(Stamenkovic etal., 1989).

A cDNA encoding murine CD40 has also been isolated. A comparison of the amino acid 

sequence of human and murine CD40 showed some differences. The murine CD40 

protein contains a 21 amino acid amino terminal signal peptide, a 172 amino acid 

extracellular domain, a 22 amino acid hydrophobic transmembrane domain and a 90 

amino acid cytoplasmic domain. The extracellular domain of murine CD40 contains 23 

cysteine residues, 2 2  of which are conserved with respect to the human sequence and 

one N-linked glycosylation site which is shared with the human sequence. Overall, it 

was found that the extracellular human and murine domains are 62 % identical while the 

cytoplasmic domains are 78 % identical (Torres & Clark, 1992). Chromosomal mapping 

of the human and murine CD40 has shown that the human gene is located on 

chromosome 20 (Ramesh et al., 1993) whilst the murine gene is located on chromosome 

2 (Grimaldi et al., 1992). Analysis of the murine CD40 genomic structure revealed the 

presence of 9 exons spanning a region of 16 kb (Grimaldi et al., 1992).

CD40 is constitutively expressed on many cells including B cells, macrophages, 

follicular dendritic cells, thymic epithelium, endothelial cells and Langerhans cells 

(Alderson etal., 1993; Caux e ta l,  1994; Clark, 1990; Galy & Spits, 1992; Hollenbaugh 

e ta l ,  1995; Karmann et a l,  1995). This molecule plays a central role in both T and B 

cell activation. Studies show that activating human dendritic cells in vitro with TNF-a or 

soluble CD40L antibody increase their surface expression of CD40, CD80, CD54 and 

MHC class n  two- to three-fold, suggesting that maturation of dendritic cells to become 

“effective” antigen presenting cells requires increased surface expression of CD40. Not 

only does the surface expression of CD40 increase, but it seems that further signals
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through CD40 are required for DC’s to become fiilly effective (Sallusto & Lanzavecchia, 

1994). CD40 has also been reported to be expressed by human B cells in a soluble form, 

indicating that signaling to B cells through CD40 might be regulated by secretion of a 

soluble form of CD40 (van et al., 1994b). It has been suggested that CD40L binds to 

CD40 which is expressed at very low levels on T cells. CD4* T cells appear to respond 

to this CD40L cross-linking by proliferation and secretion of IFN-y, TNF-a and IL-2 

(Armitage era/., 1993).
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TNF and TNF 
recep to r 

superfamilies

COOHCOOH COOH

COOH

1 E E #
1 E arn1
1 E arn1

Soluble forms of TNFR a n d  TNF 
superfamil ies  also exist

CD134L
4-1 BBL
CD27L
CD30L

Figure 1. TNF and TNF receptor superfamilies. The receptors CD40, TNFR I and II, CD95, 

CD 134, CD 137, CD27 and CD30 are all type I membrane proteins containing cysteine-rich 

repeats (Tr). The ligands, shown here as trimers, are type II membrane proteins. Trimer 

domain (T). Potential N-linked glycosylation sites are shown as ball on stick. (Figure taken 

from Immunology Today, October 1997).
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1.5 Structure and expression of CD40 ligand

The ligand for CD40, CD40 ligand, is a member of the tumor necrosis factor (TNF) gene 

family, and was identified using monoclonal antibodies. Monoclonal antibodies were 

selected on the basis of their ability to block T cell induced B cell proliferation. This led 

to the identification of two antibodies, an anti-human antibody (5c8) (Lederman et al., 

1992b) and an anti-murine antibody (MR 1 ) (Noelle et al., 1992) both of which blocked 

the ability of activated T cells to induce B cell proliferation. Both antibodies recognized a 

protein of 30-39 kDa. The cDNA encoding the murine CD40 ligand was identified by 

screening a cDNA expression library using a CD40-Ig fusion protein (Armitage et al., 

1992a). The human cDNA encoding CD40 ligand was later isolated by subtractive 

hybridization and comparison with the murine sequence for CD40 ligand (Graf et al., 

1992; Hollenbaugh et al., 1992; Spriggs et al., 1992). A cDNA encoding the human 

CD40 ligand was isolated using the 5c8 mAB (Lederman et al., 1993).

Analysis of the cDNA clone containing the murine CD40 ligand showed that it encoded a 

260 amino acid polypeptide with typical characteristics of a type II membrane protein. 

Murine CD40 ligand is composed of a 22 amino acid cytoplasmic domain followed by a 

24 amino acid hydrophobic transmembrane domain and a 214 amino acid extracellular 

domain which contains a single potential N-linked glycosylation site (Armitage et al., 

1992a). Analysis of the cDNA clones of human CD40 ligand showed that it encodes a 

polypeptide of 261 amino acids. This polypeptide consists of a 22 amino acid 

cytoplasmic domain, a 24 amino acid transmembrane domain, and a 215 amino acid 

extracellular domain containing a single potential N-linked glycosylation site, in common 

with the murine CD40 ligand. Analysis of the genomic structure of human and murine 

CD40L revealed 5 exons with 4 intervening introns spanning a region of 13-14 kb 

(Tsitsikov et al., 1994; Villa et al., 1994). Chromosomal mapping of the murine CD40 

ligand showed that the gene was linked to H P R T  on the X chromosome (Padayachee et 

a l ,  1993), while the human CD40 ligand mapped to the q26 band of the long arm of the
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X  chromosome (Aruffo et al., 1993; Graf et al., 1992). Comparison of the murine and 

human CD40 ligand amino acid sequences showed 73% identity at the amino acid level. 

Comparison of the amino acid sequence of the extracellular domain of CD40 ligand with 

that of other known protein sequences showed that CD40 ligand is related to TNF-a and 

TNF-p (Beutler & van, 1994; Hollenbaugh etal., 1992).

CD40 ligand functions as a membrane-bound protein, however it has been reported that 

the supernatant from a murine T cell line, which expresses the membrane-bound form of 

CD40 ligand, also contains a soluble form of CD40L which induces B cell activation. 

This effect could be blocked using a CD40-Ig fusion protein. The biological function of 

the soluble form of CD40L is unknown (Armitage et al., 1992b; Graf et al., 1995). 

CD40L is not constitutively expressed on the cell surface, but can be detected on CD4^ T 

cells after in vitro activation with anti-CD3 mAb or PMA/ionomycin. Detectable levels of 

CD40L were found 2-4 hours following activation and maximal levels were detected 6 - 8  

hours post-activation. Subsequent down regulation occurred 24-48 hours post

activation. Anti-CD3 activation of human CD8  ̂ T cells did not induce expression of 

CD40L, although CD8  ̂ T cells activated with PMA/ionomycin did express CD40L 

(Castle etal., 1993; Lane etal., 1992; Roy etal., 1993; Sad etal., 1997).

Murine CD4^ Thl and Th2 clones were shown to express high levels of CD40L 

following in vitro activation with anti-CD3 mAb and the expression of CD40L on these 

T helper subsets could also be regulated by cytokines. TGF-P downregulated the 

expression of CD40L on both subsets, whereas IFN-y only downregulated CD40L 

expression in Th2 cells. In this study lL-1, IL-2 and IL-4 had no effect on CD40L levels 

(Roy et a l,  1993). Immunohistology of the spleens of mice immunized with Keyhole 

Limpet Hemocyanin (KLH) revealed that CD40L expressing T cells were predominantly 

found in the outer periarteriolar lymphocyte sheaths (outer-PALS) and around the 

terminal arterioles. The greatest number of CD40L expressing T cells were observed 3-4 

days after immunization with KLH, and tlicsc cells produced IL-2, IL-4 and IFN-y with 

similar kinetics to those seen for CD40L expression. It was shown that B cells producing
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antibodies to KLH were located in close proximity to the CD40L expressing T cells (van 

etal., 1994a).

CD40L is expressed on activated basophils (Gauchat et al., 1993) and eosinophils 

(Gauchat et a l, 1995). In both cases, these activated cells could induce the production of 

IgE by B cells in the presence of IL-4. Functional CD40L has also been found on human 

blood dendritic cells. These dendritic cells could induce B cell IgG and IgA production, 

suggesting that CD40L on dendritic cells may regulate B cell activation and 

differentiation (Pinchuk et al., 1996). CD40L is also expressed on human B cell lines, 

which are able to induce resting B cells to produce immunoglobulin in a CD40-dependent 

manner. These results indicate that human B cells express a ligand for^CIMO identical to 

that expressed on activated CD4^ T cells (Grammer et al., 1995).

1.6 The CD40-CD40L interaction

The crystal structures of CD40 and a complex of C!D40^CD40L are still unknown. 

However, X-ray structures of TNF-a, TNF-p (Eck & Sprang, 1989; Eck et al., 1992; 

Jones et al., 1989), and the TNF-p/TNFR complex have been elucidated (Banner et al„ 

1993) and these structures have served as templates for three-dimensional models of the 

extracellular domains of CD40, CD40L, and CD40-CD40L complex (Bajorath et al., 

1995b). Using structure-based sequence alignments and computer modeling, surface 

residues in CD40 and CD40L were selected to be targeted for site-directed mutagenesis. 

Binding studies with the mutant proteins resulted in the identification of five CD40 

residues (E74, Y82, D84, N86, E l 17) and five CD40L residues (K143, Y145, Y146, 

R203, Q220) whose replacement with Alanine substantially affected the interaction of the 

two molecules (Bajorath et al., 1995a; Bajorath et al., 1995b). In all the binding 

experiments carried out, the stmctural integrity of the mutant proteins were determined 

using anti-CD40 and anti-QMOL mAbs, recognizing different conformational epitopes. 

These models predict that CD40L forms a trimer and that CD40 binds to the CD40L 

trimer at the interface between each of the monomers so that each CD40L trimer binds
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three CD40 molecules (Bajorath et al., 1995b). This is analogous to the TNF-P/TNFR 

complex (Peitsch & Jongeneel, 1993). In the TNF-p/TNFR complex, ligand binding has 

been proposed to result in receptor clustering and signal transduction (Banner et al., 

1993), a similar mechanism might be responsible for CD40 signaling (Bajoratli et al., 

1995b).

A crystal structure of an extracellular fragment of human CD40 ligand has now been 

determined. CD40L forms a trimeric molecule hke other members of the TNF family, 

such as TNF-a and TNF-P, and exhibits a similar overall folding pattern. Two residues 

(K143, Y145) appear to be directly involved in CD40 binding and the area immediately 

surrounding these two residues are also important for CD40 binding, whereas CD40L 

residues (S131, N180, F201, E202, N240) were not directly involved in CD40 binding. 

The CTMOL structure suggests that most of the point-mutations occurring in patients 

suffering from hyper IgM syndrome (see “X-linked immunodeficiency with hyper-IgM“) 

affect the folding and stability of the whole protein rather than directly affecting the 

binding site (Karpusas etal., 1995).

1.7 CD40 intracellular signaling

The mechanism of signal transduction by members of the tumor necrosis factor (TNF) 

receptor family has only just begun to be elucidated. The cytoplasmic domains of the 

receptors in this family do not contain any obvious enzymatic activities, such as a 

tyrosine kinase domain (Tewari & Dixit, 1996). The mechanism by which they couple to 

downstream cellular signaling events is still an enigma.

The role of the CD40 cytoplasmic domain in signal transduction was examined by Inui 

and co-workers (Inui et al., 1990). A cDNA encoding human CD40 was transfected into 

a murine B-cell lymphoma and a murine thymoma. Cross-linking of CD40 using anti- 

CD40 mAb resulted in inhibition of growth of these transfectants. By mutagenesis of the 

cytoplasmic domain of CD40 it was shown that a CD40 deletion mutant lacking Thr^^ ,̂ 

or a point mutation in which Thr^^ was substituted with Ala, were unable to transmit
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downregulatory signals in this system. This suggests that Thr̂ '̂̂  or a region around this 

residue is critical for CD40 signal transduction. The two major effects of CD40 activation 

on B cells is the activation of NF-kB and the activation of protein tyrosine kinases 

(PTKs). Cross-linking CD40 on resting human tonsillar B eclls and on B-cell lines 

results in the activation of transcription activator proteins p50, p65 (RelA), c-rel and NF- 

KB (Berberich et al., 1994). Furthermore, coculture of human tonsillar B cells with 

various concentrations of PTK inhibitors led to inhibition of anti-CD40 mAb mediated 

activation of NF-kB, demonstrating that PTK activity is required for CD40-dependent 

NF-kB activation (Berberich etal., 1994). The increase in PTK activity following cross- 

linking and activation of CD40 may play an important role in mediating the biological 

effects of CD40, as PTK inhibitors attenuate B-cell aggregation and immunoglobulin 

isotype switching in response to CD40 cross-linking (Kansas & Tedder, 1991; Ren et 

al., 1994a). Phosphorylation of the src related kinase lyn has been shown to occur 

within one minute of CD40 cross-linking, whereas phosphorylation of other src related 

kinases such asfyn ,fgr  and Ick remains unchanged. CD40 cross-linking also results in 

phosphorylation of phospholipase Cy2 and phosphatidylinositol (PI)-3-kinase. 

Phosphorylation of PI-3-kinase was shown to be associated with an increase in its 

enzymatic activity. These findings suggest that lyn, phospholipase Cy2 and PI-3-kinase 

play an important role in CD40 signal transduction (Ren et al., 1994b). As lyn does not 

appear to associate directly with CD40, it seems likely that other molecules are required 

for the initial stage of signaling by CD40 (Ren et al., 1994b).

Two molecules have been identified which bind the cytoplasmic domain of CD40. The 

first, TRAF2 (TNFR-associated factor 2), binds to the cytoplasmic domain of CD40 and 

to the cytoplasmic domain of TNFR2. The second, TRAF3 (TNFR-associated factor 3) 

is identified as a 64kDa protein that binds to the cytoplasmic domain of CD40 (Cheng et 

a l,  1995; Hu et al., 1994; Mosialos etal., 1995). This factor also binds to the LMPl 

protein of the Epstein-Barr virus, which is known to be a potent inducer of B cell 

activation and proliferation. TRAF2 and TRAF3 share a region of homology near their
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carboxyl termini, which binds the cytoplasmic domain of CD40, termed the TRAF 

domain (Rothe et al., 1994). In addition to the TRAF domain, TRAF2 and TRAF3 

contain an amino-terminal ring finger motif which may mediate protein-protein 

interactions. A possible role for TRAF2 is NF-kB activation. Overexpression of TRAF2 

activates NF-kB, whereas expression of the ring-finger tmncated version of TRAF2 

attenuates CD40-mediated NF-iÆ activation (Rothe et al., 1995). A tmncated version of 

TRAF3 lacking the ring-finger motif can act as a dominant negative inhibitor, blocking 

the induction of CD23, a low affinity receptor for IgE, which is activated by CD40 

ligation (Cheng et al., 1995), suggesting that TRAF3 is involved in CD40-mediated 

signaling. In contrast, overexpression of full-length TRAF3 blocks CD40-mediated 

activation of NF-kB (Rothe et al.; 1995). The reason for the discrepancy in TRAF3 

signaling is not clear. In addition to TRAF3 a new protein, TRAF5, has been found that 

binds the cytoplasmic tail of CD40. In vitro binding assays reveal that TRAF5 binds the 

cytoplasmic tail of CD40, but not the cytoplasmic tail of TNFR2. Overexpression of 

TRAF5 activates NF-kB, in contrast to TRAF3. The differences in signaling between 

TRAF3 and TRAF5. i.e. suppression versus activation of NF-kB and the fact that they 

both bind CD40, suggests that they may be involved in both common and distinct 

signaling pathways (Ishida et al., 1996b). Yet another molecule, TRAF6, has been 

identified by use of a yeast two-hybrid system. TRAF6 seems to bind a region on the 

cytoplasmic tail of CD40 that is different from the region that binds TRAF2, TRAF3 and 

TRAF5. Despite the difference in binding, TRAF6 is also involved in NF-kB activation 

(Ishida et al., 1996a). What still remains to be determined is, which molecular 

interactions link TRAF2, TRAF3, TRAF5 and TRAF6 to NF-kB activation.

1.8 Functional consequences of CD40 engagem ent

1.8.1 CD40 Induced immunoglobulin produotlon

Antibodies against CD40 in the presence of IL-4 were found to induce proliferation in 

human B cells (Clark & Ledbetter, 1986; Ledbetter et al., 1987). Other studies showed
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that Stimulation via CD40 in the presence of IL-4 induced immunoglobulin class 

switching from IgM to IgE and the combination of IL-2 and IL-4 induced the production 

of large quantities of IgM and IgA (Rousset et a l, 1991; Zhang et a l ,  1991). The ability 

of CD40 to induce B cell proliferation and isotype switching in vitro, suggested that the, 

CD40-CD40L interaction in vivo might play a role in antibody production. This was 

tested by use of a CD40L antibody (MRl), which blocks the CD40-CD40L interaction. 

Following immunization with either T cell dependent or T cell independent antigens, 

mice were treated with the MRl antibody. It was shown that the antibody blocked both 

primary and secondary antibody responses to T cell dependent antigens, but had no 

effect on the antibody response to T cell independent antigens (Foy et a l,  1993).

1.8.2 CD40 and Fas-induced apoptosis

Activation of B cells through CD40 was found to result in the induction of Fas 

expression, rendering B cells susceptible to Fas-induced apoptosis (Garrone et a l,  

1995). Another study showed the importance of signals received through the B cell 

receptor. Fas and CD40 for the survival or death of B cells interacting with T cells. 

When the B cell receptor is triggered simultaneously with CD40 and Fas, Fas induced 

apoptosis is inhibited. It is proposed that B cell receptor triggering leads to upregulation 

of CD86, which interacts with CD28 on the T celL This increased activation induces 

upregulation of CD40L and Fas and secretion of cytokines, leading to further 

differentiation of the B cells into plasma cells or memory cells. However, lack of 

triggering of the B cell receptor and continued CD40 and Fas ligation, leads to apoptosis. 

Prolonged triggering of the B cell receptor, CD40 and Fas, in the absence of cytokines 

also leads to apoptosis (Rathmell et a l, 1996).

1.8.3 CD40 induced Th l development

Dendritic cells (DC) are professional antigen presenting cells (AFC) specialized in 

antigen capture, migration to secondary lymphoid organs and T cell priming (Steinman, 

1991). CD40 cross-linking on human dendritic cells by CD40L was shown to upregulate
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the expression of CD80, CD86 and CD54, leading to increased capacity of DCs to 

stimulate proliferation of autologous or allogeneic T cells and IFN-y production by T 

cells. In addition, DCs were induced to produce high levels of IL-12 upon CD40 cross- 

linking (Celia et al., 1996; Peguet et al., 1995). A similar study with murine dendritic 

cells showed that CD40 cross-linking induced IL-12 production by dendritic cells, and 

that IL-12 production could be down regulated by IL-4 and IL-10 (Koch et al., 1996). 

IL-12 production by human monocytes could be triggered by activated T cells and this 

could be inhibited by a soluble CD40 (CD40-Ig) antibody blocking the CD40-CD40L 

interaction (Shu et al., 1995). It has been established that IL-12 is responsible for the 

development of Thl responses (Trinchieri, 1995) and these results suggest that the 

CD40-CD40L interaction is important for the priming of Thl T cells via the stimulation 

of IL-12 secretion by antigen presenting cells. This hypothesis was tested in an in vivo 

model for a Thl-mediated disease, the hapten reagent 2,4,6-trinitrobenzene sulfonic acid 

(TNBS) induced colitis. This experimental animal model of colitis has been shown to be 

Thl-mediated as the majority of the infiltrating CD4^ T cells predominantly secrete IFN- 

y. Treatment with anti-CD40L antibodies during the induction of the Thl-mediated colitis 

was able to prevent the disease and a decrease in IL-12 production was observed. When 

mice treated with TNBS and anti-CD40L were also administered recombinant IL-12, the 

effect of anti-CD40L was reversed and severe disease resulted. This study confirmed the 

role of CD40-CD40L in the priming of Thl effector cells (Stuber et al., 1996).

1.9 Germinal Centres

Germinal centres aie the anatomical sites in which B cells undergo somatic 

hypermutation and immunoglobulin isotype switching, followed by differentiation into 

either plasma cells or memory cells (Kelsoe, 1996). When an organism is challenged 

with a pathogen or antigen via the skin or mucosal surfaces, the antigen is captured by 

immature dendritic cells (Steinman, 1991). The dendritic cells then mature during 

migration into the T cell rich areas of secondary lymphoid organs, such as the spleen, 

lymph nodes and Peyer’s patches. Once they have reached the T-cell rich area (Figure 2.
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A.), the mature dendritic cells, now called interdigitating dendritic cells (IDC), present 

antigen derived peptides bound to MHC class II, to naive antigen specific CD4^ T cells 

(MacLennan et al., 1997). These antigen activated CD4^ T-cells either leave the T ceU 

rich area to become recirculating effector- and memory-cclls, or migrate to the outer zone 

of the T cell rich area. In the outer zone the antigen activated C!D4̂  T cells associate with 

naive antigen specific B cells that have been activated through their B cell receptor (BCR) 

by free antigen (MacLennan et al., 1997). After this cognate interaction between activated 

CD4^ T cells and activated B cells, the activated CD4^ T cells migrate into the light zone 

of the germinal centre or become recirculating effector- or memory-cells. The activated B 

cells migrate to extrafoUicular sites where they either differentiate into plasma cells that 

are mainly short-lived (Smith et al., 1996), or into centroblasts to form the dark zone of 

the germinal centre (Liu et al., 1991; MacLennan et al., 1990). B cell growth in 

extrafoUicular sites is not associated with somatic mutation in Ig variable-region genes 

(Jacob etal., 1991a), but memory B cells with mutated Ig variable-region genes can be 

induced in secondary responses to proliferate in extrafoUicular sites and differentiate into 

plasma ceUs (Toellner et al., 1996).

In the dark zone the centroblasts activate a somatic hypermutation mechanism that acts on 

their Ig variable region genes, which changes the affinity and specificity of the B ceU 

receptor (Berek et al., 1991 ; Jacob et a l, 1991b). The centroblasts continue to proliferate 

with a ceU cycle time of 6-7 hours. There is no increase in numbers of centroblasts, 

however, as they continually give rise to non-dividing centrocytes, which then migrate 

into the foUicular dendritic ceU (FDC) network (Liu et a l,  1991; Zhang et a l,  1988). 

Having undergone affinity maturation of the Ig variable region in the dark zone, the 

centrocytes are now selected in the light zone of the germinal centre on the basis of their 

abiUty to bind and process antigen held on FDC and make cognate interaction with 

antigen activated germinal centre T ceUs (MacLennan, 1994). There is a high death rate 

among B cells in germinal centres. This occurs among centroblasts as well as centrocytes 

but the greatest concentration of dying cells is found among the centrocytes in the Ught
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zone (Hardie etal., 1993). Apoptosis in these germinal centre B cells seems to correlate 

with high expression of apoptosis-inducing genes, such as c-myc, p53, Bax and Fas in 

the absence of Bcl-2. Apoptosis of cultured centrocytes can be delayed for some hours 

by crosslinking their BCR with anti-Ig coated onto erythrocytes (Martinez et al., 1996). 

The fact that CD40L is expressed by activated T cells (Armitage et al., 1992a) pointed to 

the possibility that germinal centre T cells might be involved in the selection of 

centrocytes. This hypothesis was supported by results showing that a more efficient 

inhibition of apoptosis in centrocytes could be achieved by CD40 cross-linking with 

CD40 monoclonal antibody (Liu et al., 1989) or recombinant CD40L (Holder et al., 

1993), The survival signal delivered through CD40 does not act by upregulating Bcl-2 

expression, but apoptosis is inhibited for several hours before Bcl-2 starts to be 

expressed in centrocytes (Holder et al., 1993).

The role of CD40-CD40L in the development of germinal centres and the generation of 

memory B cell development was examined in vivo. Mice were immunized with sheep red 

blood cells (a thymus-dependent antigen), treated with anti-CD40L antibody (MR-1), 

and the development of germinal centres was evaluated using immunohistochemical 

staining for the presence of germinal centres 9-11 days after immunization. The results 

showed that the formation of germinal centres was completely inhibited as a result of 

treatment with anti-QMOL antibody. Furthermore, adoptive transfer experiments 

demonstrated that the generation of antigen-specific memory B cells was inhibited by 

blocking the QMO-QMOL interaction, with no IgGl production by memory B cells 

(Foy et al., 1994). Another study demonstrated that in vivo treatment with anti-QMOL 

antibody inhibited both primary and secondary immunoglobulin responses to thymus- 

dependent antigens, whereas the immunoglobulin response to thymus-independent 

antigens was unaltered (Foy et al., 1993). The QMO-QMOL interaction was found to be 

necessary for memory B cell development to thymus-dependent antigens but not 

germinal centre formation, in experiments using a soluble QMO fusion protein (QMO- 

Ig) that blocked the QMO-QMOL interaction (Gray et al., 1994). The reason for the
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discrepancy in the requirement for the CD40-CD40L interaction in germinal centre 

formation is unknown, but it is argued that the soluble CD40 fusion protein may be 

incapable of efficient blocking of the CD40-CD40L interaction involved in germinal 

centre formation (Foy et al., 1994).

Germinal centre T cells not only express CD40L (Casamayor et al., 1995), but may also 

express Fas-ligand. In vitro experiments have shown that CD40L is not able to protect 

germinal centre B cells from Fas mediated apoptosis and even primed resting B cells are 

sensitive to Fas-mediated apoptosis (Garrone et al., 1995), however anti-Ig could inhibit 

this Fas-mediated apoptosis. Therefore, germinal centre B cells will die by apoptosis if 

they do not interact with T cells expressing CD40L within a short period of time or if 

they interact with T cells expressing CD40L and Fas-ligand in the absence of B cell 

receptor triggering (Rathmell et al., 1996). These results support a model for selection in 

the germinal centres. Centrocytes that have undergone somatic hypermutation but only 

have low-affinity antigen receptors die by apoptosis due to their failure to bind antigens 

on follicular dendritic cells. Centrocytes with high-affinity antigen receptors will bind 

antigen on FDCs, take up the antigen and present it to gemiinal centre T cells. These T 

cells will then deliver a rescue signal via CD40L and the centrocytes start to differentiate 

into plasma cells or memory B cells (MacLennan, 1994).

In vitro experiments have shown that in addition to the involvement of CD40L in 

preventing Fas-mediated apoptosis and it’s role in subsequent plasma cell and memory 

cell development, CD40L also produces a negative signal that prevents human germinal 

centre B cells from differentiating into plasma cells. Germinal centre B cells undergo 

strong proliferation in the presence of IL-2 and IL-10, as long as CD40L is provided. 

Upon withdrawal of the CD40L, germinal centre B cells rapidly differentiate into plasma 

tells (Arpiii tl a l,  1995). A similai* study examined the role of CD40 cross-linking on 

human centrocytes co-cultured with either naive T cells or memory T cells. Both T cell 

populations were induced to express CD40L, before co-culture with centrocytes. It was 

found that centrocytes formed conjugates with the memory T cells and the cells in these
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conjugates differentiated into memory B cells. The effect was lost if the CD40-CD40L 

interaction was blocked by an anti-CD40L antibody. Centrocytes co-cultured with naive 

T cells did not differentiate into memory B cells. Taken together these experiments 

suggest that CD40 cross-linking induces centrocytes to differentiate into meinoiy B cells 

and differentiation of centrocytes require memory T cells (Casamayor et al., 1996).
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1: Introduction

1.10 Immunoglobulin class switching

Immunoglobulin class switching occurs when IgMffgD^ B cells switch expression to a 

different heavy-chain constant region (C„), which results in a change in both the class of 

antibody and in the effector function. The expressed variable region (V(D)J-region) of 

both heavy- and light-chains do not change, therefore the specificity of antigen binding is 

unaltered (Stavnezer, 1996a). Immunoglobulin class switching in IgM^gD^ B cells starts 

approximately 6 days after activation by thymus dependent antigens in vivo (Stavnezer, 

1996a). The mechanism resulting in class switching is a switch recombination event, in 

which the V(D)J region recombines with a downstream heavy-chain constant region 

(C^^J and the intervening DNA is deleted, resulting in the following isotypes; IgG, IgE 

and IgA. The switch recombination event occurs between tandemly repeated sequences, 

called switch regions, which are located upstream of each heavy-chain constant region. 

Sterile “germline” transcripts, are produced prior to the switch recombination event and 

have been shown to be essential for class switching to occur (Coffman et al., 1993; 

Sideras et al., 1989). Germline transcripts lack the V(D)J-encoded sequence and 

therefore cannot diiect synthesis of inununoglobulin. Transcription of these gennline 

transcripts starts 5’ to the switch region, proceeds through the heavy-chain constant 

region (C^^ J  and terminates at the normal poly(A) sites for secreted or membrane bound 

Ig heavy-chain mRNAs. After switch recombination, DNA 5’ to the switch region is 

deleted from the chromosome and thus germline transcripts cannot be produced after 

class switching, instead, a functional V(D)J-Ch mRNA is produced (Liu et al., 1996; 

Lutzker & Alt, 1988; Stavnezer, 1996b). Class switching to IgG, IgA and IgE occurs by 

DNA recombination, in contrast to an alternative mechanism, RNA processing, that 

occurs for production of IgD, which is co-expressed with IgM on mature B cells 

(Stavnezer, 1996a).

Cultured mouse and human IgM^ B cells can be induced to switch to all classes of 

antibody isotypes by B-cell mitogens such as lipopolysaccharide (TI-1) for mouse B
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cells and by Staphylococcus aureus Cowan I for human B cells, in the presence of the 

appropriate cytokine (Stavnezer, 1996b). Immunoglobulin class switching in B cells is 

influenced by both CD40 cross-linking and the presence of different cytokines. In vitro 

studies have shown that purified human B cells could be induced to produce IgE by 

cross-linking CD40 (CD40 mAb) in the presence of recombinant IL-4 (Jabara et at., 

1990). IL-4 also augments class switching to IgA in murine B cells activated in vitro 

with LPS or CD40L in the presence of IL-5 and transforming growth factor-p (TGFp) 

(McIntyre etal., 1995). IL-10 induces isotype switching to IgGl and IgG3 in human 

CD40 activated B cells (Malisan et al., 1996) and to IgG3 in murine LPS activated B 

cells (Shparago etal., 1996). CD40 activation of murine splenic B cells has been shown 

to induce germline and e transcripts independently of cytokines (Warren & Berton, 

1995). Cross-linking surface-Ig on B cells with dextran (TI-2) induces germline Yp 

and Y%g transcripts, but not % and e (Zelazowski et al., 1995). Thus, it appears that both 

CD40 and surface-Ig signaling contribute to the isotype specificity of class switching.

1.11 X-linked immunodeficiency with hyper-lgM (HIGM1)

The X chromosome-linked form of the hyper IgM syndrome (HIGMl) is a rare disorder 

characterized by the inability of B cells to undergo immunoglobulin isotype switching. 

Affected males experience recurrent infections, usually within the 1st year of life, when 

levels of maternally-derived antibodies decline. Most infections are of bacterial origin, 

but HIGMl patients are also unusually susceptible to infections with opportunistic 

pathogens and often suffer from Pneumocystis carinii pneumonia and Cryptosporidium 

intestinal infection. These are diseases that are often observed with T-cell 

immunodeficiencies but not with other forms of hypogammaglobulinemia (Notarangelo 

et al., 1992). Haematological disturbances, such as anaemia, thrombocytopenia, and 

neutropenia are common in HIGMl patients. Autoimmunity and increased susceptibility 

to neoplasms are also well documented in HIGMl. HIGMl patients have normal 

numbers of circulating B cells. The overall early-mortality rate in HIGMl patients is not 

known, but the figure appears to be around 10% from a survey of 67 patients. HIGMl
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patients often suffer from life-threatening infections in spite of intravenous 

immunoglobulin and antibiotic prophylactics (Notarangelo e ta l,  1992).

Affected individuals have normal or elevated semm concentrations of IgM and decreased 

serum levels of IgG, IgE, and IgA (Geha et a l, 1979; Levitt et a l,  1983). The primary 

antibody response, that of IgM, develops normally upon in vivo antigenic stimulation. 

However, boosting results in poor secondary responses, with no expression of IgG 

specific antibodies (Nonoyama et a l,  1993). It has been shown that peripheral blood 

mononuclear cells from HIGMl patients, when stimulated with pokeweed mitogen in 

vitro, only secrete IgM, thus resembling the in vivo situation (Levitt et a l,  1983; Mayer 

e ta l ,  1986). Patients suffering from HIGMl show no development of germinal centres 

in the lymph nodes (Notarangelo et a l, 1992). The lack of immunoglobulin class 

switching seems to be a defect in B cell function, but the primary role of defective T 

helper cell activity was also established, when it was shown that B cells from HIGMl 

patients differentiated into IgG-secreting cells if cocultured with activated T cells (Mayer 

et a l ,  1986). With the exception of helper T cell activity, the in vitro and in vivo 

activation of T cells as measured by mitogen induced proliferation, response to 

alloantigen and delayed-type hypersensitivity is usually normal in HIGMl patients 

(Benkerrou gf a/., 1990).

Molecular genetic analysis of HIGMl patients revealed that the gene responsible for 

HIGMl mapped to Xq24-27 (Mensink e ta l,  1987), and was shown to be distinct from 

theXLA gene (Malcolme ta l,  1987). The study of a larger number of HIGMl patients 

allowed for further refinement of the HIGMl gene location to Xq26-27 (Padayachee et 

a l, 1993). Mapping of the CD40L gene to the q26.3-27.1 region of the X-chromosome 

by fluorescence in situ hybridization (Aruffo et a l,  1993; Graf et a l,  1992; Kroczek et 

a l,  1994), provided the initial evidence that CD40L was involved in HIGMl. The 

characteristics of the disease, low levels of isotype switched immunoglobulins, IgG, 

IgA, and IgE, indicated a failure in the ability to switch from IgM to other 

immunoglobulins. This was compatible with the finding that stimulation through CD40
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in the presence of cytokines was required to induce immunoglobulin class switching and 

secretion of inununoglobulins (Rousset et a l, 1991; Zhang et al., 1991).

To exclude a defect in the B cells of HIGMl patients, the capacity of B cells to secrete 

immunoglobulin was compared in HIGMl patients and age-matched controls. Peripheral 

blood lymphocytes (PBL) were cultured in the presence of pokeweed mitogen, a 

compound inducing immunoglobulin synthesis by activating B and T cells and allowing 

them to cooperate. PBL of HIGMl patients were unable to secret IgG, IgA or IgE in 

contrast to the controls, who were able to switch normally from IgM secretion to other Ig 

isotypes. However, when B cells from HIGMl patients were cross-linked directly 

through CD40 in the presence of Staphylococcus aureus Cowan (SAC) and IL 4 or IL 

10, the B cells produced IgG, IgA and IgE normally (Durandy et al., 1993; Korthauer et 

al., 1993). These findings confirm the unimpaired intrinsic capacity of B cells in HIGMl 

patients to undergo immunoglobulin class-switching in vitro and to produce 

immunoglobulin of all isotypes (Korthauer et al., 1993). Earlier analysis of 

immunoglobulin heavy-chain genes in B cells from HIGMl patients by use of genetic 

probes of constant and switch regions showed normal gene patterns (Mayer et al., 

1986). These results show that the inability to switch in these patients is due to 

ineffective helper T cell activity for B cell differentiation.

The cloning of the human CD40L molecule (Graf et al., 1992; Hollenbaugh et al., 1992; 

Spriggs et al., 1992) and the development of a soluble CD40-Ig fusion protein (Fanslow 

etal., 1992; Lane etal., 1992; Noelle etal., 1992) has enabled the analysis of the defect 

in HIGMl patients at the molecular level. Cell surface analysis of activated T cells from 

three males, all from unrelated families, demonstrated that CD40L expression was 

defective, since all three HIGMl patients failed to bind soluble CD40-Ig (Korthauer et 

al., 1993; Kroczek et al., 1994). However, the use of CD40L-specifie rabbit antisemm 

against a recombinant polypeptide derived from the first 137 amino acids of the 

extracellular portion of the CD40L protein showed that non-functional CD40L was 

expressed on activated T cells in some, but not all patients (Korthauer et al., 1993). In
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order to identify the basis for the failure of activated T cells from HIGMl patients to bind 

CD40-Ig, the CD40L mRNA was analysed. All three patients had point mutations, 

leading either to protein truncation, complete abrogation of cell surface expression or 

drastic amino acid changes (Korthauer et al., 1993). Other groups have also identified 

mutations in the CD40L protein from patients with HIGMl (Aruffo et al., 1993; Di et 

al., 1993). Apart from a Met^g-Arg substitution that affects the transmembrane portion of 

the protein, all other mutations appear to be located to the extracellular part of the protein, 

especially within the TNF homology domain, corresponding to amino acids 123-261 

(Kroczek et al., 1994). Three patients have been identified with a point mutation in the 

same codon (Trp,^) leading either to stop codons or a non-conservative amino acid 

substitution (Kroczek gf a/., 1994). This point mutation leads to complete abrogation of 

CD40-Ig binding. These findings are in agreement with the finding that amino acids 143 

and 145 in the CD40L protein are important for the binding of CD40 (Bajorath et al., 

1995a; Bajorath etal., 1995b).

In contrast to the above mentioned studies, hyper-lgM syndrome patients with functional 

CD40L have also been studied (Callard et al., 1994; Conley et al., 1994; Durandy et a l,  

1997). T cells from these patients were all able to bind to the CD40-Ig fusion protein and 

sequencing data showed that the CD40L cDNA appeared normal. However, serum IgG, 

IgA and IgE was undetectable and histology showed lack of germinal centres in the 

spleen. B cells from these patients were unable to synthesize IgG, IgA and IgE in vitro 

when stimulated with anti-CD40 mAb in the presence of IL-4 or IL-10. Sequence 

analysis of CD40 and CD40 binding proteins, TRAF2 and TRAF3, revealed no 

abnormalities in the protein coding regions in B cells from CD40L positive patients. 

Further studies traced the defect to phosphatidyl-inositol 3 (PI3) kinase activation and 

subsequent induction of NF-kB (Durandy et a l,  1997). Altogether, these results show 

that patients suffering from HIGMl have a defect either in CD40L or in the CD40- 

triggered activation cascade, both of which account for the lack of germinal centre 

formation and immunoglobulin isotype switching.
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Patients with HIGMl have normal or elevated levels of serum IgM, indicating that IgM 

synthesis and secretion can proceed in the absence of a functional CD40-CD40L 

interaction. In HIGMl patients with elevated IgM, levels of IgM often fluctuate, and 

increases in IgM levels often coincide with infection. This probably reflects the response 

to antigenic stimulation (Kroczek et al., 1994).

1.12 Generation of a gene-deleted, m ouse by homologous 
recombination In embryonic stem cells

The most definitive way of establishing the function of a gene in vivo is the generation of 

a gene-deleted mouse (“knockout mouse”) by targeted mutation of the gene. The whole 

process of making a gene-deleted mouse is dependent upon the occurrence of a 

homologous recombination event that occurs between the targeting vector and the 

endogenous gene in mouse embryonic stem (ES) cells.

The targeting vector contains sequences homologous to the endogenous gene, and once 

introduced into ES cells by electroporation, the sequences that are homologous can 

recombine with and replace the endogenous gene. Positive and negative selection 

markers are used to select for cells in which a homologous recombination event have 

taken place (Figure 3.). The positive-selection marker, a neomycin resistance gene 

(NEC) is inserted into an upstream exon and the negative selection-marker, a viral 

thymidine kinase gene (TK) is inserted outside the homologous sequences. If a 

homologous recombination event occurs, the ES cells will be resistant to G418 (protein 

synthesis inhibitor) and insensitive to FIAU/gancyclovir (nucleotide analogue 

incorporated by HSV-tk). The presence of the inserted DNA (NEO) in the upstream part 

of the endogenous gene ensures that transcription is disrupted, leading to a non

functional gene. Targeting vectors can be designed such that one or more exons will be 

deleted if homologous recombination takes place and the presence of the desired 

recombination can be verified by Southern blot analysis or PCR.
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ES cells in which the endogenous gene has been disrupted are injected into mouse 

blastocysts, and these blastocysts are then implanted into a pseudopregnant foster mother 

(Figure 4.). The foster mother will give birth to chimaeric mice. The tissues in these 

cliimaeric mice are a mixture of the gene disrupted ES cells derived from one strain of 

mice (129Sv, agouti coat colour) and cells from the wild-type blastocysts (C57BL/6, 

black coat colour). Chimaeric mice where most of the tissue is derived from the gene 

dismpted ES cells (mmnly agouti coat colour) will have a sex bias towards males, since 

the ES cell line is male-derived (XY ES cells). In combination with a female blastocyst, 

male ES cells wiU often produce a fertile, phenotypic male chimaeric mouse. These sex- 

converted chimaeric mice are advantageous for breeding since they will only transmit the 

ES cell genotype. If the ES cells colonize a male blastocyst the resultant chimaeric mouse 

will transmit both the wild-type genotype and the ES cell genotype. Chimaeric males are 

then mated with wild-type females. The resultant offspring will be either black (wild- 

type) or agouti (“germline transmission”). Only 50% of the agouti offspring will be 

heterozygous for the gene disruption. Mice heterozygous for the gene disruption can then 

be mated to produce offspring homozygous for the gene dismption. Such “knockout 

mice” are deficient in the expression of the targeted gene.
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Figure 3. Disruption of the endogenous locus with a sequence replacement vector. The 

targeting vector can integrate into the genome either by homologous recombination or 

random integration. The positive selection marker (NEO) selects for cells which have 

integrated the targeting vector and the negative selection marker (TK) ensures that only 

cells which have integrated the vector at the correct locus are resistant to FIAU. Taken 

from Cellular and Molecular Immunology by Abul Abbas, Jordan S. Pober, Andrew H. 
Lichtman. 1994.
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Figure 4. Generation of germ-line chimaeras from embryonic stem (ES) cells. ES cells 

are transfected with the targeting vector. This is followed by enrichment for targeted ES 

cell clones (positive and negative selection markers, Figure 3) which have integrated the 

targeting vector at the correct locus. Targeted ES cells are then injected into blastocysts 

and the blastocysts are transferred into a foster mother. The resulting chimaeric mouse is 

bred with wild-type mice to check for germline transmission. Taken from (Capecchi, 

1989).
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1.13 CD40 deficient mice

To study the role of CD40 in vivo and to produce an animal model for hyper IgM 

syndrome, I generated CD40 deficient mice using homologous recombination in 

embryonic stem cells.

The analysis of CD40 deficient mice will provide a definite proof of whether the CD40- 

CD40L interaction is important for germinal centre formation and immunoglobulin class 

switching. Patients suffering from hyper-lgM syndrome fail to show germinal centres, 

and this is likely to be caused by a defect in the expression of CD40L (Korthauer et al., 

1993). Furthermore, blocking the QMO-QMOL interaction in vivo with soluble anti- 

CD40L antibody abrogated germinal centre formation in mice (Foy et al., 1994). Patients 

with hyper-lgM syndrome have elevated or normal levels of IgM and low levels of 

isotype switched immunoglobulins, IgG, IgA, and IgE, indicating a failure in the ability 

to switch from IgM to other immunoglobulins (Geha et al., 1979; Levitt et al., 1983). 

The treatment of mice with anti-QMOL antibody inhibited the expression of all 

immunoglobulins in secondary responses to KLH (Foy et al., 1993), confirming the role 

of QMO-QMOL in isotype switching. Immunization of QMO deficient mice with KLH 

and immunohistochemical analysis of spleens in QMO deficient mice will determine 

whether the QMO-QMOL interaction is important in germinal centre formation. Analysis 

of semm from QMO deficient mice will provide the answer to whether immunoglobulin 

class switching is regulated by the QMO-QMOL interaction.

Patients with hyper-lgM syndrome are unusually susceptible to infections with 

opportunistic pathogens and often suffer from Pneumocystis carinii pneumonia and 

Cryptosporidium intestinal infection. These are diseases that are often observed with T- 

cell immunodeficiencies but not with other forms of hypogammaglobulinemia 

(Notarangelo etal., 1992). It will be interesting to determine whether the absence of the 

QMO-QMOL interaction leads to functional T ceU abnormalities directly or indirectly 

through defective activation of antigen-presenting cells. Cross-linking of QMO on
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dendritic cells and monocytes induces secretion of IL-12 (Celia et al., 1996; Peguet et 

al., 1995; Shu et al., 1995), which is important for the development of Thl responses 

(Trinchieri, 1995). This suggests that the CD40-CD40L interaction might be involved in 

cell-mediated immunity (Thl development) as well as humoral iiiununity.

To determine whether the CD40-CD40L interaction is important for cell-mediated 

immunity to Bacillus Calmette-Guerin (BCG). CD40 deficient mice were infected with 

BCG. Survival and bacterial counts in spleen, lung, and liver of CD40 deficient mice 

were analysed. The analysis of tuberculin Purified Protein Derivative (PPD) induced 

IFN-Y, IL-12, TNF-a and nitric oxide production by splenocytes of BCG infected CD40 

deficient mice wiU reveal any defect in Thl development.
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Chapter 2: Materials and Methods

2.1 Molecular Biology

2.1.1 Agarose gel electrophoresis

1 % (w/v) agarose gels were made by dissolving agarose and ethidium bromide (60 fig, 

10 flg/fil) in boiling Ix Tris-acetate buffer and pouring the solution into a gelform with 

an appropriate slot former. The gels were run with DNA samples in Ix Tris-acetate 

buffer at 50-200 mA. After electrophoresis, gels were photographed under UV- 

illumination (Stratagene: Eagle Eye; Mitsubishi: video copy processor).

2.1.2 Isolation of DNA fragments from an agarose gel

After electrophoretic separation in an agarose gel and visualisation by ethidium bromide 

staining and UV-illumination, the relevant fragment(s) were isolated using a strip of 

GFC-filter and dialysis tubing. The agarose gel was cut below the fragment band and the 

GFC-filter on top of the dialysis tubing was placed in the crack below the fragment band. 

Electrophoresis was continued until all the DNA had transferred to the GFC-filter as 

judged by UV-illumination. The GFC-filter (Whatmann, glass microfibre filters, cat. no. 

1822025) was transferred to a 0.5 ml Eppendorf tube without a tip and then placed on 

top of a 1.5 ml Eppendorf tube. The Eppendorf tube was centrifuged at 14000 rpm 

(Hereaus Biofuge) for 5’. The solution of approximately 30 fil containing the fragment 

was extracted with phenol/chloroform and the aqueous phase was passed through a 

Sephadex G50 spin colunm in preparation for ligation.

2.1.3 Isolation of plasmid DNA (miniprep)

Harvesting and lysis of bacteria was based on the principle of the alkali-SDS method in 

which SDS binds and denatures proteins and lipids and NaOH denatures the DNA, 

resulting in lysis of the cells. The cellular debris including chromosomal DNA is 

precipitated by centrifugation and removed and plasmid DNA is recovered from the
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supernatant by ethanol precipitation and dissolved in TE. A single colony was inoculated 

into 2 ml LB medium containing 40 p,g/ml Ampicillin in 3 ml wells of a microtiter plate. 

These were grown for 7-14 h at 37 °C. with constant shaking (200 rpm). The cultures 

were centrifuged 2600 rpm for 3’ and the supernatant discarded (Sorvall Centrifuge). 

The pellet was resuspended in 100 |xl Sol I and lysed with 200 \i\ Sol U, then 150 pi Sol 

m  was added and the plate was shaken flat on a bench. Cell fragments and genomic 

DNA will be in a well defined aggregate. The plate was centrifuged at 2600 rpm for 4 ’ 

and the supernatant was transferred to a clean 3 ml well. 1 ml 96% ethanol was added to 

precipitate the plasmid and centrifuged for 4’ at 2600 rpm. The ethanol was removed and 

the DNA was resuspended in 80 pi TE and transferred to a small microtiter plate. 80 pi 

5M LiCl was added to precipitate proteins for 5’ at -20 °C. The samples were centrifuged 

2600 rpm 3’ and transferred to an Eppendorf tube. The DNA was ethanol precipitated 

once again and dissolved in 50 pi TE, yielding 25-50 pg plasmid DNA.

2.1.4 Isolation of plasmid DNA (maxiprep)

A single colony was inoculated into 10 ml of LB containing 40 pg/ml ampicillin and 

grown o/n at 37 °C with vigorous shaking. The overnight culture was seeded into 400 ml 

LB/amp and grown 37 °C o/n. The culture was transferred to 500 ml Beckmann bottles 

and centrifuged at 4000 rpm (Beckmann J6 MC centrifuge) for 20’ at 4 °C. The 

supernatant was discarded and the pellet resuspended in 4 ml solution I and transferred to 

50 ml tubes (Beckmann centrifuge).A further 0.5 ml of solution I was added containing 

4 mg/ml lysozyme, vortexed and incubated RT for 10’. 8 ml of solution II was added to 

the mix witli vortexing and then incubated on ice for 5 \ Then 4.5 ml of solution HI was 

added with vortexing and the sample incubated on ice for 15’. The supernatant was 

recovered after centrifugation at 4000 rpm for 20’ at 4 °C. 11 ml isopropanol, was added 

to the supernatant and the DNA was pelleted by centrifugation at 14000 rpm for 20’ at 4 

°C. The supernatant was discarded and the DNA pellet dried. The pellet was resuspended 

in 3 ml ddH^O plus (44 pi of 1 M Tris pH 8.0 + 27 pi of 0.5 M EDTA pH8.0), allowing 

approximately 1 hr for resuspension. 4.4 g CsCl + 300 pi EtBr (lOmg/ml) was added
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before loading the contents into a 13x48 mm Optiseal tube (Beckmann 362185). This 

was centrifuged for 3.5 hr at 70K rpm in a VTi80 rotor at 20 °C. Extraction of CsCl 

band was performed according to the procedure described in Maniatis (Molecular 

Cloning: A laboratory Manual, Sambrook, Fritsch, Maniatis). The plasmid DNA was 

then butanol extracted to remove contaminating EtBr, followed by ethanol precipitation, 

air drying and resuspension in 500 pi ddHjO. Protein and RNA were removed by 

digestion with 20 pg/ml RNAse for 60’ at 37 ®C followed by 60’ digestion with 100 

pg/ml proteinase K. Phenol/chloroform extraction followed by ethanol precipitation was 

used to remove the enzymes. Lastly the DNA pellet was washed in 70 % ethanol, air 

dried and resuspended in 500 pi TE and the DNA concentration determined.

2.1 .5  Plating and screening genomic library

Bacteria (LE392) were grown in 10 ml LB-medium containing 0.2 % maltose and 10 

mM MgClg, o/n at 37 °C. The bacteria were infected with lambda phage containing the 

genomic library (Lambda Dash 9H-129) by mixing 100 pi MgSo/CaCl2 buffer (10 mM 

final), 300 pi bacteria, 100 pi SM buffer, and phage (5.0 xlO* pfu/plate) and incubated 

10* at 37 °C. 10 ml Top agar (45-48 °C) was added to the infected bacteria, mixed gently 

and poured onto LB-agar plates (15 150mm LB-agar plates had been pre-prepared for 

this purpose). These were incubated at 37 ®C for 12-16 hr. The plates were then 

incubated at 4 °C for 1 hr. Duplicate filters (HybondN+) were made for each plate by 

placing the filters on the plates making sure of the orientation of the filters by making 

holes through filter and agar using a 25 gauge needle. The corresponding holes in the 

filters were marked on the bottom of the plate. The filters were gently peeled off and 

dried. Phage DNA bound to the filters was denatured by soaking in 0.5 M NaOH, 1.5 M 

NaCl and neutralised in 1.0 M Tris-HCl pH 7.5, 1.5 M NaCl. Any agarose was 

removed using gauze. Filters were rinsed in 2x SSC and dried on 3MM paper and baked 

at 80 ®C for 2 h, ready for hybridisation. Any positive plaques that were identified were 

extracted and a subscreening performed if necessary. For a detailed description of this
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procedure please see Maniatis (Molecular Cloning: A Laboratory Manual, Sambrook, 

Fritsch, Maniatis).

2.1 .6  Phage maxiprep

Bacteria (LE392) were grown o/n at 37 in LB-medium containing 10 mM MgCl^ and

0.2 % maltose. Five different dilution’s of phage were made and mixed with 1 ml of 

bacteria plus 10 pi MgSo/CaCl^ buffer (1 M) and incubated 10' at 37 °C. 100 ml of LB- 

medium containing 10 mM MgSo/CaCl^ was added to the infected bacteria and 

incubated at 37 for 5-8 hr until cell lysis occurred. The phage dilution giving 

complete cell lysis was identified and another 4 x 100 ml bacterial cultures containing the 

appropriate phage dilution were set up and incubated at 37 °C for 5-8 h until lysis. The 5 

lysates (500 ml) were pooled, 2 ml of chloroform was added and the mix shaken for 15'. 

2 mg of DNAse and RNAse were added and incubated for 30' at 37 ®C. 30 g of NaCl 

was added and incubated for 15' on ice and the cellular debris was pelleted by 

centrifugation at 4000 rpm for 30', 4 °C (Beckmann Centrifuge). 50 g PEG (8000) was 

added to the supernatant and incubated 60' on ice. The intact phage were pelleted by 

centrifugation at 4000 rpm for 30',4 °C and resuspended in 12 ml SM buffer. 

Chloroform extraction followed by centrifugation at 3000 rpm for 10', 4 °C was 

performed once. The aqueous phase was centrifuged 25000 rpm for 30' (SW40 rotor, 

Beckmann ultracentrifuge) and the phage pellet resuspended in 1 ml SM buffer. Phage 

were purified on a CsCl density gradient and ph%e DNA extracted according to Maniatis 

(Molecular Cloning: A Laboratory Manual, Sambrook, Fritsch, Maniatis).

2 .1 .7  DNA extraction with phenol/chloroform

The standard way of removing proteins from DNA solutions is to extract once with 

phenol/chloroform/isoamylalcohol (25:24:l,v/v/v). The use of more than one organic 

solvent ensures a more efficient deproteinization. The organic solvents and aqueous 

phase (DNA containing solution) were mixed and then centrifuged for 1-2* in an 

eppendorf centrifuge (Heareus Biofuge) at 14000 rpm. The aqueous phase was re
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extracted with one volume of chloroform/isoamylalcohol (24:1, v/v) to remove traces of 

phenol, centrifuged and then ethanol precipitated.

2.1.8 Ethanol extraction of DNA

Ethanol precipitation is an efficient way to concentrate and desalt a DNA sample. The 

DNA sample (e.g. after phenol/chloroform extraction) was adjusted to 300 mM NaCl 

and 2.5 volumes of 96% ethanol was added. The DNA was precipitated for 2 h at -20 “C 

or for 15’ at -70 ®C. The sample was centrifuged for 30’ (Heraeus Biofuge), the 

supernatant discarded and the pellet washed twice with 70% ethanol to remove as much 

salt as possible. Finally, the residual ethanol was evaporated by air drying.

2.1.9 DNA extraction with n-butanol

It is possible to concentrate DNA by extraction with water-free n-butanol as DNA and 

salt is insoluble in the organic phase but water is not. The DNA was extracted with two 

rounds of 3-10 volumes of n-butanol, reducing the volume of the DNA-containing 

aqueous phase considerably. After centrifugation the n-butanol was removed and the 

aqueous phase ethanol precipitated to remove the residual salt.

2.1.10 5 ’-end labeling with T4 polynucleotide kinase

T4 polynucleotide kinase catalyses the transfer of y-phosphates from ATP to 5’-hydroxyl 

ends of DNA. The enzyme works equally well on single-stranded and double-stranded 

DNA. However, in the latter case the transfer is more efficient on protruding 5’-ends 

than on blunt ends and does not work on recessed 5’-ends. 1-40 pmol of 

oligonucleotides were incubated with Ix kinase buffer, 50 fiCi (y-^^P)ATP, 2 units of T4 

polynucleotide kinase in a total volume of 20 p,l. The reaction mixture was placed at 37 

®C for 30’ and stopped by addition of EDTA to lOmM. The volume was adjusted to 100 

pi with TE buffer and the enzyme was removed by ethanol extraction. The 5’-end labeled 

oligonucleotides were separated from unincorporated nucleotides on a sephadex G50 

spin-column and ethanol precipitated. DNA was recovered in TE buffer.
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2.1.11 Déphosphorylation of DNA

To be able to label DNA fragments (except synthetic oligonucleotides) with T4 

polynucleotide kinase or to prevent religation of compatible DNA ends it is necessary to 

remove a 5 -phosphate group. This can be done with Calf Intestinal alkaUne 

phosphatase, CIP. Normally 0.01 units of CIP is added to dephosphorylate 1 pmole of 

5’-ends. If the DNA is to be run on an agarose gel for purification, no further treatment 

is necessary prior to addition of glycerol loading buffer. Otherwise CIP must be 

inactivated and salts from CIP preparation removed.

1.0 unit of CIP was added to a total volume of 50 pi Ix CIP buffer containing 1.0-3.0 

p,g DNA (immediately after the restriction enzyme digestion) and incubated for 20’ at 37 

“C. The CIP was then inactivated by heating the reaction to 68 °C in the presence of 1% 

SDS, extracting with phenol/chloroform and passing the aqueous phase through a 

sephadex G50 spin-column.

2.1.12 Restriction enzyme digestion

1-3 units of restriction enzyme is normally used to digest 1 p,g of DNA. Due to the 

inhibitory effect of glycerol, the restriction enzyme must always contribute less than 1/10 

volume of the final reaction mixture. Restriction enzyme digestion was carried out in a 

total volume of 50 pi Ix TA buffer (100 mM Tris-HCl, pH 7.9, 200 mM K-acetate, 100 

mM Mg-acetate), 1-3 units of the appropriate enzyme and lug DNA and incubated for 1- 

2 h at 37 °C. Restriction digestion was stopped by the addition of glycerol gel-loading 

buffer containing a final concentration of 10 mM EDTA.

2.1.13 Ligation of DNA fragments (vector and insert)

DNA ligation is catalyzed by T4 DNA ligase. A phosphodiester bond is made between 

juxtaposed 5’-phosphoryl and 3’-hydroxyl DNA ends. High backgrounds of religated 

vector can thus be reduced either by dephosphorylation with CIP or by cutting the vector 

with restriction enzymes that create noncompatible ends.
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The ligation reaction was performed in Ix ligase buffer, 10 mM ATP and 3 units of T4 

ligase, in a total volume of 15 pi and incubated for 6 h at 15 °C. As controls, reaction 

mixtures containing either vector or insert alone were included. The ratio of vector/insert 

was varied in order to achieve a high insertion efficiency.

2.1.14 Transformation of competent E.coli cells 

Preparation of competent E.coli cells (JM109, Promega).

A single colony was inoculated into 25 ml LB/amp niedium and incubated 37 °C o/n with 

vigorous shaking. 5ml of the overnight culture was then seeded into 500 ml LB medium 

and shaken at 37 ”C until an ÜD Aĝ o of O.45-0.55 was reached. The cells were chilled 

on ice for 2 h. and collected by centrifugation at 2500x g for 15’-20’,4 ®C. The cells 

were resuspended in 10-20 ml ice cold trituration buffer and diluted to 500 ml with the 

same solution. The cells were centrifuged at 1800x g for 10’ and gently resuspended in 

50 ml ice cold trituration buffer. 80 % glycerol was added dropwise with gentle swirling 

to a final concentration of 15 % (v/v). 0.2-1 ml aliquots of the cells were made and 

frozen on dry ice prior to long term storage at -70 °C.

Transformation of competent cells.

The ligation mixture was added to 200 pi competent E.coli cells and placed on ice for 10’ 

and then heat shocked at 37 °C for 5’. 500 pi LB medium (37 °C) was then added and 

the cells incubated 37 ®C for a further 45’. The mixture was centrifuged 5-10” (Heraeus 

biofuge) at 14000 rpm and 500 pi supernatant was removed. The cells were resuspended 

and spread on agar plates supplemented with 40 pg/ml ampicillin. Plates were incubated 

inverted at 37 °C for 12 h. Colonies of transformed cells were then subjected to “Mini 

Prep” analysis, to isolate positive clones.

2.1.15 Random primer labeling of hybridization probes 

(Stratagene, Prime It RmT Random Primer)
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25-50 ng of DNA (probe) was added to a reaction tube containing, unlabelled dNTPs, 

random prime buffer and random sequence nonamers. ddH^O was added to a final 

volume of 42 |il. The mixture was boiled 5’, centrifuged briefly to collect the 

condensation and then 5 pi of (a-^^P)dCTP (50 pCi) and 3 pi of magenta DNA 

polymerase (4U/pl) was added. The sample was mixed and incubated at 37 °C for 5’- 

30’. After incubation, 150 pi of ddH^O was added to the reaction mixture. To remove 

unincorporated radioactive nucleotides, the 200 pi reaction mixture was passed through a 

sephadex G50 spin column, 1700 rpm for 2’ (Sorvall centrifuge). The labeled DNA was 

denatured by heating to 95-100 °C for 5’, then chilled on ice before hybridisation. 

Probes with a specific activity of 1.0x10^ dpm/pg can be produced with most DNA 

substrates.

2.1.16 Isolation of high molecular weight DNA from mouse tails

1 cm of tail was cut and placed in a 1.5 ml eppendorf tube. The tail was minced using a 

small pair of scissors. 700 pi of mouse tail buffer and 35 pi of 10 mg/ml solution of 

Proteinase K was added and the tail was incubated at 55-60 °C overnight. After 

Proteinase K digestion, 20 pi of RNAse A was added and incubated at 37 °C for 1-2 h 

before organic extraction twice in phenol/chloroform (1:1) (200 pi) and once in 

chloroform (200 pi).The sample was centrifuged 2’ at 13000 rpm (Heraeus Biofuge) and 

the aqueous phase transferred to a clean eppendorf tube. DNA was precipitated by the 

addition of an equal volume of isopropanol at room temperature (invert several times to 

ensure complete mixing) and centrifugation at 13000 rpm 10’ (Heraeus Biofuge) The 

supernatant was discaided and the DNA pellet air dried. The pellet was resuspended in 

150 pi ddH^O at 4 °C o/n. A 1:100 dilution of the DNA was made and the CD Ajgo/iso nm 

determined. The yield is usually between 50-100 pg DNA.

2.1 .17 Restriction enzyme digest of mouse genomic DNA

10 pg of DNA was digested in a total volume of 40 pi containing Ix BamHI buffer, 1 

mM spermidine, 100 pg/ml BSA, 3 U/pg of BamHI restriction enzyme and ddHjO. The
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sample was incubated at 37 °C o/n, centrifuged briefly to collect the condensation before 

adding 4 pi gel-loading buffer and heating to 56 ®C for 2’ prior to loading onto a 0.7 % 

agarose gel.

2.1.18 Agarose gel electrophoresis of mouse genomic DNA

After restriction enzyme digest, the DNA was loaded onto a 0.7 % agarose gel (Ix TAB) 

and electrophoresed at 80 V (1.85 V/cm) for 4-5 hours. This gives good separation of 

DNA fragments of 5 -23 kb. The DNA was visualised by staining with ethidium bromide 

and then photographed under UV-illumination. The gel was then submerged in 

denaturing buffer for 30’, followed by a quick rinse in H^O and then submerged in 

neutralizing buffer for a further 30’ and rinsed in H^O. This denatured the DNA in 

preparation for Southern blotting.

2.1.19 Southem blotting

A glass dish was filled with blotting buffer (20x SSC) and a glass plate placed across the 

dish, covered with two sheets of Whatmann 3MM filter paper, saturated with blotting 

buffer. The gel was placed on the 3MM filter paper and trapped bubbles were removed. 

The gel was surrounded with Saran wrap to prevent the blotting buffer being absorbed 

directly into the paper towels above. A sheet of Hybond-N+ filter (positively charged 

nylon membrane, Amersham) was cut to the exact size of the gel and placed on top of the 

gel. Again, trapped bubbles were removed. Two sheets of 3MM p g ^ r wetted with 5x 

SSC were placed on top of the filter, and a stack of dry paper towels was placed over the 

filter paper. A glass plate was placed on top of the paper towels with a 0,5-1.0 kg weight 

on top. Transfer of DNA was allowed to proceed for 2-16 h. The filter was then placed 

with the DNA side up on 3MM paper soaked in 0.4 M NaOH. Efficient DNA fixation 

was achieved after 15’-30’. Lastly the filter was rinsed gently in 5x SSC for not more 

than 1 ’, prior to hybridisation.
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2.1.20 Hybridization protocol

The Hybond hT filter was placed in a hybridization oven (Techne: Hybridiser HB-1) in 

40 ml of hybridization buffer (church) at 65 °C for 1 h. The 40 ml of hybridization buffer 

was then poured away and replaced with 20 ml of hybridization buffer and the denatured 

labeled probe and hybridized o/n at 65 °C. The filter was washed in 2x SSC, 0.1 % SDS 

for 15’ at RT, followed by another wash in O.lx SSC, 0.1 % SDS for 30’ at 65 °C. The 

filter was removed from the hybridization cylinder, wrapped in Saran warp and place 

under film overnight. The autoradiograph was developed to visualise probe 

hybridisation. If an oligonucleotide probe was used, the hybridization temperature was 

48 ° C and the filter was washed 2 times in 2x SSC, 0.1 % SDS at 48 ®C,

2.1.21 Filter stripping protocol

For successful removal of probes, filters must never be allowed to dry out during or after 

hybridization and washing. Filters were washed at 45 ®C for 30’ in 0.4 M NaOH, then 

transferred to a solution containing O.lx SSC, 0.1 % SDS, 0.2 M Tris-HCl and 

incubated for a further 15’. Autoradiography for a normal exposure time was used to 

check that all probe had been removed. The filter was then available for further 

hybridization.

2.1.22 Polymerase chain reaction (PCR)

The polymerase chain reaction is a technique for the in vitro amplification of specific 

DNA sequences by the simultaneous primer extension of complementary strands of 

DNA. 50-100 ng of genomic DNA or 1-2 ng of cloned DNA was added to a reaction 

tube containing, 200 pM dNTPs, Ix Tag buffer, 1 pM of each primer, 1 pi Taq 5U/pl 

(Thermus aquaticus, heat stable DNA polymerase) and ddHjO, to a final volume of 50 

pi. Mineral oil was layered on top to avoid evaporation during the heating and cooling 

cycles. The dénaturation step was normally performed at 94 ®C and the annealing 

temperature depended on the oligonucleotide primers used and was normally in the range
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of 60-68 °C. Extension was carried out at 72 °C (PCR Machine; Hybaid Omnigene). 25 

to 35 cycles were sufficient to produce 100 ng-1 pg of DNA.

2.1.23 Isolation of genomic DNA from cultured cells

The purification procedure is based on the selectivity of the QIAGEN resin which allows 

isolation of pure genomic DNA from cultured cells. Genomic DNA purified with 

QIAGEN resin columns has an average length of 80-100 kb, and is free of contaminants. 

2 ml of ice-cold buffer Cl was added to every 2 ml of cell suspension (1.0 x 10̂  

cells/ml) and mixed by inverting several times. The cells were incubated for 10’ on ice 

and then centrifuged at 4 °C for 15’ at 1300xg and the supernatant discarded. 1 ml of ice- 

cold buffer Cl and 3 ml of ice-cold ddH^O were added to the pelleted nuclei which were 

then resuspended by vortexing. The nuclei were centrifuged again at 4 °C for 15’ 1300g 

and the supernatant discarded. 5 ml of buffer G2 was added and the nuclei resuspended 

by vortexing for 10” -30” . 95 pi of QIAGEN protease (20 mg/ml) was added and the 

nuclei incubated at 50 °C for 30’-60’. The sample was applied to a QIAGEN resin 

column, entering the resin by gravity flow. The column was washed twice with 7.5 ml 

of buffer QC and the genomic DNA was eluted with 5 ml of buffer QF. The DNA was 

precipitated by the addition of 3.5 ml of isopropanol ensuring thorough mixing and then 

centrifuged at 5000g 4 °C for at least 15’. The supernatant was discarded and the DNA 

pellet washed with 2 ml of cold 70 % ethanol, air dried and resuspended in 150 pi TE 

pH 8.0 o/n at 4 °C. DNA concentration was measured at Ajgonm- For pure DNA the 

A260n„/A280nm ^atio should be 1.7-1.9. (Spectrophotometer Cecil, CE 2040).

2.1.24 Linearizing DNA construct for electroporation

Restriction enzyme digest of the targeting DNA constmct was carried out at 37 °C for 2 

h. A small aliquot was run on an agarose gel, to check for complete restriction digestion. 

The DNA construct was precipitated by adding 1/10 volume of sodium acetate plus 2 1/2 

volume of 100 % ethanol at -20 °C for 10’. The DNA was centrifuged at 13000 rpm 

(Heraeus Biofuge) for 10’.The DNA was kept sterile so supernatant was discarded and
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the pellet dried in a sterile tissue culture hood. The DNA was resuspended in 100 pi 

sterile PBS in preparation for electroporation.

2.1.25 Screening for homologous recombination using PCR

The strategy is to amplify a novel DNA fragment created by the correct homologous 

recombination of endogenous genomic DNA with a targeting vector containing the G418 

resistance gene (NEC). One primer binds to the neo cassette and the second primer just 

past the short arm of the targeting vector, within the endogenous locus. After eight days 

of G418 selection, ES colonies were visualized by holding the plate up to the light and 

individual colonies marked on the bottom of the plate. Half of each colony was 

transferred with a 10 pi tip. 20 colonies were pooled. The master plate was replaced in 

the incubator and the pooled ES cells centrifuged at 13000 rpm (Heraeus biofuge) for 

15” and the supernatant removed. Cells were resuspended in 30pl ddH^O and boiled for 

10’ followed by centrifugation at 13000 rpm 10” . 1 pi of Proteinase K (10 mg/ml) was 

added and the cells incubated at 50 °C for 2 h. The cells were boiled for 10’ and 

centrifuged 13000 rpm 10’, ready for PCR amplification. The PCR programme used 

was: Denaturing temp.; 94 °C for 1’. Annealing temp.; 62 °C for 1’. Elongation temp.; 

72 °C for 2’ for 40 cycles. The reaction mix contained 200 pM specific primers, Ix Taq 

reaction buffer, 1 pM of each dNTP, 1 pi Taq 5U/pl. 10 pi of the PCR reaction was 

analysed on an agarose gel. The DNA was blotted onto Hybond-N+ membrane and 

hybridized with a probe spanning the expected PCR fragment. Membrane was washed 

and placed under film for o/n exposure. If positive pools were identified, the PCR and 

Southern blot was then lepcatcd for each individual colony in the positive pool. Positive 

ES colonies were transferred to plates containing fibroblasts, expanded and then frozen 

down. The homologous recombination event was confirmed by Southem blot analysis.
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2.1.26 Southern blot analysis using DNA prepared directly in a 96 well 
plate

The ES cells on the gelatin-coated plates were grown until the medium was very yellow, 

and the medium was changed every day for 4-5 days. The wells were rinsed twice with 

PBS and 50 pi of lysis buffer was added per well. The plates were incubated o/n at 60 

®C in a humid atmosphere. 100 pi of NaCl/ethanol solution (75 mM NaCl in ethanol) 

was added and the plate was incubated for 30’ at RT without mixing. The nucleic acids 

were precipitated as a filamentous network. The plate was inverted carefully to discard 

the solution, leaving the nucleic acids attached to the plate. Excess liquid was blotted on 

paper towels and the DNA rinsed 3 times with 150 pi of 70 % ethanol per well. The 

ethanol was discarded by inversion of the plate each time. After the final wash, the plate 

was inverted and allowed to dry on the bench. The DNA was cut with restriction 

enzymes. Each restriction digestion mix contained Ix BamHI buffer, 1 mM spermidine, 

100 pg/ml BSA, RNAse (100 pg/ml), 3 U/pg of BamHI restriction enzyme, and 

ddHgO. 30 pi of the restriction digest mix was added to each well, mixed and then 

incubated at 37 °C o/n in a humid atmosphere. Gel electrophoresis loading buffer was 

added to each well and electrophoresed as described in section “2.1.18 Agarose gel 

electrophoresis of mouse genomic DNA”.

2.2 Tissue culture

2.2.1 Preparation of primary embryonic fibroblasts

Twenty 15-17 day old fetuses were dissected in PBS. Heads, liver and attached intemal 

organs were removed and as much blood as possible was removed by washing twice in 

PBS. Carcasses were minced with scissors in a small volume of PBS. 50 ml Trypsin- 

EDTA was added and the mixture transferred to 500 ml conical flasks containing sterile 

glass beads (Borosilicate solid-glass beads, Aldrich cat.no. Z 14392-8). The flasks were 

incubated at 37 °C, with stirring, for 30’. This step was repeated twice with the addition 

of more Trypsin-EDTA. The solution was decanted from the beads and centrifuged 1200 

rpm 5’ (Sorvall) and washed twice in PBS. The cells were resuspended in complete

49



2; Materials and Methods

medium and viable cells counted. Cells were plated at 5x10® cells/150 mm plate and 

medium changed after 24 h. When confluent (2-3 days), each plate was plated onto 5 

further plates. When these plates were confluent they were frozen in liquid nitrogen (1 

plate/1 vial, freezing medium: complete medium, 30 % FCS, 10 % DMSO).

2.2.2 Growth of primary embryonic fibroblasts

1 Nunc tube of frozen fibroblasts was thawed rapidly in a waterbath (37 °C) and 

transferred to 10 ml of medium. Cells were centrifuged at 1200 rpm for 5’ (Sorvall RT 

6000 D). Supernatant was removed and the pellet resuspended in 10 ml of medium. The 

cells were transferred to a 150 mm tissue-culture and a further 15 ml of medium added. 

The fibroblasts were grown at 37 °C, 5 % CO^ for 48 h. or until confluent. Spent 

medium was removed and replaced with 10 ml of medium containing 0.01 mg/ml 

Mitomycin C (to inhibit further differentiation of the fibroblasts) and incubated for a 

further 2-3 h at 37 °C, 5 % CO .̂ Medium was removed and the cells washed twice in 15 

ml PBS. Cells were treated with Trypsin-EDTA for 2’ at 37 °C, 5 % COj to make a 

single cell suspension. Cells were aliquoted into 8-10 60 mm tissue-culture dishes and 

incubated 37 °C, 5 % CO^ for 3 h. These fibroblasts were then used as feeders for ES 

cells.

2.2.3 Culture of ES cells on fibroblasts

Newly thawed ES cells usually grow slowly. The growth depends on the cell density. 

As a general rule, the more dense the cells, the faster the growth. It is important to keep 

the time in culture to a minimum and to dissociate clumps of cells at each passage. Check 

the cells frequently, ideally twice a day and change the medium every day. The important 

thing is that the ES cells remain totipotent and can thus contribute both to somatic tissues 

and most importantly, to the germline of mice. Totipotent cell colonies are oval and look 

shiny under phase contrast microscope. Individual cells can not be seen within 

undifferentiated cell colonies. In contrast, differentiated ES cell colonies are flat, granular 

and appear grayish under the microscope.
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One vial of ES cells was thawed as described below. ES cells were transferred to a 30 

mm tissue-culture dish containing fibroblasts and grown at 37 ®C, 5 % COg. When the 

ES cells were confluent they were treated with Trypsin-EDTA for 2’ at 37 °C, 5 % CO^ 

to make a single cell suspension and transferred to a 60 imn tissue Culture dish containing 

fibroblasts. Further expansion of ES cells was carried out using 60 mm tissue culture 

dishes containing fibroblasts. Each 60 mm dish was split into 2 or 3 60 mm dishes.

2.2.4 Freezing ES cells

ES cells (on feeders) were washed twice in PBS and treated with Trypsin-EDTA for 2’ at 

37 ®C, 5 % COj. 10 ml of medium was added to make a single cell suspension which 

was centrifuged 1200 rpm (Sorvall) for 5*. The supernatant was discarded and the cells 

resuspended in 2 ml freezing medium (4 °C) at a density of approximately 2-3x 10® 

cells/ml (10 % DMSO, 30 % FCS, 70% complete medium). 1 ml of ES cells were 

aliquoted into each Nunc freezing vial. These were wrapped in bubble-plastic and frozen 

slowly o/n at -80 °C before transfer to liquid nitrogen for long term storage.

2.2.5 Thawing ES cells

1 Nunc tube of frozen ES cells were thawed quickly in a waterbath (37 °C) and 

transferred into 10 ml of medium. Cells were centrifuged at 1200 rpm for 5’ (Sorvall RT 

6000 D). The supernatant was removed and the cells resuspended in 1 ml of medium. ES 

cells were transferred to a 30 nun tissue-culture dish containing fibroblasts and grown at 

37 T ,  5 % COj.

2.2 .6  Electroporation of ES cells and G418 selection

DNA can be transfected into ES cells by application of a high voltage electrical pulse to a 

suspension of cells and DNA. The electrical pulse punches holes through the cell 

membrane through which the DNA passes. This procedure results in the death of about 

50 % of the ES cells.
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ES cells were passaged a day or two before the electroporation. The medium on ES cells 

growing on fibroblasts was replaced approximately 3 h before the electroporation (5x 10® 

cells/60 mm tissue culture dish), these were washed twice with PBS treated with 

Trypsin-EDTA for 2’ at 37 °C, 5 % CO^. and 5 ml of complete medium was added to 

make a single cell suspension. Cells were centrifuged at 1200 rpm (Sorvall RT 6000 D) 

for 5*. The supernatant was removed and the cell pellet resuspended in 5 ml of complete 

medium and then counted on a haemocytometer. The volume of the resuspended ES cells 

was adjusted to give 5x10® cells/0.7 ml suspension. 0.7 ml of suspension was removed 

as a control for G418 resistance. The appropriate amount of linearized DNA construct 

(32 p.g in 100 p.1 PBS/5x 10® cells) was added to the cell suspension and mixed well. 

The 0.8 ml cell/DNA mix was transferred to an electroporation cuvette (BioRad, Cat. no. 

165-2088). The settings used were: Capacitance 250 fiF, Voltage 340, Time constant 

3ms (BioRad, gene puiser). Electroporated cells were allowed to recover at RT for 15* 

and then 0.4 ml of electroporated cells was plated onto a 100 mm gelatinized tissue 

culture dish containing complete medium plus LIF (Leukaemia Inhibitory Factor). Cells 

were incubated at 37 °C, 5 % COj for 48 hr at which point G418 selection was 

commenced. Complete medium containing LIF and 300 pg/ml G418 was added and the 

medium changed every day for 7-8 days. G418 resistant colonies began to appear at this 

time and at day 9 or 10 the colonies were ready for screening by PCR or by Southem 

blot analysis.

2.2 .7  Picking and expanding ES cell colonies

After electroporation, tire ES cell colonies were allowed to grow for 8-12 days to become 

visible. Single colonies were seeded into each well to avoid a further cloning step. Plates 

containing the colonies were washed with PBS and then PBS was added to cover the 

plate. Colonies were visualized by holding the plate up to the light and marked on the 

bottom of the plate. A 96 well U-bottomed plate was prepared by adding 25 pi of 

Trypsin-EDTA solution to each well. The original 10cm plate was placed on a 

microscope in a Laminar Flow Hood and individual colonies were picked with a micro-
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pipetter and disposable sterile tips (1-10 pi) in a maximum volume of 10 pi. Each colony 

was transferred to the trypsin solution in the 96 well plate prepared earlier. After 96 

colonies were picked, the 96 well plate was placed at 37 °C, 5 % COg for 10’. During the 

incubation, a previously prepared 96 well feeder plate (flat bottomed wells), containing 

200pl of medium and fibroblasts was aspirated to remove the medium and 150 pi of 

fresh complete medium was added per well. The trypsinized colonies were retrieved 

from the incubator and add 25 pi of complete medium was added per well. Clumps of 

cells were broken up by moving the cell suspension up and down with the multi-channel 

pipetter 5-10 times. The entire contents of each well were transferred to a well in the pre

prepared feeder plate. The plate was transferred to the incubator and the ES cells grown 

to confluence (approximately 2-3 days). When the ES cells approached confluence, they 

were washed twice with PBS and trypsinized using 50 pi of trypsin solution per well for 

10’. 50 pi of complete medium was added to each well and clumps were broken up by 

vigorous pipetting. 50 pi of the cell suspension was replated onto a gelatinized 96 well 

(flat bottomed) plate without feeder cells. The remaining cells in the original 96 well plate 

were frozen by adding 50 pi of 2x freezing medium as described in “Freezing and 

thawing ES cells”. The gelatinized plate was grown to confluence for DNA preparation 

and analysis by Southem blot analysis. Once the targeted clones were identified, the 

appropriate wells (colonies) were retrieved from the freezer and expanded for blastocyst 

injection.

2.2.8 Freezing and thawing ES cells in 96 well plates

The medium was changed 4 hours before freezing. The medium was removed by 

aspiration and cells were rinsed twice with PBS. 50 pi trypsin was added to each well 

and the plate incubated for 10’ at 37 °C, 5 % 00%. 50 pi of 2x freezing medium was then 

added per well and the colonies were resuspended evenly 100 pi of sterile mineral oH 

was placed over each well to prevent degassing and evaporation during storage at -70 ®C. 

The 96 well plate was sealed with parafilm and stored at -80 °Ç. The optimum storage 

time was less than 2-3 weeks before retrieval of targeted clones.

53



2; Materials and Methods

To thaw, the 96 well plate was removed from the freezer and placed at 37 °C for 10’-15’. 

Targeted clones were transferred to a 1 cm well (24 well plate) with feeder cells 

containing 2 ml of complete medium. The medium was changed next day to remove the 

DMSO and the oil. Cells were grown to confluence and cultured as described in section 

“2.2.3 Culture of ES cells on fibroblasts” .

2.2.9 Karyotyping

ES cells that were split the previous day onto gelatinized 60 mm tissue culture dishes 

were used for karyotyping. 0.1 ml of colcemid (Gibco, Karyomax colcemid, 10 pg/ml) 

was added to the cells and incubated for 2 h at 37 °C, 5 % CO^ to arrest the cells in late 

prophase, making it easier to count individual chromosomes. Cells were treated with 

Trypsin-EDTA for 2’ at 37 °C and a single cell suspension made. Cells were centrifuged 

at 1200 rpm (Sorvall) for 5’, the supernatant removed and the cells resuspended in PBS. 

Cells were centrifuged 1200 rpm for 5’, the supernatant discarded and the pellet 

resuspended gently in 5 ml 0.075 m KCl at RT for 10’. Cells were centrifuged at 1200 

rpm for 5’ and the supernatant removed and the pellet resuspended by gentle flicking. 1 

ml fixative (3 parts of methanol to 1 part of acetic acid) was added and the cells incubated 

on ice for 10’. The cells were centrifuged 1200 rpm for 5’ and the supernatant removed 

and resuspended in 200 pi fixative. Cells were added drop-wise onto an ethanol-washed 

slide from a height of 1-3 feet using a pasteur pipette. Slides were stained in 1 % lacto- 

acetic orcein for 15’, rinsed in 45 % acetic acid/water and allowed to dry. The number of 

chromosomes in each individual cell were counted using light microscopy (magnification 

X 25).

2.3 Introduction of mutations into the mouse germiine

2.3.1 Production of mouse blastocysts

C57BL/6 (B6 ) mice were used to obtain the recipient blastocysts. Mating pairs were set 

up 4  days before the injection, and vaginal plugs checked the next morning. 2  females
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were mated per male (60 females). Plugged females were identified and separated from 

the males and kept in a separate cage. These females were sacrificed 3 days later to obtain 

the 3.5 day blastocysts.

2.3.2 Preparation of foster mothers for blastocyst injection

Fj hybrid females (B6  x CB A) were used as foster mothers for the chimeras as they have 

a very high pseudopregnancy rate and provided good care for their litters. Foster mothers 

were used at 2.5 days of pseudopregnancy and therefore Therefore were set up for 

mating with sterile males on the same day that the plugs were checked in the B6  females 

(see previous section). 2 Fj hybrid females were mated per vasectomised male (30 

females). The next morning plugged females were collected into a separate cage.

2.3.3 Obtaining the blastocysts

The B6  females were sacrificed by cervical dislocation. The abdomen was opened and 

the genital system, including the uterus, oviducts and ovaries were pulled out. The fat 

pad and mesenteric blood vessels were cut away from the uterus. The 2 horns of the 

uterus were separated by cutting between the ovary and the oviduct at the proximal end 

and at the bifurcation of the uterine horns at the distal end. The blastocysts were flushed 

out of the uterus into a 6  cm tissue culture plate using a 2 ml syringe and a 25 gauge 

needle inserted into the oviduct-end of the uterus. Secum medium was used for culturing 

and flushing the blastocysts When all the uteri were flushed, the blastocysts from the 

plates were collected with a finely drawn Pasteur pipette and put together in a drop of 

Secum medium covered with mineral oil, These were placed in the incubator (37 °C, 5 % 

CO2) until fully expanded for injection.

2.3.4 Injection needles and holding pipettes

The injection needle will carry the ES cells into the blastocoele. To work properly, it 

should have a diameter of 20 p.m at the sharp end. A good needle is the key to a 

successful injection day, if the needle is not working properly (the flow of the cells
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cannot be controlled properly or the point is not sharp enough to penetrate the 

blastocysts) it is best to prepare a new one. The holding pipette will keep the blastocyst 

steady while the needle penetrates it and injects the ES cells. A holding pipette should be 

prepared with an external diameter of 100 |xm, and an intemal diameter of 20 p,m. The 

very end of the pipette should be polished to permit good holding and to avoid damaging 

the blastocysts. For a detailed description of injection needle and holding pipette 

preparation please see “Guide to Techniques in Mouse Development” Edited by Paul M. 

Wasserman, and Melvin L. DePamphilis. 1993.

2.3 .5  Blastocyst injection

The ES cells were fed with complete medium 3 hours before the injection and then 

washed and trypsinized for 2’ at 37 °C. The trypsin was washed off the cells which were 

then centrifuged and the supernatant discarded. Complete medium was added to the cell 

pellet and a single cell suspension made by vigorous pipetting. One drop of ES cells was 

transferred to a 3 cm tissue culture dish (the remainder were stored at 4 °C) just above 

where a drop of Secum medium containing 5-10 blastocysts had been placed. The 3 cm 

tissue culture plate was covered with mineral oil and placed under the microscope (Leitz, 

Labovert, microinstmments Ltd.) prior to injection. 16 ES cells were collected with the 

injection needle and moved to the drop containing the blastocysts. A blastocyst was 

picked up with a gentle vacuum on the holding pipette and lowered until it touched the 

bottom of the plate. The microscope was focused on an intercellular junction at the 

equatorial plane of the blastocyst, and the height of the needle was adjusted to bring it 

into focus in the same plane. The injection needle was inserted through the intercellular 

space and the ES cells were injected slowly. When finished, the needle was withdrawn 

and the injected blastocyst separated from the uninjected group. This procedure was 

completed with each blastocyst in turn. For a detailed description of Blastocyst injection 

please see “Guide to Techniques in Mouse Development” Edited by Paul M. Wasserman, 

and Melvin L. DePamphilis. 1993.
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2.3.6 Blastocysts transfer into foster mothers

When the injections were completed, the blastocyst were left in the incubator for 1-2 h to 

allow reexpansion to occur. A foster B6 xCBA female was anaesthetized by 

intr2q)eritoneal injection with Hypnorm/Hypnovel. The back of the mouse was rinsed 

with ethanol and a small incision was made in the back, 1/3 of the length of the mouse 

from the base of the tail. The skin at the incision was moved ventrally with a needle until 

the ovary was seen through the body wall as a pink structure surrounded by fat. A small 

incision in the body wall was performed and the ovary and oviduct pulled out, handling 

the reproductive tract by the attached fat. The injected blastocysts were transferred to the 

uterus by making a hole with a 25G needle, close to the oviduct end. Using a finely 

drawn Pasteur pipette, 8  injected blastocysts were transfered into the uterus. If possible 

only one uterine horn was used in each female. The uterus was returned to the abdominal 

cavity and the skin closed with a metal clip. The female was placed on a warm surface to 

allow her to recover and then transferred to a cage. The gestation time is approximately 

17 days. For a more detailed description please see “Guide to Techniques in Mouse 

Development” Edited by Paul M. Wasserman, and Melvin L. DePamphilis. 1993.

2.4 Functional assays

2.4.1 Antibody staining of mouse peripheral blood lymphocytes

Blood was harvested into a heparinised c^illary tube and transferred to a 1.5 ml 

eppendorf tube containing 0.2 ml 0.9 % saline and heparin (20 lU/ml, 20000 lU/L). The 

blood was transferred to a polystyrene tube (round bottom tube, 12x75 mm. Falcon 

2052) and 1.25 p.g of CD40 mAb was added, mixed and incubated 5’ on ice. 0.5 p,g of 

B220 mAb was then added, mixed and incubated for a further 30’ on ice. 4 ml of Geys 

lysis buffer was then added for 5’ at RT to lyse red blood cells. The tube was inverted 3- 

4 times and centrifuged at 1200 rpm (Sorvall RT 6000 D) at 4 °C for 7’. The supernatant 

was discarded and the blood quickly resuspended on a whirlimixer. The cells were 

washed once in FACs buffer (PBS, 1 % BSA, 0.1 % azide), centrifuged 1200 rpm at 4
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°C for 7’ and the supernatant discarded before final resuspension in 0.5 ml FACs-buffer. 

Samples were stored in the dark at 4 °C prior to flow cytometric analysis within 18 h of 

the staining procedure (FACScan, Becton Dickinson, CellQuest).

2.4.2 Flow cytometric analysis of lymphatic organs and peripheral blood

Single cell suspensions were prepared as described (see section “7n vitro B cell 

proliferation”). 4 ml of Geys lysis buffer was then added for 5’ at RT to lyse red blood 

cells. The tube was inverted 3-4 times and centrifuged at 1200 rpm (Sorvall RT 6000 D) 

at 4 °C for 7’. The supernatant was discarded and the cells quickly resuspended on a 

whirlimixer. The cells were washed once in FACs buffer (PBS, 1 % BSA, 0.1 % azide), 

centrifuged 1200 rpm at 4 °C for 7’ and the supernatant discarded before final 

resuspension in 0.5ml FACs-buffer. The cells were then counted and 1.0x10® cells were 

aliquoted into to a polystyrene tube (round bottom tube, 12x75 mm. Falcon 2052). The 

cells were labeled with antibodies to the following cell surface markers: CD4, CD8 , 

CD40, B220, IgM, and lastly ap-TCR. The same labeling method was used as 

described for red blood cells (see section “Antibody staining of mouse peripheral blood 

lymphocytes”) the only difference being that Ijig of each antibody was used for staining 

splenocytes and cells from the lymph nodes and thymus. Samples were stored in the 

dark at4°C prior to flow cytometric analysis within 18 hours of the staining procedure 

(FACScan, Becton Dickinson, CellQuest).

2.4.3 In vitro B cell proliferation

B lymphocytes were purified from the spleens of wt and CD40 deficient mice. A single 

cell suspension was made and washed in buffer (PBS, 2 mM EDTA, 0.5 % BSA) and B 

lymphocytes were purified using MACS (Magnetic Cell Sorting of Mouse Leukocytes) 

CD45R microbeads and positive selection (RS+) columns. A single cell suspension was 

made from spleens by breaking up the spleens and passing the cells through a 70 \im 

nylon mesh using a 2 ml syringe plunger in 5 ml buffer. The cells were centrifuged at 

1200 rpm 5’ (Sorvall RT 6000 D) and the supernatant discarded. The pellet was
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resuspended to give 10̂  total cells per 90 pi of buffer. 10 p,l of MACS CD45R (B220) 

microbeads were added per 10^total cells, mixed well and incubated for 15’ at 6-12 °C. 

Cells were washed by adding 1 ml of buffer, centrifuging at 1200 rpm for 5’, removing 

the supernatant completely and resuspending the resulting cell pellet in 500 pi of buffer 

per 10® total cells. The magnetically labeled cell suspension was pipetted onto an RS+ 

column, inserted into the magnetic field of a VarioMACS magnet. The cell suspension 

was allowed to run through the column which was then washed with 500 pi of buffer. 

The effluent was collected as the negative fraction. The column was washed twice more 

with 500 pi buffer and this effluent was pooled with the previous negative fraction. The 

column was removed from the VarioMACS magnet and placed over a new collection 

tube. 1 ml of buffer was applied to the reservoir of the RS+ column and the cells flushed 

out using a 2 ml syringe plunger. The resultant cell preparations were more than 95 % 

pure B cells as determined by flow cytometric analysis (FACScan, CellQuest) for surface 

CD45R, CD40, CD4 and CD8 .

B cells were cultured in RPMI 1640 containing 10 % FCS, L-Glutamine, 

pcnicillin/strcptomycin, p-mercaptoethanol. For proliferation assays, B cells (3.5 x 10® 

cells/well; 200 pi) were cultured for 72 hours in 96 well round-bottom tissue culture 

plates in the presence of 2 p.g/ml LPS, 50 U/ml IL-4, 25 p,g/ml CD40 mAB. Cultures 

were pulsed with 1 p,Ci/well of (®H)thymidine (Amersham) for the last 18-24 hours of a 

72 hour culture period and then harvested onto glass fiber filters. (®H)thymidine uptake 

was measured by a liquid scintillation counter (1205 Betaplate, Wallac).

2.4.4 Immunohistochemistry

Mice were immunized with 100 p,g KLH in complete Freund’s adjuvant. Ten days later 

the spleens were removed and placed in embedding compound and snap-frozen in liquid 

nitrogen and then stored at -80 °C. Up to 48 tissue sections of 5-10 p,m were cut using a 

cryostat (Kryostat 1720, UETTZ) and left until the next day at RT. The sections were 

fixed in acetone (AnalaR acetone, BDH) for 10’ and air dried for 30’. Slides were
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wrapped in foil and stored at -20 °C. Slides were thawed for 10’ and a two-step indirect 

staining method was used. Primary antibody was diluted to the correct concentration and 

applied to the tissue section for 30’-45’ at RT. The section was washed in TBS and an 

cnzyiiie-cûiijügâted secondary antibody was then added and incubated for 30’-45’ at RT. 

The sections were washed and substrate (Diaminobenzidine or Fast red) was added and 

incubated until the desired color intensity had developed. Counterstaining was carried out 

using haematoxylin and the section was then placed under a coverslip.

Primary antibodies: 1.) Biotinylated Peanut agglutinin, 2.) FTTC conjugated rat anti

mouse CD40, 3.) Rabbit anti-CD3,4.) Rabbit anti-CD79a.

Secondary antibodies: 1.) Avidin horseradish peroxidase conjugate, 2.) Rabbit anti-FTTC 

horseradish peroxidase conjugate, 3.) Goat anti rabbit horseradish peroxidase conjugate. 

4.) Avidin alkaline phoshatase conjugate.

Substrate: DAB (Diaminpbenzidene) and Fast red. (Sigma).

2.4.5 Preparation of serum from blood

The mouse was sacrificed and bled out using a 1 ml syringe. The blood was clotted in a 

15 ml Falcon tube for 4 h at RT and placed o/n at 4 °C to allow clot retraction. The clot 

was gently loosened from the sides of the tube with a wooden applicator stick without 

breaking up the clot which was then discarded and the serum was transferred to a 15 ml 

Falcon tube. Remaining blood cells and debris were pelleted by centrifugation for 10’ at 

2700g 4°C (Sorvall RT 6000 D). The semm was then ready for analysis of 

immunoglobulin levels.

2.4.6 ELISA

Detection of serum immunoglobulin isotypes was performed using a sandwich-ELISA. 

NUNC polysorp plates were coated with anti-mouse IgM, IgGl, IgG2a, IgG2b, IgG3 

and IgE diluted in PBS/0.05% NaNj to a final concentration of 20 p.g/ml and incubated
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overnight at 4 ®C. Plates were then blocked with PBS containing 1% BSA, 0.3% 

Tween, 0.05% NaNj and incubated for 2 hrs at 37 ®C. Plates were then washed 3x in 

ELISA wash buffer (see buffers and solutions). Mouse inimunoglobulin standards for 

each of the isotypes and serum from wild-type and CD40 deficient mice were diluted in 

PBS, 0.1% BSA, 0.3% Tween, 0.05% NaNj and added to the plates and incubated for 

2 hrs at 37 ®C. The starting concentration of the standards was 500 ng/ml and these were 

then diluted 2 fold with a total of 11 dilutions. The starting dilution of semm for the 

detection of the different immunoglobulin isotypes was: IgM: 1:500; IgGl: 1:1000; 

IgG2a: 1:1000; IgG2b: 1:1000; IgG3: 1:500; IgE: undiluted. These were then diluted 2 

fold with a total of 11 dilutions. Plates were washed 5x with ELISA wash buffer and 

alkaline phosphatase-conjugated isotype specific antibodies (anti-mouse Ig-AP) were 

then added at a final concentration of 2 p,g/ml (diluted in PBS) and incubated 1 hr at 37 

®C. Plates were then washed lOx in ELISA wash buffer and PNPP (p-nitrophenyl 

phosphate, 1 mg/ml) substrate was added and color intensity determined at 405 nm in an 

ELISA microplate reader (Dynex MRX TC2). Semm immunoglobulin isotype 

concentrations were calculated using the software program Revelation 3.04.

2.4 .7  Mouse ELIspot (IFN-y)

MAHA plates were coated with 50 pJ of 10 pg/ml R4 monoclonal antibody in sterile 

PBS. Incubated overnight at 4 ®C. Wells were washed 5 times with 200 pi of PBS, 

followed by blocking of nonspecific binding by complete RPMI-1640 medium 

containing 10 % FCS for 2 h at room temperature. 1.0x10® cells in 50 pi were added to 

the per well and the antigen were added on top, either 250 ng/ml or 1 pg/ml Tuberculin 

PPD (Tuberculin purified protein derivative BP) in a total of 200 pi of medium. Cells 

plus antigen were incubated undisturbed for 18-24 h at 37 °C. Next day, cells were 

flicked out and the wells washed 3 times with PBS, then once with water and tlien twice 

more with PBS. 50 pi of biotin conjugated rat anti-mouse IFN-y antibody in PBS (1 

pg/ml) were added to the wells and incubated 2 h at room temperature or overnight at 4 

°C. Wells were washed 5 times in PBS and 50 pi of streptavidin poly alkaline
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phosphatase ( 1  |ig/ml) were added and the plate were incubated 2  h at room temperature. 

Wells were washed 5 times with PBS and 50 pi of developing reagent (BIORAD: AP- 

conjugate substrate kit) were added. Colour developed at room temperature for 1-2 h, 

wells were then washed 5 times with tap water and allowed to air dry, before counting 

spots.

2.4.8 Mycobacterial counts (colony-forming units)

Homogenates of spleen, liver and lung were prepared in 1 ml of PBS/Tween-80 

(0.05%). 200 |il of homogenized tissue was plated at 2.5, 5- or 10-fold serial dilution 

(diluted in PBS) onto Middlebrook 7H10 agar plates. Colony-forming units (bacterial 

colonies) were counted 2-3 weeks later.

2.4.9 Histology (BCG infected mice)

Tissue sections were fixed in 10% formalin and embedded in paraffin blocks. Sections 

(5 pm) were stained with hematoxylin and eosin. Hematoxylin stains the nucleus blue, 

whereas eosin stains the cytoplasm red. Sections were also stained by the Ziehl-Neelsen 

method for acid fast bacilli using the following method. Take sections to water. Rinse in 

distilled water. Cover sections with filter paper dampened with distilled water. Apply 

staining solution to filter paper on sections. Rinse in distilled water. Decolourise sections 

in 1% acid alcohol. Rinse in distilled water. Counterstain in 1% methylene blue in 1% 

acetic acid. Dehydrate, clear and mount. Result: acid-fast bacilli stain red and nuclei stain 

blue.

2.4.10 Statistical analysis:

The results from the various analyses carried out in this thesis were compared using 

Student’s t-test. This was used to evaluate whether the differences between the means of 

the parameters studied were significantly different. It was assumed that the results 

obtained from the two populations (wild-type and mutant mice ) were normally 

distributed and that the standard deviations of the two populations were equal. A
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significance level of 5% was chosen, and P values below this indicated that the 

differences in the two populations being compared were significant, (Essentials of 

Medical Statistics, Betty R. kirkwood).

2.5 Buffers and Solutions

2.5.1 Molecular biology

Solution I: 50 mM Glucose 
25mMTris-Cl pH 8.0 
lOmMEDTA

Solution II: 0.2 MNaOH 
1 %SDS

solution IQ: 3 MKOAc 
2  MHOAc

lOx kinase buffer: 500 mM Tris-Cl pH 7.6 
100 mM MgClj 
50 mM DTT 
1 mM Spermidine 
1 mM EDTApH8.0

lOx TA buffer: 1 M Tris-acetate
2 M K-acetate
1 M Mg-acetate

lOx Ligation buffer: 500 mM Tris-Cl pH 7.4 
100 mM MgClg 
100 mM DTT 

10 mM Spermidine 
10 mM ATP 

1 mg/ml BSA

lOx CIP buffer: 500 mM Tris-Cl pH 9.0 
10 mM MgClj 

1 mM ZnClg
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10 mM Spermidine

IxTE buffer: 10 mM Tris-Cl pH 7.6 
Im M  EDTApHS.O

IxTBE buffer:

lOx Loading buffer, agarose gel:

Hybridisation buffer (church):

Mousetail buffer:

89 mM Tris-Cl pH 7.8 
89 mM Borate

2 :mM EDTA pH 8.0

15 % Ficol
0.25 % Bromphenol blue
0.25 % Xylen cyanol
1 0 0 mM EDTA pH 8.0

0.5 M NaPo^ pH 7.2
7 % SDS
5 mM EDTA

( 1 % BSA)

50 mM Tris-HCl pH 8.0
1 0 0 mM EDTA
1 0 0 mM NaCl

1 % SDS

Lysis buffer (ES cells): 10 mM Tris pH 7.5 
10 mM EDTA 
10 mM NaCl 

0.5 % sarcosyl
Add Proteinase K to a final concentration of 1 mg/ml just prior to 
use.

Denaturing solution: 1.5 M NaCl 
0.5 M NaOH

Neutralising solution: 1.5 M NaCl 
0.5 M Tris-HCl pH 7.2 

1 mM EDTA
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20x SSC: 3 M NaCl 
0.3 M NagCitrate

Buffer Cl: Dissolve 109.54 g sucrose, 1.02 g MgClj.ôHjO, 1.211 g Tris 
base in 800 ml ddH^O. Add 100 ml 10 % Triton X-100 solution. 
Adjust pH to 7.5 with HCl. Adjust the volume to 1 liter with
ddHjO.

Buffer G2: Dissolve 76.42 g GuHCl, 11.17 g Na^-EDTA ^H^O, 3.633 g 
Tris base in 600 ml ddH^O. Add 250 ml 20 % Tween-20, 50 ml 
10 % Triton X-100. Adjust the pH to 8.0 with HCl. Adjust the 
volume to 1 liter with ddH^O.

Buffer QC: Dissolve 58.44 g NaCl, 10.46 g MOPS in 800 ml ddH^O. 
Adjust the pH to 7.0 with NaOH. Add 150 ml pure ethanol. 
Adjust the volume to 1 liter with ddHgO.

Buffer QF: Dissolve 73.05 g NaCl, 6.055 g Tris base in 800 ml ddl^O. 
After the addition of 150 ml pure ethanol adjust the pH to 8.5. 
Adjust the volume to 1 liter with ddH^O.

50xTAE; 242 g Tris base, 57.1 ml glacial acetic acid, 100 ml 0.5 M EDTÀ 
pH 8.0. Adjust the volume to 1 liter with ddH^O.

SM Buffer 5.8 g NaCl
2 . 0  g MgSo4.7H20
50 m il  M TrisHCl (pH 7.5)
5 ml 2 % gelatin solution
HgO to 1 liter

Plasmids: pGEM-7Zf(+) (Promega) 
pGEM-1 lZf(+) (Promega)
pMCl Neo (contains the neo structural gene from Tn5)

2.5.2 Tissue culture

ES cell lines: D3: derived from mouse strain 129/Sv.
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RI: derived from mouse strain (129/Sv x 129/SvJ) F,.

Medium for ES cells (complete medium):

DMEM - 500 ml (Gibco-BRL; Ix; 41965-039).
Fetal Calf Serum - 80 ml (Sigma; F-4884; lot. 51H-0546).
100 % FCS batch tested, heat inactivated at 56 ®C for 30’. 
L-Glutamine - 5 ml (Gibco-BRL; lOOx; 25033-010).
Pen/Strep - 5ml (Gibco-BRL; 5000IU; 15070-022).
Sodium Pyruvate - 5 ml (Gibco-BRL; lOOmM; 11360-039). 
P-mercaptoethanol - 0.5 ml (0.1 M) (Sigma; 14.3 M; M7522).

G418 selection medium:

Complete medium.
G418 added to complete medium at a final concentration of 
300 pg/ml. Geneticin (G418 sulfate; Gibco-BRL; 11811-031). 
LIF (Leukaemia Inhibitory Factor) 500 U/ml

Gelatin: 1 % (Sigma; Type A from porcine skin; G-2500)

Mitomycin C: (Sigma; M0503; 2mg).(10 pg/ml complete medium).

PBS: Phosphate buffered Saline. PBS tablets (OXOED PBS Dulbecco
A tablets; BR14a; Ca^ and Mg^ free.

Trypsin-EDTA: (Gibco-BRL; Ix; 45300-019)

2.5.3 Functional assays

Geys lysis buffer: Solution A: (1 liter)

35 g NH4CI
1.85 gKCl 
0.56 gNa^HPO,
0.12 gKHgPO^
5.0 g Glucose
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Sterilise by Alteration: 0.22 pm filter.
Solution B:(500 ml)

2.1 gM gC V ôH ^O  

0.7 g MgSO^^H^O 
2.25 g CaCl^ ^H^O

Autoclave.
Solution C: (500 ml)

11.25 gN aH C O j

Autoclave.
Mix solutions:

A: 100 ml
B: 25 ml
C: 25 ml

ddHjO: 350 ml
total 500 ml

FACS buffer: PBS, 1 % BSA, 0.1 % azide.

EL-4: Interleukin-4 (50 units/ml) (Pepro Tech inc.; cat.no. 214-14)

LPS: Lipopolysaccharide 1 mg (Sigma; cat.no. L 6529)

PPD: Tuberculin purified protein derivative BP.(EVANS medical)

BCG: Percutaneus BCG vaccine. BCG: bacillus Calmette-Guerin
(Copenhagen sub-strain 1077). 1.0x10^ viable units per I.V. 
injection. (EVANS medical).

MACS CD45R microbeads:
MACS colloidal super-paramagnetic microbeads conjugated to 
monoclonal rat anti-mouse CD45R (B220) antibodies.
Isotype: rat IgGj^. Clone: RA3-6B2. (Miltenyi Biotec; cat no. 
495-01).

MACS separation columns:
RS+ positive selection separation columns. (Miltenyi Biotec; cat. 
no. 413-01).
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RPMI1640 medium:

Medium for B cell proliferation.
RPMI 1640- 500 ml (Sigma; R 8758).
Fetal Calf Serum - 50 ml (Sigma; F-4884; lot. 51H-0546).
100 % FCS batch tested, heat inactivated at 56 ®C for 30*. 
L-Glutamine - 5 ml (Gibco-BRL; lOOx; 25033-010).
Pen/Strep - 5ml (Gibco-BRL; 5000IU; 15070-022). 
P-mercaptoethanol - 0.5 ml (0.1 M) (Sigma; 14.3 M; M7522).

ELISA wash buffer: 0.9% NaCl, 0.005M K^HPO^, 0.005M KH^PO^, 0.025% 
Tween. (For lOL: 90g NaCl, 100 ml 0.5M KgHPO^, 100 ml 
KH2PO4, 25 ml 1:10 diluted Tween 20. Adjust to pH 7.0).

ELISA substrate: PNPP (Sigma) diluted at 1 mg/ml in diethanolamine buffer.

Diethanolamine buffer:
48.5 ml diethanolamine, 400 mg MgCl^ x bH^O, 100 mg NaN^, 

add 450 ml H^O. Stir for 1 hr in the DARK, pH 9.8 (with con. 
HCL) add ~ 500 ml to 1 litre. Store at 4 °C.

2.5.4 Introduction of mutations into the mouse germiine

Mineral oil: Embryo tested (Sigma; cat.no. M8410)
Glass tubing: Holding pipette, injection needle (World Precision Instruments;

1.0/0.75, RTW 100-4)
Glass capillary tubes: Transfer pipettes (BDH; cat.no. 314/1100/12)
Silicone oil: Dow Coming 200/200cS (BDH; cat. no. 63008-4C)
Hypnorm (Fentanyl)/Hypnovel (midazolam), 0.2 ml/20 g mouse (veterinary surgeon)

Injection microscope: Leitz, Labovert FS, Microinstruments Ltd.
Pipette puller:

Microforge:
Beveller:

Vertical pipette puller, model 720C, David Kopf 
Instruments, Tujunga,Califomia, U.S.A.
Alcatel-Annecy , TY 4160, Microinstmments Ltd. 
1300 M Beveller, World Precision Instruments.

Secum Medium:
EDTA
NaCl

g/lOOOml
0.037
5.546
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KCl 0.356
KH2 PO4  0.162
MgS04.7H20 0.294 
NaHC03 2.106
Glucose 1.000
Na-lactate (DJ^) 3.05 ml
Ca-lactate.5 H2 0  0.527
Na-pyruvate 0.028
G-penicillin 0.075
Streptomycin.S04 0.050
BSA 3.000
Phenol Red 1 ml/1% solution

Weigh out all ingredients, except Phenol red, Na-lactate, BSA, in one weighing boat. 
Add 980 ml of ddH2 0  in a sterile tissue culture flask. Add Phenol red and Na-lactate, 
stir until all chemicals are dissolved. Sprinkle BSA on top of medium. DO NOT STIR. 
Leave o/n at 4 ®C. Filter the medium slowly, in order to avoid bubbles. Store at 4 for 
not more than one month.
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Chapter 3: Generation of CD40 deficient mice

3.1 Generation of a targeting vector for CD40

When a fragment of genomic DNA is introduced into a mammalian cell it can locate and 

recombine with the endogenous homologous sequences and this is called gene targeting. 

Gene targeting has been widely used in mouse embryonic stem (ES) cells to make 

mutations at different loci (genes) so that the phenotypic consequences of a specific 

genetic modification can be assessed in vivo (Figures 3. and 4.). In this chapter the 

generation of a vector to specifically target CD40 and the subsequent production of CD40 

targeted embryonic stem cell clones is described. The production of chimaeric mice, the 

establishment of germiine transmission and lastly the interbreeding of mice heterozygous 

for the mutant allele to generate CD40 deficient mice is also described.

The first experimental evidence for the occurrence of gene targeting in mammalian cells 

was made in a fibroblast cell hne where a selectable artificial locus introduced by Lin and 

coworkers, corrected a deficiency in the thymidine kinase gene of that cell line (Lin et a i, 

1985). Another study demonstrated that homologous recombination could also occur 

between a plasmid containing sequences from the p-globin gene and the endogenous p- 

globin gene in erythroleukaemia cells (Smithies et al., 1985). In general the frequencies 

of gene targeting events in mammalian cells are low. This is probably related to the fact 

that transfected DNA can also integrate into random chromosomal sites. The relative 

frequency of targeted to random integration events will determine the ease with which 

targeted clones may be identified in a gene targeting experiment. A targeting vector is 

designed to recombine with and mutate a specific chromosomal locus. The minimal 

requirements of a targeting vector are that it should have homologous sequences to the 

desired chromosomal integration site and positive and negative selection markers 

providing strong selection for cells with a targeted integration. The positive selection 

marker in a targeting vector may serve two functions. Its primary function is as a 

selection marker to isolate the rare transfected cells that have integrated DNA. Secondly
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the positive selection marker can serve as a mutagen, for instance, if it is cloned into a 

coding exon of the gene or replaces coding exons. Many targeting vectors also use a 

negative selection marker which is positioned at the end of the homologous sequences. 

The negative selection marker renders cells, which have integrated the targeting vector 

into a random chromosomal site, sensitive to FIAU/gancyclovir. The neo gene, encoding 

a bacterial aminoglycoside phosphotransferase, renders a given cell resistant to the 

antibiotic G418 (an inhibitor of protein synthesis), so that it can be positively selected 

(Colbere et al., 1981). The thymidine kinase gene (tk ) is of viral origin (herpes simplex 

virus, HSV) and facilitates the incorporation of antiviral drugs such as gancyclovir and 

FT AU (l-(2’-deoxy-2’-fluoro-b-D-arabinofuranosyl)-5-iodouracil) into DNA during 

replication. These base analogs block the incorporation of additional bases and thereby 

induce a termination of replication that will lead to cell death. Thus, cells which have 

randomly integrated the targeting vector and the tk gene can be negatively selected 

(Borrelli et a i, 1988; St et a i, 1987).

Two distinct designs are commonly used for gene targeting in mammalian cells, 

replacement and insertion vectors. These vector-types are constructed differently so that 

following homologous recombination they yield different integration products. The basic 

elements of a replacement vector are, homologous sequences to the target locus, a 

positive selection marker, bacterial plasmid sequences and a linearization site outside of 

the homologous sequences of the vector (Figure 6  and 8 ). The final recombinant mutant 

allele can be described as a consequence of double reciprocal recombination between the 

vector and the chromosomal sequences. This is equivalent to a replacement of the 

chromosomal homology with all components of the vector which are flanked on both 

sides by homologous sequences. Any heterologous sequences at the ends of the vector 

homology are excised from the vector and are not recovered as stable genomic sequences 

following targeting. The recombinant allele generated in a gene targeting experiment 

using a replacement vector typically has a positive selection marker inserted into a coding 

exon or a coding exon is deleted and replaced by the positive selection marker.
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Disruption of the coding sequence by the positive selection marker will in most instances 

ablate a gene’s function. However, in some situations a truncated protein may be 

generated which retains some biological activity. Therefore, null alleles are more likely to 

occur if the positive selection marker is inserted into an upstream exon rather than a 

downstream exon. This ensures that only the very N-terminal portion of the polypeptide 

should be made. Another important consideration is exon skipping. An artificially large 

exon with an inserted positive selection marker may not be recognized by the RNA 

splicing mechanism and could be skipped (Robberson et al., 1990). Thus, transcripts 

initiated from the endogenous promoter may delete the mutated exon from the mRNA. If 

this involves a coding exon, containing the positive selection marker, without a unit 

number of codons, then the net result will be both a deletion and a frame-shift mutation 

of the gene, which should generate a null allele. However, if the disrupted coding exon 

has a unit number of codons which is spliced out, this would result in a protein with a 

small in-frame deletion which may retain partial or complete function.

The position of the positive selection marker with respect to the homologous sequences 

of the vector will determine the type of sereen that must be used to deteet the ES eell 

clones targeted with a gene replacement event. One common screening method for 

targeted ES cell clones is based on PCR amplification. This is accomplished by using 

one primer which hybridizes to the positive selection marker and a second primer which 

hybridizes to the target chromosomal sequences just beyond the homology used in the 

vector (Figure 7.). Thus, replacement vectors designed for screening by PCR 

amplification require that the positive selection marker is inserted at an asymmetric 

location near one end of the homologous sequences, while still leaving sufficient 

homology for the formation of a crossover. This gives a vector with one long arm and 

one short arm of homologous sequences. Another common screening method for ES cell 

clones targeted with a gene replacement vector uses Southern blot analysis (Figure 9.). 

For this it is important to design the vector and identify a unique probe(s) and restriction 

sites so that such analysis is unambiguous and can discriminate between the wild-type
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allele and the predicted targeted allele. This analysis is ideally performed with a probe 

that is not contained in the homologous sequences of the targeting vector (external probe, 

probes A and B in Figure 7. and 9.) and a restriction enzyme digest that does not cut in 

the homologous sequences o f the vector or where at least one restriction enzyme site is 

located outside the homologous sequences of the vector (Figure 7. and 9.).

The basic elements of an insertion vector are, a region of homologous sequence to the 

target locus which has a unique linearization site, a positive selection marker and a 

bacterial plasmid backbone. The major difference between the two vector types 

(replacement and insertion vectors) is that the linearization site of an insertion vector is 

made in the homologous sequences of the vector. An insertion vector undergoes single 

reciprocal recombination (vector insertion) with its homologous chromosomal target 

which is stimulated by a double stranded break (linearization site) in the vector. Since the 

entire insertion vector is integrated into the target site, including the homologous 

sequences of the vector, the recombinant allele generated by such a vector becomes a 

duplication of the target homology separated by the heterologous sequences in the vector 

backbone. The duplication of exon sequences is usually sufficient to generate a null 

allele. However, to ensure that exon duplication will create a mutation at the protein level 

it may be necessary to introduce stop codons into a single exon in the targeting vector. 

Screening for the recombinant allele generated by an insertion vector can be done by 

PCR amplification or Southern blot analysis. The best restriction enzyme digest for 

Southern blot analysis will be with an enzyme that does not cut within either the 

homology of the target locus or the vector backbone. As I have described previously, the 

use of an external probe in Southern blot analysis is necessary. An ES cell clone which 

has inserted one unit of the vector into the target locus will show an increase in the size 

of the restriction fragment which matches exactly the size of the targeting vector.

To obtain sequences from the murine CD40 gene, a murine genomic library containing 

genomic sequences from the mouse strain 129/Sv (Lambda Dash 9H-129/Sv) was plated 

and screened using a 930 bp cDNA probe (Plating and screening procedure is described
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in section 2.1.5). The CD40 cDNA probe was produced by PCR amplification, as 

described in section 2.1.22, using primers hybridizing to exon 1 (Primer 1) and just 

downstream of exon 9 (Primer 9) on cDNA isolated from mouse splenocytes. The 

mammalian genome contains approximately 3 x 10’ bp and one phage, on average, 

contains a genomic insert of approximately 12 kb (12 x 10̂  bp). To ensure that the entire 

genome was represented in this screening, a minimum 2.5 x 10  ̂ clones (phages) would 

need to be plated out and screened for the gene of interest. 7.5 x 10  ̂ clones were plated 

and screened for the presence of CD40 genomic sequences. This yielded 3 positive 

phage clones (Figure 5.). The 3 positive phage clones were isolated and amplified in the 

phage maxiprep method described in section 2.1.6. Restriction enzyme digests, using 

enzymes BamHI, SaR, Sad , Kpn\, BgtQ., EcoRI, Xhoi, Xbal, HindUl, and agarose gel 

electrophoresis on phage DNA (described in section 2.1.1 and 2.1.12) and subsequent 

Southern blot analysis (described in section 2.1.19-2.1.20) using oligo-nucleotide 

primers (primers 1 -8 ) to probe for the different exons, revealed that phage clone 1 

contained exon 1 , whereas phage clone 2  contained exons 2 - 6  and phage clone 3  

contained exons 2-9 (Figure 5.). Both clones 2 and 3 were ideal for the generation of a 

replacement targeting vector as they contained sufficient sequence to allow homologous 

recombination to occur and the presence of an EcoRI restriction site in exon 3 allowed 

for the insertion of the positive selection marker and stop-codons.
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Two different targeting vectors were made, construct 1 (Figure 6 .) and construct 2 

(Figure 8 .)- Construct 1 was made by ligating the Xbal restriction fragment from the 

CD40 gene, containing exons 2-5, into a pGEM-1 lZf(-) vector (Figure 6 .B.I.) as 

described in section 2.1.12-2.1.13. The cloning step was followed by PCR amplification 

of a 3 kb region spanning exons 2-4. The primers used were the T7 polylinker primer 

(primer 12) and a primer hybridizing downstream of exon 4 (primer 4). The resulting 

PCR fragment was then cloned into a pGEM-7Zf(+) vector (Figure 6.B.2.). The last 

step in generating construct 1 was to clone the G418 resistance gene (NEO) into the 

EcoRI site of exon 3. The G418 resistance gene consisted of the neo structural gene 

(aminoglycoside phosphotransferase, derived from the bacterial transposon Tn5) and the 

promoter driving the expression of this G418 resistance gene (derived from the herpes 

simplex virus thymidine kinase gene (HSV-rk)). To increase the efficiency of the tk 

promoter a 65 bp fragment derived from the polyoma virus enhancer was inserted 

upstream of the tk promoter (Thomas & Capecchi, 1987). The G418 resistance gene 

confers resistance to Geneticin (G418) which is an inhibitor of protein synthesis.

The pGEM-7Zf(+) vector containing the cloned CD40 PCR fragment (Figure 6.B.2.) 

was cut with the enzyme EcoRL and an oligonucleotide linker with a Sal I restriction site 

was ligated into the EcoRl restriction site. The linker, consisting of primers 13 and 14, 

contains a Sail restriction site and stop-codons in all three reading frames. Ligation of the 

linker into the EcoRI restriction site abolishes this restriction site due to nucleotide 

changes in the linker sequence. The vector containing the cloned PCR fragment (Figure 

6.B.2.) and the linker fragment was subjected to restriction digestion with EcoRI, and E. 

coli was transformed with the restriction digest. This ensures that only vectors containing 

the cloned PCR fragment and the linker fragment {Sail restriction site) will support 

bacterial growth, whereas vectors without the linker, still containing the EcoRI site, will 

be linearized and as a result, cannot support bacterial growth. The correct vector was 

then amplified in a miniprep (described in section 2.1.3) and then cut with Sail restriction 

enzyme to remove concatamers of the linker and to prepare the vector for ligation of the
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G418 resistance gene into the SaH restriction site. The G418 resistance gene (NEO) was 

cut out of the plasmid pMClNeo by a SaH-Xhoi restriction digest and ligated into the 

SaH site of the vector containing exons 2-4 of the CD40 gene. The Sad and Xhol 

restriction sites are compatible for ligation purposes. The final outcome of the cloning 

procedure is a targeting vector containing a 3 kb fragment of the CD40 gene with a G418 

resistance gene (1.2 kb) inserted into the engineered Sad site (previously EcoRI site) of 

exon 3 (Figure 6.B.3.). The linker served two purposes, it introduced a Sad site 

enabling the cloning of the G418 resistance gene {Sad-Xhol restriction digest) into exon 

3, and the linker also contained stop-codons in all three reading frames, terminating 

transcription of the CD40 gene in the event of homologous recombination. The G418 

resistance gene was inserted upstream of the putative binding site (residues E74, Y82, 

D84, N8 6 , E l 17) for CD40L, thereby abolishing any ligand binding of a truncated 

CD40 protein (Bajorath cr a/., 1995b).
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Figure 6 . Cloning of targeting construct 1. A.) Partial restriction map of the CD40 gene. B.) 
Cloning procedure for construct 1. Xbal fragment of the CD40 gene was cloned into pGEM- 
1 lZf(-) vector (B. 1.), followed by PCR ampUfication of a 3 kb region spanning exons 2-4. The 
PCR product was cloned into the BamHl-Xhol restriction site of a pGEM-7Zf(+) vector (B. 2.). 
Finally, cloning of the G418 resistance gene into the Sail restriction site of exon 3 (B. 3.). NEO: 
G418 resistance gene, The antisense primer (primer 4, exon 4) and the T7 primer (primer 12) 
used in the PCR amplification are shown by small arrows (B. 1.). Black boxes represent exons 
1-9. Restriction enzyme sites: Xb, Xbal\ S, S a d ’, E, EcoRI; B, RamHI; X, Xhol’, Sa, Sail. 
Dashed hnes show cloning sites in the polylinker.
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Construct 1 was designed so that the initial screening for the homologous recombination 

could be carried out using PCR amplification (Figure 7.C.). Homologous recombination 

was detected using PCR amplification on genomic DNA extracted from electroporated 

ES cells using a primer (primer 11) inside the G418 resistance gene (NEO) and a primer 

to exon 5 (primer 5) outside the region of homology, giving a 1 kb product (Figure 

I.e .). Screening for homologous recombination by PCR is described in detail in section 

2.1.25. Subsequent confirmation of the homologous recombination event would be 

carried out by EcoKV restriction enzyme digest on genomic DNA, followed by Southern 

blot analysis using a 820 bp fragment spanning exon 6  as an external probe (probe B). A 

targeted mutation would yield a 6 . 2  kb fragment, whereas the non-targeted wild-type 

allele would give a 5 kb fragment (Figure 7.C.).

Constmct 2 was made by cloning an Xbal-Xhol restriction fragment of the CD40 gene, 

containing exon 6 , (Figure 8 .B.I.) into a pGEM-llZf(+) vector. Then an Xbal 

restriction fragment of the CD40 gene containing exons 2-5 was cloned into the Xbal site 

of the vector, resulting in an 8  kb genomic fragment spanning exons 2-6 of the CD40 

gene (Figure 8 .B.2 .). Cloning of the G418 resistance gene into the EcoRI restriction site 

of exon 3 requires that only one EcoRI restriction site is present in the vector and the 

CD40 fragment (exons 2-6). Due to the presence of an EcoRI restriction site in the 

polylinker of the pGEM-llZf(+) vector, the 8  kb genomic fragment (HindHl-Xhol, 

exons 2-6) was excised and then cloned into a pGEM7Zf(+) vector, having no EcoRI 

restriction site in the polylinker (Figure 8.B.3.). This facilitated the cloning of the G418 

resistance gene into the exon 3 EcoRI restriction site (Figure 8.B.4.), as described for 

construct 1 .,

Screening for homologous recombination occurring with construct 2 was only possible 

using BamHl restriction enzyme digestion followed by Southern blot analysis (Figure 

9.). A targeted mutation would give a 10 kb fragment, with a BamHl restriction site 

introduced by the G418 resistance gene targeted into the CD40 gene, whereas the non

79



3: CD40 deficient mice

targeted wild-type allele would give a 23 kb fragment when probed with the external 

probe, probe A, which spans exons 7-8 (Figure 9.C.). The BamHl restriction site in the 

wild-type allele that generates this 23 kb fragment lies 5’ (upstream) to the CD40 gene. 

This latter BomHI restriction site is not shown in Figure 9.

Screening of ES cell clones for a homologous recombination event by Southern blot 

analysis should be unambiguous, therefore identification of a probe suitable for 

verification of a homologous recombination event is cmcial. The probe used in the 

Southern blot analysis must hybridize outside the homologous sequences of the targeting 

vector. The criteria for which restriction enzyme to use is that it should generate a 

fragment unique to the homologous recombination event. This unique fragment should 

be labeled by the probe (Figure 7 and 9). In this study I found that external probes 

(probes A and B) derived from exon sequences of the CD40 gene by PCR amplification 

specifically labeled both the wild-type allele and the targeted allele, whereas probes 

derived from intron sequences would bind several restriction enzyme fragments or give a 

“smear” in a Southern blot analysis (data not shown). The non-specific binding of 

probes derived from intron sequenees was probably caused by repetitive sequences. I 

also found that the size of the probe was important for detection of restriction enzyme 

fragments in a Southern blot analysis. Probes ranging from 80-280 bp, even when 

derived from exon sequences, failed to detect any restriction fragments in a Southern blot 

analysis (data not shown). Thus, probes used in Southern blot analysis should be 

derived from exon sequences and the length of the probe should be in the range of 0.5- 

1.2 kb. Ideally the Southern blot strategy and probe(s) should be defined and checked 

for suitability in the Southern blot analysis before the targeting vector is made.

Large quantities of construct 1 and 2 were made using the maxiprep method and purified 

on a CsCl gradient as described in section 2.1.4. This yielded very clean plasmid DNA 

which was necessary for efficient transfection of ES cells. Both targeting vectors were 

linearized, using an enzyme restriction site outside the homologous sequences, prior to 

transfection. Constructs 1 and 2 were hnearized with Xbal and HindQl, respectively,
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and prepared for electroporation (described in section 2.1.24). Previous studies have 

shown that linearizing the targeting vector increases the targeting frequency, however 

there is no advantage in isolating the homologous sequences from the bacterial plasmid 

DNA constituting tlie rest of the vector (Hasty etal., 1991b). The advantage of construct 

1 over construct 2, is that the screening procedure using PCR amplification is quicker 

than restriction enzyme digestion and southern blotting. More G418 resistant clones can 

be screened in a shorter time. The constructs are now ready for transfection into 

embryonic stem cells.
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Figure 8. Cloning of targeting construct 2. A.) Partial restriction map of the CD40 gene. B.) Cloning 
procedure for construct 2. Xbal-Xhol restriction fragment of the CD40 gene cloned into pGEM-llZf(+) 
vector (B. 1.), followed by cloning of Xbal restriction fragment of the CD40 gene into the Xbal site of the 
pGEM-llZf(+) vector (B. 2.). The 8 kb CD40 genomic fragment (HindUl-XhoT) was then cloned into a 
pGEM-7Zf(+) vector (B. 3.) and the G418 resistance gene cloned into the Sail restriction site (B. 4.). NEO: 
G418 resistance gene. Black boxes represent exons 1-9. Restriction enzyme sites: Xb, Xhal\ S, Sacl\ Sa, 
Sall\ E, EcoRI; B, BamHl-, X, Xhol. Dashed lines show cloning sites in the polylinker.



m

!“ l l

X —

X
ho

Jru —
■ ■(N

X

M
M
OS

W  —

I
W)

8
W —

T

O

C/D
Go
O

!
H

PQ

I
bO

i
(4-1o

ao

7 3

î
H
Ü

PQ —

X —

loo
ir- II

W) -O ^

l ï l i

ho

M
O
CD

£
PQ —=

V )

Tf
m

im
les

g -

w —

w —

T

I BMo
Ç.1

li#1 
f ï

il

h
11

m
■fi

a l
o .%

PQ-S C/3
o ’i

es
u ^ I s

i l
: 3 & §
a o f l

II!
i l .
ll»:li
^  « 2 1  a

l i t
g
I

!p:iililfl
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3.2 Production of targeted embryonic stem ceii ciones

Pluripotent mouse embryonic stem (ES) cells derived from inner cell mass (ICM) cells of 

mouse blastocysts were isolated and conditions for maintaining them in culture were 

initially developed by two laboratories (Evans & Kaufman, 1981; Martin, 1981). The in 

vitro culture of ES cells is dependent on the cytokine leukaemia inhibitory factor (LIE) 

(Smith et al., 1988; Williams et al., 1988). This protein is essential for maintaining the 

growth of ES cell in vitro since, in its absence, ES cells will differentiate and eventually 

cease to proliferate. Leukaemia inhibitory factor can be applied to the ES cells in two 

different ways. Currently the best approach, and the most effective one for long-term 

culture, is to culture the ES cells on a feeder layer of mouse primary embryonic 

fibroblasts. The feeder layers synthesizes and secretes LIE into the culture medium, 

which facilitates the continuous proliferation of undifferentiated ES cells. The alternative 

is to culture ES cells in medium which is supplemented with recombinant LIE. Apart 

from the requirement for LIE, ES cells are very sensitive to the type and quality of fetal 

calf serum (ECS) in which they are grown. Because the quality of fetal calf serum can 

vary from batch to batch, it is essential to test each batch of serum to ensure that it is 

optimal for ES cell growth. The use of stringent tissue culture conditions ensures that 

these cells maintain their ability to contribute to all tissues in chimaeras, even after genetic 

manipulation. The important thing is that the ES cells maintain their pluripotency (remain 

undifferentiated) and can thus contribute both to somatic tissues and most importantly, to 

the germiine of mice. Newly thawed ES cells usually grow slowly and the growth 

depends on the cell density. As a general rule, the more dense the cells, the faster the 

growth. It is important to keep the time in culture to a minimum and to dissociate clumps 

of cells at each passage. Check the cells frequently, ideally twice a day and change the 

medium every day. Undifferentiated ES cell colonies are oval and look shiny under the 

phase contrast microscope. Individual cells can not be seen within undifferentiated cell 

colonies. In contrast, differentiated ES cell colonies are fiat, granular and appear grayish 

under the microscope. However, even if an ES cell culture appears undifferentiated, this
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does not guarantee germiine transmission. Some ES cells have been found to be able to 

form somatic, but not germiine cells in chimeras (this was found to be the case in this 

study). The reason for this is unknown. Such cells cannot be distinguished from 

germline-competent ES cells by morphology, karyotype or any other in vitro test. 

Therefore, prior to use in gene targeting experiments, the germiine competence of an ES 

cell line should be confirmed by the generation and test breeding of chimaeras.

The ES cell lines used in the experiments described here were D3 (Doetschman et al., 

1985) and R1 (Nagy er al., 1993). D3 was derived from mouse strain 129/Sv and R1 

was derived from mouse strain (129/Sv x 129/SvJ)F,. D3 ES cells were electroporated 

witli construct 1 (Figure 7.) and G418 resistant colonies appeared after 8-10 days. 

Electroporation of ES cells and G418 selection is described in section 2.2.6. In total, 

1600 G418 resistant clones were screened by PCR using the primer (primer 11.) 

hybridizing inside the NEO gene and primer 5 (exon 5) hybridizing outside the region of 

homology (Figure 7.C.). In the event of homologous recombination occurring, a 1 kb 

PCR amplification product would have been seen. Screening for homologous 

recombination using PCR is described in section 2.1.25. Unfortunately a 1 kb PCR 

product was never detected in the initial screening. PCR products of 1 kb would 

occasionally appear after gel electrophoresis, but Southern blot analysis using a specific 

oligo-nucleotide primer 4 (primer 4) failed to confirm the presence of any specific 1 kb 

PCR products. 1 therefore decided to use construct 2 for the generation of targeted ES 

cell clones.

D3 and R1 ES cells were electroporated with construct 2 (Figure 9.) as described in 

section 2.2.6 and G418 resistant clones were screened for homologous recombination 

events by Bàm HI restriction enzyme digestion and Southern blot analysis on genomic 

DNA. The procedure used for screening by restriction enzyme digestion and Southern 

blot analysis follows. The G418 resistant clones were picked into individual wells of a 

96-well plate and left to grow until confluent. The ES cell clones were then split into a 

“masteiplate” and a “replica plate”. The “masterplate” was frozen down whereas the
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“replica plate” was used for the Southern blot analysis on the individual ES cell clones. A 

detailed description of picking and expanding ES cell clones in 96-well plates is shown 

in section 2.2.7. Extraction of genomic DNA from ES cell clones grown in 96-well 

plates is described in section 2.1.26.

Southern blot analysis was performed on each individual ES cell clone using the external 

probe A (Figure 9.C.) after digestion with 5amHI restriction enzyme. Those cells that 

had undergone a homologous recombination event would yield a 23 kb fragment 

corresponding to the single intact wild-type CD40 allele and also a 10 kb fragment 

corresponding to the mutant targeted allele (Figure 10). To confirm that the G418- 

resistance gene (NEO) was part of the 10 kb mutant restriction fragment, a probe 

consisting of NEO coding sequence was used as a radioactive probe in the Southern blot 

analysis. This would hybridize to the mutant allele giving a single 10 kb band. Randomly 

integrated constructs yielded restriction fragments of different sizes (Data not shown). 

The correctly targeted clones were retrieved from the “masterplate” (described in section 

2.2.8), expanded and frozen in liquid nitrogen. Targeted ES ceU clones were now ready 

for karyotyping and subsequent blastocyst injection.

Table 1. shows 4 electroporations and the number of targeted clones obtained in each 

experiment. In total 12 ES cell clones were found to have a targeted disruption of the 

CD40 gene. As seen in Table 1., the frequency of homologous recombination in G418- 

resistant clones varied from 1/82 to 1/580 and the overall targeting frequency was 1/172.
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Table 1. Electroporation of ES cells with construct 2. The individual targeted clones were 
given numbers, shown in brackets.

Electroporation: ES cell line: G418-resistant
clones:

Number of 
targeted clones:

Targeting frequency 
of G418-resist, 
clones:

1 . R1 580 6  (34, 40, 55, 
61, 65, 77)

1/96

2 . D3 580 1 (2 1 ) 1/580

3. D3 580 1(55) 1/580

4. D3 329 4 (3, 5, 85, 89) 1/82

Electroporation of ES cells with construct 1 (Figure 7.) yielded no targeted clones. The 

lack of homologous recombination events using construct 1 could be explained by the 

presence of short homologous sequences which only allowed a 3 kb overlap. Another 

possibility was that the detection of homologous recombination by PCR amplification 

was not sensitive enough. The conditions for the PCR could have been optimized by 

making a control targeting construct containing exon 5 (this exon is absent in construct 

1). ES cells could then be transfected with the control targeting construct and PCR 

amplification conditions optimized. However, this may have introduced other problems 

such as a risk of contamination, giving rise to many false positive PCR products. Several 

studies have described the relationship between the length of homology and the targeting 

frequency (Hasty et al., 1991a; Thomas & Capecchi, 1987). As a general rule it has been 

shown that, the greater the length of homology, the higher the targeting frequency. The 

ideal length of the homologous sequences in a targeting vector is approximately 8 - 1 0  kb. 

This will also allow for unique restriction enzyme sites which can be used to linearize the 

vector prior to electroporation and also to allow unambiguous detection of targeted clones 

using Southern blot analysis of G418 resistant clones. The targeting frequency is 

probably dependent on both the length of the homologous sequences and access to the 

endogenous locus. Another important factor may be the use of isogenic DNA.
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Polymorphic variations between the targeting vector and the chromosome have been 

shown to affect targeting frequencies adversely (te et a i,  1992). This study showed that 

the frequency of homologous recombination events in 129/Sv derived ES cells was 

twenty times higher with a targeting construct containing isogenic DNA (129/Sv derived 

construct) compared with a targeting vector containing polymorphic DNA (BALB/c 

derived construct). There seems to be a great deal of variability between different loci 

even with isogenic constructs of the same homology. In this study I used isogenic DNA 

for my targeting vector, avoiding the possible reduction in targeting frequency through 

the influence of polymorphic sequences.

Positive selection (NEO) w ^  used to select targeted clones arising from transfection with 

both constructs 1 and 2 (Figure 7. and Figure 9.) A negative selection marker (TK), 

although not increasing the targeting frequency, could have been used to decrease the 

number of clones in the screening procedure. I decided not to use a negative selection 

marker based on information showing that FIAU/gancyclovir (nucleotide analogue 

incorporated by HSV-tk) might reduce the potential of the targeted ES cells to go into 

germline (Rahemtulla, personal communication).
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Figure 10. Southern blot analysis of G418-resistant ES cell clones. Lanes 1-5: 
BamYil restriction enzyme digest of genomic DNA from G418-resistant 
clones, blotted onto Hybond-N+ and hybridized with a radioactively labeled 
3 ’-flanking probe (probe A.). Lanes 1-2 and 4-5 all display a 23 kb restriction 
fragment corresponding to the wild-type allele. Lane 3 displays both a 23 kb 
and a 10 kb restriction fragment indicating the presence of a normal allele and 
a targeted mutant allele.
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3.3 Generation of germline chimeras from targeted ES 
ceils

3.3.1 Karyotyping of ES  cells

The continuous culture of ES cells is a very delicate process and care must be taken to 

keep them in an undifferentiated state, to secure germline transmission. The only way of 

distinguishing undifferentiated from differentiated ES cells is to look at their 

morphology. As described previously, pluripotent ES cell colonies are oval and look 

shiny under phase contrast microscopy and individual cells cannot be seen within 

undifferentiated cell colonies. In contrast, differentiated ES cell colonies are flat, granular 

and appear grayish under the microscope. One problem that can occur is that although ES 

cells are undifferentiated (as defined by their morphology) they can lose or acquire 

chromosomes during extended culture. To ensure the correct number of chromosomes, 

once targeted ES cell clones have been identified and expanded, they must be 

karyotyped. Karyotyping is achieved by blocking actively growing ES cells in late 

prophase, using the method described in section 2 .2 .1 0 ., and then counting the number 

of chromosomes in each individual cell. Normal mOuSe Cells contain 40 chromosomes. 

R1 andD3 ES cell lines were karyotyped (Figure 11.). R1 targeted ES cell clones (34, 

65, 77) and D3 targeted ES cell clones (3, 5, 21, 55) were selected on the basis of their 

morphology and karyotyped (Figures 12. and 13.). Both R1 and D3 have a normal 

distribution of cells with ^  chromosomes, but D3 seems to have a higher percentage of 

cells (70%) with a normal number of chromosomes (shown in Figure 11.). Of the R1 

targeted ES cell clones shown in Figure 1 2 ., 34 was found to have 80% of it’s cells with 

a normal karyotype compared to only 55% in the R1 ES cell line (Figure 11). This was 

probably due to the fact that the homologous recombination event happened by chance to 

take place in an ES cell with a normal karyotype. Independently of this event, the ES cell 

was then able to maintain a stable karyotype throughout culture. Of the D3 targeted ES 

cell clones shown in Figure 13., only clones 5 and 55 showed a normal distribution.
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around 40 chromosomes, with a lower percentage of cells having a normal karyotype, 

compared to the original D3 ES cell line (Figure 11).
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Figure 11. Karyotyping of R1 and D3 ES cell lines. The number o f chromosomes in 

each individual cell was counted and a total of 50 cells were counted for each cell line. 

The bars represent the percentage of those 50 cells having the number of chromosomes 
indicated.
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Figure 12. Karyotyping of targeted R1 ES cell clones. The number of chromosomes in 

each individual cell was counted and a total of 50 cells were counted for each cell line. 

The bars represent the percentage of those 50 cells having the number of chromosomes 
indicated.
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Figure 13. Karyotyping of targeted D3 ES cell clones. The number of chromosomes in 

each individual cell was counted and a total of 50 cells were counted for each cell line. 

The bars represent the percentage of those 50 cells having the number of chromosomes 
indicated.
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3.3.2 Injection of targeted ES cell clones into C57BU6 blastocysts

Most ES cell lines that are currently in use have a male genotype (XY). This has two 

advantages. The first is that the male ES cell lines, when injected into female blastocysts 

(XX) , will tend to bias the development of the resulting chimaera toward a male 

phenotype. In phenotypically male chimaeras, XY germ cells (i.e. those derived from the 

ES cells) will form functional gametes, whereas XX germ cells (i.e. those derived from 

the host blastocyst) will not form functional gametes. This sex conversion presumably 

occurs when XY cells colonize sufficient portions of the various tissues which determine 

sex in the developing embryo. This sex conversion is not always complete in chimaeras 

and occasionally results in an infertile hermaphrodite. Secondly, a male chimaera can 

produce more offspring over its reproductive life span than a female, so that even 

chimaeras with a relatively low percentage contribution of the ES cells to the germline 

can be detected. Transmission of the male derived ES cell genotype has been reported to 

occur from female chimaeras. Since XY cells do not normally undergo oogenesis in 

chimaeras, this phenomena may be due to the loss of part or all of the Y chromosome, 

resulting in XO cells which are capable of forming ovaries (Kuehn et a i ,  1987).

Another important consideration is the strain of mouse from which the ES cells are 

derived and the strain of embryo (blastocyst) into which they will be introduced. This is 

particularly relevant for producing germline chimaeras since certain strains have, in 

combination with others, a competitive advantage in their development. Thus, many 

chimaeras will be predominantly composed of cells derived from the dominant strain, 

increasing the likelihood that the ES cells will contribute to the germline (Schwartzberg et 

a i ,  1989). ES cell lines derived from the 129 strain of mice, when injected into 

blastocysts of the C57BL/6 strain, tend to predominate in the chimeras. The 129 ES cells 

have an agouti coat color genotype, whereas the C57BL/6 embryos is black. Therefore, 

the chimaeras produced from this combination will be a colour mix of agouti and black 

(Figure 14.). If the ES cell line is particularly “good” at making chimaeras, extreme
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individuals composed almost entirely of the ES genotype can be produced (95%-99% 

agouti coat colour). ES cell lines have also been derived from the C57BL/6 strain of mice 

(Ledermann & Burki, 1991) and the BALB/c strain of mice (Raul M. Torres, Laboratory 

Protocols .., Appendix C). The choice of which ES cell line to use may be dictated by 

the genetic background necessary for the experiments or the source of DNA used in the 

targeting construct. The appropriate genetic background can always be obtained by 

backcrossing, although at a substantial price in terms of time. If the targeted mutation has 

been generated in 129 ES cells and germline transmission has been obtained, then mice 

homozygous for the targeted mutation must be backcrossed (e.g. onto C57BL/6) 10 

times to gain 99.91% homozygosity on all alleles. Ultimately, the goal is to deliver the 

targeted mutation to the germline.

The targeted ES cell clones were selected for injection into C57BL/6 blastocysts on the 

basis of the result of the karyotyping and their morphology. The clones selected were 34 

R l, 65 R1 and 55 D3. The targeted ES cell clones (stored in liquid nitrogen) were 

thawed and grown until confluent (section 2.2.5). On the day of injection, the 

blastocysts were recovered as described in section 2.3.1 and the chosen targeted ES cell 

clone was prepared by trypsinization and washing in complete medium. 16 ES cells were 

injected into each blastocyst (section 2.3.5) and 12-16 injected blastocysts were 

transferred into a pseudo-pregnant foster mother (section 2.3.6). 17 days later the foster 

mother gave birth to both wild-type and chimaeric mice. Although all blastocysts had 

been injected, only some of these became colonised by the targeted ES cells, giving rise 

to chimaeric mice. Table 2. shows the number of blastocysts injected with each ES cell 

clone and the number of chimaeras born. 24% of the progeny were chimaeric for ES cell 

clone 34 R l, however 68% were chimaeric for ES cell clone 55 D3. It was important that 

the targeted ES cells contributed to most of the differentiated tissue in the chimaeric 

mouse and more importantly, that they contributed to the germline cells of that mouse. 

The targeted ES cell clones were derived from a male ES cell line (R l and D3) and male 

ES cells in combination with a female blastocyst often produce a fertile phenotypic male
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chimaera. Thus those male chimaeric mice with a mainly agouti coat colour were most 

likely to pass on the mutated allele and comparison of the male to female ratio among the 

chimaeric mice gave a good indication of the likelihood of germline transmission. 70% of 

the chimaeric mice generated from injection with the 55 D3 ES cell clone were males 

compared to 66% in those chimaeras generated by injection with the 34 R l ES cell clone.

Table 2. Production of chimaeras. The number of chimaeras is shown as a percentage of 

the total number of offspring (in brackets). The number of male chimaeras is shown as a 

percentage of total number of chimaeras (in brackets).

ES cell 
clone

Total no. of
injected
blastocysts

Total no. of
offspring
born

Number of
chimaeras
born

No. of male and 
female chimaeras

Germline-
transmission

34 R l 279 91 24
(26%)

16 males 
(66%)

8 females
65 R l 165 28 4

(14%)
1 male 

(25%)
3 females

55 D3 107 69 47
(68%)

33 males 
(70%)

14 females

1 male (95% 
agouti)
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Figure 14. shows a male chimaera, notice the appearance of both black (blastocyst 

derived) and agouti (ES cell derived) coat colour.
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3.3.3 Breeding chimaeras to check for germline transmission

Males with 70-95% agouti coat colour were set up for breeding with 

(C57BL/6xDBA2)F, females in preference to C57BL/6 females, to check for germline 

transmission. The reason that F, females were used rather than C57BL/6 female mice 

was because they have larger litters and are less likely to cannibalize their offspring. 1 

male chimaera (95% agouti) generated from the 55 D3 ES cell clone finally resulted in 

germline transmission. Once germline transmission was achieved the male chimaera was 

bred with C57BL/6 females. This allowed backcrossing of the targeted deletion onto a 

C57BL/6 genetic background. The offspring were either black (wild-type) or agouti 

(germline transmission) and only 50 % of the agouti offspring were heterozygous for the 

mutant allele. The agouti offspring were screened for the presence of the mutant allele by 

PCR amplification (section 2.1.22) using primer 2 (hybridizing to exon 2) and primer 11 

(hybridizing to the NEO gene) resulting in a product of 500 bp (data not shown). PCR 

amplification was carried out on genomic DNA extracted from the tails of the mice 

(section 2.1.16). Mice heterozygous for the mutant allele were interbred and DNA was 

extracted from the tails of the offspring. This was used to screen for the presence of 

homozygous mutant alleles using BamUl restriction enzyme digestion and Southern blot 

analysis. Figure 15 shows a representative result from this screening process. A wild 

type C57BL/6 DNA control and a targeted ES cell clone DNA control was included 

(lanes 1 and 10 respectively). Lanes 2-9 contain DNA from offspring derived from the 

heterozygote interbreeding. Lanes 6 and 7 are the only two showing the presence of 

mutant alleles at both loci. Mice homozygous for the targeted disruption of CD40 were 

set up for mating to produce a colony of CD40 deficient mice.
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Figure 15. Southern blot analysis of the offspring resulting from interbreeding of mice 
heterozygous for the mutant CD40 allele. BamHl restriction enzme digests of genomic 
DNA extracted from mouse tails, blotted onto Hybond-N+ and hybridized with a 
radioactively labeled probe (probe A). Lane 1: wild-type control +/+. Lanes 2-5: 
heterozygotes +/-. Lanes 6-7: homozygotes -/-. Lanes 8-9: wild-type +/+. Lane 10: ES 
cell clone 55 D3 +/-.
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Chapter 4: Analysis of CD40 deficient mice

4.1 Phenotypic analysis of lymphocytes in CD40 deficient 
mice

CD40 is expressed throughout most stages of B cell development, including progenitor 

B cells expressing CD34 (Saeland et al., 1992) and ligation of CD40 induces tyrosine 

phosphorylation, proliferation and expression of CD23 in precursor B cells (Saeland et 

al., 1993; Uckun et al., 1991). Thymic epithelial cells also express CD40 and cross- 

linking of these cells with an anti-CD40 antibody increases Granulocyte/macrophage- 

colony stimulating factor (GM-CSF) secretion (Galy & Spits, 1992). These observations 

suggested that CD40 may play an important role in both B and T lymphocyte 

development. Therefore it was important to examine whether the absence of CD40 would 

affect the surface phenotypes of T and B lymphocytes in peripheral blood and lymphoid 

organs and also whether the proportions of these cells in the periphery and organs would 

change.

To examine the surface expression of CD40 on lymphocytes in the mutant mice, the 

capacity of peripheral blood lymphocytes to bind a CD40 mAb was analysed (Figure 

16.A.). Peripheral blood lymphocytes were isolated as described in section 2.4.1 from 

wild-type and mutant mice. The peripheral blood lymphocytes from both sets of mice 

were then stained with monoclonal antibodies to the following surface molecules, CD40, 

B220, CD4 and CDS (as described in section 2.4.1, Appendix B). The same total 

number of events were collected for each individually stained sample from both mutant 

and wild-type mice, allowing me to determine the proportion of cells in the peripheral 

blood that were B220 positive (B lymphocytes) or that were CD4 or CDS positive (T 

lymphocytes). The intensity of the staining observed also allowed me to assess whether 

the levels of surface marker expression were different in the CD40 deficient mice as 

compared to the wild-type mice. Flow cytometric analysis of the subsets of cells within 

peripheral blood lymphocytes of wild-type and mutant mice was carried out on the
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FACScan (Becton Dickinson) using CellQuest software. The analysis revealed that B 

lymphocytes from wild-type mice expressed both B220 and CD40 at the cell surface, 

resulting in a double-positive population. However, the mutant mice only expressed 

B220 on the surface of their B cells, resulting in a single-positive population (Figure 16. 

A.). This confirms that the targeted gene disruption has abrogated the expression of 

functional CD40 in the mutant mice (the lack of CD40 expression in mutant mice is also 

shown in Figure 18. B. and E.). The availability of a specific antibody for CD40 made 

the search for surface expression relatively straight forward. If no monoclonal antibody 

had been available, expression of the CD40 gene could have been tested by a Northern 

blot analysis using CD40 cDNA as a probe or reverse transcriptase (RT) PCR on 

splenocytes.

Flow cytometric analysis using the B220 monoclonal antibody to look for B cells in the 

peripheral blood, showed that the proportion of B cells expressing B220 in the wild-type 

mice was equal to the proportion of B cells expressing B220 in the mutant mice and that 

the relative levels of B220 at the surface was similar in both groups of mice. This was 

quantitated by staining a fixed volume of blood and ten thousand cells were then counted 

on the flow cytometer. Also flow cytometric analysis of T lymphocyte subsets in the 

peripheral blood expressing CD4 and CDS in wild-type and mutant mice was found to be 

the same (Figure 16. A.). To confirm that the proportions of T and B lymphocytes in the 

peripheral circulation of CD40 deficient mice remained the same, despite the lack of 

functional CD40 expression, a single cell suspension of mesenteric and popliteal lymph 

nodes was stained with CD4 mAb, CDS mAb, B220 mAb and IgM mAb. Flow 

cytometric analysis (Figure 16. C.) revealed two single positive populations for CD4 

expression and CDS expression and no difference in the proportions of each of the CD4 

positive and CDS positive lymphocytes were found in wild-type compared with mutant 

mice. The proportion of B lymphocytes, as determined by B220 and IgM staining of the 

lymph nodes in both wild-type and mutant mice, were the same. Splenocytes from wild- 

type and mutant mice were also stained with monoclonal antibodies to the following
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surface markers CD4, CDS, B220 and IgM. The proportions of B and T lymphocytes in 

spleens of wild-type and mutant mice were indistinguishable (data not shown).

The total number of T and B cells in the peripheral lymphoid organs of both groups of 

mice was indistinguishable. This was assessed by counting the total number of cells in 

each organ (hemocytometer) and 1.0x10*’ cells were then stained with the appropriate 

antibody (described in section 2.4.2). 1.0 x 10'* events were then counted on the flow 

cytometer. This gave me the proportion of T cells (or B cells) in this sample. This 

proportion could then be used to calculate the total number of T or B cells in the organs 

(data not shown). This suggested that the lack of functional CD40 had no effect on the 

proportions and numbers of T or B lymphocytes in the peripheral organs of the mutant 

mice.

The involvement of CD40 in thymocyte development was assessed by staining the 

thymus with specific antibodies. A single cell suspension of cells from the thymus was 

made as described in section 2.4.2 and the cells stained with monoclonal antibodies 

specific for CD4, CDS and a f-T C R . Double staining for CD4 and CDS expression 

(Figure 16. B.) revealed a double-positive CD44-CD84- population of thymocytes and 

two single positive populations, CD4+CD8- and CD8+CD4- thymocytes. Also double 

staining for CD4 and a f-T C R  showed a gradual increase in expression of TCR as 

thymocytes matured (determined by an increase in the intensity of TCR staining). This 

showed the development of double-positive immature thymocytes (CD4-i-CDS+TCR'°'^) 

into (CD4-I-CD8-TCR*’*®'’) or (CD8-I-CD4-TCR'”®*’) mature single-positive thymocytes, 

which then become circulating T lymphocytes (Anderson et a i ,  1996). Staining of 

thymocytes with antibodies to the cell surface antigens CD4, CDS and ap-T C R  showed 

that there were no abnormalities in thymocyte development in the CD40 deficient mice 

compared to the wild-type mice.
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Figure 16. Flow cytometric analysis of lymphocytes from wild-type and CD40-/- mice, 
A.) peripheral blood, B.) Thymus, C.) Lymph nodes. Peripheral blood, thymus and 
lymph nodes were isolated from 8-week old mice and stained with following antibodies:
A.) PB-anti-B220, FITC-antiCD40, PE-anti-CD4, FITC-anti-CDS; B.) PE-anti-CD4, 
FITC-anti-CDS, FITC-anti-TCR; C.) PE-anti-CD4, FITC-anti-CDS, PE-anti-B220, 
FITC-anti-IgM. Cells were analyzed by FACS (Becton Dickinson, CellQuest). Results 
are presented as two-dimensional dot-plots in which each dot represents an individual 
cell. Similar results were obtained in three experiments.
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4.2 In vitro B cell response to CD40 engagement

Antigens which stimulate proliferation and antibody production by B cells can be divided 

into two categories. Thymus-dependent or thymus-independent antigens. Thymus- 

dependent antigens are protein derived peptides, which can only induce the production of 

antigen specific antibody, if the peptide is recognized in association with MHC class II 

by antigen specific T cells, this leads to mutual activation of both B and T cells, and the 

production of antigen specific antibody. Therefore, antibody production in response to 

protein antigens requires T cell help. The activation and proliferation of B cells in 

response to protein antigens require that B cells recognize the antigen via the B cell 

receptor and also require a second signal through CD40 (Rathmell et al., 1996). Antigens 

that stimulate proliferation and antibody production by B cells in the absence of MHC 

class II restricted T cell help are classified as thymus-independent antigens (Mond et a i ,  

1995). Included within the category of thymus-independent antigens are 

lipopolysaccharide (LPS) derived from gram-negative bacterial cell walls, dextran, 

pneumococcal capsular polysaccharide, and Ficoll. In vitro studies have shown that B 

cells proliferate in response to CD40 engagement by anti-CD40 monoclonal antibody 

(Ledbetter et al., 1987) and that B cells proliferate and undergo cytokine-dependent 

immunoglobulin isotype switching in response to ligation by a soluble CD40 ligand 

(Armitage et al., 1992a). To confirm the absence of CD40 in the mutant mice, I 

examined the capacity of B cells from these mice to proliferate in response to various 

stimuli.

B lymphocytes were purified from the spleens of wild-type and CD40 mutant mice using 

MACS (Magnetic Cell Sorting of Mouse Leukocytes) B220 (CD45R) microbeads and 

positive selection (RS-k) columns as described in section 2.4.3. The resulting cell 

preparations were found to consist of greater than 95% pure B cells as determined by 

flow cytometric analysis (Becton Dickinson, CellQuest) of cell surface expression of 

B220, CD40, CD4 and CD8. Purified B lymphocytes from both wild-type and mutant
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mice (3.5 x 10  ̂ B cells/well; 200 |il RPMI 1640) were then cultured for 72 hours with 

different stimuli (Figure 17.). Medium alone was used as a negative control (1.), LPS 

alone (2.), IL-4 alone (3.), LPS and IL-4 together (4.), CD40 monoclonal antibody 

alone (5.) and lastly CD40 monoclonal antibody with IL-4 (6.). Proliferation was 

measured by thymidine incorporation over a fixed time period (18-24 hours). 1 pCi 

(^H)thymidine was added to each culture well for the last 18-24 hours of a 72 hour 

culture period and at the end of the 72 hour culture period the cells were harvested and 

counted on a Betaplate counter as described in section 2.4.3. B cells were purified from 

three wild-type and three mutant mice and stimulated as described above (Figure 17). 

The results shown are from three different mice in each group with each mouse tested in 

triplicate wells. The results represent the mean proliferation of the three mice and the 

error bars represent the standard error of this mean. The Student t-test was used to 

calculate whether the results for B cell proliferation were significantly different in the two 

groups of mice. A P value of 0.05 or below was taken to be significant. The results of 

this assay show that B lymphocytes from both sets of mice proliferated strongly when 

stimulated with LPS. A slight increase in B cell proliferation was observed, if LPS and 

IL-4 were added together, however no synergistic effect on B cell proliferation seemed to 

occur. The B cell proliferation induced by LPS is thought to occur via cross-linking of 

surface IgM, leading to activation. This is a T-independent antigen requiring no T cell 

help for activation of the B cell and as a result of this the proliferation is independent of a 

functional CD40 protein. B cells from both mutant and wild type mice were able to 

proliferate in response to LPS and LPS together with IL-4. Although LPS is a T 

independent antigen, there does seem to be a slight impairment of the ability of mutant B 

cells to proliferate in response to LPS (2. P=0.025, 4. P=0.036, 5 % significance level). 

This reduced in vitro proliferative response of mutant B cells to LPS as compared to 

wild-type B cells, was not observed by Kawabe et at. (1994). However, in support of 

the data shown here, Castigli et al. (1994) showed that in 2 out of 4 of their experiments, 

spleen cells from CD40 deficient mice exhibited a small reduction in proliferation when 

stimulated with LPS or LPS and IL-4 as compared with wild type mice. In addition,
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Hasbold et al. (1994) demonstrated that stimulation of wild type mouse B cells with LPS 

led to substantial increases in the levels of surface expression of CD40, however it is still 

not known if CD40 is involved in B cell activation in response to LPS.

The CD40 monoclonal antibody used in this proliferation assay has been shown 

previously to induce proliferation in B lymphocytes (Klaus et a l ,  1994) even when used 

as a soluble molecule. Other experiments with different antibodies found that optimal 

activation of B cells via CD40 required antibody cross-linking, or presentation of the 

antibodies on a matrix (Banchereau et a i ,  1991). In the proliferation assays performed 

here, the CD40 monoclonal antibody was added directly to the cultures. Wild-type B 

cells were able to proliferate in response to addition of CD40 monoclonal antibody, 

however B cells from mutant mice showed very low levels of proliferation that were not 

much above background (5. P<0.001, 6. P<0.01). This confirmed that B lymphocytes 

from mutant mice were unable to proliferate in response to CD40 cross-linking as the 

CD40 molecule was absent.
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Figure \1. In vitro proliferative responses of B cells from wild-type mice and CD40 

deficient mice measured by incorporation of (^H)thymidine over a 18-24 hour period. 

LPS: Lipopolysaccharide, IL-4: Interleukin-4, CD40 mAB: CD40 monoclonal antibody, 

c.p.m.: counts per minute. B cells (3.5 x 10  ̂ cells/well; 200 pi) were cultured for 72 

hours in 96 well round-bottom tissue culture plates in the presence of 2 pg/ml LPS, 50 

U/ml IL-4, 25 pg/ml CD40 mAB. Cultures were pulsed with I pCi/well of 

(^H)thymidine (Amersham) for the last 18-24 hours of a 72 hour culture period and then 

harvested onto glass fiber filters. (^H)thymidine uptake was measured by a liquid 

scintillation counter (1205 Betaplate, Wallac). The values shown are means ± s.e.m. of 3 
mice in each group.The P values for each comparison were detennined using the 

Student’s t-test. 1. P=0.96; 2. P=0.025; 3. P<0.01; 4. P=0.036; 5. P<0.001; 6. 

P<0.01. Results are representative of three experiments.
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4.3 Germinal Centre formation in CD40 deficient mice

As described in more detail in the introduction, germinal centres are the anatomical sites 

in secondary lymphoid tissues where B cells undergo somatic hypermutation and 

immunoglobulin isotype switching and differentiate into plasma cells or memory cells 

(Kelsoe, 1996). The formation of germinal centres is initiated by interaction between 

interdigitating dendritic cells (IDC) presenting antigen to antigen specific C D T  T cells 

(Figure 2. A.). These activated C D T  T cells then associate with naive antigen specific B 

cells (MacLennan et al., 1997). After this interaction between T and B cells, the activated 

T cells migrate into the light zone of the germinal centre or become recirculating effector- 

or memory-cells. Activated B cells differentiate into centroblasts forming the dark zone 

of the germinal centre. Centroblasts mature into centrocytes which are selected in the 

light zone of the germinal centre on the basis of their ability to bind and process antigen 

held on follicular dendritic cells (FDC) and also interact with activated germinal centre T 

cells. These T cells deliver a rescue signal via CD40L that allows centrocyte 

differentiation into plasma cells or memory B cells (MacLennan, 1994).

Patients suffering from hyper-IgM syndrome exhibit low levels of isotype switched 

immunoglobulins, IgG, IgA, and IgE, indicating a failure in the ability to switch from 

IgM to other immunoglobulins (Geha et al., 1979; Levitt et al., 1983). Affected males 

experience recurrent infections, usually within the 1st year of life, when levels of 

maternally-derived antibodies decline. More importantly it was found that these patients 

failed to form germinal centres. This was discovered to be caused by a defect in 

expression of CD40L or point mutations in CD40L (Korthauer et al., 1993). Further 

evidence that blocking the CD40-CD40L interaction in vivo with soluble anti-CD40L 

antibody was able to abrogate germinal centre formation was described more recently in 

mice (Foy et al., 1994). There is some controversy over the role of CD40-CD40L 

interaction in the formation of geiTnnal centres as other experiments show that mice 

treated with a soluble CD40-Ig fusion protein, which should block the CD40-CD40L
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interaction, developed germinal centres after immunization with a thymus-dependent 

antigen (Gray et al., 1994). CD40 deficient mice will provide definitive evidence to 

support hypotheses showing that the CD40-CD40L interaction is important for the 

formation of germinal centres.

In the spleen, the splenic white pulp surrounds the arteries, forming a peri arteriolar 

lymphoid sheath (PALS) consisting mainly of T lymphocytes. Closely associated with 

the PALS is a B cell rich area, called the marginal zone, containing primary lymphoid 

follicles. During antigenic stimulation, these primary follicles develop into secondary 

follices containing germinal centres (GC). Cellular interactions occuring in the germinal 

centre induce the B cell antigen receptor to mutate and switch isotype. Positive selection 

of B cells expressing high affinity receptors occurs, producing memory B cells and 

plasma B cells.

Currently the only way of determining if germinal centres are forming in primary follicles 

of secondary lymphoid tissues is by staining with peanut agglutinin (PNA). PNA is a 

plant lectin with specificity for terminal galactosyl residues which has been shown to 

bind germinal centre B cells (Kraal et al., 1982; Rose et al., 1980). In the experiments 

shown here, the formation of germinal centres was tested by immunizing wild-type and 

mutant mice with KLH in complete Freund’s adjuvant, a T-dependent antigen. Ten days 

after immunization, spleens were removed and placed in embedding compound and 

snap-frozen in liquid nitrogen (section 2.4.4). Tissue sections were cut using a cryostat 

and then fixed in acetone, stained with primary antibodies or biotinylated PNA. The 

sections were then washed in TBS and enzyme-conjugated secondary antibodies added. 

Sections were washed once more and substrate added (Diaminobenzidine or Fast red) 

and incubated until the desired colour intensity had developed. Counterstaining was 

carried out using hematoxylin, which stains nuclei blue. The staining procedure is 

described in detail in section 2.4.4.
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PNA staining of splenic tissue from wild-type and mutant mice is shown in Figure 18.A. 

top: wild-type; bottom: CD40-/-). In the wild-type mice primary follicles developed 

extensive germinal centres becoming secondary follicles. These germinal centres are 

composed of large clusters of actively proliferating B cells expressing high levels of 

PNA binding sites. Figure 18.A. (top: wild-type) shows a secondary follicle containing 

germinal centre B cells which stained brown, confirming that germinal centres (GC) do 

develop after antigenic challenge (KLH). Germinal centre B cells (GC), stained with 

PNA appear brown and lie in the middle of the lymphoid follicle. Biotinylated PNA 

binds germinal centre B cells, Avidin horseradish peroxidase conjugate then binds the 

biotin molecule and catalyses the oxidation of diaminobenzidene (substrate), resulting in 

a brown colour (Figure 18.A.). At the follicle periphery is a narrow zone of small 

lymphocytes called the mantle zone (Wheater’s Functional Histology, A text and Colour 

Atlas) which also showed PNA staining. Staining of the mantle zone with PNA occured 

in both wild-type and mutant mice (Figure 18.A. top: wild-type; bottom: CD40-/-). 

Experiments performed by Foy on wild-type mice treated with blocking anti-CD40L 

antibody (Foy et a l ,  1994) also exhibited PNA staining of the mantle zone. 

Furthermore, in CD40 deficient mice generated by Castigli, mantle zone staining was 

also seen (Castigli a/. 1994).

Staining of germinal centres in wild-type and CD40 deficient mice clearly showed 

(Figure 18.A. top: wild-type; bottom: CD40-/-) the absence of germinal centres in the 

CD40 deficient mice compared to wild-type mice. This was confirmed by double staining 

of splenic tissue with both PNA and with a monoclonal antibody specific for CD40 

(Figure 18.B. top: wild-type; bottom: CD40-/-). Biotinylated PNA binds germinal centre 

B cells, Avidin alkaline phoshatase conjugate then binds the biotin molecule and 

catalyses the conversion of fast red, resulting in a red colour. The FITC-conjugated anti- 

CD40 mAb stains CD40 positive cells, anti-FITC horseradish peroxidase conjugate then 

binds the FITC molecule and catalyses the oxidation of diaminobenzidene (substrate), 

resulting in a black staining (the diaminobenzidene substrate can be enhanced from
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brown to black by nickel chloride as shown in Figure 18. B. top: wild-type). Figure 18

B. (top: wild-type) shows a secondary follicle with germinal centre B cells, although less 

obvious than in Figure 18.A. (top: wild-type) The germinal centre B cells stained red 

with PNA (GC) and black (CD40 positive). In CD40 deficient mice, no clusters of 

germinal centre B cells were detected (Figure 18.B. bottom: CD40-/-). As shown in 

Figure 18.A. mantle zone lymphoid cells binds PNA in both wild-type and CD40 

deficient mice (Figure 18. B. top: wild-type; bottom: CD40-/-).

The splenic architecture, as assessed by the distribution of T and B cells (apart from 

germinal centre B cells) were similar in both wild-type and CD40 deficient mice (Figure 

18.C and D. top: wild-type; bottom: CD40-/-). In these experiments spleen sections were 

stained with a monoclonal antibody specific for CD79a to detect B cells and a CD3 mAb 

to detect T cells. The CD79a mAb binds the a -ch a in  of the co-receptor of surface IgM. 

Rabbit anti-CD3 and rabbit anti-CD79a binds T and B cells respectively (Jones et at.,

1993). Goat anti rabbit horseradish peroxidase conjugate then binds the rabbit antibodies 

and catalyses the oxidation of diaminobenzidene (substrate) resulting in a brown colour 

(Figure 18. C. and D.). In these experiments I did not distinguish between resting and 

actively proliferating follicular B cells using anti-IgM, anti-IgD antibodies (as the B cells 

proliferate they lose surface expression of IgD).

In summary, wild-type mice, immunized with KLH displayed lymphoid follicles with 

germinal centres (secondary follicles). This was shown by intense staining of germinal 

centre B cells with PNA. In CD40 deficient mice, immunized with KLH, the lymphoid 

follicles resembled primary follicles with no recognizable germinal centres (Figure 18.B. 

bottom: CD40-/-). In occasional follicles, I observed faint staining of some cells with 

PNA (Figure 18.A. bottom: CD40-/-). This faint staining of cells with PNA in follicles 

was also observed by Castigli et al. (1994) in CD40 deficient mice.

If it is the case that the faint staining with PNA in CD40 deficient mice resembles 

germinal centre B cells, then one would have to assume that germinal centre B cells
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become activated independently of the CD40-CD40L interaction with alternative 

costimulatory molecules signalling during B-T or B-B cell interactions, leading to 

proliferation and differentiation of germinal centre B cells. Such a candidate molecule 

could be the signaling lymphocytic activation molecule (SLAM), a 70 kD glycoprotein 

constitutively expressed on CD45RO+ memory T cells, immature thymocytes, and a 

proportion of B cells. SLAM is a member of the immunoglobulin gene superfamily and 

belongs to the CD2 family of cell surface molecules. Activated CD4+T cells express both 

a membrane-form of SLAM (mSLAM) and a soluble secreted form of SLAM (sSLAM). 

Engagement of SLAM by specific mAB or soluble SLAM (SLAM is a high-affinity self

ligand) induced proliferation of human activated CD4-I- T cells in a CD28-independent 

fashion (Cocks et a i ,  1995). In addition, the expression and function of SLAM on B 

cells was also investigated. The expression of mSLAM was significantly upregulated on 

both peripheral blood and splenic B lymphocytes when stimulated with anti-IgM mAb or 

anti-CD40 mAb. The most rapid effect was observed in response to anti-IgM mAb, 

which induced high levels of mSLAM expression on B cells after a 6 hour culture 

period. These data indicate that mSLAM is strongly upregulated on B cells after 

activation, and suggests that mSLAM is rapidly induced after recognition of antigen by 

surface Ig (Punnonen et al., 1997). Like T cells, B cells are capable of producing a 

soluble form of SLAM (sSLAM). The addition of recombinant sSLAM to cultures of B 

cells resulted in B cell proliferation in a dose-dependent manner. sSLAM also strongly 

enhanced proliferation of B cells cultured in the presence of anti-IgM mAb or anti-CD40 

mAb plus IL-4. Furthermore, sSLAM significantly enhanced IgM, IgG and IgA 

produced by B cells, but the effects of sSLAM were generally more potent when anti- 

CD40 mAb were added. These results indicate that SLAM-SLAM interactions enhance 

not only B cell proliferation, but also Ig synthesis by B cells (Punnonen et a l,  1997). I 

must point out that these experiments were performed on human T and B cells and that a 

murine form of SLAM has not yet been published. Nevertheless, one can speculate that, 

in CD40 deficient mice, T cells and B cells may become activated in a CD40-CD40L 

independent way in the T zone (PALS) (Figure 2. A.), via homophilic interaction
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between SLAM-SLAM during B-T cell interactions. The fact that SLAM is rapidly 

induced after activation (anti-IgM mAb) and that high expression levels are sustained for 

several days suggest that SLAM-SLAM interactions may play a role in mediating 

homophilic B cell contacts in germinal centres resulting in expansion of antigen specific 

B cells. B cells activated through SLAM-SLAM interactions could then start to express 

PNA binding sites, explaining the faint staining in occasional follicles in the absence of 

CD40.

The observation that B cell activation after SLAM-SLAM interaction was enhanced by 

anti-CD40 mAb supports the view that fully developed germinal centres would only 

appear if a functional CD40-CD40L interaction was present. The results described in 

Figure 18. confirm the pivotal role of the CD40-CD40L interaction in the formation of 

germinal centres and also showed that no other splenic architecture was affected.
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Figure 18. N o developm ent o f  germinal centres in C D 40 deficient m ice. Im m unohistochem ical staining  

o f spleen tissue sections. Cryostat sections o f  spleens from KLH im munized wild-type and C D 40  

deficient m ice. Sections were fixed in acetone, stained with primary antibodies or biotinylated PNA . The 

sections were then washed in TBS and enzyme-conjugated secondary antibodies added. Sections were 

washed once more and substrate added (Diam inobenzidine or Fast red) and incubated until desired colour 

intensity had developed. Counterstaining was carried out using hem atoxylin, w hich stains nuclei blue. 

A .) Top; wild-type; bottom: C D 40-/-. Staining o f germinal centre (GC) with biotinylated PNA  and 

A vidin horseradish peroxidase conjugate, germinal centres stain brown. M agnification 25x. B.) Top: 

wild-type; bottom: C D 40-/-. Staining o f germinal centres with biotinylated PN A  and C D 40m A B . 

Germinal centre B cells stain red and black. B cells positive for C D 40 stain black. M agnification 25x. C . 

and D .) Top: w ild-type; bottom: C D 40-/-. Staining o f  T and B cell areas with a m onoclonal antibody to 

C D 3 and to C D 79a, respectively. T and B cell areas are shown by the brown colour staining.
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M agnification lOx. E .)T o p : w ild-type; bottom: C D 40-/-. Cryostat sections o f  thym us tissue. Staining  

o f C D 40-positive ce lls  in the thymus with anti-C D 40 m A B . M agnification lOx.
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4.4 Serum immunoglobulin levels in CD40 deficient mice

Class, or isotype, switching is the process whereby a B cell changes the heavy chain 

class of the antibody it synthesizes by changing the heavy chain constant (Ĉ )̂ region 

expressed, but not the light chain or heavy chain variable region (V^) regions. The 

change in antibody class, except to IgD, is effected by a DNA recombination event called 

switch recombination, which occurs between tandemly repeated sequences called switch 

regions. Switch recombination causes the recombined V(D)J gene segment, which is 

initially expressed with the gene, to be subsequently expressed with one of six 

(mouse) or seven (human) downstream genes (Stavnezer, 1996a). Because antibody 

specificity is determined by the variable regions of antibodies, class switching does not 

change the antigen binding specificity. However, class switching does change the 

effector function of the antibody because these are determined by the regions. Soon 

after emerging from the bone marrow, immature B cells which express IgM on their 

surface also start to express surface IgD, with the same region as the IgM. This event 

occurs in immature B cells in the absence of antigen stimulation (Stavnezer, 1996a). T- 

dependent antigens induce class switching during cognate interactions between T and B 

cells in the T cell zone of the spleen (Toellner et a i ,  1996) and class switching can also 

be triggered in centrocytes when they interact with T cells in the light zone of germinal 

centres (Liu et at., 1996). T-independent antigens induce class switching, probably by 

signals from surface Ig cross-linked by multivalent antigens. T-independent antigens do 

not stimulate germinal centre formation within follicles of lymphoid tissue. Thus B cells 

in which class switching is induced by T-independent antigens may be located in the 

splenic marginal zone (Mond et al., 1995). In addition to the absence of germinal centres 

in individuals with hyper-IgM syndrome it was also found that the patients had elevated 

or normal levels of IgM and low levels of isotype switched immunoglobulins, IgG, IgA, 

and IgE. This indicated a failure in the ability to switch from IgM to other 

immunoglobulins (Geha et al., 1979; Levitt et al., 1983).
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To determine the influence of a non-functional CD40-CD40L interaction on the 

production of isotype switched immunoglobulins in CD40 deficient mice, serum was 

taken from 12 week old wild-type and also from CD40 deficient mice and the levels of 

the different immunoglobulin isotypes in the two groups were compared. 

Immunoglobulin levels were determined by isotype-specific ELISA as described in 

section 2.4.6. These results are shown in Figure 19 and represent the mean 

immunoglobulin levels found in five wild-type and five CD40 deficient mice. The error 

bars represent the standard error of this mean. The Student’s t-test was used to calculate 

whether the results for each immunoglobulin isotype were significantly different in the 

two groups of mice. A P value below 0.05 was taken to be significant.

Elevated levels of IgM and IgG3 were found to occur in the mutant mice compared to the 

wild-type mice (1. P<0.02; 5. P=0.037). In contrast to this, levels of IgG l and IgG2b 

were significantly reduced in CD40 deficient mice compared with wild-type mice (2. 

P<0.001, 4. P<0.001). The levels of IgE expression in wild-type mice were extremely 

low and were only just detectable by ELISA. In the mutant mice, IgE levels were 

undetectable. Unexpectedly, the levels of IgG2a were not significantly different in the 

two groups of mice (3. P=0.36), and this expression was very low in both wild-type and 

mutant mice.

CD40 deficient mice exhibited elevated levels of IgM, confirming the findings in patients 

suffering from hyper-IgM syndrome who may also have elevated levels of IgM 

(Notarangelo et al., 1992). The presence of elevated levels of IgM and IgG3 in CD40 

deficient mice could be due to stimulation with T cell independent antigens, as it was 

found that IgM and IgG3 were the major isotypes of antibodies in T cell independent 

responses (Mongini et a i, 1981). Serum IgE was absent and significantly reduced levels 

of IgG l and IgG2b were found in CD40 deficient mice. The presence of elevated levels 

of IgG3 and normal levels of IgG2a indicates that isotype switching may also occur 

independently of the CD40-CD40L interaction. See “Discussion” for immune responses 

to T cell independent antigens in CD40 deficient mice.
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The results presented here (Figure 19.), investigating the serum immunoglobulin levels 

in unimmunized CD40 deficient mice, were compared to the results obtained in similar 

studies of CD40 deficient mice by Kawabe et a l, 1994 and also by Castigli et a l,  1994. 

Kawabe et a l  observed normal IgM levels and higher IgG3 levels in CD40 deficient 

mice compared to control mice. Serum levels of IgG l, IgG2a, IgG2b and IgA were 

significantly reduced (Kawabe et a l, 1994). Castigli et a l  also found that the IgM levels 

in CD40 deficient mice were similar to wild-type mice. Serum levels of IgG l and IgG2a 

were significantly reduced and IgE was absent. Normal levels of IgG3 and slightly 

reduced levels of IgG2b and IgA were observed (Castigli et a l, 1994). There were slight 

differences in the levels of the immunoglobulins measured in these studies however, the 

general trends in immunoglobulin production in CD40 deficient mice (reduced isotype 

switched immunoglobulins) were the same. The slight differences in the levels of serum 

immunoglobulins seen in these studies compared with the results presented in this thesis 

could be due to the different conditions in which these CD40 deficient mice were kept 

and the different pathogens that they may be exposed to.

The normal or elevated levels of serum IgM that were seen in patients with hyper IgM 

syndrome and also in CD40 deficient mice indicates that IgM antibody responses in both 

systems were independent of the CD40-CD40L interaction. The reduced levels of isotype 

switched immunoglobulins in the serum of CD40 deficient mice suggests that the CD40- 

CD40L interaction is important for the isotype switching from IgM to other 

immunoglobulins.
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Chapter 5: Cell-mediated immunity in CD40 deficient 
mice infected with bacillus Calmette-Guerin

5.1 Introduction

5.1.2 CD40-CD40L interaction in Thi development

Patients having hyper IgM syndrome experience recurrent infections, usually within the 

1st year of life, after levels of maternally-derived antibodies have declined. Most 

infections are of bacterial origin, but HIGM l Patients are unusually susceptible to 

infections with opportunistic pathogens and often suffer from Pneumocystis carinii 

pneumonia and Cryptosporidium  intestinal infection. These diseases are often observed 

with T-cell immunodeficiencies but not with forms of hypogammaglobulinemia other 

than hyper IgM syndrome (Notarangelo et a l ,  1992). This observation led researchers to 

ask whether the interaction between CD40-CD40L was involved in T cell-mediated 

immunity? It has been established that IL-12 is a key cytokine for the development of a 

Thl response as it induces the production of IFN-y in NK cells and T cells (Trinchieri,

1995). Results suggest that the CD40-CD40L interaction is important for the priming of 

Thl T cells via the stimulation of IL-12 secretion by antigen presenting cells. CD40 

cross-linking on human dendritic cells by CD40L upregulated the expression of CD80, 

CD86 and CD54, leading to an increased capacity of DCs to stimulate proliferation of 

autologous or allogeneic T cells and also of IFN-y production by these T cells. In 

addition, secretion of high levels of IL-12 by human DCs was induced upon CD40 

cross-linking (Celia et at., 1996; Peguet et al., 1995). A similar study, this time with 

murine dendritic cells showed, that CD40 cross-linking induced IL-12 production by the 

dendritic cells, and that IL-12 production could be downregulated by IL-4 and IL-10 

(Koch et al., 1996). IL-12 production by human monocytes could be triggered by 

activated T cells and this could be inhibited by a soluble CD40 (CD40-Ig) antibody 

blocking the CD40-CD40L interaction (Shu et al., 1995). An in vivo model of colitis 

(induced by the hapten reagent (2,4,6-trinitrobenzene sulfonic acid (TNBS)) is a Thl
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mediated disease. This was shown by the fact that the majority of infiltrating CD4^ T 

cells in this condition secreted IFN-y. Treatment with anti-CD40L antibody during the 

induction of the disease was able to prevent colitis occurring and a reduction in the levels 

of IL-12 was also observed (Stuber et al., 1996). In addition, CD40 cross-linking on 

dendritic cells induced the production of T N F -a , IL-8 and macrophage inflammatory 

protein (M IP -la ). The production of cytokines such as IL-8 and M IP -la  by dendritic 

cells may be important for the recruitment of cells to a site of inflammation (Stout & 

Suttles, 1996). A direct role for CD40-CD40L interactions in the induction of nitric oxide 

(NO) production by macrophages is indicated by the ability of anti-CD40L antibody to 

inhibit the induction of nitric oxide by fixed activated lymphocytes (Tian et al., 1995). 

This was supported by the observation that T cells from CD40L deficient mice were 

impaired in their ability to induce macrophages to produce T N F-a and nitric oxide (Stout 

et al., 1996).

5.1.3 Impaired T cell priming in CD40 and CD40L deficient mice

Two reports have described the impairment of antigen-specific T cell priming in CD40 

and CD40L deficient mice. To determine whether CD40L influences T cell 

responsiveness, CD40L deficient mice and wild-type mice were immunized with KLH 

and T cell in vitro recall proliferative responses were tested. The in vitro proliferative 

responses of T cells from CD40L deficient mice were considerably reduced compared to 

wild-type mice. Furthermore, a dramatic reduction in IL-4 and IFN-y production was 

seen in proliferative responses with T cells from CD40L deficient mice. The reduced 

response in CD40L deficient mice could either be caused by insufficient activation of the 

antigen presenting cells (APCs), no expression of costimulatory molecules (CD80, 

CD86), or a defect in the T cells. To test whether the APCs were causing the defect in T 

cell activation, APCs from wild-type mice were used to activate T cells in vitro from 

CD40L deficient mice immunized with KLH. Neither wild-type APCs nor 

lipopolysaccharide (LPS) activated B cells, which express costimulatory activity and thus 

might bypass a CD40L requirement, were able to restore the defect in proliferation.
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Whether APCs are intrinsically defective in CD40L deficient mice, was tested by 

adoptive transfer of wild-type T cells (CD4^) to CD40L deficient mice. Following 

immunization of the CD40L deficient mice with KLH, these transferred wild-type T cells 

responded vigorously to KLH. Furthermore, the proliferative response of CD40L 

deficient T cells and wild-type T cells is similar when stimulated with anti-CD3 or 

concanavalin A, confirming that CD40L deficient T cells do not have an intrinsic defect. 

These observations suggest that a signal through CD40L to the T cell is necessary for in 

vivo priming of T cells and that the reduced proliferation in CD40L deficient mice is not 

due to a defect APC activation or intrinsic T cell defect in CD40L deficient mice (Grewal 

et al., 1995). Another study showed that simultaneous cross-linking of CD3 and CD40L 

on human CD4^ T cells upregulated IL-4 synthesis. This indicated that CD40L might 

serve as a receptor which transduces a costimulatory signal to the T cell (Blotta et al.,

1996).

To test the ability of T cells primed in the absence of CD40 to provide T cell help for B 

cells, CD40 deficient mice and wild-type mice were immunized with KLH. Purified T 

cells from these mice were then injected into lightly irradiated CD40 deficient mice 

(hosts) with B cells expressing CD40 (wild-type B cells) from non-immune IgH"* 

congenic donors. These allotype-distinct “indicator” B cells enable the donor/recipient 

source of semm antibodies to be determined. Adoptive hosts were immunized with 

dinitrophenylated KLH (DNP-KLH). Ten days after cell transfer, the mice that had 

received T cells primed in a wild-type (CD40+/+) mouse produced anti-DNP IgM, IgG l, 

IgG2a and IgG2b antibodies and formed germinal centres in their spleens. Mice that 

received T cells primed in CD40 deficient mice produced only IgM antibodies and 

exhibited no splenic germinal centres. This indicates that T cells primed in the absence of 

CD40 are unable to provide the help required for normal B cells to class switch or to 

form germinal centres (van et a i ,  1995).
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5.1.4 Leishmaniasis in CD40 and CD40L deficient mice

Mice deficient for CD40 and CD40L have been used to establish that the CD40-CD40L 

interaction is required for protective immunity to the intracellular protozoan, Leishmania 

Major. This parasite infects macrophages and the severity of disease in different mouse 

strains infected with L. major is genetically determined. In the resistant strains such as 

C57BL/6 and CBA, T hl effector T cells are generated upon infection, whereas Th2 

responses are generated in the susceptible strain BALB/c (Heinzel et at., 1993). It has 

been shown that Thl-derived IFN-y and Th2-derived IL-4 play a role in protection from 

and exacerbation of experimental leishmaniasis, respectively (Sadick et al., 1990). These 

results were confirmed by the fact that experimental leishmaniasis could not be controlled 

in IFN-y deficient mice, which succumbed upon infection with L. major (Wang et al.,

1994). Another important cytokine in the control of L.major infection is IL-12. In vivo 

IL-12 treatment can cure BALB/c mice of L.major infection by changing a Th2 response 

to a Thl response (Heinzel et al., 1993). The infection of CD40 deficient and CD40L 

deficient mice with Leishmania major provided a means of determining the mechanisms 

involved in the production of IL-12 and generation of Thl responses to the parasite and 

also which molecules other than IFN-y were required for activation of macrophages. 

CD40L deficient mice bred onto a resistant background (C57BL/6), control C57BL/6 

(resistant) and BALB/c (susceptible) mice were infected with Leishmania major. CD40L 

deficient mice were susceptible to infection with L. major, and like the susceptible strain 

BALB/c, developed ulcerating lesions within 7 weeks of parasite challenge. The levels of 

IFN-y, IL-4 and IL-12 were measured. Lymph nodes cells taken from CD40L deficient 

mice secreted low levels of IFN-y when stimulated with a soluble leishmanial antigen in 

vitro, compared to control mice. The levels of IL-4 in CD40L deficient mice were 

comparable to susceptible BALB/c mice. Furthermore, T cells from CD40L deficient 

mice failed to induce IL-12 production by macrophages when stimulated with soluble 

leishmanial antigen in vitro. Complete protection from Leishmania major in CD40L 

deficient mice could be obtained by intraperitoneal injection of recombinant IL-12
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(Campbell et al., 1996). A similar study, where CD40 deficient mice were infected with 

Leishmania major showed that CD40 deficient mice developed systemic leishmaniasis. 

Lymph node cells from infected CD40 deficient and BALB/c mice produced significantly 

higher levels of IL-4 in response to L. major antigens than C57BL/6 (controls) mice. 

Cells from resistant C57BL/6 mice produced high levels of IFN-y and in contrast, only 

low levels of IFN-y were produced by CD40 deficient mice in response to L. major 

antigens. As shown for CD40L deficient mice infected with L. major, lymph node cells 

from CD40 deficient mice infected with L. major showed levels of IL-12 production that 

were reduced considerably compared to C57BL/6 mice and the IL-12 secretion was even 

lower than in BALB/c mice.

Nitric oxide produced by activated macrophages has been implicated as one of the 

effector molecules involved in killing Leishmania parasites (Liew et al., 1990; Wei et al.,

1995). The activation of macrophages to exert antiparasitic responses such as nitric oxide 

production was investigated in CD40L deficient mice infected with Leishmania 

amazonensis. Unlike L. major, where selected strains of mice are resistant to infection, 

most inbred strains of mice are susceptible to L. amazonensis. Infection of CD40L 

deficient mice with L. amazonensis resulted in a tissue parasite burden 50-fold higher 

than in the wild-type (C57BL/6) mice, and CD40L deficient mice failed to generate 

parasite specific immune responses. Lymph node cells from CD40L deficient mice, 

stimulated with parasite lysates for 72 h in vitro, failed to produce IFN-y, T N F -a and 

lymphotoxin in response to parasite antigen. Moreover, macrophages isolated from 

CD40L deficient mice did not produce any significant levels of nitric oxide after 

stimulation with parasite antigen, whereas macrophages from the control mice produced 

high levels of nitric oxide. Unlike the studies cited above, infection with L. amazonensis 

showed that the production of IL-12 in CD40L deficient mice was comparable to wild- 

type mice. One of the major contributing factors to the diminished resistance to L. 

amazonensis in CD40L deficient mice is probably the reduced capacity of macrophages 

to exert antiparasitic responses such as nitric oxide production (Soong et a l ,  1996).
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The CD40-CD40L interaction appears to be important for the induction of IL-12 and the 

production of nitric oxide (NO) by activated macrophages in response to infection with 

Leishmania species. A possible sequence of events could be that during infection of 

resistant strains of mice, APCs present leishmanial antigens to T cells, resulting in 

activation-induced expression of CD40L. CD40L positive T cells, possibly in 

combination with IFN-y, interact with CD40 on APCs and induce EL-12 production 

(Koch et a l ,  1996; Shu et at., 1995). IL-12 then stimulates NK cells and CD4^ T cells to 

secrete IFN-y, which drives CD4^ T cells towards a Thl phenotype (Trinchieri, 1995). 

Simultaneously, CD40L positive T cells would interact with macrophages via CD40 and 

induce the expression of nitric oxide, thereby increasing the microbicidal capacity of the 

macrophages (Stout et a l ,  1996; Tian et at., 1995).

5.1.5 Immune response to Mycobacterial infection

Mycobacterium tuberculosis and M. bovis are intracellular bacteria capable of persisting 

and replicating within resting macrophages. The precise mechanisms by which the cell- 

mediated immune response operates to effectively contain the bacillus are not fully 

understood. The requirement of both CD4^ and CD8^ T cells in the protective immune 

response to M. tuberculosis has been established. The in vivo depletion of either CD4^ or 

CD8^ T cells in mice (C57BL/6) reduced resistance to M. tuberculosis infection, whereas 

intact control mice were able to clear the infection (Muller et al., 1987; Orme et al., 

1992). However, the contributions of the different components of the T cell response are 

unclear. Patients with human immunodeficiency virus (HIV) have reduced CD4^ T cell 

counts and CD4^ T cells are thought to play a major role in controlling infections with 

M.tuberculosis, as HIV patients are more susceptible to M. tuberculosis infections than 

the non-HIV infected population (Hopewell, 1992). p2-microglobulin deficient mice 

which lack an efficient CD8^ T cell response, also show increased susceptibility to M. 

tuberculosis infection (Flynn et al., 1992). Several groups have shown, using gene- 

deleted mice, that nitric oxide, IFN-y, T N F-a and IL-12 are all essential for development 

of resistance to M. tuberculosis. Mice deficient for nitric oxide synthase (N 0S2), the
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gene producing nitric oxide, succumbed to M. tuberculosis infection within 50 days, 

whereas control (C57BL/6) mice survived the infection. The lack of NOS2 did not have 

any effect on granuloma formation and levels of IFN-y and T N F -a , as they appeared 

similar in control and N 0S 2  deficient mice (MacMicking et al., 1997). IFN-y deficient 

mice succumbed to infection with M. bovis (BCG) and the defect in IFN-y production 

led to an impaired production of nitric oxide by macrophages in response to M. bovis 

(Dalton et al., 1993). Upon infection with M. tuberculosis, IFN-y deficient mice 

developed granulomas but they failed to produce nitric oxide and eventually succumbed, 

due to the unrestricted growth of bacilli. Recombinant IFN-y was injected 

intramuscularly in an attempt to rescue IFN-y deficient mice from unrestricted growth of 

bacilli, but the treatment only delayed and did not prevent the fatal outcome of M. 

tuberculosis infection (Cooper et al., 1993; Flynn et al., 1993). The role of T N F -a was 

investigated by infecting BALB/c mice with BCG {bacillus Calmette-Guerin). Upon 

infection with BCG the mice developed granulomas and the production of T N F -a was 

shown to coincide with these granulomas. In vivo treatment with anti-TN F-a antibody 

prevented the development of granulomas and led to accumulation of TNF mRNA in 

BCG infected mice, leading to massive replication of BCG. This study indicates that 

T N F -a is essential for granuloma formation, which is thought to be required for 

localization and control of mycobacterial replication in tuberculosis (Kindler et al., 

1989). In addition to the role of T N F -a in granuloma formation, T N F -a  with IFN-y, 

induces the production of microbicidal reactive nitrogen intermediates (RNI) by 

macrophages, one of which is nitric oxide (Flesch & Kaufmann, 1990). The only 

demonstrated mechanism in vitro by which macrophages kill M. tuberculosis bacilli is 

activation by IFN-y and LPS or T N F -a to produce RNI (Flesch & Kaufmann, 1991). 

The use of mice lacking the TNF receptor confirms the role of T N F -a  in protection 

against M. tuberculosis. TNF receptor deficient mice succumb to M. tuberculosis 

infection within 30 days, whereas the control mice survive the duration of the 

experiment. After 2 weeks of infection the TNF receptor deficient mice contained 10- to 

50-fold more bacilli in the organs, compared with the control mice. Granuloma formation
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did occur in the TNF receptor deficient mice and equivalent numbers of granulomas were 

found in TNF receptor deficient mice and control mice, 12 days postinfection. However, 

the onset of granuloma formation in TNF receptor deficient mice was slightly delayed. 

Likewise, the production of RNI was delayed in TNF receptor deficient mice until 14 

days postinfection although once again levels of RNI production were similar to those 

observed in wild-type mice. The same results were obtained in mice, where T N F -a was 

neutralized in vivo by an anti-TN F-a antibody (Flynn et a i ,  1995a). This conflicts with 

the previous report (Kindler et al., 1989) where neutralization of TNF in vivo  by 

antibody to T N F -a abolished granuloma formation following infection with BCG. The 

reason for the discrepancy is unknown. Clearly, T N F -a is required early in infection to 

limit replication of bacilli within the organs and the way that this replication is limited is 

through the production of RNI. Complete absence of T N F -a or TNF signalling (TNF 

receptor) within the two first weeks of a mycobacterial infection was found to be fatal 

(Flynn et al., 1995a).

Finally, the role of IL-12 in resistance to M. tuberculosis infection was investigated. 

C57BL/6 mice normally survive more than 140 days when infected with M. 

tuberculosis, where as BALB/c mice are susceptible to the infection and only survive 

around 58 days (Flynn et al., 1995b). When BALB/c mice were given recombinant IL- 

12 at the initiation of infection with M. tuberculosis, their mean survival time doubled 

from 58 to 112 days. IL-12 treated mice had diminished bacterial burdens, whereas 

treatment with recombinant IFN-y had no effect on survival or bacterial burden. 

Treatment of IFN-y deficient mice with recombinant IL-12, did not increase survival, 

indicating that IL-12 does not induce protection against tuberculosis in mice in the 

absence of IFN-y. This supports the hypothesis that IL-12 increases resistance to 

tuberculosis by inducing IFN-y production from NK and/or T cells (Cooper et al., 1995; 

Flynn et al., 1995b).

Tuberculosis is the world’s leading cause of death in humans from a single infectious 

agent. Mycobacterium tuberculosis currently infects 2 billion people worldwide and
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causes 8 million new cases of tuberculosis and 2.9 million deaths annually (Kochi, 

1991). The disease is a major health problem in developing countries and has reemerged 

in recent years in many industrialized countries. This has been linked to the spread of the 

human immunodeficiency virus (HIV) and to a combination of social and economic 

factors (Fenton & Vermeulen, 1996). The only currently available vaccine, bacillus 

Calmette-Guerin (BCG) does not provide protection against M. tuberculosis infection in 

all individuals (Fine, 1989) and the lack of an effective vaccine is at least in part 

responsible for the reemergence of tuberculosis in industrialized countries. However, the 

development of an effective vaccine against Mycobacterium tuberculosis has been 

hampered by a poor understanding of the immunlogical mechanisms of protection and 

the pathogenesis of this disease. It is therefore important to investigate the precise 

mechanisms by which the cell-mediated immune response operates to contain and 

eliminate a mycobacterial infection. As resistance to both tuberculosis and leishmaniasis 

was associated with production of similar CD40-CD40L-associated mediators of 

immunity, including IFN-y, IL-12, T N F-a and nitric oxide (NO), this study was carried 

out to assess the role of the CD40-CD40L interaction in the induction of cell-mediated 

immunity and control of Mycobacterium tuberculosis.

Performing experimental work with Mycobacterium tuberculosis requires category 3 

facilities which were not available in our department, therefore I chose to use 

Mycobacterium bovis (BCG) as a model system for Mycobacterium tuberculosis.

5.2 Results

5.2.1 Survival of CD40 deficient mice infected with BCG

To investigate the role of CD40 in resistance to BCG {bacillus Calmette-Guerin) I 

compared the course of BCG infection in CD40 deficient mice (CD40-/-) and in sex- and 

age-matched heterozygous (CD40-I-/-) littermates. Heterozygous littermates (CD40-I-/-) 

were used as controls because the CD40 deficient mice were backcrossed onto the 

C57BL/6 background for 2 generations (129/Sv x C57BL/6)F2. This only gave
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homozygosity on 75% of all alleles, therefore the degree of homozygosity had to be the 

same in the control mice (CD40+/-) as in the CD40 deficient mice. Five 10 week old 

male mice were used in the CD40-/- group and in the CD40+/- control group. Mice were 

infected intravenously (tail vein) with 1 x 1 0 ^  colony-forming units (CFU) of bacillus 

Calmette-Guerin and three parameters of resistance were analyzed, survival, weight gain 

or loss and bacterial load in the spleen, liver and lungs. The health of the mice in each 

group was assessed by monitoring the weight loss or gain regularly throughout the 

infection, shown in Figure 20. The weight of the mice on each day of measurement is 

presented as the percentage weight gain as compared with the day zero levels (day zero is 

the first day of infection). There was no net weight loss during the course of infection in 

either group of mice, with both groups putting on weight during the 256 day observation 

period and surviving for the entire observation period.

An initial period of 11 days with equal percentage increase, followed by a decrease in 

percentage weight gain for the CD40 deficient mice compared to the control mice (day 

11-20). This is followed by a period of equal increase in percentage weight gain. 

Unfortunately, the mice were not weighed individually and therefore the values for the 

standard error of the mean cannot be given for each percentage increase.

There is a difference in weight, with the CD40 deficient mice being slightly heavier. This 

weight difference may be due to differences in the genetic backgrounds of individual 

mice. The CD40-/- mutation was generated in ES cells derived from a 129 genetic 

background and injected into a blastocyst with a C57BL/6 genetic backround. This 

results in mutant mice with a mixture of 129 and C57BL/6 genetic backgrounds. These 

mutant mice (129/C57BL/6) will be backcrossed onto a C57BL/6 genetic background, 

but backcrossing has to (selecting for the mutation) have taken place for 10 generations 

in order to achieve 99.91 % homozygosity of alleles. Therefore, the lower the number of 

backcrosses the more genes are expected to segregate and any variations seen in the 

weight may be due to differences in the genetic backgrounds of individual mice.
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The bacterial load in the spleen, liver and lungs was determined in both groups of mice, 

4 weeks after infection. Spleen, liver and lungs were removed into sterile PBS and 

homogenized as described in section 2.4.8, followed by plating out onto Middlebrook 

agar plates. These plates were incubated for 2-3 weeks at 37 °C. Middlebrook agar 

selects for growth of mycobacteria. The number of mycobacteria are presented as colony 

forming units (CFU, defined as bacterial colonies) and these were counted after 2-3 

weeks of culture. The results represent the mean of CFU from six mice in each group 

and the error bars represent the standard error of this mean. The Student t-test was used 

to calculate whether the results for CFU counts were significantly different in the two 

groups of mice. A P value of 0.05 or below was taken to be significant. The results of 

the CFU counts are shown in Figure 21.

The number of BCG CFU recovered from 1. spleens, 2. lungs and 3. livers of 

heterozygous control mice (CD40-I-/-) were compared with those recovered from CD40 

deficient mice (CD40-/-). The results are presented in Figure 21. CD40 deficient mice 

had a significantly higher parasite burden in the spleens (6.78x10^ ± 0.90x10^) 

compared to control mice (2.96x10^ ± 1.09x10'*) (P<0.001). The CFU counts in the 

lungs of CD40 deficient mice (6.60x10^ ± 2.08x10^) compared to the control mice 

(2.80x10^ ± 0.96x10^) were also significantly different (P<0.001). The CFU counts in 

the livers of CD40 deficient mice (10.77x10^ ± 6.15x10^) compared to control mice 

(7.23x10^ ± 3.16x10^) appear different in Figure 21., but a Student’s t-test revealed that 

this difference was not significant (P=0.27). These results show that CD40 deficient 

mice have raised parasite burdens in the spleen and lungs, suggesting that CD40 deficient 

mice, despite long-term survival (256 days), are more susceptible to infection with BCG 

than control mice.
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Figure 20. Percentage weight gain of heterozygote littermate controls (CD40-H/-) and 

CD40 deficient mice infected with bacillus Calmette-Guerin (BCG). The weight gain is 

calculated as a percentage of the weight at the start of the experiment. CD40-/- (deficient) 

and CD40-I-/- (control) mice were infected i.v. with 1 x 10^ CFU of bacillus Calmette- 

Guerin and the course o f infection, survival and weight, were monitored for 256 days. 

There were five mice in each group and the weight is the cumulative weight of 5 mice.
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Figure 21. Bacterial burdens in bacillus Calmette-Guerin infected CD40+/- conti'ol mice 

and CD40-/- mice. CFU (colony-forming units) in 1. Spleen, 2. Lung and 3. Liver were 

determined 4 weeks after infection. The values shown are means of CFU counts ± 

s.e.m. of 6 mice in each group.The P values for each comparison were determined using 

the Student’s t-test. 1. Spleen: P<0.001; 2. Lung: P<0.001; 3. Liver: P-0.27.
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5.2.2 IFN-y production in CD40 deficient mice infected with BCG

The CD40-CD40L interaction has been directly implicated in pathways for the production 

of IL-12, nitric oxide and macrophage activation (Shu et al., 1995; Stout et al., 1996; 

Tian et a i ,  1995). In addition, the enhanced susceptibility of CD40L and CD40 deficient 

mice to Leishmaniasis was associated with an impaired generation of a Thl response, 

reflected by the production of low levels of IFN-y, TNF, IL-12, and nitric oxide 

(Campbell et al., 1996; Kamanaka a/., 1996; Soong et al., 1996). In view of these 

observations I infected CD40 deficient mice and control mice with BCG and then 

measured the induction of IFN-y production in response to PPD (Tuberculin Purified 

Protein Derivative) in vitro. IFN-y was detected using an ELIspot assay. The ELIspot 

assay relies on an anti-IFN-y antibody which is bound to the bottom of a 96-well tissue 

culture plate. Cells and antigen (PPD) are then added and incubated overnight. Cells 

recognizing the antigen will secrete IFN-y, which will be bound by the anti-IFN-y 

antibody. The cells are then removed and bound IFN-y can now be recognized with a 

secondary antibody coupled to alkaline phosphatase. A substrate is added and the 

alkaline phosphatase then converts this substrate to produce a coloured compound. A 

series of dilution’s of cell numbers allows very sensitive detection such that each spot 

represents a single cell secreting IFN-y. 1 x 1 0 ^  splenocytes were isolated from mice 4 

weeks post-infection and cultured overnight with PPD (described in section 2.4.7). 

Triplicate wells per mouse were counted and the values shown are means ± s.e.m. of 5 

mice in each group. The P values for each comparison were determined using the 

Student’s t-test. A P value of 0.05 or below was taken to be significant. The results 

shown in Figure 22. represent the mean number of IFN-y producing cells in response to 

PPD in control mice (CD40+/-) and CD40 deficient mice (CD40-/-). The control mice 

exhibit approximately 225 IFN-y producing cells per 1.0 x 10  ̂ splenocytes, whereas 

CD40 deficient mice exhibit less IFN-y producing cells, only 100 per 1.0 x 10  ̂

splenocytes. These results show a significant reduction in the IFN-y response to PPD 

(BCG infection) in CD40 deficient mice (P<0.001). The reduced levels of IFN-y in the
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CD40 deficient mice in response to a mycobacterial infection may explain the raised 

parasite burdens found in this study (Figure 21.). The results are discussed further in 

relation to other studies (see Discussion).

Histology was performed on control and CD40 deficient mice four weeks after infection 

with BCG. Spleen, lungs and liver were taken out and fixed in formalin, embedded in 

paraffin and tissue sections stained with hematoxylin and eosin (H&E). In addition, 

tissue sections were stained for the presence of acid-fast bacilli (mycobacteria) as 

described in section 2.4.9. Figure 23. (A .I.: CD40-I-/- and B .I.: CD40-/-) shows the 

presence of localized mycobacteria in macrophages of liver-sections from control (A .I.) 

and CD40 deficient mice (B .l). The bacilli appear as bright pink dots which is due to the 

high concentration of lipids in the mycobacterial walls which are responsible for the acid 

resistant staining with fuchsin red (hence acid-fast bacilli) and can easily be localized. A 

comparative quantitative analysis of the number of bacilli (BCG) can be performed by 

choosing at random ten optical fields per histological slide and counting the number of 

bacilli. Such an analysis should have 5 mice in each group and the result should be 

expressed as a mean value ± s.e.m (Kindler et a i,  1989). In this instance, the slides 

should be coded so that they can be read blind. The code should only be broken once all 

the slides have been analyzed. If the number of bacilli present in the tissue is so high that 

a quantitative histological determination is impossible, then a colony forming unit (CFU) 

assay should be used (Figure 21.).

A BCG infection results in formation of granulomas consisting of large numbers of 

activated macrophages, surrounded by lymphocytes in the organs of infected mice. The 

formation of granulomas contains the mycobacterial infection and prevents the continued 

growth and dissemination of bacilli (Nibbering et al., 1989; Pelletier et a i, 1982).

In order to asses the formation of granulomas in CD40 deficient and control mice H&E 

staining of liver-sections (Figure 23. A .2.: CD40-1-/- and B.2.: CD40-/-) was performed. 

Hematoxylin preferentially stains acidic structures blue/purple, therefore activated cells
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with high levels of DNA and RNA stain heavily and are blue. Eosin stains basic 

structures pink, so that proteins and the cytoplasm of cells appears pink. The 

accumulation of many activated macrophages and lymphocytes with high concentrations 

of RNA, DNA and ribosomes can be readily seen as heavily blue stained cells in tissue 

sections, denoting the presence of a granuloma.

The H&E staining revealed the formation of granulomas in both control mice and CD40 

deficient mice. There appeared to be fewer granulomas in control mice and these were 

smaller and less densely packed with activated macrophages and lymphocytes than the 

granulomas in CD40 deficient mice. A comparative quantitative analysis of the number of 

granulomas in control and mutant mice can be performed by counting at random ten 

optical fields per histological slide. In the same way as is described for determination of 

bacilli numbers, the slides should be blinded. Such an analysis should have 5 mice in 

each group and the result should be expressed as a mean value ± s.e.m (Kindler et a i,  

1989). In addition, the size of the granulomas can be estimated if the area of the optical 

field is known (Nibbering et a i,  1989).

Figure 23. (A.3.: CD40+/- and B.3.: CD40-/-) shows granulomas from control and 

mutant mice at a higher magnification (400x). This allows us to see that the individual 

granuloma in the mutant mouse (Figure 23. B.3.) is larger and more densely packed with 

blue-stained cells, indicating the presence of more activated macrophages and lymphoctes 

than the individual granuloma shown in the control (Figure 23. A .3.). Spleen- and lung- 

sections showed the same pattern with raised numbers of granulomas in the CD40 

deficient mice (data not shown).

Infection of control and CD40 deficient mice with BCG results in significantly increased 

numbers of bacilli (CFU) in the spleen and lungs of CD40 deficient mice (Figure 21.). 

The ability of the CD40 deficient mice and control mice to generate a Thl response 

towards mycobacterial antigens was assessed in vitro. This was carried out by looking at 

the ability of splenocytes from BCG infected mice from each group to make IFN-y in

138



5; C ell-m ed ia ted  im munity in C D 40 deficien t m ice

response to culture with PPD. This revealed that the splenocytes of CD40 deficient mice 

secreted significantly less IFN-y in response to PPD (Figure 22.). Granuloma formation 

occurred in response to BCG infection in both control and CD40 deficient mice, however 

the number and size of granulomas appeared increased in CD40 deficient mice (Figure 

23). CD40 deficient mice survived infection with BCG (Figure 20.), nevertheless the 

increased numbers of bacilli in spleen and lungs, and the reduced production of IFN-y in 

response to mycobacterial infection indicates that CD40 deficient mice are more 

susceptible to infection with BCG than control mice.
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Figure 22. IFN-y production by spleen cells o f BCG infected control (CD40-h/-) and 

CD40 deficient (CD40-/-) mice. Four weeks after infection with BCG, spleens were 

removed and I.O x 10  ̂splenocytes were stimulated with PPD (1 pg/ml). The number of 

cells producing IFN-y in response to PPD was detected in an ELIspot assay. Results are 

given as the number of IFN-y producing cells per 1.0 x 10^ splenocytes (2. PPD). The 

control (I. Medium) is splenocytes cultured without PPD. Triplicate wells per mouse 

were counted and the values shown are means ± s.e.m. of 5 mice in each group. The P 

values for each comparison were determined using the Student’s t-test. I. Medium: 
P=0.36; 2. PPD: P<0.001.
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Figure. 23. Histology of liver-sections from bacillus Calmette-Guerin infected CD40-I-/- 

control mice and CD40-/- mice. Mice were infected i.v. with 1 x 1 0 ^  CFU of bacillus 

Calmette-Guerin and killed four weeks later. Liver-sections were stained by the Ziehl- 

Neelsen method for acid fast bacilli (mycobacteria), A .I.: CD40-I-/-; B .l.: CD40-/-. 

Arrows indicate bacilli localized in macrophages. Magnification lOOx. Liver-sections 

were also stained with hematoxylin and eosin (H&E), A .2: CD40-I-/-; B.2. CD40-/-. 

Arrows indicate granuloma. Magnification 40x. A .3.: CD40-I-/-; B.3.: CD40-/-. Arrows 

indicate disintegrated liver tissue. Magnification 400x.
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Chapter 6: Discussion

6.1 Generation of CD40 deficient mice

There are many factors that must be considered when making a gene-deleted mouse. 

Firstly, the time that is required for the process is lengthy. It is probably best therefore to 

plan to delete a gene that has been cloned in your own or a closely collaborating 

laboratory. This ensures extra time so that changes to the different steps involved in the 

long process can be made. Secondly, gene-deleted mice may well be more susceptible to 

infections than intact mice. This means that the conditions under which the animals are 

housed must be very well regulated. SPF (specific pathogen free) facilities must be used 

if the specific deletion affects immune functions. However even specific pathogen free 

facilities may have to be modulated as deficient mice may display a different panel of 

infections that are not normally tested for under normal SPF requirements. Lastly, clean, 

pathogen-free mice which are used to provide blastocysts for microinjection will give 

better yields of blastocysts than infected mice and this will aid in the process of making 

chimaeric animals.

The two most difficult processes involved in making a gene-deleted mouse are the 

generation of targeted ES cells and the subsequent germline transmission of this targeted 

mutation. Generation of targeted ES cells is dependent on the targeting frequency of the 

targeting vector which is directly correlated to the length of homologous sequences 

present in the targeting vector (Hasty et al., 1991a). The results of the homologous 

recombination events that I found with the two different constructs that I made would 

tend to support this view since the length of homology in construct 2 (Figure 8.) was 

greater than that in construct 1 and it was only with this constmct that I was able to 

generate any targeted ES cell clones. The length of the construct is governed by other 

considerations such as the need for unique restriction enzyme sites and sequences for an 

external probe that allows unambiguous Southern blot analysis. Another factor that can 

be considered when making a targeting vector is the use of a negative selection marker
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(TK) in the targeting vector outside the region of homology. This would reduce the 

number of G418 resistant clones considerably. The advantages of this negative selection 

would be the decreased the number of clones that needed to be screened to obtain 

targeted ES cell clones and this may shorten the process by several weeks.

The culture conditions that need to be used to keep ES cells growing in an 

undifferentiated state are crucial. Even with stringent culture conditions abnormal variant 

cell clones will appear in the ES cell population with increased time in culture. Some of 

these variants will have an obvious abnormal karyotype and are unlikely to be able to 

contribute to the germline. For this reason, karyotyping was performed on both ES cell 

lines and targeted ES cell clones (Figure 11-13.) to ensure a normal karyotype. As 

shown in Table 2. and Figure 12., a seemingly normal karyotype in the 34 R1 ES cell 

clone did not guarantee germline transmission. It should be noted that both the R1 and 

D3 ES cell line (unmanipulated) was tested for germline transmission prior to generation 

of targeted ES cell clones. In contrast to the D3 ES cell line, the R1 ES cell line seemed 

to grow slower, otherwise it displayed normal morphology.

The results shown in Table 2. indicates how rare it was to achieve germline transmission 

despite the fact that all targeted ES cell clones had been karyotyped. The best indicator of 

the chance of germline transmission is the male to female ratio of chimaeras. As 

mentioned earlier, the conversion of a female blastocyst to a male chimaera indicates that 

the male ES cells are capable of colonizing the germline cells and possibly passing on the 

mutated allele. Therefore in this case more than 50% of the chimaeras will be male which 

I found to be the case for chimaeras generated from the 55 D3 ES cell clone. Of a total of 

33 male chimaeras, derived from the 55 D3 ES cell clone, only one male chimaera 

managed to pass on the mutated allele.

The ratio of male to female chimaeras is a better indicator of the chance of germline 

transmission than coat colour. All 16 male chimaeras derived from the 34 R1 ES cell 

clone were 80-95% agouti (Figure 14.). This indicates that most of the tissues in these
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mice were ES cell derived, however when bred to check for germline transmission, some 

were sterile or only produced wild-type offspring. The ES cells were obviously capable 

of differentiating into somatic cells but could not differentiate into germline cells and the 

reason for this is unknown. Ideally the majority of targeted ES cell clones should 

contribute to the germline. The resulting homozygous mutant mice, derived from two 

independent ES cell clones, can then be analysed and found to have the same phenotype. 

This confirms that the phenotype of the homozygous mutant mice really is a result of the 

targeted mutation. One last important factor to consider is that all cells grown in culture 

can become infected with mycoplasma. Mycoplasma does not always have an obvious 

effect on cell growth or morphology but can cause chromosome damage and severely 

reduce the efficiency of obtaining ES cell chimaeras. All the ES cell lines and clones used 

in this study were rigorously screened for mycoplasma and the results were always 

found to be negative.

The production of chimaeras by blastocyst injection, as described in Chapter 3, is the 

prevalent method used by many laboratories. While this method is effective for the 

production of chimaeras, including germline chimaeras, it does have some practical 

limitations. The main limitations are the cost of the equipment used and the man-hours 

required to acquire the skills needed to make good holding and injection needles. This is 

time-consuming but critical to the success of the injection process. In addition, 

successful injection of 25-30 blastocysts per day requires several months of practise. 

This technique alone required 1-2 months practise before I became proficient.

These considerations have lead to the investigation of alternative methods of chimaera 

production. A simpler technique has been developed that requires no expensive 

equipment and much less practice (Wood et al., 1993). This method is based on the 

observation that ES cells aggregate with morulae (the zona pellucida has been removed) 

and therefore all that is required for chimaera production is to bring the two cell 

populations into contact. Although the ES cells initially attach to the outside of the 

morulae they are efficiently internalized and by the blastocyst stage chimaeric embryos
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contain ES cell-derived cells in the inner cell mass. The chimaeras (morulae and ES cells) 

are then cultured overnight to the blastocyst stage before transfer into a pseudopregnant 

foster mother. Comparison of germline chimaeras produced by blastocyst injection and 

morulae aggregation revealed that an equal number of germline transmitters occurred 

with both methods. R1 ES cells were used in these experiments. The production of 

chimaeras by the aggregation method is well worth considering if no one in the 

laboratory has experience in blastocyst injection.

6.2 Analysis of CD40 deficient mice

6.2.1 Lymphocyte development in CD40 deficient mice

When I was screening ES cells for homologous recombination events, two papers were 

published showing that CD40 deficient mice had impaired immunoglobulin class 

switching and germinal centre formation (Castigli et a i ,  1994; Kawabe et al., 1994). 

Another paper on CD40 ligand deficient mice (Xu et al., 1994) was also published with 

essentially the same findings. The rational behind continuing to make the gene-deleted 

mouse was that it was becoming clear that CD40 expression was much wider than first 

thought and that many different cell types within the immune system could potentially be 

regulated by the CD40-CD40L interaction, providing opportunities for the investigation 

of a complex issue. I will go on to discuss my results and compare them with those 

found in these other papers.

In this study, analysis of lymphocytes in the periphery (peripheral blood and lymph 

nodes) and thymus (Figure 16.) of CD40 deficient mice revealed no change in the 

proportions and phenotype of B and T lymphocytes. B cells made up similar proportions 

of the lymphocyte population of peripheral blood and lymph nodes in both wild-type and 

CD40 deficient mice. The B cells in the CD40 deficient mice expressed normal levels of 

B220^ and IgM indicating that B cells lacking CD40 were still able to undergo normal 

maturation. Likewise no abnormal development of T lymphocytes in the thymus was 

observed. This was confirmed by staining thymocytes with T cell surface markers (CD4,
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CDS and ap-T C R ). CD40 was also found to be expressed on thymic epithelial cells 

(Figure 18. E.) and dendritic cells (Galy & Spits, 1992), suggesting that the CD40- 

CD40L interaction might also play a role in thymic selection, the process by which self

reactive T cells are deleted from the T cell repertoire. Thymic selection involves both 

positive selection and negative selection. Positive selection is the process in which 

thymocytes whose TCRs bind self MHC molecules associated with self or foreign 

peptides are permitted to survive and all those that have no affinity for self MHC 

molecules die. Negative selection involves the deletion of thymocytes whose TCRs bind 

with high affinity to self peptide antigens in association with self MHC molecules 

(Anderson et a i ,  1996). It is clear that both positive and negative selection in the thymus 

requires recognition of peptide associated with MHC complexes by the TCR, but the 

requirement for additional costimulatory molecules is unclear. This is in contrast to the 

activation of naive peripheral T cells, where it has been demonstrated that recognition of 

peptide associated with MHC by TCR is insufficient for optimal T cell activation and that 

costimulatory molecules provided by APCs are necessary for complete T cell activation 

(Durie et al., 1994). To determine if CD40-CD40L interactions influenced thymic 

selection, the deletion of T cells expressing TCRs reactive against endogenous retroviral 

Mis (minor lymphocyte stimulating) antigens was examined in mice treated with anti- 

CD40L antibody. Due to the expression of Mis antigens encoded by endogenous mouse 

mammary tumor viruses, young adult BALB/c mice normally delete TCR expressing 

Vp3, V p i l ,  and Vpi 2 ,  but not TCR using Vp8. Mice treated from birth with anti- 

CD40L antibody were analysed for T cells expressing VP3, v p i  1, Vp i 2 ,  and Vp8, by 

flow cytometric analysis. Thymocytes expressing Vp3, V pl 1, and Vp l 2  were absent in 

the CD4^CD8 or CD4 CD8^ single positive thymocyte populations obtained from normal 

untreated BALB/c mice. However, analysis of Vp3, V p l 1, and Vp i 2  expression on 

single positive thymocytes from BALB/c mice treated with anti-CD40L antibody showed 

the presence of single positive thymocytes expressing Vp3, v p i l ,  and Vpl 2 .  The 

expression of these TCRs was similar to that seen in a nondeleting strain, C57BL/6. 

These results demonstrated that Mls-mediated deletion of self-reactive T cells was
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prevented as a result of anti-CD40L treatment. To further confirm the role of CD40L in 

Mis mediated deletion of thymocytes, analysis of TCR Vp usage in CD40L deficient 

mice was performed. Normal CBA/J mice (Mls'*'"’̂ ) and CD40L heterozygous CBA/J F, 

mice delete a range of Vp-expressing T cells, including Vp3, Vp5, VP6, Vp7, Vp9, 

v p i  1, and V p l 2. In contrast, there was an increase in CD4^ and/or CD8^ single positive 

thymocytes using Vp5, VP6, Vp7, V p l 1, and Vp i 2  in CBA/J F, mice deficient in 

CD40L (Foy et al., 1995). To investigate the role of the CD40-CD40L interaction in the 

selection of T cells to other self antigens, an in vivo  system of negative selection 

involving TCR transgenic mice (AND TCR Tg) expressing an a /p  TCR specific for 

pigeon cytochrome c (PCC) in association with H-2E*^ class II MHC molecules and 

transgenic mice endgenously expressing PCC in the thymus were used. This system 

allows examination of the selection of transgenic thymocytes to an endogenously 

encoded “self antigen”. Mating the AND TCR transgenic mice with transgenic mice 

expressing PCC results in the recognition of PCC self antigen by thymocytes bearing the 

TCR specific for PCC and results in their deletion. To determine whether the CD40- 

CD40L interaction was required for the deletion of mature transgenic thymocytes in this 

model of negative selection, (AND TCR Tg X PCC Tg)F, mice were treated from birth 

with anti-CD40L antibody, and the thymocyte populations were examined four weeks 

later. The results, demonstrated a dramatic decrease in the percentage of CD4^ 

thymocytes in (AND TCR Tg X PCC Tg)F, mice compared with AND TCR transgenic 

mice. The administration of anti-CD40L antibody completely restored the CD4^ 

thymocyte compartment in the (AND TCR Tg X PCC Tg)F, mice. These results 

demonstrate that blockade of the CD40-CD40L interaction interferes with antigen- 

mediated deletion of thymocytes in this transgenic model of negative selection. 

Exogenous administration of PCCF (PCC peptide fragment) to AND TCR transgenic 

mice results in the deletion of DP (double positive) thymocytes. To determine whether 

administration of anti-CD40L antibody interfered with high-dose PCCF-mediated 

deletion of thymocytes, AND TCR transgenic mice were injected with PCCF, with or 

without coadministration of anti-CD40L antibody. The results showed that although
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administration of PCCF resulted in loss of DP thymocytes, coadministration of anti- 

CD40L antibody did not prevent this deletion. The results demonstrate that deletion of 

DP TCR transgenic thymocytes by high concentrations of antigen does not appear to be 

dependent upon the CD40-CD40L interaction. The involvement of the CD40-CD40L 

interaction in negative selection mediated by exogenous superantigens was also 

investigated. Administration of SEB (Staphylococcus Enterotoxin B) to neonatal BALB/c 

mice causes the deletion of Vp8-bearing T cells. Neonatal BALB/c mice were 

administered SEB alone or in combination with anti-CD40L antibody. SEB caused a 

dramatic loss in the Vp8-bearing T thymocytes in the CD4 and CD8 single-positive 

compartment. Coadministration of SEB and anti-CD40L antibody did not alter selection 

of Vp8-bearing thymocytes, suggesting that SEB-mediated deletion occurs 

independently of the CD40-CD40L interaction. These results showed that negative 

selection mediated by exogenously administered antigen/superantigen appeared to be 

independent of CD40-CD40L interactions, whereas negative selection mediated by 

endogenously expressed antigens was dependent on the CD40-CD40L interaction. Foy 

et al. (Foy et al., 1996) hypothesized that the clonal deletion that occurs following 

administration of supraphysiological concentrations of antigens/superantigens overrides 

any requirement for CD40L-mediated signaling. Furthermore, CD40L-dependent 

selection may also be related to the affinity/avidity of the interactions between TCR and 

MHC/Ag. In the model of viral-superAg-mediated deletion, mature antigen-specific T 

cells proliferated poorly in response to Mis, suggesting that thymocytes bearing these 

TCRs also interacted with Ags/SAgs in a low affinity/avidity fashion. Therefore CD40- 

CD40L interactions might provide additional costimulatory signals necessary to facilitate 

the deletion of thymocytes bearing TCRs of low affinity/avidity. In contrast, CD40- 

CD40L interactions may not be required for deletion mediated by high-affinity TCR 

ligands such as high dose PCC peptide and SEB, which elicit strong proliferative 

responses from mature T cells.
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Expression of CD86 in the thymus of CD40L deficient mice and in mice treated with 

anti-CD40L was also investigated (Foy et a i ,  1995). The results of quantitative 

immunohistochemical analysis revealed that the expression of CD86 in the medulla 

region was substantially reduced. This suggested that CD40L expression was critical for 

CD86 expression and that the reduced expression may have contributed to the defects in 

negative selection observed in the absence of CD40-CD40L interactions. Two models 

have been proposed which would explain the involvement of the CD40-CD40L 

interaction in negative selection of thymocytes. A negative signal is delivered by APCs 

expressing CD40 to the T cell via CD40L, inducing apoptosis in the T cell. Negative 

selection will not take place if CD40L is missing. The second model predicts that TCR 

recognition induces CD40L expression, which in turn engages CD40 and induces the 

upregulation of costimulatory molecules (CD86), which then induces a signal causing 

thymocyte death (Foy et al., 1996).

The analysis of CD40 deficient mice in this thesis and by Kawabe et al. (1994) and of 

CD40L deficient mice (Xu et al., 1994) revealed that proportions and numbers of B and 

T lymphocytes in peripheral lymphoid organs was normal and the pattern of thymocytes 

was indistinguishable in these mice compared with wild-type mice. Further experiments 

are obviously needed to clarify the role of the CD40-CD40L interaction in thymic 

selection.

The results in this thesis and by Kawabe et al. (1994) also showed that B cells retained 

their capacity to proliferate in response to EPS and EPS together with IL-4 (Figure 17.), 

however there was a slight reduction in the ability of CD40 deficient B cells to respond to 

EPS and EPS plus IL-4 (see results for further details). Cross-linking of mutant B cells 

with anti-CD40 antibody, did not induce proliferation. T cells from CD40L deficient 

mice and control mice responded equally well to mitogenic stimulation with PMA and/or 

ionomycin, or anti-CD3 antibody, indicating that CD40L deficient T cells are not 

defective in their ability to respond to mitogens (Xu et a i ,  1994).
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6.2.2 Germinal centre formation in CD40 deficient mice

Patients suffering from hyper-IgM syndrome do not have germinal centres (Korthauer et 

a i ,  1993) and blocking the CD40-CD40L interaction in vivo  with soluble anti-CD40L 

antibody has been shown to abrogate germinal centre formation in mice (Foy et al., 

1994). In this study the formation of germinal centres was tested by immunizing wild- 

type and mutant mice with KLH (Figure 18. A and B.). The absence of peanut 

agglutinin-binding B cells in CD40 deficient mice revealed that no germinal centres 

developed in CD40 deficient mice. Histological analysis with specific staining for T and 

B cell areas of the spleens of CD40 deficient mice revealed normal splenic architecture, 

indicating that a general dismption of splenic architecture did not account for the inability 

of CD40 deficient mice to form germinal centres. The lack of peanut-agglutinin binding 

in CD40 deficient mice, after immunization with KLH, was also demonstrated by 

Kawabe et al. (1994). In addition, CD40L deficient mice, immunized with SRBC (Sheep 

Red Blood Cells), failed to develop germinal centres. An interesting finding concerning 

the role of the CD40-CD40L interaction in germinal centre maintenance is that the 

administration of anti-CD40L antibody in mice causes the disappearance of preexisting 

germinal centres (Han et al., 1995). It has been established that germinal centre B cells 

apoptose upon isolation and that CD40 cross-linking can “rescue” them from death (Liu 

et al., 1992). Therefore, the immediate assumption is that anti-CD40L antibody treatment 

causes the loss of germinal centres due to increased apoptosis or it is possible that loss of 

the CD40-CD40L interaction in germinal centres causes B cells to migrate to the bone 

marrow and terminally differentiate into plasma cells. This hypothesis would be 

consistent with a recent in vitro study showing that human germinal centre B cells, when 

cultured with CD40L expressing T cells, differentiate into memory cells but the removal 

of CD40L expressing T cells resulted in terminal differentiation of germinal centre B cells 

into plasma cells (Arpin eta l., 1995).

Since it is clear that CD40L plays an important role in germinal centre formation and 

maintenance, it is important to determine which cells within the germinal centres are
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capable of expressing CD40L. Early studies in mice immunised with KLH showed no 

expression of CD40L in the germinal centres and marginal zones of their spleens. 

Instead, the expression of CD40L was restricted to T cells in the outer peri arteriolar 

lymphocyte sheaths (outer-PALS), and around the terminal arterioles (TA). Antibody- 

producing B cells specific to KLH have been found in close proximity to CD40L 

expressing T cells (Van et al., 1993). Furthermore, studies in human tonsils have shown 

a subset of T cells which contain preformed CD40L that can be mobilized upon 

activation. The T cells containing preformed CD40L were found predominantly in the 

outer zone of the germinal centres and could be important for the maintenance of 

germinal centre integrity (Casamayor et al., 1995). The different results in murine and 

human systems may be due to species differences or lack of sensitivity of the murine 

anti-CD40L antibody. Activated T cells expressing a membrane-bound form of CD40L 

can also secrete a soluble form (Graf et al., 1995). The soluble form of CD40L may be 

the active factor in maintaining germinal centre B cell proliferation. In addition, human B 

cells can express CD40L (Grammer et al., 1995) and mouse B cells express CD40L in 

their cytoplasm which is released into the supernatant when B cells are activated with 

anti-Ig and anti-CD40 antibodies (Wykes et al., 1998). Whether soluble CD40L secreted 

by either T cells or B cells is important for germinal centre formation and maintenance is 

currently unknown.

The interpretation of these studies suggests that signals via CD40 are responsible for 

germinal centre formation and maintenance. Experiments with CD40 deficient mice have 

revealed new information about the CD40-CD40L interaction. To investigate CD40L- 

transduced signals (signals to the T cell via CD40L), CD40 deficient mice were 

immunized with DNP-KLH and injected with a soluble CD40-Ig fusion protein to cross

link the CD40L. Ten days after immunization, mice treated with soluble CD40-Ig had 

formed germinal centres, whereas mice injected with human IgGl had not. Interestingly, 

CD40 deficient mice treated with CD40-Ig were still unable to make class switched 

antibodies (van et a l ,  1995). This indicated that CD40 signaling to B cells was required
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for isotype switching but was not necessary for the initiation of germinal centre 

formation. These data may explain the discrepancy between experiments in CD40 and 

CD40L deficient mice, which do not form germinal centres or memory B cells, and those 

in normal mice treated with soluble CD40-Ig (to block the CD40-CD40L interaction) 

which do form germinal centres but still have no memory B cells (Gray et al., 1994). 

The observation that CD40L can also be expressed on B cells (Grammer et al., 1995) 

means that one cannot distinguish whether the effect of the soluble CD40-Ig is due to 

CD40L transduced signals to T cells or B cells. However as a defect in T helper cell 

function was also seen in CD40 deficient mice (see Chapter 5), this signal is most likely 

to be directed to T cells. The germinal centres that formed after soluble CD40-Ig 

treatment of CD40 deficient mice were underdeveloped, there were fewer and smaller 

than in wild-type mice. It is possible that the CD40 signal to B cells is important for their 

progression within the germinal centres as indicated in the experiments described earlier 

(Arpin et al., 1995; Liu et al., 1992). These experiments suggest that transduction of 

signals by CD40L to T cells can initiate germinal centre formation but for full maturation 

of germinal centres and the production of class switched immunoglobulins, signals to B 

cells via CD40 are required.

6.2.3 Serum immunoglobulin levels in CD40 deficient mice

A  characteristic feature of hyper IgM syndrome in humans is the difference in serum 

immunoglobulins levels as compared with healthy individuals. Serum from hyper IgM 

syndrome patients contains normal or elevated levels of IgM, but low to undetectable 

levels of other immunoglobulin isotypes. To determine whether mice deficient in CD40 

exhibited similar alterations in serum immunoglobulin levels, wild-type and CD40 

deficient mice were bled and the levels of serum IgM, IgGl ,  IgG2a, IgG2b, IgG3, and 

IgE were determined (Figure 19). The results demonstrate that, like HIGM l patients, 

CD40 deficient mice express elevated levels of serum IgM. This was also shown to be 

the case in the CD40 deficient mice studied by Kawabe et al. (1994). In contrast, CD40L 

deficient mice displayed completely normal serum IgM levels (Xu et al., 1994).
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In this thesis, the serum immunoglobulin levels in unimmunized CD40 deficient mice, 

were compared to the results obtained in two other studies of CD40 deficient mice 

(Castigli et a i, 1994. Kawabe et al, 1994). Both studies showed normal levels of IgM in 

CD40 deficient mice compared to control mice. Serum levels of IgG 1, IgG2a, IgG2b 

and IgA were significantly reduced, however IgG3 was significantly higher (Kawabe et 

al., 1994). Castigli et al. (1994) also found that levels of IgG l and IgG2a were 

significantly reduced and they found that IgE was absent in the CD40 deficient mice . 

Normal levels of IgG3 and slightly reduced levels of IgG2b and IgA were observed 

(Castigli et a l, 1994). There were slight differences in the levels of the immunoglobulins 

measured in these two studies and also in the results presented in this thesis, which could 

be attributed to the different conditions that the mice for the different studies were kept 

in, however the general trends in immunoglobulin production in CD40 deficient mice 

(reduced isotype switched immunoglobulins) were the same.

The normal or elevated levels of serum IgM that were seen in patients with hyper IgM 

syndrome and also in CD40 deficient mice indicates that IgM antibody responses in both 

systems were independent of the CD40-CD40L interaction. The reduced levels of isotype 

switched immunoglobulins in the serum of CD40 deficient mice suggests that the CD40- 

CD40L interaction is important for the isotype switching from IgM to other 

immunoglobulins.

Antigens which stimulate antibody production by B cells can be divided into two 

categories, thymus-dependent or thymus-independent antigens. Thymus-dependent 

antigens are protein derived peptides, which can only induce the production of antigen 

specific antibody if the peptide is recognized in association with MHC class II by antigen 

specific T cells. This leads to mutual activation of both B and T cells and the subsequent 

production of antigen specific antibody. Therefore antibody production in response to 

protein antigens requires T cell help. Antigens that stimulate antibody production in the 

absence of MHC class II restricted T cell help are classified as thymus-independent 

antigens (Mond e ta l ,  1995). Included within this category are lipopolysaccharide (EPS)
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derived from gram-negative bacterial cell walls, dextran, pneumococcal capsular 

polysaccharide, and Ficoll.

To investigate the role of the CD40-CD40L interaction in humoral immune responses to 

both thymus-dependent and thymus-independent antigens. CD40 deficient mice were 

immunized with a thymus-dependent antigen, ovalbumin, on day zero and day 22 of the 

experiment. Antigen specific antibody responses were measured by isotype-specific 

ELISA on day 7, 14 and 28. CD40 deficient mice completely failed to mount primary 

(day 7) and secondary (day 28) anti-ovalbumin antibody responses of all 

immunoglobulin isotypes except for the IgM class. Anti-ovalbumin IgM responses were 

normal or slightly higher than IgM responses in wild-type mice. These results indicate 

that immunoglobulin class switching did not take place in response to thymus-dependent 

antigens in CD40 deficient mice. However, the ability to produce antibodies in response 

to thymus-independent antigens, such as LPS or Ficoll, did not appear to be affected in 

these mice. When immunized with LPS or Ficoll, CD40 deficient mice developed anti- 

LPS or anti-Ficoll antibody responses of IgM as well as IgG immunoglobulin isotypes 

(IgG l, IgG2a, IgG2b, IgG3) (Kawabe e ta l., 1994).

This suggests that the signal through CD40 is not required for in vivo  thymus-dependent 

IgM responses and thymus-independent responses but is required for immunoglobulin 

class switching in primary and secondary immune responses to thymus-dependent 

antigens.

Similar experiments were performed in CD40L deficient mice (Xu et al., 1994). CD40L 

deficient mice were immunized with a thymus-dependent antigen, sheep red blood cells 

(SRBC), and the primary anti-SRBC antibody response was analysed 5 days later. 

CD40L deficient mice failed to produce any anti-SRBC IgM antibody responses. This is 

consistent with earlier studies in which in vivo CD40-CD40L interactions were blocked 

by an anti-CD40L antibody (Foy et a i,  1993). To confirm the defect in primary humoral 

responses, CD40L deficient mice were immunized with the thymus-dependent antigen,
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KLH. On day 7 and 19 the antibody responses to KLH were analysed. The primary (day 

7) anti-KLH IgM response was reduced compared to the wild-type response. Analysis of 

the secondary (day 19) anti-KLH IgG l response demonstrated that CD40L deficient 

mice were incapable of mounting a secondary IgG l response to this antigen. There is 

obviously a difference in the way that CD40L deficient mice respond to different thymus- 

dependent antigens. KLH may have some mitogenic activity independent of the CD40- 

CD40L interaction. In addition, CD40L deficient mice were immunized with the thymus- 

independent antigen Ficoll, and anti-Ficoll IgM and IgG3 responses were determined on 

day 6 after immunization. CD40L deficient mice developed similar anti-Ficoll IgM and 

IgG3 responses as control animals, confirming that antibody responses to thymus- 

independent antigens are independent of the CD40-CD40L interaction.

There are significant similarities between the results observed with CD40 and CD40L 

deficient mice and patients suffering from hyper IgM syndrome. In all cases, low levels 

of IgG isotypes, IgA, and IgE have been observed. CD40 and CD40L deficient mice 

have normal or slightly elevated levels of IgM. In HIGM l patients the IgM levels are 

significantly elevated, and this may reflect the persistent response of these patients to 

pathogens such as bacteria. In mice, IgM and IgG3 are known to be the major antibody 

isotypes stimulated in thymus-independent responses (Mongini et al., 1981). The normal 

capability of B cells to produce IgM and IgG antibodies to thymus-independent antigens 

and IgM to thymus-dependent antigens may be the reason why normal or slightly 

elevated serum levels of IgM and IgG3 are observed in CD40 and CD40L deficient mice.

Patients with hyper IgM syndrome make a poor antibody response to thymus-dependent 

antigens but mount strong humoral response to thymus-independent antigens 

(Notarangelo et al., 1992). Both CD40 and CD40L deficient mice are capable of eliciting 

normal antibody response to thymus-independent antigens, and show normal switching 

of antibody responses from IgM to IgG isotypes, IgA, and IgE. In contrast, 

immunoglobulin class switching from IgM to IgG isotypes, IgA, and IgE in both 

primary and secondary immune responses to thymus dependent antigens is impaired in
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CD40 and CD40L deficient mice. The capability of CD40 and CD40L deficient mice to 

mount a normal IgM response to thymus-dependent antigens in both primary and 

secondary immune responses indicates that IgM secretion is independent of the CD40- 

CD40L interaction.

These results suggests that in order for immunoglobulin class switching to occur in 

response to thymus-dependent antigens germinal centres are required. Germinal centres 

are only formed in response to thymus-dependent antigens and constitutes the site in 

which antigen stimulated B cells undergo somatic mutation and immunoglobulin class 

switching (MacLennan et al., 1997). The germinal centre reaction generates two 

populations of B cells, plasma B cells which are short-lived and memory B cells which 

are long-lived. The plasma cells secrete high-affinity isotype switched antibodies. Upon 

a secondary antigenic stimulation, high-affinity memory B cells differentiate into plasma 

cells, resulting in clearance of the antigen. Thymus-independent antigens do not stimulate 

germinal centre formation, but immunoglobulin isotype switching does take place and the 

capacity to generate memory B cells to thymus-independent antigens is associated with 

the appearance of antigen specific B cells in the marginal zones of the spleen (Mond et 

a/., 1995).

It has been established that the generation of memory B cells is dependent on the 

formation of germinal centres and the current dogma is that memory B cells express 

isotype switched immunoglobulins (IgG isotypes, IgA and IgE) and that B cells 

expressing IgM or IgD contribute little to the memory pool of B cells (Gray, 1993; Gray 

eta l., 1996). Adoptive transfer experiments by Foy et al. (1994) and Gray et al. (1994) 

confirmed the role of the CD40-CD40L interaction in the generation of memory B cells. 

CB17 (Igh^) mice were immunized with TNP-BSA and treated with Hamster Ig or anti- 

CD40L antibody. After four weeks, splenic B cells from these mice were adoptively 

transferred into KLH-primed BALB/c (Igĥ *) recipients. The recipients were subsequently 

challenged with TNP-KLH and the level of donor-specific IgG U  anti-TNP antibodies 

determined. The results showed that B cells from untreated or Hamster Ig-treated mice
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immunized with TNP-BSA produced high levels of donor-specific IgG l^ antibody, 

whereas mice which received B cells from mice treated with anti-CD40L antibody 

displayed an 80% decrease in the level of donor-specific IgG U  antibody produced. 

These results demonstrated that blocking the CD40-CD40L interaction inhibited the 

generation of functional memory B cells. As described earlier both CD40 and CD40L 

deficient mice failed to mount a secondary antibody response to thymus-dependent 

antigens. This confirms that memory B cells do not develop if the CD40-CD40L 

interaction is non-functional.

The role of the CD40-CD40L interaction in the generation of immune responses to viral 

infection was investigated by infecting CD40L deficient mice with lymphocytic 

choriomeningitis virus (LCMV). The primary anti-LCMV specific antibody responses 

were severely impaired in CD40L deficient mice, with reduced levels of IgG 1, IgG2a, 

IgG2b and IgG3. Unlike wild-type mice infected with LCMV, CD40L deficient mice 

were unable to sustain virus-specific antibody responses and showed a gradual decline in 

semm antibody levels over time. The CD40L deficient mice were also deficient in the 

generation of memory B cells as measured by a limiting dilution assay 60 days 

postinfection. In contrast to the severely impaired humoral responses, CD40L deficient 

mice were still able to generate a virus-specific CD8^ cytotoxic T cell response after 

LCMV infection and were able to clear the infection (Whitmire et a i ,  1996). A similar 

study examined the immune responses to LCMV, Pichinde virus and vesicular stomatitis 

virus (VSV) in CD40L deficient mice. The antibody responses to these viruses were 

severely compromised in CD40L deficient mice, however CD40L deficient mice did 

produce some virus-specific IgM and IgG2a. The antiviral antibody production in virus 

infected CD40L deficient mice took place in the absence of germinal centres and titres of 

virus-specific antibody decreased over time. Whether CD40L deficient mice failed to 

develop memory B cells after virus infection was investigated in adoptive transfer 

experiments. The results demonstrated that no virus-specific memory B cells were 

present in CD40L deficient mice 4 months postinfection in contrast to wild-type control
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mice. CD40L deficient mice mounted strong primary cytotoxic T lymphocyte (CTL) 

responses after infection with all of these viruses and cleared the infection with similar 

kinetics to wild-type control animals. LCMV-specific memory CTL activity was assessed 

by restimulating splenocytes from CD40L deficient and wild-type mice infected 2 months 

previously with LCMV for 6 days in vitro and then testing their ability to mediate virus- 

specific MHC-restricted CTL lysis in a ^'Cr-release assay. Splenocytes from CD40L 

deficient mice did mediate MHC restricted CTL lysis of LCMV-infected target cells, but 

the level of CTL activity was reduced considerably compared to wild-type mice. These 

results indicate that the CD40-CD40L interaction plays a role in the establishment and/or 

maintenance of CD8^ cytotoxic T lymphocyte (CTL) memory (Borrow et al., 1996). 

Taken together, these results confirm the crucial role of the CD40-CD40L interaction in 

B cell activation, antibody response to thymus-dependent antigens, germinal centre 

formation, immunoglobulin isotype switching and generation of memory B cells. 

Furthermore, the CD40-CD40L interaction appears to be important in the establishment 

of memory CTL.

6.3 Cell-mediated immunity in CD40 deficient mice 
infected with bacillus Calmette-Guerin

6.3.1 Susceptibiity of CD40 deficient mice infected with BCG

The results presented in Chapter 5 indicate an increased susceptibility of mice with a non

functional CD40-CD40L interaction. This statement is based on the following 

observations. Infection of control and CD40 deficient mice with BCG revealed that 

CD40 deficient mice have a significantly increased number of mycobacteria in the spleen 

and lungs compared to control mice (Figure 21.). The development of a Thl response 

towards mycobacterial antigens following infection with BCG was assessed by an in 

vitro assay system (Eli-spot assay). Splenocytes from CD40 deficient mice infected with 

BCG secrete significantly less IFN-y in response to PPD (Figure 22.). Lastly, 

histopathological staining of liver-sections revealed that CD40 deficient mice had more
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granulomas that were bigger and more densely packed with cells than those seen in 

control mice (Figure 23.).

The increased susceptibility of CD40 deficient mice to BCG is likely to be due to the 

reduced ability of these mice to secrete IFN-y in response to a mycobacterial infection. 

The importance of IFN-y in the control of mycobacterial infections has been shown 

clearly in IFN-y deficient mice who are unable to survive infections with BCG or 

M.tuberculosis (Cooper er <3/., 1993; Dalton et al., 1993). The death of IFN-y deficient 

mice was shown to be due to insufficient activation of macrophages resulting in a 

reduced production of nitric oxide. This resulted in these mice having a very high 

parasite burden. A plausible explanation for the reduced production of IFN-y in CD40 

deficient mice upon infection with BCG, is a reduced production of IL-12 by activated 

macrophages and dendritic cells. The CD40-CD40L interaction was shown to be 

important for IL-12 secretion following activation of dendritic cells and macrophages 

(Celia era /., 1996; Peguet et al., 1995; Shu e ta l., 1995). EL-12 would then induce the 

production of IFN-y in T cells and NK cells, resulting in the development of a Thl 

response towards a mycobacterial infection. IFN-y and T N F -a in conjunction with 

activated T cells would result in macrophage activation and clearence of the infection. 

The enhanced susceptibility of CD40L and CD40 deficient mice to Leishmaniasis was 

associated with an impaired generation of a Thl response, reflected by the production of 

low levels of IFN-y, TNF, IL-12, and nitric oxide. From these studies it was concluded 

that the major contributing factor to increased susceptibility to Leishmania sp. was a 

diminished macrophage activation and nitric oxide production (Campbell et al., 1996; 

Kamanaka et al., 1996; Soong et al., 1996). Thus, in order to assess the level of 

macrophage activation, levels of T N F -a, IL-12, and nitric oxide must be measured in 

CD40 deficient mice infected with BCG. Furthermore the cells involved in the IFN-y 

production must be identified and characterised. The involvement of CD4‘" or CD8^ T 

cells in IFN-y production can be examined by blocking each subset of T cells with anti- 

CD4 or anti-CD8 antibodies and determining their effect.
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As shown by the experiments described above the development of protective immunity 

against a leishmanial infection is dependent on the development of a Thl response, 

which would lead to macrophage activation and eradication of the intracellular parasite. 

This is also the case for mycobacterial infections where the development of a Thl 

response is crucial for protective immunity. One of the key cytokines for protective 

immunity against mycobacteria is IFN-y as discussed at the beginning of this section 

(Cooper et a i ,  1993; Dalton et a i ,  1993), and this is correlated with a decrease in 

macrophage reactive nitrogen intermediates (RNI) production in these mice (Flynn et a l ,  

1993). Another key cytokine in protective immunity aganist mycobacteria is IL-12. 

BALB/c mice, a strain highly susceptible to infection with M. tuberculosis, were given 

recombinant IL-12 at the initiation of infection with M. tuberculosis. This treatment 

increased the mean survival time from 58 days to 112 days, indicating a role for IL-12 in 

protection against a mycobacterial infection. In contrast to the findings in the BALB/c 

model, IL-12 treatment of IFN-y deficient mice infected with M. tuberculosis did not 

increase survival time. This indicates that IL-12 does not induce protection against M. 

tuberculosis in the absence of IFN-y (Bloom et a l, 1995).

These experiments confirm the importance of IFN-y in protective immunity aganist a 

mycobacterial infection. CD40 deficient mice infected with BCG (this Thesis) displayed 

a reduced production of IFN-y in response to mycobacterial antigens (PPD) indicating 

that CD40 deficient mice are impaired in their ability to generate a Thl response. 

Granulomas consisting of activated macrophages and lymphocytes serve as an effective 

means of containing the mycobacteria and preventing their continued growth and 

dissemination (Fenton & Vermeulen, 1996). In CD40 deficient mice following BCG 

infection, I found that the numbers of granulomas appeared increased compared to 

control mice (Figure 23.). As granulomas are produced to control the infection why was 

an increase in the number of CFU recovered from CD40 deficient mice compared with 

wild-type mice? (Figure 21.). A hypothesis that could explain this apparent inconsistency 

is that macrophage activation is a key component of the protective immune response to
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M. tuberculosis infection. The only demonstrated mechanism by which macrophages kill 

mycobacteria is through activation by IFN-y and LPS or T N F -a to produce reactive 

nitrogen intermediates (RNI) (Flesch & Kaufmann, 1991). It is possible that the reduced 

levels of IFN-y in CD40 deficient mice would lead to reduced activation of macrophages. 

Without optimal macrophage activation upon infection with mycobacteria, the bacilli 

would continue to multiply, leading to increased numbers of bacilli in the organs. In 

CD40 deficient mice, the sub-optimal levels of IFN-y although not clearing the 

parasitaemia, would still lead to granuloma formation.

A recent study was published while the BCG experiments described in this thesis were 

being carried out. This study investigated the immune response of CD40L deficient mice 

to Mycobacterium tuberculosis (Campos et al., 1998). CD40L deficient mice infected 

with M. tuberculosis showed 100% survival during a 30 week period and mycobacterial 

counts after 3 or 6 weeks of infection in spleen, lung, and liver were indistinguishable in 

control and CD40L deficient mice. However later in infection (week ten), the CD40L 

deficient mice presented slightly elevated CFU in all three organs. Histopathologic 

examination of tissue sections taken at 6 weeks of infection revealed differences between 

the granulomas developing in CD40L deficient mice compared with those in control 

mice. The number of granulomas forming in all three organs of CD40L deficient mice 

was the same. This was also the case for all three organs in normal mice. However, the 

number of granulomas observed in the liver of CD40L deficient mice was reduced 

compared to control mice and the granulomas appeared disintegrated, lacked epithelioid 

cells and were reduced in size. Since the survival and mycobacterial counts were similar 

in control and CD40L deficient mice, these results indicated that organized granulomas 

are not essential for protection against M. tuberculosis. In vitro T cell proliferation and 

IFN-y production by splenocytes in response to PPD was identical in control and CD40L 

deficient mice and the production of IFN-y was abrogated by anti-CD4 mAb, but not by 

anti-CD8 mAb. This indicates that CD4^ T cells proliferate and produce IFN-y in 

response to M. tuberculosis antigens, independently of the CD40-CD40L interaction.
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Campos et al. ( 1998) could not detect IL-4 in the supernatants of any of the splenocyte 

cultures stimulated with PPD. The production of IL-12 and T N F -a was measured in 

vitro after stimulation of splenocytes with M. tuberculosis antigens. Similar levels of IL- 

12 were present in the supernatants of cultures of both control and CD40L deficient 

mice, in contrast to which TNF levels were slightly elevated in CD40L deficient mice. 

Finally, CD40L deficient mice did produce nitric oxide, albeit to a slightly lesser extent 

than control mice in response to M. tuberculosis antigens. The title of the paper in which 

this data appears states that the CD40-CD40L interaction does not affect the development 

of protective immunity to M. tuberculosis and that CD40L deficient mice are resistant to 

infection with M. tuberculosis. Perhaps to confirm this, granuloma formation and 

cytokine production will have to be measured at week 10 when the authors showed that 

M. tuberculosis CFU counts were different in CD40L deficient and normal mice.

In CD40L deficient mice infected with M. tuberculosis, the reduced number of 

granulomas which appeared small, disintegrated and lacking in epithelioid cells, was not 

caused by a decrease in T N F-a levels as these mice displayed slightly elevated levels of 

T N F -a. This is surprising given that T N F -a was shown to be crucial for granuloma 

formation in a study where mice were infected with BCG and then treated with anti- 

T N F -a  antibody. A nti-TNF-a treatment of mice resulted in a 10-fold decrease in the 

number of granulomas and those that formed were small and lacked epithelioid cells, 

compared to untreated mice. It was proposed that T N F -a released from macrophages 

into the microenvironment of developing granulomas could be involved in a process of 

autoamplification. T N F -a enhances its own synthesis and release, thereby inducing 

further macrophage accumulation and activation. This would then lead to fully developed 

granulomas and mycobacterial elimination (Kindler et al., 1989). TNF-receptor deficient 

mice infected with M. tuberculosis also showed granulomas which lacked epithelioid 

cells and seemed more loosely organized (Flynn et a i ,  1995a). Since the levels of TNF- 

a  in CD40L deficient mice infected with M. tuberculosis were slightly higher compared 

to the control mice, T N F -a  does not appear to be the only effector needed for fully
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developed granulomas. Other cytokines such as GM-CSF (Granulocyte/Macrophage 

Colony Stimulating Factor), IL-1 and IL-8, have been found in granulomas (Bergeron et 

a l ,  1997) and are probably involved in their development. Whether the production of 

these cytokines are influenced by the CD40-CD40L interaction is currently unknown. It 

will be interesting to see if CD40 deficient mice infected with BCG show reduced levels 

of T N F -a . I would not expect to see this, if further experiments confirm that more 

granulomas develop in CD40 deficient mice compared to control mice. What also 

remains to be determined is whether the granulomas in the CD40 deficient mice infected 

with BCG contain epithelioid cells, determined by silver staining for reticulum fibres, 

indicating fully developed granulomas.

CD40L deficient mice are susceptible to infection with Leishmania but are able to control 

infection by M. tuberculosis. The difference between these two infections is that there is 

no apparent T cell response following infection of CD40L and CD40 deficient mice with 

Leishmania (Campbell eta l., 1996; Kamanaka a/., 1996; Soong et al., 1996), whereas 

there is priming for T cell proliferation and IFN-y production following M. tuberculosis 

infection in CD40L deficient mice (Campos et al., 1998). If the CD40-CD40L interaction 

is not cmcial for the induction of a Thl response to a mycobacterial infection, then there 

must be some compensatory mechanism, which would lead to a Thl response and 

macrophage activation.

The interaction of M. tuberculosis with human dendritic cells was studied in vitro 

(Henderson et al., 1997). Cultured human dendritic cells were capable of phagocytosing 

live M. tuberculosis and this resulted in increased surface expression of costimulatory 

molecules, including CD80, CD40, and CD54 as well as MHC class I molecules. In 

addition, infected dendritic cells secreted elevated levels of cytokines, including T N F -a, 

IL-1, and IL-12. These results suggest that in addition to activation of dendritic cells to 

become competent antigen presenting cells in response to M. tuberculosis, they also 

secrete cytokines which could potentially induce macrophage activation and Thl 

development. E L -12 would induce antigen specific T cells to secrete IFN-y, which
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together with T N F-a induces activation of macrophages. Another study has shown that 

IL-12 is not the first cytokine to be produced in a mycobacterial infection (Flesch et al., 

1995). Murine macrophages were infected with BCG in vitro to assess whether IL-12 

production depended on other cytokines. Murine macrophages infected with BCG in 

vitro were only capable of producing IL-12 if they had been primed with rIFN-y. 

Stimulation with rIFN-y alone or infection with BCG alone did not induce expression of 

IL-12. To investigate the role of endogenously produced T N F -a in the induction of IL- 

12, an anti-TN F-a antibody was used. Addition of anti-TN F-a to infected murine 

macrophages in the presence of rIFN-y significantly reduced IL-12 production, 

indicating that IL-12 production by macrophages is dependent on both IFN-y and TNF- 

a . To investigate the influence of IFN-y and T N F-a on IL-12 induction in vivo, IFN-y- 

Receptor deficient- and TNFRl deficient-mice were infected with BCG and spleen cells 

were analysed for IL-12 mRNA and IL-12 protein 3 h after infection. Splenocytes from 

both mutant strains failed to express IL-12 (determined by ELISA) after infection with 

BCG as analysed by RT-PCR. In vitro stimulation of spleen cells with rIFN-y or BCG 

did not induce IL-12 production, whereas splenocytes from control mice did produce IL- 

12. The authors argue that IL-12 production by macrophages in response to 

mycobacterial infection depends on IFN-y and TN F-a, therefore macrophage derived IL- 

12 is not the first cytokine to induce a protective antimycobacterial immunity mediated by 

Thl cells. In view of the two studies discussed above, one can speculate that dendritic 

cells which have phagocytosed Mycobacterium sp. would secrete sufficient levels of IL- 

12, which would activate antigen specific NK and T cells to secrete IFN-y. IFN-y and 

TN F-a would then activate EL-12 production in macrophages.

It has recently been reported that Toxoplasma gondii another intracellular pathogen, 

induces in vivo IL-12 production by dendritic cells independently of the CD40-CD40L 

interaction (Sousa et al., 1997). Macrophages infected in vitro with T. gondii did not 

produce any detectable levels of IL-12 unless primed with exogenous IFN-y, in contrast, 

whole splenocytes produced significant levels of IL-12 after infection with T. gondii.
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When spleen cells were separated into adherent and nonadherent cells, T. gondii induced 

IL-12 production was found in the adherent fraction composed mainly of macrophages 

and dendritic cells. To determine if IL-12 production by spleen cells in response to T. 

gondii also occurred in vivo, mice were infected with T. gondii and splenocytes were 

analysed for IL-12 production. Maximum IL-12 production could be detected as early as 

three hours after infection. The EL-12 produced in vivo  appeared to be active because 

spleen cells from T. gondii infected mice produced increased levels of IFN-y when 

restimulated in vitro with T. gondii. This enhancement of IFN-y production was 

specifically dependent on IL-12 induction in vivo as it was not seen in IL-12 deficient 

mice. These results demonstrate that spleen cells can produce IL-12 in response to T. 

gondii, and that IL-12 production in vivo can prime an IFN-y response. 

Immunohistochemical staining of spleen sections from T. gondii infected mice revealed 

that dendritic cells were responsible for the production of IL-12 but not by splenic 

macrophages since production of IL-12, by macrophages, could not be detected in vitro 

three hours after infection. The major mechanisms involved in EL-12 induction appear to 

be signaling through dendritic cell surface CD40, after cross-linking by T cell expressed 

CD40L. Spleen cells from CD40L deficient mice infected with T. gondii secreted 

substantial levels of IL-12, suggesting that T. gondii induced IL-12 production by 

dendritic cells did not require cross-linking of CD40 on dendritic cells by CD40L on T 

cells. To exclude the possibility that other cognate T cell-dendritic cell interactions may 

be responsible for IL-12 production, SCID mice were infected with T. gondii. SCID 

spleen sections showed IL-12 staining comparable to wild-type controls and spleen cells 

stimulated in vitro with T. gondii also produced high levels of IL-12. Based on these 

results, a model is proposed for the role of macrophage versus dendritic cell derived IL- 

12 in immunity to microbial infections. Dendritic cells produce EL-12 early in infection 

due to direct stimulation by microbial stimulation, and present antigen to antigen-specific 

T cells. During the DC-T cell interaction, engagement of CD40 on the DC by CD40L on 

the T cell induces the continued production of IL-12 by DC, further driving Thl 

development. DC derived IL-12 might also activate NK cells in lymphoid tissue, which
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then produce IFN-y, further stimulating T helper cells to differentiate towards Thl 

effectors. On the other hand, IL-12 produced by macrophages in response to microbial 

infection could be important at the site of infection. Macrophage derived IL-12 could then 

further stimulate NK and T cells to produce IFN-y, which would then increase the 

microbicidal activity of the macrophages.

The results presented in this thesis indicate that the CD40-CD40L interaction is important 

for the development of protective immunity against infection with Mycobacterium Bovis 

(BCG). This is in contradiction to experiments where CD40L deficient mice were 

infected with Mycobacterium tuberculosis. These experiments revealed that protective 

Th 1 immunity against M. tuberculosis developed in CD40L deficient mice (Campos et 

al., 1998). The discrepancy in these two studies could be due to the different genetic 

backgrounds of the two groups of mice. The CD40 deficient mice used for experiments 

in this thesis were on a (129SvxC57BL/6)F2 background, whereas the CD40L deficient 

mice were on a C57BL/6 background (backcrossed for seven generations). C57BL/6 and 

BALB/c mice both have the same allele of the beg gene. In a study by Pelletier and co

workers, resistance or susceptiblity was determined by the number of CFU (BCG) 

recovered from the spleens of infected mice within the first 3-4 weeks after infection 

(Pelletier et al. 1982). However is only one of the many genes that may govern the 

susceptibility or resistance of a certain strain of mouse to an infectious disease. If these 

two strains of mice are infected with M. tuberculosis, C57BL/6 mice survive more than 

140 days, whereas BALB/c mice succumb after 42 days. Therefore, despite the same 

susceptibility gene at the beg locus , C57BL/6 mice are highly resistant to infection with 

M. tuberculosis. The increased susceptibility to infection with BCG in CD40 deficient 

mice could be attributed to a 129Sv susceptible genetic background. This explanation is 

called into question by some unpublished observations quoted by Flynn et al. (1996) 

who found that 129Sv and (129SvxC57BL/6)Fl mice have similar infection profiles as 

C57BL/6 mice, when infected with M. tuberculosis.
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Chapter 7: Conclusion

It is well established that cell-cell interactions play a pivotal role in the regulation of the 

immune response. Attempts to identify interacting molecules on B and T cells led to the 

discovery of the receptor-ligand pair CD40-CD40L, which in recent years has been 

shown to be important in both humoral and cell-mediated immunity. Antibodies cross- 

linking CD40 on B cells were found to induce proliferation and cross-linking CD40 in 

the presence of cytokines was shown to induce immunoglobulin class switching and 

secretion of immunoglobulins. The phenotype of hyper IgM syndrome, low or absent 

IgG, IgA and IgE, indicated a failure in the ability to switch from IgM to the other 

immunoglobulin isotypes. The development of a soluble CD40 (sCD40) molecule, by 

fusing the extracellular domain of human CD40 to the constant region of human IgG 1, 

was an important step in the identification of CD40L function. The use of this chimaeric 

protein in the analysis of T cells from patients suffering from hyper IgM syndrome, 

revealed that T cells from these patients were unable to bind sCD40. The lack of sCD40 

binding was due to mutations in the CD40L protein. In addition to low or absent isotype 

switched immunoglobulins, patients with hyper IgM syndrome displayed no germinal 

centres.

The discovery of homologous recombination in embryonic stem (ES) cells and the 

subsequent generation of “knock-out” mice made it possible for me to produce an in vivo 

model for hyper IgM syndrome by generating mice deficient for CD40 (Chapter 3). 

Analysis of CD40 deficient mice (Chapter 4) revealed an impaired ability to produce 

isotype switched immunoglobulins (IgG isotypes, IgA and IgE) and an absence of 

germinal centres. Immunoglobulin class switching in response to thymus-dependent 

antigens, in both a primary and secondary response, did not occur in CD40 deficient 

mice. IgM secretion to thymus-dependent antigens were seen in both primary and 

secondary immune responses. Immunoglobulin class switching in response to thymus- 

independent antigens was unaffected by a disrupted CD40-CD40L interaction. As a
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result of no germinal centre formation and impaired immunoglobulin class switching, 

memory B cells did not occur in CD40 deficient mice. Similar results were obtained with 

CD40L deficient mice. The results presented in this thesis confirm the crucial role of the 

CD40-CD40L interaction in the initiation of humoral immune responses to thymus- 

dependent antigens.

When the CD40-CD40L receptor-ligand was first discovered, it was thought that a 

receptor-ligand pair with a single function (the regulation of humoral immunity) and no 

redundancy had been found. Since then many studies with CD40L and CD40 deficient 

mice have revealed that the CD40-CD40L interaction is involved in cell-mediated 

immunity as well as humoral immunity. Disruption of the CD40-CD40L interaction 

resulted in impaired T cell activation, either by direct signaling via CD40L or by a 

reduced production of IL-12, which would impair the development of a Thl response. It 

was established that the CD40-CD40L interaction was required for protective immunity 

to Leishmania major and Leishmania amazonensis. The lack of protective immunity to 

Leishmania in CD40L and CD40 deficient mice was due to a reduced production of IL- 

12 and IFN-y, resulting in a reduced macrophage activation. The susceptibility to 

infections with Pneumocystis carinii and Cryptosporidium in patients suffering from 

hyper IgM syndrome and the results from the Leishmania studies mentioned above, 

prompted my investigation of whether CD40 deficient mice were capable of developing a 

protective Thl response to infection with mycobacteria (BCG). The studies presented in 

Chapter 5 indicate that although CD40 deficient mice do develop a Thl response to 

BCG, this response is less efficient and these mice produce lower levels of IFN-y when 

compared with normal control mice. The CD40 deficient mice are more susceptible to 

BCG infection and this is indicated by the increased numbers of bacilli found in the 

spleen and lungs, compared to control mice.

Ever since the discovery of the CD40-CD40L interaction, the different effector functions 

in which the CD40-CD40L interaction are involved, has increased dramatically. 

Although the initial studies on CD40 focused on its role in humoral immunity, several
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observations suggested that CD40-CD40L interactions played a broader role in the 

immune system. Studies have shown that APCs are activated following CD40 cross- 

linking, leading to upregulated expression of costimulatory molecules and cytokines. 

Likewise, macrophage effector functions are induced following CD40 cross-linking. The 

CD40-CD40L interaction is also involved in cell-mediated inflammatory responses. 

Cross-linking CD40 on endothelial cells induces the expression of CD62E (E-selectin), 

CD 106 (vascular cell adhesion molecule; VCAM) and CD54 (intercellular adhesion 

molecule; ICAM). This demonstrates that endothelial cells respond to stimulation through 

CD40 by expressing selectins and adhesion molecules that promote homing and 

extravasation of peripheral blood leukocytes (Stout & Stuttles, 1996).

Three recent studies have shown that T cell help for cytotoxic T lymphocytes (CTL) is 

mediated by the CD40-CD40L interaction (Bennet et a l, 1998; Ridge et a l, 1998; 

Schoenberger et al, 1998). It was shown that mice lacking T helper cells (MHC class II 

deficient mice) could not mount a CTL response when injected with professional APCs 

that displayed an antigen recognized by antigen specific CTLs. However, a CTL 

response could be induced by injecting the mice with an antibody against CD40. Cross- 

linking CD40 leads to activation of the APCs, a function normally carried out by CD40L 

expressed on the surface of T helper cells. The anti-CD40 antibody in these experiments 

acted as a substitute for T helper cells. Mice lacking either CD40 or CD40L could not 

mount T helper-dependent CTL responses, confirming the findings described above. The 

traditional model of CTL activation requires that T helper cells and CTLs recognize 

antigen on the same APC. The T helper cell is activated and secretes IL-2 which 

contributes to activation of the CTL, a three cell interaction. A new model has been 

proposed, the sequential two-cell interaction where the APC becomes activated via CD40 

ligation by the T helper cell and is “conditioned” or activated in some way such that it is 

then able to activate CTL* s. There is therefore no need for both the T helper cell and the 

CTL to recognize antigen on the same APC. The ever widening effector functions of the
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CD40-CD40L interaction in the regulation of the immune system means that CD40 

deficient mice will prove a very valuable tool for future experiments.

One of the first things that I would like to do is to follow on from the studies described in 

this thesis on CD40 deficient mice infected with BCG. I would like to look at the 

immune response to Mycobacterium tuberculosis in my CD40 deficient mice and I would 

like to perform a thorough investigation of the levels of different cytokines produced by 

these mice in response to this infection.

Another interesting study would be the infection of my CD40 deficient mice with the 

malaria parasite Ptasrnodium chabaudi chnbaudi . The course of infection in C57BL/6 

mice is characterized by two phases of parasite control, the first is a rapid phase (7-14 

days) which decreases the parasitaemia from the peak of infected erythrocytes of 30% to 

1 -2 %, and the second is a long chronic phase (18-60 days) with a small recrudescence in 

which the parasites are maintained at very low levels before being eliminated. In the first 

phase, the predominant parasite-specific CD4^ T cell response is that of a Thl type, 

producing IFN-y and IL-2. As the infection progresses the frequency of Thl cells 

decreases and the frequency of Th2 cells increases and the second phase of the immune 

response is predominantly CD4^ T cells producing increased levels of IL-4 which 

increase production of specific anti-malaria antibodies (Langhome et a l, 1989). The 

infection of CD40 deficient mice would provide information about the importance of 

either a Thl or Th2 response in the development of protective immunity to the 

erythrocytic stages of a P. chabaudi chabaudi infection..

Gene targeting in ES cells is now commonly used to inactivate genes and the resulting 

“knock-out” mice have become standard tools to understand gene function. The field of 

gene targeting has advanced. enormously with the discovery of a site-specific 

recombinase (Cre-recombinase) for gene modification in ES cells and mice (Kuhn & 

Schwenk, 1997). This recombinase allows a much greater flexibility in gene 

modification. Cre-mediated recombination excises a DNA segment flanked by
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recognition sites (loxP sites, 34 bp each) as a circular molecule, leaving a single 34 bp 

loxP site in the genome. The modification of the ES cell genome using the CRE/loxP 

recombination system involves two steps: a genetic modification with loxP sites 

(targeting construct with loxP sites) is first introduced into the ES cell genome by 

homologous recombination, subsequently the desired, final structure of the targeted 

locus is generated by site-specific recombination between two loxP sites by transient 

expression of Cre recombinase. An important application of Cre-mediated recombination 

is the removal of the selection marker gene to avoid its possible interference with the 

expression of the t^geted gene. Cre-mediated recombination provides the opportunity to 

study the effects of targeted point-mutations, deletions or insertions on gene function. 

The ES cells resulting from Cre-mediated recombination would then be injected into 

blastocysts giving rise to chimaeras, which would be bred for germline transmission. 

The CrdloxP recombination system can also be used for conditional gene targeting. 

Conditional gene targeting can be defined as a gene modification which is restricted to 

certain cell types or developmental stages of the mouse. Conditional gene targeting 

requires the generation of a mouse strain containing a /oxP-flanked segment of a target 

gene (both alleles must be Zoxf-flanked) and a second strain (transgenic) expressing Cre 

recombinase. The recombinase activity can be expressed constitutively or upon induction 

in specific cell types or tissues or at different developmental stages by using a cell, tissue 

or stage specific promoter controlling Cre. A conditional mutant is then generated by 

crossing these two strains so that the modification occurs in those tissues in a controlled 

fashion through the activity of the Cre recombinase. The specificity of conditional gene 

targeting makes this an extremely powerful technology that is now replacing 

conventional gene targeting methods.

methods.
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Appendix A

Primer sequences

(Genosys Biotechnologies Ltd.)

Primer 1.
CD40 sense, exon 1 :

5 ’ -cagtcaagcttcccgaagaccccgccctcttcc-3 ’
Primer 2
CD40 sense, exon 2:

5’-agggcagtgtgttacgtgcagtga-3'
Primer 3
CD40 antisense, exon 3:

5’-gggttcacagtgtctgtgctg-3'
Primer 4
CD40 antisense, downstream of exon 4:

5 ’ -cagtctgagctgactcccaagggagcc-3 ’
Primer 5
CD40 antisense, exon 5:

5'-gatgactgattggagaagaagccg-3'
Primer 6
CD40 sense, exon 6:

5 ’ -cagtggatccggggaagtcttcccagaagac-3 '
Primer 7
CD40 sense, exon 7:

5'-gcgtttaaagttcccctagtgacc-3'
Primer 8
CD40 antisense, exon 8:

5-ggcgggatccaatacaagctctct-3'
Primer 9
CD40 antisense, exon 9:

5 ’ -tgcagtgtctcctgcactggagca-3 ’
Primer 10
CD40 antisense, downstream of exon 9;

5 ’ -aagcagttccagggttcagaccag-3 ’
Primer 11 

Neo F3 sense:
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5’-cccgattcgcagcgcatcgccttc-3'
Primer 12
T7 primer sense (Promega):

5 ’-gggcgaattcgagctcggtacccg-3 ’
Primer 13
Linker oligo {SaB restriction site):

5 ’-aattttagctagcgtcgactaga-3 ’
Primer 14

Linker oligo {SaB restriction site):

5’-aatttcagtcgacgctagctaa-3’

Appendix B

Antibodies

FTTC-conjugated Rat anti-mpuse CD40 monoclona] antibody 
Isotype; Rat IgGj,, k . Clone: 3/23. (Phamüngen). 
PE-conjugated Rat anti-mouse CD45R/B220 monoclonal 
antibody. Isotype: Rat IgGj., k . Clone: RA3-6B2. 
(Pharmingen).

PE-oonjugated Rat anti-mouse CD4 (L3T4) mnnnrinnal 
anübody. Isotype: Rat (Lou/WSl) IgGj., k . Clone: H129.19. 
(Pharmingen).

Eire-conjugated Rat anti-mouse Ly-2 (CD8a) monoclonal 
antibody. Isotype: Rat IgGj,. Clone: 53-6.7. (Boehringer 
Mannheim).

FTTC-conjugated Rat anti-mouse IgM monoclonal antibody. 
Isotype: Rat IgGj^. Clone: n/41. (Pharmingen). 
FTTC-conjugated Hamster anti-mouse ap  TCR monoclonal 
antibody. Isotype: Armenian hamster IgG. Clone: H57-597. 
(Pharmingen).

R4 hybridoma: secreting anti-mouse IFN-y antibody. 
Biotin-conjugated Rat anti-mouse IFN-y antibody. Cat. no.
18112 D. (Pharmingen).

Streptavidin poly alkaline phosphatase. Cat. no. S-5795. 
(Sigma).

Biorad: AP-conjugate substrate kit. Cat.no. 170-6432.
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Antibodies used in Immunohistochemistry 

Primary antibodies:

1.) Biotinylated Peanut agglutinin (Vector laboratories).

2.) FTTC conjugated rat anti-mouse CD40, Clone: 3/23. 

(Pharmingen).

3.) Rabbit anti-CD3 (Jones et al, 1993).

4.) Rabbit anti-CD79a (Jones et al., 1993).

Secondary antibodies:

1.) Avidin horseradish peroxidase conjugate (DAKOPATTS P 

364).

2.) Rabbit anti-FTTC horseradish peroxidase conjugate 

(DAKOPATTS P 404).

3.) Goat anti rabbit horseradish peroxidase conjugate 

(DAKOPATTS P 162).

4.) Avidin alkaline phoshatase conjugate (DAKOPATTS P 365).

Substrate:

DAB (Diaminobenzidene) (Sigma D 5637)
Fast red. (Sigma F 1500).

Antibodies used for ELISA

Coating antibodies: Goat anti-mouse IgM (Fc)/7s, goat anti-mouse IgGl (Fc)/7s,
goat anti-mouse IgG2a (Fc)/7s, goat anti-mouse IgG2b (Fc)/7s, 
goat anti-mouse IgG3 (Fc)/7s, goat anti-mouse IgE (Fc)/7s, 
(Nordic Immunology).

Standards: Mouse IgM (Sigma, cat. no. M-7394), mouse IgGl (Sigma, cat.
no. M-1398), mouse IgG2a (Sigma, cat.no. M-9144), mouse 
IgG2b (Sigma cat.no. M-7644), mouse IgG3 (Sigma, cat no. M- 
1645), mouse IgE (Pharmingen cat.no. 0512ID).

Anti mouse-Ig conjugates. (Alkaline phosphatase conjugated):
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Goat anti-mouse IgM-AP (cat. no. 1020-01), goat anti-mouse 
IgGl-AP (cat. no. 1070-04), goat anti-mouse IgG2a-AP (cat. no. 
1080-04), goat anti-mouse IgG2b-AP (cat. no. 1090-04), goat 
anti-mouse IgG3-AP (cat. no. 1100-04), rat anti-mouse IgE-AP 
(cat. no. 1130-04). Southern Biotechnology Associates.

Substrate: PNPP (p-Nitrophenyl Phosphate). Sigma cat. no. N-9389.
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Appendix C

Books

Essentials of Medical Statistics. Betty R. Kirkwood. Blackwell Science. 1988.

Flow Cytometry. A Practical Approach. M. G. Ormerod. Oxford University Press. 

1994.

Gene Targeting. A Practical Approach. A. L. Joyner. Oxford University Press. 1993.

Guide to Techniques in Mouse Development. Edited by Paul M. Wasserman, and Melvin 

L. DePamphilis. 1993. Academic Press.INC.

Laboratory Protocols for Conditional Gene Targeting. Raul M. Torres and Ralf Kuhn. 

Oxford University Press. 1997.

The Leucocyte Antigen Facts Book. A. Neil Barclay. Academic Press. Second Edition

1997.

Appendix D

Abbreviations

bp base pair

BGG Bovine Gamma Globulin

BSA Bovine Serum Albumin

ddHjO double distilled water

DMEM Dulbecco’s Modified Eagle’s Media

DMSO DiMethyl SulfOxide

DNP 2,4-DiNitrophenyl

cDNA complementary DNA

CD Cluster of Differentiation
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CGG

EDTA

ES cells

FACS

FCS

FITC

G418

lU

kb

KLH .

LIF

LMPl

mAb

MHC

NEO

NIP

OVA

PBS

PE

PCR

PNPP

RNase

RT

RT-PCR

s.e.m.

SDS

TBS

TK

TM

Chicken gamma globulin 

EthyleneDiamine Tetra-Acetic acid 

Embryonic Stem cells 

Fluorescence Activated Cell Sorting 

Fetal Calf Serum 

Fluorescein IsoThioCyanate 

geneticin“", Gibco 

International Units 

kilobase

Keyhole Limpet Hemocyanin 

Leukaemia Inhibitory Factor 

Latent infection Membrane Protein 1 

monoclonal Antibody 

Major Histocompatibility Complex 

Neomycin (G418 resistance gene) 

4-hydroxy-3-iodo-5-nitrophenyl 

Ovalbumin

Phosphate-Buffered Saline 

PhycoErythrin 

Polymerase Chain Reaction 

P-Nitrophenyl PhosPhate. 

Ribonuclease 

Room Temperature 

Reverse Transcriptase PCR 

standard error of the mean 

Sodium Dodecyl Sulphate 

Tris Buffered Saline 

Thymidine Kinase 

Melting Temperature
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TNF Tumor Necrosis Factor

TNFR Tumor Necrosis Factor Receptor

TRAF TNFR-Associated Factor

UV Ultraviolet
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