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Abstract
The urokinase-type plasminogen activator (uPA) is a serine protease 

involved in processes such as cell migration and invasion through the 

activation of the extracellular protease plasmin responsible of the degradation 

of the proteins of the extracellular matrix. The ability of the cells to migrate 

and to invade the surrounding tissues plays a fundamental role in many 

normal and pathological processes such as fibrinolysis, wound healing, 

angiogenesis, embryogenesis, gametogenesis, ovulation, mammary gland 

involution and tumor metastasis. Due to its high destructive potential, 

localized activation of plasminogen is regulated by a complex network of 

molecular interactions involving both specific inhibitors (PAI-1 and PAI-2), 

and cell bound receptor (uPAR) and the synthesis of every component of the 

plasminogen activator system is tightly regulated by a number of factors like 

hormones, growth factors and cytokines.

On the other hand, the restricted expression of uPA in the organism to a 

very few cell types (kidney and lung), its inducibility by different stimuli and 

its overexpression in tumours and several transformed and tumoral cell lines, 

indicate that uPA regulation occurs also at the level of gene expression.

The gene encoding uPA and its 5’ flanking region have been sequenced and 

characterized in human, mouse and pig. Both in v ivo  and in vitro studies of 

progressve 5'deletions of the regulatory region of uPA, have revealed the 

presence of positive and negative cis-acting sequences and of specific 

contributions of the proximal regulatory regions to cell-type specific expression 

of the gene, suggesting the presence of multiple array of cis-acting sequences 

specific for different transcription factors that direct uPA expression in a cell- 

type specific manner.

In the human uPA promoter the enhancer is located between -2100 and 

-1870 from the transcriptional start site and contains two binding sites for the
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transcription factor API and PE A3 which are important for both the 

constitutive and regulated expression of the gene. Furthermore, the 

cooperation between the two API sites is required for TP A inducibility and is 

mediated by other proteins called Upstream Enhancer Factors (UEF).

A negative cis-acting element has been localized between -1870 and -1570 

and contains a binding site for a multiproteic complex (NF-kB/c-rel) that 

mediates the inducibility by TP A in HeLa and FlepG2 cell lines.

Much evidence, however, indicates that the regulation of uPA is mainly 

negative.

The studies described in this thesis have led to the identification of negative 

regulatory elements that may play an important role in the establishment of a 

silenced phenotype in a cell-type specific manner.

The analysis of promoter activity in cell lines not expressing (HeLa and CVl) 

and expressing uPA (PC3) allowed the identification of at least three regions 

that play different roles in the silencing of the uPA gene in different cell lines, 

named SI (-1870/-1428), 82 (-787/-537) and S3 (-537/-86).

Of the three only S2 shows cell-type specificity, as it is active only in cells 

that do not express uPA; SI and S3, on the other hand, could act as modulators 

of uPA gene expression in those cells that express uPA. All of them negatively 

regulate the activity of the minimal promoter, suggesting that they can 

interfere with the formation of a competent pre-initiation complex at the start 

site of transcription.

A dissection analysis of silencer S2 detected the presence of multiple 

silencing units, although the deletion of a single one does not have any effect 

on the activity of the promoter. Transcription from a heterologous promoter is 

affected only when more than one copy of a single unit is cloned in front of it, 

suggesting that in the context of the whole S2 region each unit acts 

synergistically with the others in the silencing of the gene. DNase I 

footprinting analysis of S2 showed that this region is extensively protected by
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nuclear extract from uPA producing (PC-3) and not producing (HeLa) cell lines, 

with few differences between them. However, the LMSA analysis of the 

complexes indicated that their molecular composition may be different in the 

two cell lines tested.

In particular, in HeLa cell extract, a single strand binding activity seems to 

bind S2 and it may be responsible for the assembly of a negative-acting complex 

that would prevent the loading of a competent transcription initiation 

complex at the start site of transcription.

Furthermore, the presence of two binding sites for proteins belonging to the 

HMG-box containing protein family, suggested that the assembly of a 

stereospecific complex is required for the activity of silencer S2, although it is 

not clear if their activity is required for the silencing of the gene or for the 

inactivation of the inhibition in those cells that express uPA as in HepG2 cell 

line. In these cells uPA is expressed at a very low basal level, but its expression 

is inducible by TPA. In this cell line S2 is not active; on the contrary its 

presence is required for basal expression of uPA.

The presence in S2 of a sequence matching the transforming growth factor fi 

inihibitory element (TIL), described to be important for mediating the 

inhibition of TPA induction by TGF-fil of the stromelysin gene, has led me to 

investigate the role of this element on S2 activity in HepG2 cells. Transient 

transfection analysis of uPA promoter deletions showed that, at least in this 

system, the TIL is not involved in the regulation of uPA expression.

Preliminary results, shown in appendix 2, have suggested another 

interesting aspect of the negative regulation of uPA expression by the p53 

tumor suppressor gene product, although no p53 binding to uPA promoter has 

been shown so far.

In conclusion, the studies presented in this thesis have showed that a 

complex array of regulatory sequences, in addition to the enhancer and
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minimal promoter, appear to regulate uPA transcription, some of which are 

cell-type specific.
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Introduction

1. Introduction 

Prologue

Regulation of gene expression in eukaryotes is involved in a wide variety of 

tissue-specific (Weissman and Singer, 1991), developmental (Biggin and Tjian, 

1989), cell-cycle (Weinberg, 1996) and signal-responsive events (Kerr et al,  1990; 

O'Brien and Granner, 1991).

The nuclear genes of eukaryotic organisms are transcribed by one of three 

RNA polymerases. RNA polymerase I (Pol I) is utilised exclusively for the 

expression of genes encoding the 5.8S, 18S, and 28S ribosomal RNAs (rRNA). The 

form II enzyme (Pol II) transcribes all genes encoding mRNAs, as well as those 

that specify certain small nuclear RNAs (snRNAs). All tRNA genes, as well as the 

genes for 5S rRNA and the remaining snRNAs, are transcribed by RNA 

polymerase III (Pol III).

All three eukaryotic polymerases maintain considerable sequence similarity 

in their largest subunit (Allison et al,  1985) and have five subunits in common 

(Young, 1991). Transcription requires that the polymerases associate with 

promoter regions and form a stable initiation complex.

Studies on the purified enzymes demonstrated that they are incapable of 

accurate class-specific promoter recognition, that is accomplished by a set of 

auxiliary factors distinct for each class of genes.

The promoter structure varies with each gene family showing a different 

array of DNA sequence elements and configuration. However all promoters have 

a core sequence element which is recognised by a factor that binds DNA 

specifically and provides a nucléation site for complex formation.
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The class II Basal Promoter Apparatus

Class II genes promoters contain combinations of DNA sequences;

1) a core or basal promoter element defined as "minimal DNA elements that 

are necessary and sufficient for accurate transcription initiation by RNA pol II in 

reconstituted cell-free system". The best characterised core-promoter elements are 

the TATA-box (consensus TATAa/tAa/t; Breathnach and Chambon, 1981), located 

at about 25 base pairs (bp) upstream of the transcription start site and a 

pyrimidine-rich (consensus YYANt/aYY) initiator element (Inr) located near the 

transcription start site (Smale and Baltimore, 1989).

Different promoters may contain both, one or neither of these elements 

denoted as TATA+Inr+, TATA+Inr“, TATA"Inr+ or TATA'Inr" (Weis and 

Reinberg, 1992).

2) proximal promoter elements that occur between 50 and 200 bp upstream of 

cap site and are the site of binding for transcriptional activators able to modulate 

transcription

3) distal enhancer elements located far from the transcription initiation site 

in either direction and orientation respect to the start site.

Transcription initiation by Pol II is precisely regulated by transcription factors 

that interacts with these three classes of DNA targets and also with each other.

Accurate transcription by Pol II is accomplished by the assembly of a 

multiproteic complex in which the interaction of general transcription factors 

(GTFs) either with promoter elements or with each other by protein-protein 

interaction leads to the recruitment of RNA pol II in a competent transcription 

initiation complex (Weil et al,  1979; Reinberg and Roeder, 1987a,b; Reinberg et al,  

1987).

So far 8 general initiation factors (TFII A, TFII B, TFII D, TFII E, TFII F, TFII H, 

TFII I, TFII J) have been isolated and cloned from human, rat. Drosophila a n d
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yeast, showing a remarkable conservation at the level of polypeptide sequences 

(Okhuma et al,  1991, Peterson et ai, 1991, Malik et al,  1991, Ha et al,  1991, Ranish 

et al,  1992, Aso et al,  1992, Cortes et al,  1992).

Studies w ith  purified  recom binant com ponents  and analysis of 

in te rm edia tes  that rem ain stable to various nuc lease-pro tec tion  and 

electrophoretic mobility shift assays (Buratowski et a l ,  1989), coupled to 

mutagenesis techniques and x-ray crystallography (Burke and Kadonaga, 1996) 

suggest a stepwise model of pre-initiation complex (PIC) assembly on the AdML 

promoter in vitro. The pathway can be divided as follows (Figure 1.1):

1) TBP (TATA binding-protein) binds the TATA element through minor 

groove contacts forming a stable complex that results in a distortion (bend) of 

the DNA that brings sequences upstream and downstream of the TATA 

element into a closer apposition (Nikolov and Burley, 1994). Furthermore, as 

a consequence of this orientation, the upper surface of TBP is exposed and 

available for protein-protein interaction, with a large number of proteins 

(Timmers and Sharp, 1991; Meisterernst and Roeder, 1991, Meisterernst et al., 

1991). TBP can bind TATA element either alone or in a TFII D multisubunit 

complex containing TBP-associated factors (TAFs; Tanese et al, 1991). The 

other factors are then recruited sequentially into the initiation complex in 

the following order: II A, II B, II F with Pol II, II E, II H and II J. TFIIA, 

although not essential for formation of a functional PIC, can bind stably to 

this complex (Buratowski et al, 1989; Maldonado et al,  1990) through direct 

contacts with TBP and with upstream DNA sequences (Geiger et al,  1996; 

Tan et al,  1996). TFIIA has also an important role of stabilisation of TBP- 

DNA interactions in those situation when the affinity of the complex is 

altered by mutations in the DNA binding of TBP (Imbalzano et al, 1994) or in 

promoters with weak TATA elements. Furthermore one function of TFIIA is
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to remove, by way of its association with TFIID, TBP-bound negative co­

factors that associate and negatively regulate TFIID activity and prevent 

binding of TFIIB to the PIC (see "The human general co-factors"; Dr2; Cortes 

et al,  1992).

2) Binding of TFIIB, through direct contacts both with TBP and sequences 

upstream and downstream of the TATA element (Nikolov et al,  1995), has a 

function in TFIIF-RNA pol II recruitment and in start site selection by RNA 

pol II (Leuther et al,  1996; Li et al,  1994). Like TFIIA, TFIIB also stabilises 

TBP-TATA complex (Imbalzano et al, 1994; Kim and Roeder, 1994). Binding 

of TFIIA and TFIIB to TBP does not show overlapping contacts and no direct 

contacts with each other.

3) The recruitment of the preformed TFIIF-RNA pol II complex through TFIIB 

interaction with both TFIIF and RNA pol II, follows the binding of TFIIB 

(Leuther et al,  1996). TFIIF plays a direct role in promoting targeting of RNA 

pol II through these interactions, destabilizing the non-specific RNA pol II- 

DNA interaction to non-specific sites (Flores et al., 1991). TFIIF is also 

implicated in transcriptional elongation although the subunits involved are 

different from those implicated in initiation (Kephart et al,  1994; Tanef al., 

1995). The RNA pol II recruited to the PIC is not-phosphorylated on the 

carboxy-terminal domain (CTD) of its largest subunit (formllA; Lu et al.,

1991). The CTD consists of a heptapeptide (consensus YSPTSPS) repeated 26 

times in Yeast, 43 in Drosophila and 52 in man, that becomes extensively 

phosphorylated during the initiation of transcription (form IIO; Baskaran et 

nZ., 1993).

4) Binding of TFIIF, through direct interactions with RNA pol II and TFIIF and 

TBP (Maxon et al,  1994), just upstream of start site is consistent with the 

proposed functions in promoter melting (Robert et al, 1996).
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Fig. 1.1: Model for potential pathway of transcription complex assembly
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5) TFIIH entry is the last step of PIC assembly. The direct contacts with TFIIE 

(Maxon et al., 1994; Okhuma et al, 1995) results in an increased stability of 

bound TFIIE, important because TFIIE mediates the stimulation of CTD 

phosphorylation by TFIIH (Lu et al, 1992; Ohkuma et al, 1995; Akoulitchev 

et al., 1995). The region covered by the PIC complex extends to position +30 

(van Dyke et al, 1988; Buratowski et al, 1989).

Comparative studies of free versus PIC-bound TFIIB (Nikolovcf al., 1995) or 

DNA-bound TBP suggested conformational changes in factors during PIC 

assembly. Following the formation of the stable (closed) complex, the PIC is 

activated to an unstable (open) complex, in the presence of ATP and other 

ribonucleoside triphosphates (Holstege et ai,  1996; Jiang et ai,  1996). DNA is 

melted and transcription initiated, followed by promoter clearance and recycling 

of PIC components (Zawel et al., 1995). The melting of DNA is sustained by a ~ 10 

bp region just upstream of the start site and is dependent upon TFIIH helicase 

activity (Drapkin et al,  1994; Serizawa et al, 1993; Roy et al ,  1994; Pan and 

Greenblatt, 1994).

After transcription initiation the melted region in the open complex extends 

downstream (Holstege et al., 1996). Phosphorylation of RNA pol II CTD is also 

associated with the transition from initiation to elongation suggesting a role for 

CTD phosphorylation, by TFIIH kinase activity, in promoter clearance (O'Brien et 

al., 1994; Yankulov et al., 1996; Goodrich and Tjian, 1994; Payne et al., 1989; 

Laybourn and Dahmus, 1990).

It has been proposed that upon CTD phosphorylation the initiation complex 

undergoes a conformational change resulting in reversion of interaction between 

CTD-TBP (Usheva et al., 1992) and RNA pol II-TFIIE (Maxon et al., 1994) as well as 

interactions between RNA pol II and cofactors binding CTD, once the accessory 

functions of these cofactors in activator stimulated PIC assembly or initiation are
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complete (Koleske and Young, 1995; Barberis et al., 1995; see RNA pol II 

holoenzyme). At or following termination the CTD is dephosphorylated by a 

CTD-specific phosphatase. This event is required for the polymerase reentry in the 

competent form (form IIA) in a new round of PIC assembly (Chambers et al.,

1995).

Assembly of PIC on promoters that lack TATA motif requires either the 

direct or indirect interaction of general transcription factors with other core 

promoter element, as initiator (Figure 1.2). Several functionally distinct initiator 

elements are reported to direct transcription from TATA-less promoter (Weis and 

Reinberg, 1992). In two cases, AdML and the murine terminal deoxynucleotidyl 

transferase (TdT) promoter initiator element, it has been shown that TFIID is 

required for the assembly of a functional PIC (Pugh and Tjian, 1991; Zhou et al,

1992). The interaction with initiator elements could be mediated by the binding of 

TAFs with DNA, with the result to bring TBP to promoter where the assembly of 

PIC could proceed as described for TATA containing promoter (Kaufmann and 

Smale, 1994; Purnell et al, 1994). For other initiator element, such as that found in 

the adeno-associated virus (AAV)P5 promoter, the presence of an initiator 

binding protein, in addition to TFIID, has been postulated (Beaupainct al,  1990). It 

has been proposed that YYl, a protein that function both as an activator and 

repressor, may bind to this initiator. However, transcription in vitro from the 

AAVP5 promoter requires only YYl, TFIIB and RNA polymerase II, suggesting 

that YYl can functionally substitute for TBP in the nucléation of an active 

transcription complex (Usheva and Shenk, 1994). Other Inr-binding factors have 

been identified and include TFII I, USF and E2F (Carcamo et a l ,  1991). 

Eurthermore, in Drosophila TATA-less promoters a downstream  prom oter 

element (DPE) has been shown to function synergistically with Inr elements 

(Burke and Kadonaga, 1996). DPE element mediates Inr-dependent site-specific
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binding of TFIID, through TAFnbO, to the promoter (Burke and Kadonaga, 1997). 

In conclusion, PIC assembly pathways might vary depending on specific element 

and the promoter context, at least with respect to the formation of stable 

intermediates and general factors requirements, increasing the possibility of 

selective gene regulation by activators and repressors with core promoter-specific 

functions (Martinez et a l ,  1995; Kaufmann et al., 1996).

c > AdML; TdT initiator

AAV P5 promoter C >

Poin

-C I
TAf

Inr

+ 1
> Drosophila TATA-less promoter

Fig. 1.2: Assembly of active transcription complex at TATA-less promoters.

+1 indicates the start site of transcription; Inr indicates the initiator element and DPE the 

downstream promoter element.

The failure of in vitro  reconstituted transcription to respond to activators 

supports the idea of the existence of intermediary factors. So far three types of 

intermediary factors have been described:

1) The mediator, which associates with RNA polymerase II to form a 

holoenzyme;
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2) TBP Associated Factors (TAFs), which associate with TATA-binding 

protein (TBP) to form the general transcription factor TFIID;

3) The Upstream Stimulatory Activity (USA), isolated from hum an cells, 

whose characterisation is still in progress.

The R N A  Pol II holoenzyme ("mediator")

Both genetic and biochemical studies of the Saccharomyces cerevisiae RNA 

polymerase II have led to the identification of a multi-protein complex associated 

to the carboxy-terminal repeat domain (CTD) of RNA pol II, together with TFIIF, 

TFIIB and TFIIH, forming what is called the RNA pol II holoenzyme (Kim et al,  

1994). This complex, termed the mediator (Hengartner et al,  1995; Koleske and 

Young, 1994), is required for transcriptional activation in vitro as well as in vivo 

and it contains about 20 polypeptides including GAL 11 (Chen S.et al, 1993; Fassler 

and Winston, 1989), SUGl (Swaffield et al, 1995) and SRB proteins (suppressors of 

RNA polymerase B; Nonet and Young, 1989; Thompson et al,  1993). Among the 

SRB proteins are the product of the essential genes SRB 4, SRB 6 and SRB 7, 

whose temperature-sensitive mutation leads to an immediate shutdown of all 

mRNA synthesis at the non-permissive temperature and of two non-essential 

genes, SRB 2 and SRB 5 that are also important for Pol II transcription as deletion 

of these genes diminishes transcriptional activity in yeast nuclear extracts.

Studies of genes involved in glucose repression in yeast led also to the 

identification of proteins in the mediator. Mutations in these genes, termed SSN 

for suppressors of snfl, are able to suppress growth defects of a mutant lacking the 

SNFl protein kinase required to relieve glucose repression of gene expression. 

Sequence comparison indicated that SSN 5, SSN 2, SSN 3 and SSN 8 are identical 

to the product of SRB 8, SRB 9, SRB 10 and SRB 11 genes (see Table 1.1). These 

genes are non-essential and have been suggested to function in repression of 

many polymerase II promoters. This was shown for two other SSN genes whose
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SRB counterpart has not been isolated yet, SSN 4 and SSN 7. They are identical to 

Sin 4 and Rox 3 which were isolated from screens for mutants affecting repression 

of the H O  and CYC7  promoters (Table 1.1). These, together with other two 

polypeptides implicated in transcriptional repression, R G R l  and G A L I I ,  have 

been demonstrated to be part of the holoenzyme, suggesting a role for the 

mediator complex in mediating transcriptional repression as well as activation. 

The identification of yeast Pol II holoenzyme offers another view for initiation 

complex formation with the pre-assembled holoenzyme to be recruited to 

promoters through interaction with the already bound TFIID.

SSN GENE A l t e r n a t e  n a m e A c t i v i t y R e fe r e n c e s

SSN 1 M lG l Transcriptional repressor, 
maybe target of SNF 1 kinase

Vallier and Carlson, 1994

SSN 2 SRB 9; SCA 1 Hengartner et al. , 1995; 
Song et al. , 1996

SSN 3 SRB 10; UME 5; cyclin-dependent kinase cyclm Strich et al. , 1989 
Surosky et al. , 1994;

ARE 1 pair to SSN 8 Thompson et al ., 1993
SSN 4 SIN 4; TSF 3 role in general transcriptional Song et al ., 1996 

Chen et al. , 1993
SSN 5 SRB 8; ARE 2 Song et al. , 1996; 

Hengartner et al. , 1995
SSN 6 CYC 8 Transcriptional repression of many 

genes in complex with TUP 2
Schultz et al. , 1987

SSN 7 ROX 3 Essential for viability Song et al. , 1996; 
Rosenblum-Vos et al. , 1991

SSN 8 SRB 11 Cyclin-dependent kinase cyclin 
pair to SSN 3

Kuchin et al. , 1995 
Liao et al. , 1995

Table 1.1: The SSN gene family

The TATs

Different lines of evidence indicate that TFII D plays a central role in 

mediating activation, functioning as a target for activators, and in directing
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nucléation of an initiation-competent complex containing the general factors and 

RNA polymerase II.

TFII D, infact, appears to be the only GTF with sequence specific DNA 

binding activity and there are several lines of evidence suggesting that it is the 

first component to assemble on the core promoter, directing the recruitment of 

Pol II and other GTFs (Hernandez, 1993; Pugh, 1996).

TFII D is a multi-protein complex composed by TATA-binding protein (TBP) 

and a set of associated factors: the Pol II TAFs (TAFns).

TBP was first purified from yeast as a single polypeptide of 27 KDa (Hahncf 

al,  1989). Cloning of the gene allowed the identification of TBP homologues from 

other eukaryotes and to the discovery of TAFs. The complex purified from 

human and Drosophila showed that TFII D consists of TBP and at least eight 

associated TAFs ranging in size from about 18-250 KDa (Dynlacht et al,  1991; 

Tanese et al,  1991; Chenet al,  1994a).

The human and Drosophila TAFns are highly conserved (Chen et al, 1994a; 

Chiang and Roeder, 1995) and several homologues have been identified in yeast 

where they are essential for viability (Reese et al,  1994; Poon et al, 1995; Verrijzer 

et al,  1994). As listed in Figure 1.3 human TFII D contains homologues of seven of 

the eight Drosophila TAFs (dTAFs); a human homologue of dTAFnl50 that is 

missing in hTFII D may correspond to a component of the initiator-element factor 

(GIF) described by Kaufmann et al (1996). In yeast, TFII D homologue of 

d T A F n l lO /h T A F n l3 0  and the homologue of the human TAFnl05, found by 

Dikstein et al (1996a) to be a B-cell specific TAF, are missing.

Although the stoichiometry and the arrangement of TBP-TAFs interaction 

in TFII D is not known yet, it has been shown that Drosophila TAFp250 is critical 

in the assembly of TFII D (Chen et al, 1994a) and in the stabilisation of TBP-TATA 

interaction.
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Other TAFns interact directly with TBP and with each other allowing the 

formation of multiple combinations able to mediate the integration of different 

signals to the basal transcription machinery (Burley and Roeder, 1996).

Different biological activities have been ascribed to TAFns leading to the 

view of TFII D as a highly versatile complex:

• TBP-TAFs complex is involved in promoter recognition. TBP is essential 

for transcription by all three eukaryotic RNA polymerases, as revealed by studies 

with mutated TBP (Cormack and Struhl, 1992; Schultz et al,  1992). The specificity 

for a distinct class of genes is to address to its association with different sets of 

TAFs, able to discriminate between different core promoter structure. So different 

TBP-TAF complexes are thought to direct class-specific promoter recruitment of 

the three RNA polymerases (Hernandez, 1993; Table 1.2).

While Pol I and Pol III require TBP-TAF association for transcription of class 

I and III genes, TBP alone can sustain basal transcription from TATA-containing 

class II gene. However Pol II TATA-less prom oters require TAFns for 

transcription. While TBP recognises the TATA-box, other downstream elements 

are recognised by different TAFs allowing TFII D to bind promoter elements, 

either individually or in combination, and to activate different array of 

promoters. Furthermore the association with an Inr binding protein and the 

presence of other DNA sequences, often located downstream of the transcription 

start site, as the downstream promoter element (DPE; Burke and Kadonaga, 1996), 

can modulate basal promoter strength by determining promoter strength and the 

start site of transcription (Verrijzer et al,  1994; Kaufmann et al,  1996). In the 

presence of TATA-box and Inr elements an efficient nucléation process requires 

minimally a TBP-dTAFn250-dTAFnl50 complex, whereas in the absence of Inr 

these TAFns can inhibit the TATA-binding activity of TBP. So, depending on the
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prom oter architecture, TAFns can modulate the stability of TFIID promoter 

interactions (Verrijzeref al., 1995; Hansen and Tjian, 1995).

Polymerase Class o f  genes Core element TBP/TAF complex References

RNA Pol I rRNA genes UCE/UBF SLl Comai et al. , 1992

RNA Pol II protein coding TATA/TBP TF IID Hernandez, 1993
genes Inr/IBP TAFs

snRNA PSE SNAPc Sadowski
et o/. , 1993

RNA Pol III 55 RNA Box C/TFIIIA
Hernandez, 1993

hU6 PSE Tijan and
Maniatis, 1994

TATA TFIIIB Bartholomew
e t al. , 1991

Table 1.2: Promoter recognition properties of different TBP/TAF complexes

• Another function ascribed to TFII D is the alteration of promoter topology 

as revealed by DNasel protection analysis on the AdML promoter. The analysis of 

the sequence of dT A Fn30a , dTAFn40 and dTAFn60 and of their hum an 

homologues revealed that they are related in sequence and structure to the 

histone proteins H2B, H3 and H4 respectively (Burley and Roeder, 1996) 

supporting the hypothesis that these TAFs bind DNA in a core-histone manner 

regulating promoter topology and hence transcription by multiple contacts of 

TFIID with core promoters, or facilitating basal-factor contacts, or mimicking a 

nucleosome. This latter hypothesis can explain the observation made by Segil et 

o/. (1996).
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downstream promoter contacts

contacts Spl (Q-rich activator) 
contacts TFIIA

WD-40 repeats

histone H4 similarity 
contacts TFIIE, TFIIF

histone H3 similarity
contacts acidic activators (VP16, p53
contacts TFIIB

histone H2B similarity

contacts multiple activators

contacts estrogen receptor

B-cell specific

Figure 1.3: Evolutionary conservation and properties of TFIID subunits from human. Drosophila and 

yeast.

Where a particular TAF has been assigned different molecular weights, all molecular weights are 

listed. dTAFII30a/28 and dTAFII22 and their human homologues arise via alternative splicing 

(adapted from Burley and Roeder, 1996).
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that during  mitosis 10% to 20% of TFIID is retained in the condensed 

chromosome. This group hypothesised that the nucleosome-like structure of 

TFIID permits its incorporation into condensed chromosome marking promoter 

DNA for reactivation after mitosis.

• TFII D shows catalytic activity, retaining the capability to acetylate histones 

and to phosphorylate the basal-factor TFII F. Acétylation of histones changes the 

packaging of DNA in the nucleosome by weakening histone-DNA interaction, 

allowing access of activators and general factors to DNA . The histone acetylase 

activity (HAT) resides in TAFn250 (Mizzen et ai,  1996). This activity is conserved 

from yeast to human, conferring to TFII D an important role in controlling access 

of nucleosome-bound promoter sequences to the basal machinery in vivo. 

Furthermore TAFII250 displays a kinase activity (Dikstein et al,  1996b) which can 

phosphorylate itself and the basal factor TFII F. It is not clear yet if the 

phopshorylation of TFII F influences activator dependent recruitment of RNA pol 

II into the PIC or affects the initiation/elongation properties of the polymerase.

• Although TBP can replace TFII D in basal transcription, it fails to support 

activated transcription leading to the coactivator model, that assumed that at least 

some of the subunit of TFIID serve functionally to link transcription activation 

domains with the basal transcription complex (Pugh and Tjian, 1990; Dynlacht et 

al., 1991). A series of experiments aimed to reconstitute dTFIID from its 

recombinant subunits, showed that addition of TAFs to TBP restored activation 

confirming that most if not all transcriptional activators require TAFns for 

activation at least in vitro (Chen et al, 1994a). These experiments led to the notion 

that activators exert their action through direct interaction with TAFns, allowing 

TFIID to integrate multiple signals from different regulators.

From these studies, aimed to identify TFII D-activators interaction, it came 

out that different classes of activation domains (such as acidic. Gin-rich, lie-rich)
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bind distinct TAFns in the TFII D complex. A list of TAFns/activators interaction 

is reported in table 1.3.

TAFII Activator References

dTAF„110 Spl Chen et al. , 1994a
Bicoid Jacq et a l  , 1994

dTAFii40 VP16 
p53 (acidic)

Sauer et al. , 1995

dTAF„150 NTF-1 (lie-rich) Chen et al. , 1994a
dTAFi,60 Hunchback

hTAFii30 estrogen receptor Thut et al. , 1995

hTAFiiSS

Table 1.3: TAFijs-activators interaction

CTF; Pro-rich

Data from in vitro studies are supported by m vivo experiments on a 

temperature-sensitive (ts) Hamster cell line (ts-13), carrying an amino acid 

substitution in TAFn250 (Sekiguchi et al, 1991), where the defect affected only a 

subset of genes at the non permissive temperature (Wang and Tjian, 1994). These 

results confirmed the idea that individual TAFns may be required only by a subset 

of activators in the cell.

The current model for TAFns enhancing of transcription is that activators- 

TA Fns contacts lead to increased recruitment of TFII D to the core promoter 

(Pugh, 1996). This model would account for the synergistic activation by multiple 

activators, as demonstrated by experiments on Drosophila activators Bicoid and 

Hunchback (Sauer et al,  1995). Each activator alone gives a modest level of 

activation. Synergism requires both dTAFnllO (that binds Bicoid) and TAFn60 

(binding Hunchback) in the TFIID complex, allowing simultaneous contacts 

between activators and TFIID. This hypothesis is also supported by in vivo studies
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(Colgan and Manley, 1992; Klein and Struhl, 1994), which suggest that TFIID 

binding can be rate-limiting in the cell and activators can affect promoter 

occupancy (Figure 1.4).

TAP
TA

Pol II

TATA

Fig. 1.4: Model of synergistic transcriptional activation by multiple activators-TAFIIs contacts

The human general co-factors or Upstream Stimulatory A ctiv ity  (USA)

Studies aimed to determine the minimal requirements for activation in 

vitro  suggested the involvement of other cofactors in addition to the TAFs and 

the general machinery.

Biochemical fractionation of mammalian cellular extracts and reconstitution 

of a functional activator-driven transcription led to the identification of a set of 

co-factors, distinct from TAFs, termed the human general co-factors (Meisterernst 

et a l ,  1991).

In the beginning these co-factor have been isolated as a crude fraction able to 

enhance stimulation of transcription by activators and termed USA (u,pstream 

stimulatory activity). Later it was shown that this fraction contains both positive 

and negative activities termed PCs and NCs, respectively (positive and negative 

co-factors).

Members of the PCs are PCI, PC2, Dr2 (D repressor 2)/PC3, ACF (activating 

co-factors) and PC4, CofA (co-factor A), PC 5, PC 6 and HMG-2 (Meisterernst et a l ,
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1991; Kretzschmar et al, 1994; Merino et al, 1993; Kretzschmar et al, 1993; Ge and 

Roeder, 1994a,b; Maldonado and Reinberg, 1995; Zawel et al,  1995; Halle et al,  

1995; Shykind et al,  1995; Stelzer et al,  1994; Lieberman, 1994). After the cloning of 

the gene encoding the co-factor PC4 it was shown that it interacts both with TFIIA 

and the activator domain of the acidic activator VP16. By interaction with TFIIA a 

role for PC4 in recruitment of TFIID to the TATA-box has been ascribed, 

functioning as a bridge between activator and basal machinery (Figure 1.5a).

On the other hand it has been suggested that the co-factors might stimulate 

the interaction between the activators and the basal machinery by altering the 

topology of the promoter (i.e. HMG proteins; Shykind et a!., 1995; Stelzer et al,  

1994) and affecting the accessibility of DNA in the chromatin. Other PCs are 

involved in processes following the binding of TFIID (i.e. PC2 and PC5; Halle et 

a/., 1995).

Among the negative co-factors are A da /M otl (Auble et al,  1994) and the 

negative co-factors NCI and NC2 (Meisterernst and Roeder, 1991; Meisterernst et 

a!., 1991; Inostroza et al., 1992). A da/M otl releases TBP from DNA and thereby 

represses transcription. NCI binds TBP in a manner that competes with TFIIA and 

results in repression of basal but not activator-dependent transcription 

(Meisterernst and Roeder, 1991). NCI has been identified to be HMG-1 (Ge and 

Roeder, 1994b).

NC2 binds TBP and represses basal transcription by competing with TFIIA 

and TFIIB thus inhibiting the assembly of the initiation complex (Figure 1.5b). The 

protein consists of two subunit (NC2a and N C 26/D rl; Inostroza et al,  1992; 

Goppelt et al,  1996; Mermelstein et al,  1996), also defined as the repressor-co- 

repressor complex Drl-DRAP (Mermelstein et al,  1996; Kim et a l ,  1997). 

Furthermore NC2 displays homology with the histones fold motif of histones
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H2A and H2B and it has been shown to be necessary for the dimerization of the 

two subunits of NC2 (Goppelt et a l ,  1996; Mermelstein et a l ,  1996).

FIIA TFIID

TATA

B

TFIIBTFIIA

NC2Rkr \

TATA

Fig. 1.5: Models for interaction of the human general co-factors with the basal transcriptional 

machinery.
A: Positive cofactors (PCs) enhance the interactions between activators and TFIID. B: The basal 

repressor NC2 interacts with TBP and blocks the access of both TFIIA and TFIIB preventing the 

assembly of an active pre-initiation complex.

NC2 is conserved between yeast and man suggesting for it an essential role in 

controlling the overall basal activity in the cell, maybe through mechanisms 

aimed to modulate the topology of transcription complexes during initiation and 

elongation of transcription in a chromatin folded DNA.
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In some cases, the same cofactor has been identified, by different laboratories, 

either as positive or negative cofactor (see PC3/Dr2; Merino et a!., 1993; 

Kretzschmar et al,  1993). This discrepancy can be explained by the fact that some 

negative factors repress basal transcription, but this repression is overcome by 

activators so that the net fold activation is greater in their presence than in their 

absence. Furthermore, PCs repress basal transcription at higher concentrations.

The identification of three different groups of cofactors, the hum an general 

co-factors, the TAFs and the RNA polymerase II holoenzyme-associated mediator, 

sharing the same function of activation of transcription, suggested that they might 

cooperate functionally to support activators function, possibly depending on the 

organism and the specific gene. It has been proposed that the mediator generally 

function in yeast to facilitate recruitment of the RNA polymerase holoenzyme, 

although recent reports describe the identification of a m am m alian RNA 

polymerase II holoenzyme (Kim et al, 1994; Chao et al., 1996; Maldonado et al.,

1996). This holoenzyme would cooperate with the human general co-factors by 

the interaction between these and TAFs (Kretzschmar et al., 1994; Ge and Roeder, 

1994a).

The distinction, at least in vitro, between yeast and the higher eukaryotes in 

the requirement of TAFs for activated transcription made necessary to establish 

the role of yeast TAFs in vivo.

While analysis of mutant TAF genes revealed that they are essential for cell 

viability, experiments of TAFs depletion showed that cell growth rapidly stopped 

but transcriptional activation of actively transcribed genes, induced subsequent to 

TAF depletion, was not affected. Together these results led to the conclusion that 

TAFs are not generally required for transcriptional activation in yeast (Walker et 

al, 1996; Moqtaderi et al., 1996).
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It is possible that the mechanism of gene regulation in higher eukaryotes had 

acquired additional complexity as the result of the larger number of genes that 

need to be regulated and as the activation in metazoan responds both to 

developmental and physiological signals. It has been then hypothesised that TAFs 

evolved to mediate alternative pathways of promoter recognition independent of 

the TATA motif and also to acquire a coactivator function in response to the 

increased requirement for expression and regulation of more complex genomes.

Regulation of RNA pol II transcription

Eukaryotic genes are expressed in v ivo  at very low levels (or not at all). 

Regulation of gene expression upon developmental and physiological stimuli is 

mediated by the action of a large number of regulatory proteins that recognise 

specific sequences (enhancers and silencers) located upstream or downstream the 

core promoter. The complexity of the combinatorial interaction of factors 

involved in the formation of the transcription initiation complex and the 

multiple steps that can be rate-limiting, provides several targets of regulation of 

polymerase activity by factors able to activate or repress transcription. Among 

these are a) the recognition of promoter sequences by TFIID; b) the recruitment of 

TFIIB, essential for RNA pol II entry and c) the escape of RNA pol II from the 

promoter, controlled by TFIIH. The specificity of regulation of gene expression by a 

relatively small number of transcription factors is provided by the modular 

structure of both regulatory proteins and the enhancers (silencers): a typical 

transcription factor is infact constituted by a DNA binding-domain, a 

multimerization domain, allowing the formation of homo- and heterodimers, 

and a transactivation domain. These domains can be combined in different 

fashion giving raise to new sets of factors; the enhancers show a combination of 

different transcription factors binding-sites, whose arrangement provide the
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potential to create unique nucleoprotein complexes forming heterodimers within 

and among families of transcription factors (Tijan and Maniatis, 1994).

Recent studies have shown that the activity of some enhancers (or silencers) 

requires proteins that function as architectural components suggesting that 

activation (repression) depends on the assembly of a highly specific three- 

dimensional nucleoprotein complex, facilitating multiple protein-DNA and 

protein-protein interactions (reviewed in Tijan and Maniatis, 1994 and Werner 

and Burley, 1997; Figure 1.6). Examples of such proteins are the members of the 

high-mobility group (FIMG) proteins that have the properties of inducing a sharp 

bend in the DNA helix (Grosschedl et al., 1994). Some of them binds DNA non- 

specifically (HMG-1 and UBF; Pauli et al.,, 1993; Jantzen et al.,, 1990). Others, as 

LEF-1 (lymphoid enhancer factor 1; Giese et al.,, 1991) and SRY (sex determining 

factor; Van de Wetering and Clevers, 1992) bind in a sequence-specific manner 

their target promoter. In the case of LEF-1, several experiments on the activation 

of the T-cell receptor a  enhancer provided a model for its function as architectural 

protein. Upon its binding to the TCRa enhancer a sharp bend is induced in the 

DNA helix allowing the interaction of other activators that bind sequences 

flanking the LEF-1 binding site on either side (Giese et al.„ 1995).

The product of HMG-I(Y), which is unrelated to HMG-domain proteins, 

plays the same role as LEF-1 in the virus-inducible enhancer of the B-interferon 

gene but, besides altering DNA structure, it also directly contacts both NF-kB and 

ATF-2, the two activator proteins, inducing conformational changes that augment 

their interaction with DNA and with each other (Thanos and Maniatis, 1992; Du 

et al.,, 1993).

On the other side, YYl represses c-fos promoter by bending DNA and then 

preventing interactions between the CREB-activator protein, whose binding site is
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located upstream of YYl, and components of the basal transcription machinery 

(Natesan and Gilman, 1993).

Protein-induced changes in DNA structure may also involve the formation 

of three-dimensional DNA loops, with proteins that mediate tight wrapping of 

DNA through extended protein-DNA contacts. The best example is given by the 

nucleosome and several examples of positioned nucleosomes that help cross-talk 

between enhancer element and promoters, or juxtaposition of binding site 

otherwise located far apart, have been described (Perlmann and Wrange, 1988; 

Thomas and Elgin, 1988; Schild et al., 1993). Furthermore several DNA binding 

proteins that mimic nucleosome-like structure are involved in the formation of 

nucleosome-like particles (Putnam et al,  1994).

Finally, the observation that, on some promoters, TFIID or Pol II itself is 

p rom oter-engaged  before activation implies a lternative  pa thw ay s for 

transcriptional control (Rougvie and Lis, 1988; Chen et al,  1994b).

Positive control

Activators work enhancing the efficiency with which the basal transcription 

complex is assembled in an active form by contacting multiple components of the 

basal transcriptional machinery. As it is already outlined in the "Basal promoter 

apparatus" section, interactions between activators and the components of the 

basal pol II machinery can be either direct between transcription factors and the 

GTFs as well as mediated by coactivators (mediator, TAFs, UAS; Triezenberg, 

1995). The regulation can occur at the level of 1- stimulation of basal transcription 

apparatus, 2- by counteracting chromatin-mediated repression, 3- by affecting the 

efficiency of elongation process.
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HM G-I(Y)
HM G-I(Y)

HM G-I(Y)

D

h is to n e  coreh is to n e  core

Fig. 1.6: Models for architectural roles of proteins in the assembly of higher-order nucleoprotein 

complexes.

A: The TCRa enhancer complex. B: 6-interferon enhancer complex. C and D: wrapping of DNA 

around a histone core leads to juxtapose two binding sites recognised by the same transcription factor 

/i.e. the glucocorticoid receptor (GR, panel C) in the long terminal repeat of the MMTV, on the same 

surface of the histone core or to facilitate interaction between enhancer and promoter elements (panel 

D; i.e. the vitellogenin gene promoter, Schild,1993). For further explanations see text. The figure has 

been adapted from Grosschedl, 1995.

1- Direct physical interactions have been demonstrated between acidic 

activators and TBP (Inglesef a l ,  1991), TFIIB (Lin and Greene, 1991; Roberts et a l ,  

1993), and TFIIH (Xiao et a l ,  1994). Multiple lines of evidence suggest that the 

targeting of TFIIB by activators is especially relevant (Hahn, 1993). The association 

of TFIIB is a rate-limiting step in PIC assembly (Lin and Greene, 1991; Ha et a l ,

1993). This is reasonable since TFIIB interacts with other components of the 

initiation complex as TBP, RNA pol II and TFIIF (Ha et a l ,  1993). Binding of 

activators as VP16 would induce a conformational change in TFIIB so to expose
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1994). Furthermore, as TFIIB is released from the complex when RNA pol II exits 

the promoter, a possible function of activators could be to increase the rate of 

TFIIB reassociation or retain TFIIB at the promoter, maintaining the promoter in 

a state accessible to the polymerase and capable of multiple initiation events. 

Direct interaction between TFIIH and activators can be involved in the 

modulation of TFIIH enzymatic activities, important for transcription initiation 

(Xiao et a!., 1994; Tong et a!., 1995).

In vivo footprinting studies have shown that many transcriptional 

activators binding sites appear to be occupied simultaneously (Rigaud et al,  1991). 

This is consistent with the view that two or more activators can exert synergistic 

effects on transcription through concerted interactions with multiple components 

of the PIC (Metz et al,  1994; Chi et al,  1995; Ge and Roeder, 1994a,b). As discussed 

above (see "The TAFs"), it has been recently demonstrated that synergy between 

two different activators (Bicoid and Hunchback) bound to the same promoter, 

results, at least in part, from specific interactions with two distinct dTAFns that 

enhance TFIID recruitment (Sauer et al., 1995).

2- Another level of regulation of transcription is the chromatin packaging of 

DNA in cells. Chromatin is a nucleoproteic complex whose unit is composed of 

an octamer of four different histones (H2A, H2B, H3 and H4), termed the 

nucleosome, and 146 base pairs of DNA wrapped around it. Nucleosomes repress 

transcription by blocking access of transcription factors to DNA (Felsenfeld, 1992; 

Adams and Workman, 1993). Chromatin structure on promoters has been shown 

to be dynamic, so that it can be altered during regulatory events in the absence of 

DNA replication (Schmid et al,  1992; Becker, 1994). It has also been shown that 

changes in chromatin structure accompany induction of tissue-specific genes 

during development and differentiation (Gross and Garrard, 1988). In vitro 

transcription analysis on reconstituted chromatin showed that repression by
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nucleosome can be prevented by incubating DNA with TFIID prior to nucleosome 

assembly (Workman and Roeder, 1987). It has been suggested that activators 

alleviate chromatin mediated repression by changing the nucleosome structure, 

allowing binding of GTFs to the core promoter (Workman et at., 1988; Taylor et 

al,  1991; Workman et al., 1991).

A conserved multiprotein complex of ~ 2 MDa (the SWI/SNF complex; 

Peterson et al,  1994; Côté et al,  1994) with the function of mediating changes in 

chromatin structure, has been identified by genetic screens and biochemical 

analysis in yeast. Drosophila (Tamkun et al., 1992; Elfring et al,  1994) and 

mammals (Kwon et al,  1994 ; Wang et al., 1996).

Genetic studies of transcriptional regulation in the yeast Saccharomyces  

cerevisiae led to the identification of a number of SWI (refer to yeast mating-type 

switching: Stern et al., 1984; Breeden and Nasmyth, 1987) and SNF (abbreviation 

for sucrose non fermenting, Neigeborn and Carlson, 1984) genes as positive 

regulators of a subset of promoters. The observation that mutation either in SWI 

or SNF genes lead to a reduced activation of transcription suggested that both SWI 

and SNF proteins could be components of the same protein complex, as 

confirmed by co-purification through multiple chromatographic steps. The 

purified SWI/SNF complex contains SWIl, SWI2/SNF2, SWI3, SNF5, SNF6 and 

SN Fll in addition to five polypeptides (p78, p68, p50, p47 and p25; Cairns et al,  

1994; Côté et al,  1994).

A relation between SWI/SNF protein function and disruption of chromatin 

structure has come from two observations:

a) mutations in genes encoding chromatin components (such as the core 

histones) suppresses the defects in growth and transcription due to swi and snf 

mutations (Hirschhorn et al, 1992),
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b) the absence of either SWI2/SNF2 or SNF5 results in a decreased 

transcription and alteration of chromatin structure in the promoter region of 

SUC2 gene and these effects can be overcome by a reduction in the level of the 

core histones H2A and H2B (Hirschhorn et al., 1992). This observation also 

suggests that SWI and SNF protein might facilitate the function of transcriptional 

activators by antagonising the repressive action of chromatin. The SWI/SNF 

complex contains a DNA-stimulated ATPase activity (SWI2/SNF2 subunit; 

Laurent et al., 1993). Experiments of binding of GAL4 activator to nucleosome 

reconstituted DNA in the presence of SWI/SNF purified complex and ATP 

suggested that SWI/SNF complex has a role in destabilizing histone-DNA 

interaction increasing the binding of transcription factors to the histone-bound 

DNA (Côté et al, 1994), although the exact nature of this structural change is not 

known yet. The SWI/SNF complex, at least concerning its function, is conserved 

in higher eukaryotes. Functional homologues of SWI2 have been identified in 

Drosophila (brahma; Tamkun et al, 1992) and humans, where there are two genes 

closely related to brm and SWI2 (Khavari et al, 1993; Muchardt and Yaniv, 1993; 

Chiba et al,  1994): BRGl (brm/SWI2-related gene 1 or hSNF2a) and hbrm 

(hSNFB). They are both involved in transcriptional activation in vivo and, using 

an antibody against BRGl, Kwon et al (Kwon et al, 1994) identified in HeLa cells 

two different protein complexes, termed hSWI/SNFA and hSWI/SNFB, with 

chromatin remodelling activity in vitro, as good candidates for the hum an 

counterpart of the yeast SWI-SNF complex. Also a human gene (INIl) shows 

similarity to ySNF5 and it has been shown to associate with BRGl and co- 

fractionate with hSW I/SNF (Kalpana et al,  1994). These data suggest an 

evolutionary conserved function of the SWI-SNF complex in d isrupting  

nucleosome structure in an ATP dependent manner, leading to increase binding 

of transcription factors. Another question to address concerns the targeting of
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SWI/SNF complex to the promoter. There are no clear evidences that activators 

can exert this function, although interaction between the retinoblastoma gene 

product Rb and SWI/SNF has been reported (Dunaief et a!., 1994). Cofractionation 

studies, aimed to characterise factors that copurify with the RNA pol II 

holoenzyme in yeast, have however out lighted that the SWI/SNF complex can 

be found, although not always, associated to the holoenzyme through interactions 

with the mediator proteins (Wilson et al., 1996). So SWI/SNF complex could be 

targeted by associating with the holoenzyme.

Another activity with a function of ATP-dependent chromatin remodelling, 

leading to increased transcription factors binding, has been purified by Wu et al 

from Drosophila embryo extracts and termed NURF (nucleosome rem odelling  

factor; Tsukiyama and Wu, 1995). NURF is composed by 4 polypeptides one of 

which (ISWI) shows a significant identity to SWI2/SNF2 at the level of ATPase 

domain (Tsukiyama and Wu, 1995). A human gene, hSNF2L, also shows 75% 

identity to ISWI over its entire length appearing as the hum an homologue of 

ISWI (Okabe et al, 1992). A putative yeast homologue has been identified (YB95; 

Tsukiyama et al, 1995).

From these findings it can be hypothesised that NURF and SWI/SNF 

complexes represent two distinct classes of ATP-dependent nucleosome 

reorganising activities that are used in different circumstances and from different 

subsets of genes (Fig. 1.7).
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ISWIĜAG,

C34
nucleosome ADP+Pi ATP

Fig. 1.7: The SWI/SNF and NURF complexes.

The ATP-dependent activities of these complexes enhance the accessibility to DNA of transcription 

factors (Pugh, 1996).

An alternative mechanism for controlling transcription in a chromatin 

environment (reviewed in Wade et a l ,  1997) is provided by enzymes able to 

induce post-translational modification in the histones. Several transcriptional 

regulators, besides TAFn250, have been found to act as enzymes that acetylate 

histones. In S.cerevisiae transcription factors with acidic activation domains 

recruit a trimeric coactivator complex, ADA2-ADA5-GCN5 (Guarente, 1995) 

which contacts the basal transcription machinery. In higher eukaryotes numerous 

transcription factors, including steroid receptors, use the coactivator p300/CBP in 

association with another factor P/CAF. These factors have catalytic function as 

acetyltransferase and act by modifying the amino-terminal tails of particular 

histones (Brownell et a l ,  1996; Ogryzko et a l ,  1996), with the result of 

destabilization of nucleosome and increased access of components of basal 

transcription machinery to the promoter (Lee et a i ,  1993). The activity of 

acetyltransferase-associated factors is balanced by the presence of regulators that 

deacetylate histones, resulting in a repression of transcription (Ayer et al., 1995;
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Taunton et al., 1996). If persistence of gene activity requires continuous activity of 

the acetyltransferase, histone acétylation would represent a mechanism to 

modulate transcription (Figure 1.8).

A D A  3  [ g c n  5

A ctiva tors,

B

Ac

AD A3, ADA2, GCN5, 
Ac p300, P/ CAP, TAFii250

HDl, Sin3p, Rpd3

d eacety lase , d e a c e ty la se

Fig. 1.8: Acétylation and deacetylation of histones change nucleosome structure, influencing 
transcription.
Several coactivators contain an histone acetyltransferase activity that facilitate the disruption of 
nucleosomes and recruitment of the basal transcription machinery (A). The presence of histones 
deacetylases can reverse the action of these coactivators, leading to a fine regulation of 
transcriptional activity. Ac indicates acétylation

Other post-transcriptional modifications of histones can modulate the 

stability of nucleosome, as phosphorylation, ubiquitination, méthylation or ADP- 

ribosylation (reviewed in Matthewes and Watyerborg, 1985; Bradbury, 1992). 

Transcriptional regulators containing such activities have been identified.
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3) Preliminary studies indicate that activators may influence the role that 

TFIIH plays during promoter clearance. Complexes containing TF IlE/IIH pause 

between +12 and +18, after which a large fraction of them resumes elongation. It 

has been shown that activators affect the efficiency of elongation by decreasing the 

extent of abortive transcription and increasing the proportion of complexes that 

overcome the +12 to +18 stalling (Yankulov et al,  1994).

Negative control

Negative regulators of eukaryotic gene expression can inhibit transcription 

by interfering with any step in transcription initiation. Several mechanisms of 

repression have been proposed, some of which are referred as passive (involving 

or interfering with activator proteins function) and active (involving direct effect 

of repressor proteins through specific repressive domains on the general 

transcription complex).

Passive repression

Blocking of activator function is realised by different mechanism (Figure 1.9):

a) Interference with activator nuclear localisation. This is one of the earliest 

step at which a factor can interfere with the activity of a transcriptional activator, 

inhibiting the transport of the activator from the cytoplasm into the nucleus. This 

is obtained by the formation of a complex between a repressor protein and the 

positive factors in which the nuclear localisation signal of the activator protein is 

masked by the binding of the repressor, preventing nuclear import (Beg et ai,

1992). One example of such mechanism is described by the Rel/NFkB family of 

transcription factors (reviewed in Blank et al., 1992). Different inhibitor proteins of 

the IkB family can interfere with the activities of different sets of Rel dimers 

(Zabel and Baeuerle, 1990; Geisler et al., 1992; Inoue et al., 1992; Kerr et al., 1992). 

Upon induction by several stimuli, that lead to NF-kB activation, IkBs are
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phosphorylated and degraded by the ubiquitin-proteasome pathway, allowing NF- 

kB to translocate to the nucleus and to activate the target genes (reviewed in 

Thanos and Maniatis, 1995).

Another example comes from the glucocorticoids receptor (GR) that, in the 

absence of its ligand, is also retained in the cytoplasm in a complex which includes 

the 90 KDa heat shock protein, hsp 90 (Pratt et al, 1992).

b) Interference with the assem bly of m ultisubunit activators. Some 

repressors work by competing for association with one of the activator subunits, 

preventing the formation of a functional activator. Many activators bind DNA 

either as homo- or hetero-multimeric complexes. Such interactions are mediated 

by specialised dimerization domains such as the leucine zipper (Landschulz et al,  

1988; Vinson et al,  1989), the POU domain (reviewed in Wegner et al,  1993), the 

basic region helix-loop-helix (Murre et ai,  1989a,b), and the ability to form 

different complexes within a family of related protein gives an enormous source 

of regulatory targets, since different dimeric complexes may differ in DNA binding 

and in transactivation properties (see for examples Descombes and Schibler, 1991; 

Ron and Habener, 1992). This kind of interference can be exerted in two ways: i) a 

negative acting factor can form a complex which fails to bind DNA so that the 

repressing activity is due to titration of positive transcription factors. An example 

comes from families of bH-L-H factors and their helix-loop-helix negative-acting 

coregulators. Id and extramacrochaete (emc), which, although able to dimerize 

with other H-L-H factors, lack a DNA binding domain (reviewed in Jan and Jan,

1993).
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Fig. 1.9: Models of negative control

A: Interference with activator nuclear localisation; B: Interference with assembly of multisubunit 

activators; C: Interference with activator DNA binding; D: Interference with activity of DNA-bound 

activators; E: Interference with access of general transcription machinery to DNA, Among the 

mechanisms of active repression are the interference with pre-initiation complex assembly, the co­

repressor model and the positioning of nucleosomes over the TATA-box with recruitment of silencing 

proteins, as Pc-G, with the formation of a closed compacted chromatin structure.
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Similarly the I-POU domain protein (Inhibitory POU: Treacy et al., 1991) and 

the CHOP-10 (C /  EBP-homologous p.rotein; Ron and Habener, 1992) down- 

modulate the DNA binding activity of their respective dimerization partners; ii) 

the repressor can form a complex that is able to bind DNA, but lacks domains 

required for transcriptional activation. This type of regulation involves two steps: 

competition for binding site and sequestration of a transcription factor in a non 

functional complex. An example is given by the proto-oncogene product c-myc 

that activates transcription when it is complexed with its partner max fmyc 

auxilliary factor; Amati et al,  1993; Littlewood et al., 1992). When present in 

excess, max is a negative regulator of transcription by forming homodimers that 

bind DNA but do not activate transcription (Amin et al,  1993; Gu et al., 1993). 

Other examples have been described including two members of the CREB family 

(CREM and CREB-2; Foulkes et al,  1991; Karpinski et al,  1992); C/EBP-related 

factor LIP (Descombes and Schibler, 1991; Ron and Habener, 1992); two members of 

the AP-1 family Jun B (Chiu et al, 1989) and FosB-s (Nakabeppu and Nathans,

1991). In these latter examples negative regulators are the product of alternative 

splicing or of alternative use of translation initiation codon, of genes encoding 

also the activator form (reviewed in Foulkes and Sassone-Corsi, 1992).

c) Interference with activator DNA binding. Some repressors work by 

competing with a functional activator for binding to the same or overlapping 

recognition site, preventing the binding of the activator by steric hindrance. 

Transcription factors belonging to the same family may show similar or identical 

DNA binding specificity as Drosophila homeodomain-containing proteins; the 

cyclic-AMP response element binding factor (CREB) and the activator protein 1 

(API) factors, where the specificity of CREB activity, and hence the antagonism 

between CREB and API at a non-consensus binding site, is modulated by cAMP 

dependent phosphorylation of CREB (Masquilier and Sassone-Corsi, 1992; Lamph
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et al,  1990); the members of the Spl family of activators (Hagen et ai,  1994). In 

these examples it is clear that the negative effector may simply be the weaker of 

two activators. Another important example comes from the nuclear hormone 

receptors family. Very many negative regulatory processes involve the nuclear 

hormone receptors and several act through cross-talk with the Fos and jun proto­

oncogene products (API factor) regulatory pathway. The API factor is involved in 

proliferative state of the cell (Ransone and Verma, 1990) while the steroid/thyroid 

hormones are found to induce differentiation, or to maintain cells in a quiescent 

state. An antagonism between the proliferative function of API and the 

differentiative function of nuclear hormone receptors has been described 

involving a reciprocal interference with transcriptional activation (Yang-Yen et 

al., 1990; Schule et al,  1990a; Jonat et al,  1990). Furthermore while binding of the 

receptor to DNA is not required for its negative regulatory activity, the zinc-finger 

DNA binding domain is necessary maybe because of an involvement of protein- 

protein interaction with the components of API complex. On the other hand the 

leucine zipper domain (the dimerization domain) of c-jun and the N-terminal 

region of c-Fos are implicated in negative regulation of GR function (Schule et al., 

1990a). Interactions between receptor and API factors have been demonstrated 

both Ï71 vitro (Touray et al., 1991) and in vivo (Yang-Yen et ai,  1990) and several 

mechanisms have been proposed: i) the interaction mutually inhibits DNA 

binding of the two classes of proteins (this is true in vitro [Yang-Yen et al., 1990] 

but it is not known whether it occurs also in vivo [Jonat et ai,  1990]); ii) the 

activity of API complex may be modulated by the formation of a ternary complex 

of A P l/T R E /G R  (Jonat et al,  1990); iii) binding to a GRE (Glucocorticoid 

responsive element) is required. This kind of binding interference has been 

showed for the osteocalcin promoter (a RARE overlaps an API binding site; 

Schule et al., 1990b) and the a-fetoprotein promoter where a GRE overlaps an API
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consensus site (Zhang et al., 1991; Guertin et al., 1988); iv) occupation of a 

composite response element. This mechanism has been described for the 

proliferin gene, where GR is active when c-Jun/cFos heterodimer occupies the 

API site but not when c-Jun homodimer binds the element (Miner and 

Yamamoto, 1991; Diamond et al, 1990; Yoshinaga and Yamamoto, 1991).

d) Interference with the activity of DNA bound activators. In many 

promoters repressor binding sites are adjacent to, although not overlapping, 

binding sites for transcriptional activators. A repressor could block activator 

function by directly contacting the adjacent DNA-bound activator and masking 

the protein domain responsible for transcriptional stimulation. Binding to DNA 

is not strictly required as for GAL 80, a regulator of galactose metabolism in yeast, 

that acts by masking the activation domain of GAL4 (Ma and Ptashne, 1988). 

Similarly in mammals the retinoblastoma gene product Rb modulates the activity 

of DNA binding factors with which it interacts, blocking the contact between the 

activation domain and the polymerase complex (Weintraub et al., 1992).

e) Activation occurs through the action of intermediary factors or cofactors 

(Ptashne and Gann, 1990; Pugh and Tjian, 1990; Martin et al., 1990). A large excess 

of transcription factor, in vitro, can lead to repression of activated transcription by 

a squelching mechanism, in which cofactors are titrated off (Gill and Ptashne,

1988). Squelching has been observed also in vivo w ithout artificially high 

concentrations of the negatively acting factor (Meyer et al, 1989), suggesting that 

the cofactors might be limiting for some transcription activation processes, 

making of squelching a physiologically significant mechanism of regulating gene 

expression. An example is given by the adenovirus F la  gene product. Besides 

activating transcription of viral genes it is also able to repress transactivation by 

several transcription factor. A model for Fla  action is that it interferes with the 

transmission of the activating signals by interaction with cofactors, or with
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polymerase complex (Rochette-Egly et al,  1990). Furthermore the interaction of 

F la  with TFIID has been demonstrated allowing for both positive and negative 

effect on transcription (Horikoshi et al., 1991).

Active repression

An efficient mode to repress genes controlled by multiple activators is to 

interfere directly with the general transcrip tion m achinery, inhibiting 

transcription initiation by a disruption of the polymerase complex at the promoter 

or by impairing the catalytic activity of the complex. Repressor proteins could 

interfere with the assembly of GTFs and sterically block the addition of subsequent 

proteins; interact w ith the general transcription m achinery and prevent 

disassembly step (it will freeze the assembly); recruit another factor into the 

general factor assembly that could act through either of the previous mechanism.

Although they share mechanism of interaction with the basal machinery, 

while the general repressors of basal transcription do not show any specific DNA 

binding activity (Drl, Dr2. NCI, NC2, see also "The human general cofactors"), 

specific repressor proteins function is mediated by the recognition of specific cis- 

regulatory elements in the promoters. DNA sequences recognised by repressor 

proteins have been termed either negatively acting sequences or silencers, 

although these terms are not completely interchangeable. Silencer, by analogy 

with enhancer, is referred to a sequence that act at a great distance and 

independently of orientation, although some have exhibited a varying degree of 

dependence upon position and orientation. Like the enhancers, they are 

composite in structure or show increased effects on transcription with increased 

copy number (Lee et al., 1991; Savagner et al., 1990; Nishiyama et al., 1994). Many 

negative cis-regulatory sequence, with the properties of a silencer, have been 

identified in genes encoding growth-hormone (Larsen et al., 1986), insulin (Nir et 

ai,  1986), renin (Burt et al,  1989; Barrett et al., 1992), interleukin-2 receptor a  chain
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(Smith and Greene, 1989), immunoglobulin Kappa light chain (Pierce et al., 1991); 

immunoglobulin heavy chain (Imler et al., 1987), T cell-receptor a  chain (Winoto 

and Baltimore, 1989), a-fetoprotein (Muglia and Rothman-Denes, 1986), vimentin 

(Parrel et al,  1990), collagen II (Savagner et al,  1990) and e-globin (Gao et al,  1989).

Repressors, like activators, have been shown to consist of modular structure, 

containing separable DNA binding and repression domains as reported for the 

Wilm's tum or gene product WTl (M adden et a l ,  1993), the Drosoph i la  

develomental regulators even-skipped (eve; Han and Manley, 1993), engrailed 

(en; Jaynes and O'Farrell, 1991) and Kruppel (Kr; Licht et al,  1990), the thyroid 

hormone receptor gene c-erbA and its viral counterpart v-ErbA (Baniahmad et al,

1992), although no clear aminoacid sequence similarities exist between the 

repressing domains of different active repressors. However, they show a common 

richness in alanine, glutammine and /o r  proline residues as in eve, WTl, Kr, en, 

or domains rich in charged aminoacids (v-ErbA). Another motif is the carboxy- 

terminal WRPW (Trp,Arg,Pro,Trp) domain of Drosophila Hairy related bHLH 

repressor protein, which interacts with the Groucho family proteins of corepressor 

(Fisher et al,  1996). Schnabel and Abate-Shen (Schanbel and Abate-Shen, 1996) 

demonstrated that the transcriptional repressing activity of HoxA7 resides in its 

hom eodom ain , suggesting  for hom eodom ains an add it ion a l  role in 

transcriptional control beside their function in DNA binding. Furthermore they 

showed that residues in the N-terminal-arm of the homeodomain play a role in 

the differential repressing activity of various Hox proteins, leading to the 

hypothesis that these residues are necessary for distinguishing the functional 

action of homeodomain proteins in vivo.

By analogy with transcriptional activation that involves communication 

with every component of the transcriptional machinery through direct and 

indirect contacts, mechanisms of repression involving promoter occlusion or
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interaction with the basal transcription complex have been described (Hansen et 

al., 1981; DeLuca and Schaffer, 1988; Okhuma et al, 1990). Many activators show 

also repressive function depending on the arrangement of their binding sites with 

respect to the promoter. Dissection of the mechanism by which they operate as 

transcriptional repressor led to models involving either interaction with 

corepressor molecules or directly with components of the basal transcription 

apparatus. The yeast Leu3p protein, involved in the regulation of genes required 

for branched-chain aminoacid biosynthesis and nitrogen metabolism, represses 

gene expression by forming a complex with Motlp/TFIID. It is not clear yet if 

M otlp mediates Leu3p function by destabilization of TBP-DNA interaction or 

whether a stable TBP-Motlp-DNA complex, promoted by Leu3p binding at the 

promoter, may prohibit the subsequent association of downstream  general 

transcription factors (Wade and Jaehning, 1996). Similarly ICP4 activates most 

HSV genes while strongly repressing activated transcription from other 

promoters containing strong ICP4 binding sites near the start site of transcription. 

As a general inhibitor of activated transcription it has been postulated that 

repression by ICP4 must involve a global alteration of the general transcription 

complex that blocks activation but still enables basal transcription. Gu et al (1995) 

showed that ICP4 is complexed with TFIID/TFIIB and suggested that binding to 

DNA of this tripartite  complex causes a conformational change in the 

transcription complex that is unable to respond to positive factors, allowing only 

basal transcription. Alternatively, it has been proposed that the presence of ICP4 

might interfere with the access of other general cofactors as PC4 and p l5  (Ge and 

Roeder, 1994a; Kretzschmar et al, 1994).

Other repressors act directly on basal transcription. The fly even-skipped 

protein (eve; Um et al, 1995), the murine homeodomain protein MSX-1 (Catron 

et al,  1995; Zhang et al,  1996), the unliganded human thyroid receptor (v-Erb A
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protooncogene gene product; Fondell et al, 1993) and the adenovirus E1B-55K 

protein (Yew et al,  1994) repress transcription by direct interaction. The even- 

skipped repressor protein interacts directly with the TATA binding protein (Um et 

al., 1995), while the product of v-Erb A gene can bind TFIIB (Fondell et al,  1993). 

MSX-1 mediates repression via alanine-plus-proline rich regions and interacts 

with basal factor complexes in gel shift assays (may be TBP; Catron et al., 1995). 

Regarding eve, two model for transcriptional repression have been proposed: i) 

binding to TBP (or TFIID) would interfere with the binding of other GTFs or ii) 

interaction eve/TBP destabilizes DNA-TFIID binding. Some of these interactions 

may be mediated by corepressors such as the Groucho protein in D.melanogaster 

(Paroush et al., 1994).

The recruitment of a corepressor adds another important level of regulation, 

because the interaction between the DNA binding protein and the corepressor can 

be regulated.

In yeast, SSN6/TUP1 repressor is involved in transcriptional repression of 

several diverse sets of gene including a-specific, haploid-specific, and glucose- 

repressible genes. This complex interacts with a variety of specific DNA binding- 

proteins (Keleher et ah, 1992), making of this complex a general transcriptional 

corepressor whose specificity is dictated by the DNA binding specificity of protein 

partners. A target for SSN6/TUP1 repressor is the cyclin-kinase complex associated 

to the holoenzyme (the product of SRB 10, the kinase, and SRB 11, the cyclin). It is 

not clear yet whether this repressor acts by modulating the activity of the kinase or 

uses the interaction for tethering to the transcription machinery apparatus 

(Kuchin et ah, 1995; Liao et ah, 1995).

Studies of transcription in vitro support the idea that histone proteins can act 

as transcriptional repressors of eukaryotic genes, probably by preventing TFIID 

access to the DNA (Knezetic and Fuse, 1986; Wasylyk and Chambon, 1979).
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Incubation of TFIID with the template DNA prior to nucleosome assembly 

prevents the nucleosomal inhibition of transcription, which suggests that it is 

TFIID binding that is inhibited by the presence of histone complexes (Workman 

and Roeder, 1987; Knezetic et al, 1988). Specifically positioned nucleosomes have 

been observed at both repressed and activated promoters and have been proposed 

to be involved in transcriptional regulation by placing regulatory sites in an 

inaccessible place on the nucleosome in the case of repression or enhancing 

expression by juxtaposing activator binding sites in the case of activation 

(reviewed in Lu et al., 1994). Some repressor proteins might block transcription 

from a target promoter by directing the formation of a positioned nucleosome 

over the TATA-box (Roth et al,  1990). Studies of a glucose-repressed gene also 

show a correlation between SSN6/TUP1 repression and the presence of a 

positioned nucleosome in the initiation region (Perez-Ortin et al,  1987; Matallana 

et al., 1992). Thus occlusion of promoter DNA by a positioned nucleosome might 

contribute to transcriptional repression by SSN6/TUP1. It is not clear yet what 

determines nucleosome positioning but it has been proposed that either DNA 

sequences (Thoma and Simpson, 1985; Simpson, 1991) or DNA binding protein 

that create a boundary in chromatin (Fedor et al., 1988) or proteins that actively 

position nucleosomes at adjacent sequences (Roth et al, 1990) might contribute to 

this.

As already mentioned in the "positive control" section, there is a general 

correlation between core histone acétylation and gene activity. Conversely, it has 

been thought that core histone deacetylation leads to transcriptional repression. 

This is consistent with the finding of a mammalian histone deacetylase (FIDACl; 

Taunton et al,  1996) that is related to the yeast Rpd3 protein which is required for 

full repression as well as full activation of gene expression (Vidal and Gaber, 

1991). Several recent papers suggest that transcriptional repression by a sequence-
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specific DNA-binding protein can be mediated by the recruitment of a deacetylase 

(Rpd3, HDACl, HDAC2) to the promoter region. The recruitment seems to be 

mediated by other molecules working as corepressors (Sin3, N-Cor/SMART; 

reviewed in Wolffe, 1997).

Chromatin mediated silencing

Silencing at telomeres and at HML and HMR

Silencing may involve changes in chromatin structure by establishing 

specific structural domains. This is sustained by the finding of factors that through 

binding to silencer are required either for nuclear scaffold attachment or 

transcriptional repression (Hofmann et a!., 1989; Shore, 1994).

One of the best studied mechanism of repression occurs at the yeast Mating 

Type loci and near telomeres.

The budding yeast exists as haploid cells of a or a  mating-type, which can 

mate to form a / a  diploids. The genes involved in determining mating-type reside 

at three unlinked loci: MAT, HML and HMR. The mating-type of a haploid cell is 

determined by the allele, MAT a or MAT a, present at the MAT locus. Yeast cells 

can switch their mating-type by replacing the allele at MAT with an allele of the 

opposite mating type copied from either HML or HMR. The genes at the HM loci 

are transcriptionally inactive. The silent mating type loci HML and HMR have 

flanking sequences called the E and I elements that are required in cis for 

repression of gene expression (Laurenson and Rine, 1992; Brand et al., 1987; Eigure 

1.10a). Analysis of the E element revealed three functional sub-elements that 

contribute to the silencer function. A, B and E, none of which is able to cause 

silencing on its own. The A element contains an ARS consensus sequence 

(Campbell and Newlon, 1991), responsible for the binding of ORC (orig in  

recognition complex; Bell and Stillman, 1992) to all four silencers (HML-E, HML-I, 

HMR-E, HMR-I) in vitro (Bell et al,  1993). The E and B elements contain binding
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sites for the transcription factors RAPl and ABFl respectively (Shore and 

Nasmyth, 1987; Diffley and Stillman, 1989). ORC seems to play a critical role in the 

establishment of silencing at HM loci (Fig. 1.10b) as well as ABFl and RIFl(a RAPl 

interacting factor; Hardy et al., 1992). It is not clear yet whether the involvement of 

ORC is caused by a necessary role for replication an d /o r  whether ORC plays a 

more direct role in establishing a refractory chromatin structure (Newlon, 1993). 

What is known is that the repressed state can be established only following the 

passage through S-phase leading to the hypothesis that the establishment might 

be a consequence of replication associated chromatin assembly (Miller and 

Nasmyth, 1984).

It appears, however, that repression at these loci, as well as at telomeres, is 

mediated by a multiproteic complex containing nucleosomes and the product of 

SIR genes (silent information regulator; Rine and Herskowitz, 1987; Aparicio et 

al., 1991). While SIRl, probably through interaction with ORC, appears to act 

exclusively during the establishment of silencing (Chien et al,  1993 ), SIR2, SIR3 

and SIR4 are required for the maintenance of the repressed state (Pillus and Rine,

1989). Recently, SIR 3 has been directly implicated in spreading of the repressive 

state (Fig. 1.10c; Renauld et al, 1993). A direct involvement of histones in 

silencing was suggested by studies on deletion of the aminoterminal part of 

histone 3 and histone 4 that leads to a derepression of HM loci and the genes 

located near telomeres (Kayne et al, 1988). Cenetic studies have also showed that 

SIR3 and SIR4 might interact directly with the histone aminotermini to nucleate a 

repressive structure (Hecht et al,  1995). Furthermore the packaging of HM loci in 

a inaccessible chromatin structure has also been determined by its inaccessibility to 

various enzymatic probes (Loo and Rine, 1994). Interaction between SIR3 and SIR4 

with RAPl has been demonstrated by two-hybrid experiments (Fig. 1.10b; Moretti 

et al, 1994; Cockell et al,  1995).
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The transcriptional state of the silent domain is stably inherited through 

multiple cell cycles and the intact silencer is required for the efficient inheritance 

of the repressed chromatin structures following replication. So the silencer has all 

the information promoting the reformation of the silent chromatin in the 

progeny (Holmes and Broach, 1996).

A A A A A A
MAT E — HMR —E -  HML

V  W  W

RAPl

sUenang competent

SIR3 dependent 
propagation

RAPl-dependent 
recruitment of SIR 

proteins

Fig.1.10: Model for silencing establishment at HM loci and telomeres in yeast.

A: MAT, HML and HMR are the three loci that contain the regulatory genes for mating-type 

determination. The three subelements and the protein bound to the HMR-E silencer are shown. B: 

Model for silencing at HM loci. C: Model of protein-protein interaction involved in the nucléation 

and propagation of chromatin-mediated gene repression at telomeres. R is for RAPl. 3 and 4 are for 

SIRS and S1R4 respectively (Cockell, 1995).
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Pc-G

The studies on silencing in yeast stress the importance of maintaining stably 

repressed genes, as developmental regulatory genes, in multicellular organisms. 

The homeotic genes of Drosophila (reviewed in Gehring et al,  1994) provide a key 

model for studying mechanisms that maintain state of gene expression during 

development. Homeotic gene expression depends on a set of regulatory factors 

acting earlier in development and of another set of factors that maintain the 

patterns during later development. The homeotic genes encode transcription 

factors required for proper determination of identities of the body segments. Each 

homeotic gene is expressed in a spatially restricted domain along the anterior- 

posterior axis (A/P). The proper regulation of these genes is under the control of 

proteins that repress (gap protein) or activate (pair-rule) their expression by 

competing for binding to nearby or overlapping sites in the promoters (Shimell, et 

al. , 1994; Qian et al,  1993; Zhang and Schultz, 1992; Muller and Bienz, 1992). Later 

in development other classes of proteins are required for the correct maintenance 

of this pattern and genes involved in maintaining the repressive (Polycomb- 

group, Pc-G) or active (Tritorax-group, trx-G) state have been identified. The 

current model for the action of these genes is that they "lock" gene expression in 

an inactive or active state by changing in chromatin structure. Then, Pc-G genes 

would maintain repressed those homeotic genes that were off during earlier step 

of development as trx-G genes maintain active genes there were in a on state. 

Pleiotropic phenotypes of many Pc-G mutations suggested that Pc-G action is not 

limited to homeotic gene expression but rather they exert a more general control 

on oogenesis, neural development and cell proliferation (Phillips and Shearn, 

1990; Paro, 1990; Adler et ai,  1991). So far 13 members of this group have been 

identified by genetic studies six of which have been characterised at molecular 

level: Polycomb (Pc), polyhomeotic (ph). Posterior sex combs (Psc), Enhancer of
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zeste E(z), Polycomb-like (Pci) and extra sex combs (esc). Coimmunoprecipitation 

experiments (Franke et a l ,  1992) and double-immunofluorescence labelling of 

polythene chromosomes (Franke et al., 1992; Rastelli et al., 1993; Lonie et al., 1994) 

indicate that the Pc-G gene products form several large complexes, whose 

composition may vary in a cell-type specific manner playing different roles in 

different tissues during development.

A Pc-G response element (PRF) has been identified in the regulatory region 

of genes of ANT-C and BX-C complexes and it has been demonstrated that it is 

necessary for the establishment of repression of reporter gene expression in germ 

line transfection studies, although so far no DNA binding activity has been 

identified for any of the Pc-G proteins (Simon et al., 1993; Chan et al., 1994; 

Gindhart and Kaufman, 1995). This leaves an open question about the 

mechanism by which these sequences are recognised by the Pc-G proteins. Once 

targeted, the Pc-G would maintain repression of homeotic genes by the creation of 

a locked chromatin structure not accessible to any activator protein (Fig. 1.11).

E n h a n c e rPR E

I c ~ >

Fig. 1.11: Proposed mechanism for stable repression by Polycomb group protein
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This model, termed chromatin accessibility model, is sustained by several 

observations: i) immunoprécipitation of UV-crosslinked Pc proteins showed that 

they are physically associated with sequences corresponding to the entire length of 

Ubx and AbdA  genes. Some of these sequences contain high-affinity binding sites 

as tested by the ability to confer repression on a linked lacZ gene (Orlando and 

Paro, 1993); ii) Pc protein contain a region termed the "chromodomain" that is 

conserved in the Drosophila heterochromatin associated factor (HPl; Paro and 

Hogness, 1991), suggesting a structural similarity between Pc and HPl leading to 

the idea that Pc-G proteins repress transcription by packaging the DNA into an 

heterochromatin-like structure.; iii) the Drosophila gene BRM, whose function 

has been associated with that of the chromatin remodelling SWI/SNF complex in 

yeast, has been isolated as suppressor of Pc mutations (Tamkun et al,  1992); iv) the 

ability of sequence-specific DNA binding protein to interact with Pc-G repressed 

genes is inhibited in a manner similar to inhibition by stable nucleosomes (g and 

Paro, 1995; McCall and Bender, 1996). In this model Pc-G gene products would be 

targeted, by binding to high-affinity binding sites, to nucleate formation of a 

complex that then would spread to adjacent region creating a stable repressed 

chromatin structure (Figure 1.11).

It was found that the Pc chromodomain plays an important role in directing 

Pc-G complexes assembly. Mutations in the chromodomain do not only inhibit 

the binding of the Pc protein to its target genes but also affect the integrity of the 

entire complex (Franke et ai,  1995). Once again the importance of such regulatory 

mechanism is outlined by the identification of mammalian homologues of Pc-G 

gene products, bmi-1, identified as oncogenes in mouse, (Haupt et al, 1991; Van 

Lohuizen et al,  1991) and the human mel-18 (Ishida et al., 1993; Kanno et al.,

1995), show about 43% identity with fly Psc in the region surrounding the RING 

finger motif; the mouse Rae-28 protein contains several regions of sequence
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similarity to the fly ph protein (Nomura et al,  1994); a number of mammalian 

proteins have been described to contain chromodomains as mouse M33 protein 

(Pearce et al., 1992; Saunders et al, 1993), that is a good candidate as a functional Pc 

homologue.

From the examples reported above it is clear that the activity of promoter 

regions depends on the balance of function of complexes that through their effect 

on chromatin structure can lead to repression or activation. In particular several 

line of evidences are consistent with a model in which nucleosome mobility plays 

a key role in determining promoter activity and hence gene regulation. Increased 

nucleosome mobility might result from sliding of nucleosome along DNA or 

from direct transfer of the nucleosome from one to an adjacent segment of DNA. 

Activators, through ATP-dependent remodelling complexes, would act by 

increasing mobility of nucleosomes and might help displace Pc-G complexes 

preventing silencing (Aparicio and Gottschling, 1994; Zink and Paro, 1995), while 

repressors could function by directing formation of a structure that decrease 

nucleosome mobility and by blocking the recruitment of factors that increased 

mobility.

DNA méthylation mediated repression

DNA méthylation has been proposed to have an active role in gene 

regulation (Li et al,  1993; Li et al,  1992). Transient transfection and in vitro 

transcription studies demonstrated that DNA méthylation leads to the repression 

of transcription by interfering with the binding of transcription factor and by 

directing the assembly of specific-nucleoprotein complexes formed by methyl- 

specific DNA binding proteins and histones which potentially block transcription 

factors access (Murray and Grosveld, 1987; Iguchi-Ariga and Schaffner, 1989; Ball et 

al,  1983; Boyes and Bird, 1991; Jost and Hofsteenge, 1992). Specialised chromatin 

structures have also been implicated in maintaining the transcriptionally silenced
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state (Graessmann and Graessmann, 1988; Kass et al,  1994; Hsieh, 1994). Recently 

Kass et al. (1997) have shown that the process of silencing transcription by DNA 

méthylation involves both the inhibition of transcription initiation and the 

removal of engaged transcriptional machinery from active templates, followed by 

a time-dependent assembly of a repressive structure that includes a higher-order 

nucleosomal DNA structure (Kass et ai,  1997).

The plasm inogen activation system

Extracellular targeted proteolysis is essential for cell migration and tissue 

remodelling. One major system involved in these processes is the activation of 

plasminogen. The activation of plasminogen into plasm in leads to the 

degradation of extracellular matrix molecules, as fibronectin and laminin, and 

this event is at the centre of a variety of biological processes such as fibrinolysis, 

wound healing, angiogenesis, tumour metastasis, embryogenesis, gametogenesis, 

ovulation and mammary gland involution (reviewed in Saksela and Rifkin, 1988; 

Plow et al, 1995).

The activation o f  plasminogen

Plasminogen is found in high levels almost ubiquitiously (Raum et al,  1980; 

Isseroff and Rifkin, 1983; Miles and Plow, 1985; Maijar et al,  1986; Saksela and 

Vihko, 1986). Localised activation of plasminogen is regulated by a complex 

network of molecular interactions in which activators (urokinase-type and tissue- 

type plasminogen activators), specific inhibitors (PAI-1, PAI-2, PAI-3, protease 

nexin-I and II, a-2 antiplasmin) and receptors (uPA receptor, plasminogen 

receptor) are involved (see Figure 1.12). Both plasminogen activators (PAs) as well 

as their product, plasmin, belong to the family of serine proteases which also 

include trypsin, chymotrypsin, thrombin, elastase and others. Serine proteases
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contain a catalytic triad in their active site, serine, histidine, aspartic, which are in 

close contact and are important for the proteolytic cleavage (Stryer, 1995).

Plasminogen is activated by the PAs which cleave a single peptide bond 

between Arg 560 and Val 561. The two resulting polypeptides chains of active 

plasmin are held together by a disulphide bond.

uPAR

pro-uPA I

Plasmin

pro-metailo
proteases

PAI-1
PAI-2
PN-1

m etalloproteases

tPA

Fig. 1.12: The plasminogen activation system

The plasminogen activators

Both urokinase-type and tissue-type plasminogen activators (uPA and tPA) 

catalyse the activation of plasminogen but with distinct roles in v ivo.  In the 

absence of fibrin, uPA has a substantial plasminogen activator activity, whereas 

tPA is hardly active. Only binding of tPA to fibrin causes a several fold 

stimulation of its activity (Andreasen et a i ,  1990), playing a crucial role in 

intravascular fibrinolysis (Collen and Lijnen, 1991) and thrombolysis (Nilsson et 

al., 1985). uPA has a more general role in the blood stream primarily in the cell- 

mediated proteolysis during macrophages invasion, wound-healing.
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embryogenesis, invasiveness and metastasis (Dano et al,  1985; Fazioli and Blasi, 

1994; Sappino et ai,  1989; Moscatelli and Rifkin, 1988; Kirchheimer and Remold, 

1989; Baker et al,  1990). However, uPA and tPA knock-out experiments in mice 

have shown that many of the functions of uPA and tPA are shared and that only 

the knock-out of both genes leads to severe effects in the animals (Carmeliet and 

Collen, 1994; 1995). tPA deficient mice show an impaired thrombolysis and 

defective long term potentiation, a process in the brain that is related to learning 

and memory (Frey et al,  1996); on the other hand, inactivation of the uPA gene 

results in occasional spontaneous fibrin deposition, deficiency in wound-healing 

and abolishment of cellular recruitment in response to pulmonary inflammation 

(Gyetko et al., 1996). Combined uPA ' and tPA ' mice show an extensive 

spontaneous fibrin deposition in various organs and totally lack thrombolysis 

after endotoxin injection.

The two activators are product of different genes, the human gene for tPA is 

on chromosome 8, whereas that for human uPA is located on chromosome 10. 

The human tPA gene is 29-32.7 Kb long, consists of 14 exons (Ny et al, 1984) and 

codes for a 70 KDa protein via a 2.7 Kb mRNA (Fisher et al,  1985; Pennica et al., 

1983). The human 6.4 Kb uPA gene contains 11 exons (Riccio et ai,  1985) and 

encodes for a 53 KDa protein via a 2.5 Kb mRNA (Verde et al,  1984). The 

difference in gene size is due to long introns in the tPA gene, which contain 

several open reading frames without a known function (Degen et ai,  1986).

The two PAs are highly similar in their basic structures indicative of a close 

evolutionary relationship, but share less than 40% identity at the aminoacid level 

(Degen et al,  1986). Both uPA and tPA have a similar catalytic domain located in 

the carboxy-terminal part of both enzymes, a growth factor-like domain, which in 

the case of uPA is responsible for the binding to its specific receptor, and kringle 

domains (one in uPA and two in tPA). The additional kringle domain and the
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amino-terminal finger-like domain present in tPA seem to be responsible for its 

binding to fibrin (van Zonneveld et al,  1986).

tiPA and its receptor

uPA is produced from cells as a single-chain pro-enzyme (pro-uPA) and 

converted by limited proteolysis into an active two-chain molecule.

Binding of uPA to its specific cellular receptor (uPAR) (Stoppelli et al., 1985; 

Vassalli et al,  1985) regulates uPA activity by enhancing the rate of conversion of 

pro-uPA into the active two chain molecule (Ellis et al,  1989; Manchanda and 

Schwartz, 1991), localising the proteolytic activity to the cell surface, or inhibiting 

the active enzyme through specific inhibitors (Cubellis et al,  1989; Ellis et al., 

1990). The initiating event in the conversion of pro-uPA to active uPA in vivo is 

still not known. However, in vitro experiments show that plasmin is able to 

activate pro-uPA in solution (Wun et al, 1982), but a twenty-fold increase in uPA 

activation rate is achieved when pro-uPA is on the cell surface (Ellis et al,  1989). 

Proteases other than plasmin, involved in different physiological processes, can 

activate pro-uPA. Among these plasma kallikrein (Ichinose et al, 1986) trypsin 

(Koivunen et al,  1989), thermolysin (Marcotte and Henkin, 1993), cathepsin G 

(Learmonth et al,  1992), cathepsin B (Kobayashi et al,  1991) and L 6 (Goretzki et 

al., 1992), nerve growth factor y (Wolf et al,  1993) and thrombin (Nauland and 

Rijken, 1994).

The urokinase receptor is a heavily glycosylated 50-55 KDa protein made up 

of three homologous repeats of ~ 90 residues each, of which the amino-terminal 

domain is involved in ligand binding (Behrendt et al,  1990; 1991, Roldan et al,

1990), and is anchored to the plasma membrane by a glycosyl-phosphatidylinositol 

(GPI) moiety (Ploug et al,  1991). Glycosylation is necessary for the intracellular 

transport and maturation of the receptor but can also affect the affinity of the 

receptor for uPA (Picone et al, 1989; Moller et al,  1993).
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Although most receptors mediate rapid endocytosis of their extracellular 

ligand, the uPA receptor does not internalise bound active uPA (Stoppelli et al,  

1986a). Cell-surface uPA activity is regulated by the availability of extracellular 

PAIs. Once the uPAR-uPA-PAI-1 complex has been formed at the cell surface it is 

rapidly internalised and degraded (Cubellis et al,  1990). This has been also shown 

with uPA-PAl-2 (Estreicher et a!., 1990) and uPA-PN-1 complexes (Conese et al,

1994). This internalisation event occurs by the interaction of these complexes with 

the alpha2-macroglobulin receptor/low  density lipoprotein receptor-related 

protein (a2M R/LRP; Nykjær et al,  1992). The uPA receptor appears to be 

transiently internalised with the uPA-PATl complex, and rapidly recycled back to 

the surface (Conese and Blasi, 1995; Nykjaer et al., 1997). The ability of inhibitors to 

block surface uPA activity and of uPA receptors to recycle might result in 

continues modulation of migration-competent areas of the cell membrane by 

modifying the location of the proteolytic activity on the cell surface (Fazioli and 

Blasi, 1994). For instance, in non-migrating cells, uPAR is distributed on the cell 

surface at focal contacts or on the apical side (Limongi et al., 1995) whereas in 

actively migrating monocytes uPAR rapidly redistributes at the leading edge of the 

cells (Estreicher et al,  1990).

The biological role o f  uPA

Cells are structurally and functionally integrated through the interactions 

with the extracellular matrix and surrounding cells. Interactions are mediated by 

specific receptors, such as integrins and cadherins, with intracellular domains of 

these receptors connected to the cytoskeleton at focal adhesion, and by a number 

of molecules as fibronectin, laminin, thrombospondin, tenascin and collagen in 

the ECM, and vinculin, actin, a-actinin and paxilin in the cell (reviewed in 

Ridley, 1994; Carraway and Carraway, 1995).
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The important role of uPA in cell migration and invasiveness has been so 

far explained by the ability of uPA to activate plasminogen to plasmin at the cell 

surface promoting degradation of fibrin (Reich, 1978) and extracellular matrix 

(ECM) and basement membrane glycoproteins (Quigley et a!., 1987). Plasmin, in 

turn, activates other matrix-degrading proteases belonging to the metalloproteases 

family such as procollagenase type IV to collagenase (Saksela and Rifkin, 1988) and 

stromelysin (Matrisian, 1990). The activation of the metalloproteases family by 

means of plasminogen activators can therefore result in a synergistic and effective 

degradation of most, if not all, matrix components (Fig. 1.12).

uPA mediated extracellular proteolysis is involved in many physiological 

processes sustaining cell migration as i) the migration of kératinocytes in wound 

healing processes (Grondal-Hansen et al., 1988) which can be stimulated by the 

epidermal growth factor (EGF) (Rorth et al,  1990; Jensen and Rodeck, 1993); ii) the 

trophoblast cell invasion into the uterine wall during the process of mouse 

embryo implantation (Sappino et al., 1989; Teesalu et al,  1996), where each 

component of the system displays a regional expression in the apical pole of the 

implanting zone. In particular, uPA expression is confined to the inner layer 

(extraembryonic throphoblasts), uPAR synthesis is pronounced in the external, 

decidual layer and PAI-1 is confined to the intermediate layer; iii) the migration of 

myoblasts during myogenesis and muscle regeneration (Quax et al,  1992; Munoz- 

Canoves and Felez, 1993). In response to muscle damage satellite muscle cells are 

activated and undergo proliferation, differentiation and fusion, leading to the 

formation of long-multinucleated myotubes (Carlson, 1973). To a degenerative 

period that leads to tissue breakdown follows a remodelling period characterised 

by tissue regeneration (Allbrook, 1981). Plasminogen activation seems to be 

involved in these processes as suggested also by in vitro studies of muscle 

differentiation showing that uPA gene expression is modulated during the
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differentiation of myoblasts into myotubes. The uPA level is high during satellite 

cells proliferation and migration and decrease when myoblasts fuse to myotubes 

(Ibaùez-Tallon, 1997; Munoz-Canoves et al, 1997).

A multitude of studies in a variety of different systems have shown that the 

uPA-uPAR interaction may affect cell migration through multiple mechanisms 

(see figure 1.13). An example is given by the process of angiogenesis. Endothelial 

cell migration is positively regulated by the basic fibroblast growth factor (bFGF) 

(Gualandris and Presta, 1995) and negatively by the transforming growth factor 6 

(TGF-f^). It results in a regulatory circuit with bFGF stimulating uPA and 

collagenase synthesis, uPA in turn activating TGF-6, which eventually decreases 

uPA activity by inducing PATl synthesis (Fazioli and Blasi, 1994). Binding of uPA 

can induce a chemotactic response as shown for human monocytic leukaemia cell 

line THP-1 cells, independently of the catalytic activity (Resnati et a!., 1996).

In recent years, a number of evidence indicate the possibility of a direct 

intracellular signalling as an additional way by which the uPA-uPAR system can 

influence cell migration (Busso et al., 1994; Sitrin et al., 1996; Resnati et al,  1996). 

The recent discovery of substrates of uPA other than plasminogen, such as the 

pro-transform ing growth factor (pro-TGF-B) (Odekon et al., 1994), and the 

precursor from hepatocyte growth factor (pro-HGF) (Naldini et al., 1992) which is a 

cell-migration stimulating protein, provides a role for uPA as modulator of cell 

migration by regulating the activity of other protein factors.

Role o f  uPA in cancer

Due to their destructive potential, extracellular proteolytic enzymes have to 

be precisely and tightly controlled in their spatial and temporal expression. A 

pathological situation where these control mechanisms appear to fail dramatically 

is observed in malignant tumour cells, which exhibits progressive invasion of 

surrounding normal tissues.
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The are commonly found to be expressed by malignant tumours (reviewed 

in Pollanen et ah, 1991). Tumour tissue extracts from colon, breast, lung and 

prostate carcinomas have higher uPA activity than their normal non-transformed 

tissues.

cytoplasm

(uPAR'

uPA

signal transduction signal transduction

[osteoblasts fibroblasts myoblasts
mitogenes

activation of 
plasminogenactivation of pro-HGF 

and pro-MSP

cleavage of fibronectin 
and other ECM proteins

modulation of 
cell-cell and 
cell-ECM 

contact sites

activation of 
latent TGF-fi

CELL M IG R A T IO N

Fig. 1.13: The different mechanisms by which the uPA-uPAR interaction may affect cell migration

uPA is represented by the three linked domains: the growth factor domain (GFD), the kringle 

domain (Kr) and the protease (Pr) domain; ECM, extracellular matrix; pro-HGF, pro-hepatocyte 

growth factor; pro-MSP, pro-macrophage stimulating protein; TGF-6, Transforming growth factor 6. 

Solid lines indicate stimulation and broken lines indicate inhibition (Fazioli and Blasi, 1994).

In addition, PAs are found to be highly expressed in cells which have been 

infected with oncogenic viruses (Zhang and Schultz, 1992), correlating with the
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appearance of certain features of malignant cells such as anchorage independent 

growth, increased motility, reduced cytoskeletal organisation and morphological 

changes. Several data strongly suggest that the presence of high levels of uPA, 

uPAR and PAI-1 in hum an breast cancer may be used as an independent 

prognostic marker for the early relapses of breast cancer patients (Janicke et al,  

1990; Janicke et al,  1991; Grondal-Hansen et al,  1993) as well as for bladder and 

lung cancer (Hasui et al,  1992; Pedersen et al., 1994a, b). Therefore, several 

approaches have been made to use uPA and its receptor as anti-metastatic targets 

(Fazioli and Blasi, 1994). It has been shown in a number of studies that tumour 

invasiveness and metastasis can be blocked or stimulated in several model 

systems by a direct decrease or increase of uPA activity (Dano et al., 1985; Ossowski 

and Reich, 1983; Hearing et al,  1988; Axelrod et al,  1989; Ossowski et al,  1991; 

Mignatti and Rifkin, 1993). Moreover, recent studies show that uPA-deficient 

mice are more resistant to melanoma induction, again confirming the 

contribution of uPA to malignant progression (Shapiro et al., 1996).

Transcriptional regulation o f  the uPA gene

Due to the critical consequences of its activation, uPA expression requires a 

tight regulation. Many of the changes in the levels of uPA synthesis appear to be 

due to changes in the rate of transcription, but also post-transcriptional 

(Henderson et al,  1992; Nagamine et al,  1995) and post-translational mechanisms 

regulate its expression.

Inducers of uPA synthesis

The distribution of uPA in the organism is under normal circumstances very 

restricted. The presence of uPA in normal adult mouse is only detected in very 

few cell types such as the fibroblast-like cells in the gastrointestinal tract, the 

tubular cells in kidney and the pneumocytes in lung (Larsson et al,  1984).
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However, many cell types, often derived from non-uPA expressing tissues, 

produce easily detectable amounts of uPA when transferred to cell culture. The 

increased uPA synthesis most likely reflects the altered growth conditions 

imposed on the cells in culture leading to a highly proliferative state.

The study of uPA synthesis and regulation in cell culture is, however, very 

useful when trying to uncover the regulatory elements responsible for the 

expression of uPA and the mechanisms by which they are activated. In this way, 

uPA synthesis has been shown to be modulated by a large number of stimuli in 

many different cell lines. Reflecting the link between cancer and uPA gene 

expression, many of the uPA inducing agents are involved in growth control 

regulation. Growth factors (such as fibroblast growth factor, transforming growth 

factor-beta, epidermal growth factor), phorbol esters, polypeptidic (FSH, LH, 

pro lac tin , calcitonin) and steroid horm ones (estrogens, p rogesterone, 

dexamethasone and androgens), cAMP, antimitotic drugs (as colchicine and 

cytochalasin B), inflammatory cytokines (like tumour necrosis factor, interleukins 

and interferon y ), oncogenes and UV light, induce uPA gene expression 

(reviewed in Dano et a!., 1985; Blasi and Verde, 1990; Ibahez-Tallon, 1993; 

Nagamine et al,  1995; Besser et al. , 1996).

The transcriptional activation has been shown to be regulated independently 

through several signal transduction pathways involving protein kinase A (PKA), 

protein kinase C (PKC), cytoskeletal reorganisation and okadaic acid-sensitive 

protein phosphatase (Besser et al, 1996).

The uPA gene promoter

The genes encoding uPA and 5' flanking regions have been sequenced and 

extensively characterised in human (Riccio et al,  1985; Verde et al, 1988; Fig. 1.14), 

mouse (Degen et al,  1987) and pig (Nagamine et al,  1984). The length of the 

promoter sequences published so far are different between the three mammalian
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promoters, 2.3 kb, 7 kb and 4.7 kb for the human, murine and porcine genes 

respectively (Riccio et a l ,  1985; Cassady et a l ,  1991). In vitro  and in v ivo  studies 

have revealed the presence of a number of regulatory regions, some of them 

identical between all three mammalian promoters, but surprisingly, the far 

upstream region of the promoters share higher homology than the regions closer 

to the transcription start site.

RRBE
(RdA/creC) T» - ip q p f* ̂ Bihancer  ̂^ R E  

/  \/̂ COM # ,
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/  \
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Fig. 1.14: The human uPA 5' flanking region

The minimal promoter

The minimal promoter (MP) contains a TATA-box characteristic of many 

regulated genes, which is located 25 bp upstream of the transcription initiation site 

in all uPA promoters, but lacks the typical CAAT box. There are several copies of 

GGGCGG sequences, which are potential binding sites for Spl (four in the human, 

two in the murine and five in the porcine promoter) (Verde et al., 1988; Rossi et 

a l ,  1990).

The uPA enhancer element

The enhancer element is located at 2 kb (human and porcine promoters) and 

at 2.4 kb (murine promoter) upstream of the transcription initiation site (Verde, 

1988 et a l;  Rorth et a l ,  1990; Cassady et a l ,  1991). Two binding sites for the 

transcription factor AP-1, one of which is combined with the binding site for
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PEA3, are present within the 120 bp-long enhancer and are crucial for its activity 

(PEA3/APla and APlb sites) (Nerlov et al., 1991). In addition, a cooperation 

mediating (COM) element is positioned between the combined PEA3/AP1 and the 

API sites (Nerlov et al., 1992). The COM element does not appear to have 

transactivation-mediating activity by itself, but it is important for synergistic 

activation of both AP-1 sites (De Cesare et al,  1996).

A similar enhancer modular structure has been described in the promoters 

of the stromelysin, interleukin-3, and cytokine LD78 genes (Sirum-Connolly and 

Brinckerhoff, 1991; Taylor et al, 1996; Nomiyama et al,  1993). These promoters are 

also regulated through AP-1 sites, and seem to have sequence homologies to the 

uPA enhancer not only in the transactivating elements, but also in the COM 

region.

The PEA3/APlelement

The PEA3/AP1 element is conserved in the human, murine and porcine 

uPA promoters.

The GAGGAAA sequence has been shown to bind proteins of the Ets family, 

while the TGAAGTCA is an octameric AP-1 site, which can be imperfectly aligned 

with the octameric TREs of the c-jun promoter and with the GRE of the 

somatostatin promoter. The uPA APla sites of the murine and porcine enhancers 

are also formed by a non-canonical octameric binding sequence. Similar elements 

with a PEA3 site adjacent to an AP-1 site have been found in several promoters 

such as the polyoma A virus early enhancer and human collagenase enhancers. 

Maximal induction of these genes by growth stimuli requires both the AP-1 and 

the PEA3 binding sites.

It has been found that this PEA3/AP1 element is responsible for uPA gene 

induction through PKC activation by TPA (Rorth et al,  1990; Nerlov et al,  1991), 

protein phosphatase 2A (PP2A) inhibition by okadaic acid (Nagamine and Ziegler,
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1991), cytoskeletal reorganisation by colchicine or cytochalasins (Botteri et al,

1990), as well as for the response to several growth factors (Besser et al., 1995a) and 

oncogenes (Lengyel et al., 1995a,b; Nagamine et al,  1995). Moreover, the 

PEA3/AP1 element has also recently been identified as the target of the uPA 

transcriptional activation by middle-T antigen (Besser et al., 1995b; Urich et al,  

1995), GM-CSF (Granulocyte-macrophage colony stimulation factor; Stacey et al,

1995) and interleukin-1 (Besser et al,  1996).

Recent studies have shown that in vitro the PEA3 site interacts with ets-2, a 

member of the PE A3/ets  family, and in vivo mediates the induction of uPA 

transcription by colony-stimulating factor 1 (CSF-1; Stacey et al., 1995).

De Cesare et al. (1995) have reported that the uPA octameric upstream APla 

site interacts with the dimer formed by c-Jun and ATE-2 and that these 

heterodimers show particular regulatory features distinct from canonical AP-1 

dimers: c-Fos can antagonise the transcriptional induction via c-Jun/ATF-2 since 

c-jun/c-fos heterodimers have a much lower affinity for that site.

The downstream AP-1 site

The downstream AP-lb site is an heptameric non canonical site which differs 

from the TRE canonical sequence because of the central adenine. This element is 

identical in all three uPA enhancers. The two AP-1 sites of the uPA enhancer are 

not functionally equivalent: mutations of the downstream site AP-lb have a 

relatively small effect, reducing inducibility by about 75%, while the upstream site 

A P-la  has a more profound influence (Nerlov et al., 1992). c-Jun/c-Fos 

he te rod im ers  seem to bind the A P-lb  e lem ent (Verde P., personal 

communication).

The COM region

DNasel footprinting and site-directed mutagenesis have identified two areas 

of the COM region (u-COM and d-COM) important for the function of the
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enhancer (Nerlov et al, 1991). Four different factors, uPA enhancer factors (UEF) 1 

to 4, appear to bind to these regions. Mutations within the COM element, affecting 

the binding of the different UEFs impair both inducibility (Nerlov et al,  1992) as 

well as basal level activity (De Cesare et ai,  1996) of the enhancer. Transfection 

and mutagenesis analysis have shown that the COM activity is position- 

dependent but orientation-independent, and that its function appears to be 

structural since it does not have transactivation properties (De Cesare et ai, 1996).

NF-kB sites

Two NE-kB elements at -1580 and -1865 bp have been identified in the 

human uPA promoter. The site at -1580 mediates the induction by phorbol esters 

and tumour necrosis factor in HepG2 cells and HT1080 cells (Hansen et al,  1992), 

while the site at -1865 is involved in the TPA response in HeLa cells (Novak et al.,

1991). Two different dimers have been shown to bind the site at -1580, NE-kB (p50 

and p65 subunits) and a dimer of p65 and c-rel (Hansen et al., 1992). It is not 

known which of these dimers is responsible for the induction. However, the 

induction via this site may be repressed by a negative regulatory element 

upstream of the NE-kB site (Verde et al,  1988; Hansen et al,  1992).

cAMP responsive elements

Although it has been shown that PKA activation by cAMP agonists can 

induce uPA from all three mammalian species studied, the responsive elements 

have only been identified in the human and pig promoters.

Two putative AP2 binding sites in the human uPA promoter, close to the 

transcription start site have been shown to be responsible for PKA-dependent 

induction of uPA gene expression in murine Sertoli cells (Rossi et al., 1990) and 

the nuclear factors binding to them have been identified (Grimaldi et al,  1993a,b).

On the other hand, studies of the porcine uPA promoter in LLG-PKl cells 

(Degen et al., 1985; Nagamine et ai, 1983), indicate that PKA-dependent uPA
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induction seems to be conferred by different elements identified in a DNase I- 

hypersensitivity study (Lee et al,  1994). A cAMP-responsive region at -3.4 kb of the 

porcine uPA promoter was studied in more detail. It is composed of three 

elements, termed A, B, and C, all required for full cAMP responsiveness, 

suggesting that the proteins binding to these sites interact with each other 

(Menoud et a!., 1993; Marksitzer et al., 1995). Menoud et al. (1993) identified the 

protein binding to the C element as the porcine homologue of mouse liver factor 

B (LFB3) and human and rat variant hepatocyte nuclear factor 1 (vHNFl). The A 

and B elements contain CREB-like sequences but the binding proteins for these 

sites are not known. A high homology between the porcine uPA promoter A,B,C 

elements and human upstream sequences has been found, indicative of a similar 

PKA-dependent regulation of the human uPA gene (Ibafiez-Tallon, 1997).

Negative regulatory sites

Several reports indicate that in cells that do not produce uPA the main 

regulatory mechanism may be a negative one. The first indirect evidence is that 

the level of uPA mRNA is increased upon cycloheximide treatment (Stoppelli et 

al., 1986b; Grimaldi et al,  1986; Altus et al., 1987) and that this effect is in part due 

to increased rate of transcription, although an increased stability of uPA mRNA 

cannot be excluded. Secondly, in LLC-PKl cells, in which uPA expression is 

dependent on calcitonin or cyclic AMP treatment (Nagamine et al., 1983), 

recessive calcitonin-independent mutants have been isolated (Flofstetter et al., 

1987). Deletion analysis of the 5' flanking region of human and porcine gene 

prom oter identified a negative regulatory element located in the hum an 

promoter between -1824 and -1572 bp (Verde et al,  1988), and in the porcine 

between -2.7 and -1.6 kb (von der Abe et al., 1990). Furthermore, a repressor acting 

through the NF-kB site at -1865 bp of the human promoter has been described 

(Novak et al,  1991).
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unknown sites

The induction of the uPA promoter can be modulated by other signalling 

pathways. It has been reported that Ca^+ can enhance the induction by cAMP, 

TPA and okadaic acid in LLC-PKl cells although it does not induce the uPA gene 

by itself (Nagamine and Ziegler, 1991). Negative effects on uPA induction by 

cAMP, TPA and interleukin-1 a /b  and all-trans-retinoic acid have been reported 

for anti-inflammatory glucocorticoids. This probably occurs by an indirect 

mechanism, because no putative binding site for the glucocorticoid receptor is 

present in the uPA promoter, and the repression can be blocked by protein 

synthesis inhibitors (Vitti and Hamilton, 1988; Pearson et aL, 1987). The 

m echanisms regulating Ca^+ and glucocorticoid modulation of uPA gene 

expression are not well understood (Nagamine et al., 1995).

Chromatin structure of human uPA gene

Recently, in our laboratory, the regulation of the hum an urokinase gene 

expression has been related to the chromatin structure of the gene (Ibahez-Tallon, 

1997). The analysis has been carried out in cancer cells which constitutively 

express urokinase (PC3), in cells which do not produce uPA (HeLa) and in HepG2 

cells in which urokinase transcription is induced with TPA (Nerlov et al., 1992), 

relating the chromatin structure to the different functional states of the gene.

The DNase I hypersensitive sites (HS) analysis have revealed the presence of 

8 HS sites in the active gene (see Figure 1.15). Three sites (HSl, HS2 and HS3) are 

located in the most 5' part of the promoter (also characterised in our lab.). The 

HS4 site maps in the enhancer element; HS5 corresponds to a putative Z-DNA 

structure; HS6 is localised between -0.7 and -0.55 Kb; HS7 spans the start site of 

transcription and the first intron and HS8 is 3' of the polyA site. Important 

differences between cell types were observed suggesting that a general loosening of
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the chromatin structure over the proximal promoter region (PC3 versus HeLa) 

and local rearrangements (HepG2 - /+  TPA) correlate with uPA transcriptional 

activation. In cell lines not expressing uPA the minimal promoter (revealed as 

HS7) and the proximal regulatory region (identified by HS6) show resistance to 

DNase I, indicative of a compact chromatin organisation and possibly 

inaccessibility to the basal transcription machinery.

Furthermore the chromatin studies on the mouse urokinase gene during in 

vitro myoblast differentiation revealed a pattern of HS in which HS5, 6 and 7 

correspond respectively to the HS4, 6 and 7 of the human gene and are present at 

the myoblast and early myotube stages. An overall decrease in DNasel 

hypersensitivity over the distal promoter region correlates with differentiation.

Due to the quite high level of species conservation between the human and 

murine uPA promoters is important to underline that nuclease hypersensitivity 

associated to the minimal promoter and start site of transcription seems to be a 

necessary condition for both genes to be active. Human HeLa and mouse LB6 cells 

do not express detectable levels of uPA and do not have HS at the start site of 

transcription (see Figure 1.16).
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Fig. 1.15: Schematic representation of DNasel hypersensitive sites of huPA gene in different cell 

lines.

Both the promoter region (-11.8/+1) and the gene (+1/ +9000) of human uPA are represented (Ibanez- 

Tallon, 1997).
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Fig. 1.16: Schematic representation of homologous cis-acting regulative elements, associated to 

DNase I hypersensitivity, in the human and murine uPA promoters (Ibanez-Tallon, 1997).
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2. Aim of the project
As described in the introduction, uPA is involved in norm al and 

pathological processes by activating proteolytic reactions at the cell surface and is 

evident that due to its high destructive potential, uPA expression needs to be 

tightly regulated.

The restricted uPA expression in the organisms, very few cell types, and its 

overexpression in tumours and several transformed cell lines, makes of major 

importance to study and characterise the element(s) involved in the negative 

regulation of uPA, in order to understand the mechanisms that lead to high 

expression of the gene in tumour cells.

Progressive 5' deletions of the regulatory region of human uPA, from -2350 

with respect to the transcription start site, fused to the CAT reporter gene, have 

already revealed the presence of positive (the enhancer, up to -1824) and negative 

cis-acting sequences (-1824/ -1572) and of a specific contribution to uPA expression 

of the region -1572 to -72 in the kidney derived A1251 cells, but not in HFSIO 

fibroblasts (Verde et a/.,1988), suggesting the presence of multiple array of cis- 

acting sequences specific for different transcription factors that direct uPA 

expression in a cell-type specific manner.

Furthermore Cannio et al. (1991) described the presence of another negative 

regulatory region (-660/-86) in the proximal region of human uPA promoter, the 

activity of which was dependent on the presence of the enhancer. In particular, he 

m apped  the silencing activity in the region -660/-537 and the enhancer 

dependence in the region -537/-301.

At the beginning of this project I decided to further characterise the silencer 

region described by Cannio et al. but I found out that part of the constructs used in
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that analysis contained several important cloning mistakes so to invalidate all the 

results got that far.

I then decided to characterised again the 5' flanking region of the human 

uPA gene to find out elements that were involved in the negative regulation of 

the gene in cells not producing uPA compared to uPA producing cells (Figure 2.1).

As shown in the figure, the human HT1080 cell line and the human 

prostatic derived adenocarcinoma cell line PC-3 express uPA at high levels; the 

cervical carcinoma derived HeLa cells and the simian fibroblast-like CV1 cell line 

express little if not all uPA, while the human hepatocyte cell line HepC2, 

expresses uPA at a very low basal level inducible upon treatment with phorbol 

ester TPA.

HepG2

HT1080 HeLa PC3 CVl -  +TPA

-
uPA

18S
Fig. 2.1: Northern blot analysis of uPA expression in different cell lines

All the constructs used in the transient transfection analysis are derived 

from the -2212/ -t-30 region of the human uPA promoter driven the expression of 

CAT gene, in order to avoid the presence of great part of the 5'Alu sequence (- 

2350/-2140). On the other hand Verde et al (1988) already showed that the region 

up to -2.2 Kb contains the sequences needed to direct a cell-type specific expression 

of uPA, in culture.

In the second part of the thesis I started the characterisation of the factors that 

might be involved in the establishment of the silenced state of the uPA gene.
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Other aspects of negative regulation of uPA, in different systems (repression 

by TGFfi and control of the expression of uPA during the cell cycle), that have 

raised my interested, are treated in the two appendices, as the results described are 

preliminar and they would need further studies.
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3. Materials and Methods

Cell culture, DNA transient transfection and CAT assay

The cervical carcinoma HeLa, the prostatic derived adenocarcinoma PC-3 and 

the simian fibroblast-like CV-1 cells were grown in Dulbecco's modified Eagle's 

medium (DMEM; Cibco, UK) supplemented with 10% foetal calf serum, penicillin 

(100 U/ml), streptomycin (100 gg/ml) and glutamine (2 mg/ml).

Cells were transfected by the calcium phosphate precipitation technique 

(Craham and van der Eb, 1973). Briefly, cells were plated at a density of 7x10^ per 

100 mm plate 24 hours prior to transfection. A calcium phosphate DNA 

precipitate containing 10 pg of reporter plasmid, 1 pg of EEla-fi galactosidase 

expression vector and carrier DNA (fish sperm DNA, Boehringer Mannheim) up 

to 20 pg (DNA mix), was formed by adding dropwise an equal volume of DNA 

mix to a 2x HBS buffer (1.4 mM Na2HP04, 12 mM glucose, 27.4 mM NaCl, 10 mM 

KCl, 40 mM Hepes) and added to cells for 16 hours. After removal of the 

precipitate cell extracts were prepared 48 hours after transfection by the three 

freeze and thawing cycles of the cells previously resuspended in 100 pi of Tris-HCl 

0.25 M. pH 7.8 (Sambrook et a/.,1989).

The CAT protein produced was quantitated employing a non radioactive 

CAT-ELISA kit (Boehringer Mannheim) and the amount was normalised to 6- 

galactosidase activity (Sambrook et al,19S9).

D NA plasm id construction

All DNA manipulations were carried out by standard techniques (Sambrook 

et a l ,1989) and the constructs verified by restriction analysis and DNA sequencing.

The -2212 to +30 region of the human uPA promoter (EcoRI/Smal in p-uPA- 

CAT-2212; Verde et al,  1988) was cloned in the EcoRI/Smal site of pCEM7Zf(+)
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vector (Promega; p2212). The Hind III/BamHI CAT cassette from pEMBL8-CAT 

(Colantuoni et al, 1987) was cloned in the Hind III/BamHI sites of p huPA2212 

plasmid. The derived plasmid (p2212CAT) is used as the basic construct for all the 

following manipulations.

5' deletions

1870CAT, 660CAT, 787CAT: The fragments EcoRI/EcoRV (-1870/-537) and

EcoRI/Smal (-660/+30) from p-uPA-CAT-1870 and p-uPA-CAT-660, respectively, 

(Verde et al., 1988) are blunt ended and cloned in the blunt Xhol and EcoRV 

(1870CAT) or Smal (660CAT) sites of p2212CAT digested plasmid.

Eor 787CAT the cloned region is Hpal/EcoRV (-787/-537) from p2212.

537CAT and 86CAT (MPCAT): p2212CAT is digested respectively with 

Xhol/EcoRV and Xho I/Eco47III, blunt ended and religated.

Internal deletions

E537CAT (ES3MPCAT), EMPCAT, EAS3CAT: They are obtained by digestion 

and religation of p2212CAT vector with the following restriction enzymes: 

Bsu36I/EcoRV (E537CAT); Bsu36I/Eco47III (EMPCAT); EcoRV/Eco47III (p 

2212AS3CAT).

EH28CAT, E787CAT, E660CAT; The -1428/-537 (StuI/EcoRV), -787/-537

(Hpal/EcoRV) and -660/-537 (AluI/EcoRV) fragments from p2212 were cloned in 

Bsu36I/EcoRV linearized p2212CAT, respectively.

EAS2CAT:  The p2212 plasmid is digested H pal/EcoRV and religated 

(p2212AS2). The StuI/Eco47III from p2212AS2 is then cloned in the StuI/Eco47III 

linearized p2212CAT (EAS2CAT).

ESIMPCAT, SIMPCAT:  They are obtained by StuI and Eco47III digestion and 

religation of p2212CAT and pl870CAT, respectively.

ESIMPCAT, SIMPCAT:  pE787CAT and p787CAT are digested with EcoRV 

and Eco47III and religated to give ,respectively, pES2MPCAT and pS2MPCAT.
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SV40 derived plasmids

The -7S7/-537 S2 region (Hpal/EcoRV in the huPA promoter) is cloned in 

both orientation in the blunt ended Bgl II site (pCATsil and pCATsil inv) and in 

the Xbal site ( pCATsil 3') of pCAT control vector (Promega) which contains the 

SV40 promoter and enhancer.

S2 internal deletions

The deletions of the regions internal to the S2 silencer have been obtained by 

recombinant PCR according to Vallette et al. (1989).

The primers used for primary amplification were the following:

p A l :  5' T T G G T G C T T C T C T T T T G G G  A 3' ( # A l c s )  a n d

5'AGCTCTGCCTTCCTTCTGTCACTCTCAGGTG 3' (#U3BE; - 1 5 0 0 / - 1 4 7 4  in the uPA 

promoter), 5' TCCCAAAAGAGAAGCACCAA 3' (#A1) and 5'AGTGGCAGTCCCCAGATATCA 

3' (#5  low; -5 2 0 /-5 4 0 ) ;  pA2: 5'ATGATGTTACGCATAAACTG3' (#A 2cs) and #U3BE, 5' 

CAGTTTATGCGTAACATCAT 3' (#A2) and #5  low; pA3: 5' ATTACTGAAACAGGGCTTGA 3' 

(#A3cs) and #U3BE, 5'TCAAGCCCTGTTTCAGTAAT 3' (#A3) and #5  low; pA4: 5' 

TTTGATGGTGACTGAAAATT 3' (#A4cs) and #U3BE, 5'AATTTTCAGTCACCATCAAA 3' 

(#A4) and #5  low; pA5: 5'ATGGAACAAAGCCGGGCTTA 3' (#H low; -557/-576) and 

#U3BE.

After mixing together the primary PCR products, the second amplification 

has been carried out using as external primers #U3BE and #5 low (pAl to pA4). 

The final products are digested Stu 1/ EcoRV and cloned in StuI/EcoRV linearized 

p2212CAT (p2212S2Al to A4).

To obtain A5 construct the primary product is directly digested with Stu I or 

Hpal, and cloned in the StuI/ EcoRV digested p2212CAT (p2212S2A5) or in the 

blunt Bgl II site of pCAT control (psilA5), respectively.

For the other S2-SV40 derived constructs the psilA2 to psilA4 plasmids were 

derived by digestion of p2212S2A2 to A4 with Hpal/EcoRV and cloned in the blunt
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ended Bgl II site of pCAT control. psilAl was obtained by PCR using as template 

p2212S2AlCAT construct and the following primers: 5' TCCCAAAAGAGAAGCACCAA 

3' (#A1) and #5 low. The fragment is then digested Hpal/EcoRV and cloned in the 

blunted Bgl II site of pCAT control.

pAlA2, pA3A4, p3' half, p5' half: These construct are obtained by the same 

strategy. In the case of pAlA2 and pA3A4 the DNA templates were psilAl and 

psilA3, respectively. For p 3'-half and p5'-half the template was p2212CAT.

In the first step of amplification the primers are 5' AAGTTGGGTAACGCCAGGGT 

3' (#pCAT up, 341/420 in pCAT contro l vector) and  #A 2cs, 5' 

AGCTTCCTTAGCTCCTGAAA 3' (#EC13; 605/638 in pCAT control) and #A2 (pAlA2); 

#pCAT up and 5' G T G A C T G A A A C A G G G C T T G A  3' (#A3A4cs), 5'

TCAAGCCCTGTTTCAGTCAC 3' (#A3A4) and #EC13 (pA3A4). The se co n d  amplification 

is performed using as external primers #pCAT up and #EC13. The products are 

then digested Sau3AI and cloned in Bgl II site of pCAT control.

The p 5'-half and p3'-half constructs are derived by a single amplification 

step with the fo llo w in g  primers 5' CAGTAATCTGGCCTTGCCTTTCC 3' and #5 low (p3'- 

half), 5' ACTGAAAATTTGCAGCTTGG 3' and 5' TCCCAAAGACCCGTTAACAC 3' (#HpaI) 

for p 5'-half.

The fragments are then digested EcoRV (p 3'-half) and Hpa I (p 5'-half) and 

cloned in blunted Bgl II site of pCAT control.



Materials and Methods 74

Nuclear extract and Southwestern analysis

Nuclear extracts were obtained with a modified method of Dignam et al.,1983 

(Ausubel et al,  1994).

Briefly, HeLa and PC-3 cells were grown in 150 mm plates to 80% confluence 

in DMEM supplemented with 10% foetal calf serum, penicillin (100 U /m l), 

streptomycin (100 gg/ml) and glutamine (2 mg/ml).

After harvesting, the cells are resuspended in a volume equal to 3 packed cell 

volume (pcv) of hypothonic buffer (10 mM HEPES pH 7.9 at 4°C, 1.5 mM MgCl2, 

10 mM KCl, 0.2 mM PMSE, 0.5 mM DTE), swollen on ice for 10 min. and 

homogenised with 10 strokes (type B pestle). The nuclei are pelletted by 

centrifugation at 3300xg for 15 min. and resuspended in 1/2 packed nuclei volume 

(pnv) of low -salt buffer (20 mM HEPES pH 7.9 at 4°C; 25% glycerol, 1.5 mM MgCl2, 

20 mM KCl, 0.2 mM EDTA, 0.2 mM PMSE, 0.5 mM DTT).

In a dropwise fashion a volume equal to 1 /2  pnv of low-salt buffer 

containing 1.6 M KCl (high-salt buffer) was added (0.4 M KCl final concentration) 

and the nuclei were extracted for 30 minutes at 4°C with continuous gentle 

mixing.

After centrifugation the nuclear extract is dialysed against 50 volumes of a 

buffer containing 20 mM HEPES pH 7.9 at 4°C; 20% glycerol; 100 mM KCl; 0.2 mM 

EDTA; 0.5 mM DTT; 0.5 mM PMSE for 4-16 hours. After centrifugation, to remove 

the precipitated protein, the extract is aliquoted, frozen in liquid nitrogen and 

store at -80°C. The protein concentration is determined by the Bradford method 

(BioRad; Bradford M., 1976).

Eor column chromatography fractionation, purified HeLa cells nuclei, 

obtained by 5x10^ growing exponential cells (Ghent, Belgium), are extracted 

according to the method of Dignam et al. (1983). Briefly, the nuclei pellet (10 ml) is 

resuspended in 2.5 volume of buffer C (20 mM Hepes pH 7.9, 25% Glycerol, 0.42 M
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NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 0.5 mM DTT, 0.5 mM PMSE, Ix Aprotinin, 1 

gg /m l Leupeptin, Igg /m l Pepstatina A, 1 mM Sodium bisulphite) and stirred on 

ice for 60 min. Nuclear extract is then clarified by ultracentrifugation at 40000 rpm 

in the 70.1 Ti rotor (Beckman) at 4°C for 1 hour and dialysed in 50 volume of 

buffer D.

29 OD280 ^re loaded on a 25 ml Heparin Sepharose column (Pharmacia) pre­

equilibrated in Buffer D. The column has been washed with 2 volume of the same 

buffer containing 200 mM KCl (Fraction W; 3.55 OD28O) and eluted with 10 

volume of 200 mM - 1 M KCl linear gradient made in buffer D.

50 g g of fraction W are sized fractionated on a 10% SDS-polyacrylamide gel 

and the protein transferred to a nitrocellulose filter (250 mA, 4 hrs in transfer 

buffer: 191 mM glycine, 25 mM Tris, 20% methanol). The proteins are then 

renatured by incubating the filter in 100 ml of renaturation buffer (lOmM Tris-HCl 

pH 7.5, 10 mM Magnesium Acetate, 10 mM KCl, 10 mM 2-mercaptoethanol, 0.1 

mM EDTA, 10% glycerol, Ix Denhardt's solution) for 2 hours with 3 changes.

Binding is carried out with 5 ml of a mixture containing Ix binding buffer 

(see above) and 5x10^ cpm of labelled oligonucleotide (-100 fmoles) as described in 

the legend of the figure. Competitor DNA is added as fold molar excess.

DNase I  protection analysis and Electrophoretic m obility shift assay (EMSA)

40 to 80 gg of nuclear extract are used in DNase I footprinting experiment. 

The reaction is performed in 50 gl of a mixture containing 25 gl of 2X binding 

buffer (40 mM HEPES pH7.9; 4 mM MgCl2; 100 mM KCl; 1 mM EDTA; 2 mM DTT; 

20% glycerol) and 2 gg of poly dl-C (Pharmacia) and incubated on ice for 30 min. 

After adding 20.000 cpm of ^^P-S2 labelled fragment the incubation proceeds for 30 

min at r.t.

DNase I treatment is performed adding to each sample 50 gl of MgCl2 10 

m M / CaCl2 5mM and DNase I ( In g /gg  of extract) freshly diluted in the same
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buffer. After 2 min. at r.t. digestion was stopped by adding 100 gl stop solution (20 

mM Tris pH 7.5; 200 mM NaCl; 20 mM EDTA; 1% SDS; 100 gg /m l proteinase K; 50 

g g / ml  tRNA) and incubating the samples 30 min. at 60°C. Samples are then 

phenol/ chloroform extracted and DNA is precipitated with 1/10 vol of sodium 

acetate pH 7.0 and 2.5 vol. of cold EtOH.

DNA was then separated on 6% or 8% denaturing polyacrylamide gel, using 

standard Maxam-Cilbert G+A sequencing reaction of the fragment as a marker 

(Sambrook et al,  1989).

Eor EMSA analysis, 3-5 gg of nuclear extract are preincubated on ice for 30 

minutes in 25 gl final volume of a mixture containing 20 mM HEPES pH 7.9; 2 

mM MgCl2; 50 mM KCl; 0.5 mM EDTA; 1 mM DTT; 10% glycerol and 2 gg of poly 

dl-C (Pharmacia). 10 fmoles of labelled oligonucleotide DNA probes and molar 

excess of cold competitors (see legend of figures) are added simultaneously and 

incubated for 30 minutes at room temperature. Nucleoproteic complexes are then 

analysed on 5% polyacrylamide gels in 0.5x TBE run at 7 watts for 90 minutes. 

Prior to loading, gels are prerun at 300 volts for 30'. The gels were dried and 

autoradiographed using intensifying screens at -80°C for 24-48 hours.

Circular permutation assay

The H pal/EcoRV  (-787/-537) S2 region and the annealed synthetic 

o lig o n u c le o tid e  #H (5' TAAGCCCGGCTTTGTTCCAT 3') are cloned in the Xbal site of 

pBend2 plasmid (Kim et al,  1989). Circular permuted fragments are obtained by 

restriction with different restriction enzymes in the tandemly repeated polylinker 

of pBend2. Each fragment is then labelled by Klenow filling in using a^^P-dCTP or 

by Polynucleotide kinase and y^^P-ATP (Sambrook et al.,, 1989) and incubated in 

the presence of titrated amount of human SRY-HMG box (kindly provided by M. 

Bianchi, DIBIT, Milan; Eerrari et al.„ 1992), human SOX-4 HMG box and human



Materials and Methods 77

TCF-1 HMG box provided by M.van de Wetering (University of Utrecht, The 

Netherlands; van de Wetering and Clevers, 1992; van de Wetering et al.,, 1993). 

The binding is carried out in 10 gl (final volume) of a buffer containing 8% Ficoll, 

100 mM NaCl, 10 mM Hepes pH 7.9 for 10 min on ice. Electrophoresis is carried 

out as previously described.

The mobility of protein-DNA complexes was normalised to the mobility of 

free DNA (Rbound/Rfree, vertical axis in the graphs); the distance between the 5' 

end of the probe was normalised to the total length of the probe (flexure 

displacement, orizontal axis in the graphs). The points in the graphs were 

interpolated with a second-order equation by means of least squares algorithm 

(Cricket Graph application on a Macintosh computer).
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4.Results

Cell type specificity of different portions of the uPA gene regulatory region.

DNA constructs carrying different portions of the uPA regulatory region 

(from -2212 to +30) fused to the CAT reporter gene have been transfected in cells 

either not producing (CVl and HeLa cells) or producing high constitutive level of 

uPA (PC-3).

As shown in table 4.1, the transcriptional activity of the minimal promoter (- 

86 to +30; pMPCAT) was unexpectedly higher (about 2.5 fold) in CVl than in PC-3 

and HeLa cells. When I used the full length construct p2212CAT, which includes 

the enhancer, the minimal promoter and the sequences spanning the two regions, 

an increase of only 3 fold over the minimal promoter activity was observed in PC- 

3 cells, while in CVl and HeLa cells the transcriptional activity dropped by about 

three and five fold (Table 4.1). When a fragment containing the enhancer (-2212 to 

-1870) was added upstream of the minimal promoter (pEMPCAT), the activity was 

increased in all three cell lines tested although with different efficiency: seven and 

six fold in the case of CVl and HeLa and 25 fold in PC-3 cells (Table 4.1).

These data showed that the activity of the minimal promoter, cell-type 

dependent, is in all cases increased by the enhancer and that the sequences 

between the enhancer and the minimal promoter modulate enhancer activation 

in a cell-specific way by downregulating transcription.
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-2212 -1S20 -1428

I— I .
-787 -537 -86

_l I i i ■_ p 221 2 CAT

p EMP CAT

p MR CAT

pg  C A T / u n I t  B - 6 A L

P C - 3 C V  1 H e L a

36.0 ± 5.3 (n -6 ) 10.3 ± 3 (n -22) 2.8 ± 1.1 (n-14)

305.0 ± 70.0 (n-3) 220.0 ± 55 (n-7) 76.5 ± 5.0 (n-2)

12.2 ± 2.9 (n -6 ) 30.0 ± 8 (n -6 ) 13.4 ± 5.3 (n-7)

Table 4.1: Cell-type specificity of uPA promoter activity 

Plasmid constructs with the CAT gene under the control of the indicated uPA subunit promoter regions 

were tested, in transient transfection, for CAT activity in cell lines either not producing (CV-1 and 

HeLa) or producing high constitutive level of uPA (PC-3). CAT values are normalised to fi- 

galactosidase activity and they are the means ± standard deviation (SD) of a number of independent 
experiments as indicated in parenthesis.

Multiple silencing activities in the 5' flanking region of the human uPA
gene.

In order to investigate in greater detail the mechanism of negative 

regulation of transcription in the uPA gene, 5' deletions of the p2212 CAT 

construct were tested in CVl and in PC-3 cells (Figure 4.1). Deletion of the 

enhancer region reduced the activity of the construct (compare p2212 to p i870); 

further deletions (up to -537) restored the activity to that of the p2212 construct in 

CV-1, but did not have a significant effect in PC-3 cells. Only the deletion of the 

region spanning from -537 to -86 increased transcription in both cell lines (Figure 

4.1).
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rel a t i ve  ac t iv i t y  

1 2

- 5 3 7

- 6 6 0 n
- 7 8 7 n

- 1 8 7 0 r
- 2 2 1  2 r

CV 1
3

1

0.30 ± 0.05 (4)n CVl
n  PC-3 0.32 ± 0.05 (4) 

0.30 ± 0.03 (4) 

0.12 ± 0.01 (4) 

0.32 ± 0 .04 (5)

P C -3

0.30 ± 0 .08 (2)

0.43 ± 0 .08 (3)

0 .29 ± 0.05 (3)

0.23 ± 0.11 (3) 

2.50 ± 0.30 (3)

Fig. 4.1: Deletion analysis of huPA 5’ flanking region

Nested 5' deletions of uPA promoter region are analysed in CV 1 (light blue bars) and PC-3 (orange 

bars) cell lines. CAT values are expressed as relative activity (normalised to 6-galactosidase) ± 

standard deviation with respect to p86 CAT construct set as 1. The number of independent 

experiments are shown in parenthesis.

Next, I prepared internal deletions leaving the enhancer and the minimal 

promoter (-86) intact, in order to analyse the effects of the negative region(s) on 

the enhancer activity (Figure 4.2). In PC-3 cells, deletions of the region -1820 to -537 

minimally (two-fold) increased transcription. However, deletion of the -537 to -86 

region (called S3) caused a stronger increase in CAT activity. I then conclude that 

in this cell line the only two functionally most important regions are the 

enhancer and S3 (Fig. 4.1 and 4.2).

In CVl and HeLa cells, however, regions -1820 to -1428 (SI), -787 to -537 (S2) 

appeared to contribute to the down regulation of transcription with an additive 

effect to that of -537 to -86 (S3). Deletion of SI increased transcription about 2.5 fold 

in CVl and five-fold in HeLa. Deletions of both SI and S2 (-1820 to -537) had an 

about seven fold effect, and deletion of all three increased transcription 20 to 25 

fold. Deletion of either S2 or S3 region alone confirmed their role as cis-acting
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negative regulatory elements with SI and S2 showing greater cell type specific 

activity (compare CVl and HeLa versus PC-3) than S3.

-2212 -1820 -1428

I 1 I—

-2212 -1820  

I 1
-2212 -1820  

I 1
-2212 -1820  

[ ~ ~ l 
-2212 -1820

-2212 -1820 -1428

I 1
-2212 -1820 -1428

[ = ] _______ L _

+1
-787 -537 -86

_ d _ ^J  L

-787 -537 -86

rT ,

-787 -537 -86 +1

_ c £ *
-787 -537 -86 +1

d L

p 2212 CAT
ENH MP

-2212 -1820 -1428 -787 -537 -86 ^
I-------------1 I_____________ I I n  nF 1428C A T
------------------------------------------------------  (ASl)

p E787 CAT

-86 +1-660-537

p E660 CAT

-537 -86

p E537 CAT

p EMP CAT

p EAS2 CAT

pEAS3 CAT

p MP CAT

CAT re la tive  activity

CV 1 H e L a P C - 3

Ix Ix Ix

4.6x ± 1.60 (7) 4.9x ± 0.15 (2) 1.51X ± 0.28 (5)

4.Ox ± 0.80 (6) - 1.74X ± 0.34 (5)

7.3x ± 1.70 (4) - 1.88X ± 0.32 (7)

6 .0 x ± 1 .2 0 (4 ) - 1.61X ± 0.34 (6)

21.3X ± 5.00 (7) 24.6X ± 7.00 (4) 10.30X ± 3.90 (7)

2.5x ± 0.04 (7) 2.9x ± 0.20 (3) 1.60X ± 0.05 (3)

3.8x ± 0.60 (4) 5.8x ± 0.70 (2) 5.20X ± 0.90 (4)

3.3x ± 0.20 (5) 5.1x ± 1.80 (9) 0.34X ± 0.10 (4)

Fig. 4.2: Analysis of huPA promoter internal deletions

Constructs carrying internal deletions of huPA 5' flanking region are analysed in CVl, HeLa and PC- 

3 cells. CAT values are expressed as relative activity ± SD, with the full length construct set as 1. 

The number in parenthesis is for independent experiments.

Constructs (E787CAT, E660CAT, E537CAT, and EMPCAT) where the 

enhancer is located downstream the CAT gene showed the same activity, 

excluding that the increased CAT expression was due to a position effect of the 

enhancer closer and closer to the transcription start site (data not shown).

Furthermore, the deletion analysis suggested that S2 activity depends on the 

enhancer, as its activity was not detected in the 5' nested deletions of figure 4.1. SI 

and S3, instead, appear to modulate the activity of the minimal promoter.
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In order to test this possibility I cloned the SI, S2 and S3 regions in front of 

the uPA minimal promoter in the presence or in the absence of the enhancer. As 

it is shown in figure 4.3, in CVl cells all three regions SI, S2 and S3 repress the 

activity of the constructs by the same level either in the presence or in the absence 

of the enhancer. From these data it is possible to conclude that these silencing 

regions suppress the activity of the minimal promoter.

fold rep ression

-1820 -1428

ENH SI

-1820 -1428

-1820

1 . L
ENH

-2212 -1820

ENH

2212 -1820

1 L

787 -537 -86
CAT

-537 -86

S3 MP

537 -86

S3 MP

ENH
86 +1

p ESIMP CAT 3.4 X ± 0.35 (5) -----

p SIM P CAT ------ 4.20  x ±  0.90 (6)

pES2MPCAT 1.8 X ± 0 .30  ( 6 ) ---

pS2M PCAT --- 1.98 x ±  0.30 (6)

pES3MPCAT 2.37 X ± 0.22 (7) ---

p S3MP CAT --- 2.37 X ± 0 .5 0 (4 )

p EMP CAT 1 X ---

pM PC A T --- 1 X

Fig. 4.3: SI, 82 and S3 effect on the uPA minimal promoter and enhancer activity in CVl cells.

The negative regulatory elements 51, 52 and 53 are cloned in front of the minimal promoter in the 

presence or absence of huPA enhancer and their activity is tested in CVl cell line. The values are 

expressed as fold repression (pEMPCAT/pE5MPCAT and pMPCAT/ p5MPCAT, respectively) ± 5D. 

In parenthesis the number of independent experiments is indicated.

S2 has the properties of a silencer

Of the three negative regulatory regions only S2 showed to act in a cell-type 

specific manner, being active only in those cells that do not produce uPA. 1 then 

decided to further characterise the activity of the S2 region cloning the -787 to -537
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region upstream  of the SV40 enhancer/ prom oter driven CAT gene (pCATsil). As 

show n in Figure 4.4, the S2 sequence represses the SV40 enhancer-prom oter in 

CVl and HeLa cells (about 4 fold) but not in PC-3 cells and its function is 

orientation-independent (compare pCAT sil and pCAT sil inv). Similar results 

have been obtained w ith the S2 region cloned downstream  the reporter gene, 

confirm ing that the increased activity does not depend on the relative distance 

w ith respect to the transcription start site. On the contrary, the S2 sequence 

appears to have the properties of a silencer, acting also outside of the uPA gene 

context and in an orientation- and position independent way.

re la tiv e  C A T  ac tiv ity  
05 1 15

SV 40 Promoter CAT SV 40 
Enhancer

SV 40 Promoter CAT SV 40
Enhancer

S2 SV 40 Promoter CAT SV 40
Enhancer

SV 40 Promoter CAT SV 40
Enhancer

SV 40
Enhancer

p CAT control

p CAT ml

p CAT sil inv

p CAT sil3’

p CAT silS'inv
SV 40 Promoter CAT

Q HeLa 

Q CV-1

D  P C -3

Fig. 4.4: Effect of S2 on SV40 promoter/enhancer driven transcription of CAT gene in CVl, HeLa and 

PC-3 cell lines.

Region S2 has been cloned in either orientation and 5' or 3' of SV40 promoter. The constructs are tested 

by transient transfection in HeLa (yellow bar), CVl (red bar) and PC-3 (green bar) cell lines. The 

CAT activity is expressed as relative to the pCAT control construct for each cell line ± standard 

deviation. The data are the mean of 4 independent experiments.
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Silencer S2 is made up of multiple silencing units

Com parison of the S2 sequence of hum an versus m urine and porcine uPA 5' 

flanking regions, shows several interspersed regions of high homology (Fig. 4.5), 

identifying putative m urine and porcine S2 elements.

-537

p huPA 2 2 1 2  CAT

1 2

huPA -786 GTTAACACTTCAATAGGAAGCACCAACACTTTATGCCaAGGACTTTGTTCCCACAATCCTGTAACATCA-TATCACGACACaAAC- 
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-681 ............... — .........................................   - ........................................... -GTCAAAAACGGACT -668
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-----------     TTCAAAGACCTCCC-698 -685

TTAAACCAAGCTGCAAATTTTCAGT-AATCTGGCCTTGCCTTTCCCCaCTGATAGCA-...................— CCATCA-AACAAACCCCCTT
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TTAAACCAAACAGCAAATCTGAATAAAATCTGACCTTGCCTTTCACCTTCTGATGACAGTATTACAaCCaGACGACAAA CTT
I I I I  11 I I I I 1011 I I 10 01 0 I II II I I 10110 I II 110 Oil I I II I III
TTAAACCAAACTGCCAATTCCCAAT-GA— AATCCATGCC— CCCCCCC ACC-----------------------CCAACACCACAAGCTATCTT
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CACT---------------------------------------------C T T -G T -C T T C T G A T T C A a — GCTTGCATTAGTGG-CATTTGGAGAACTCAGCATTTGACATGT
n i l  I l l l l l  I I III  I I  l l l l l l l  10 I 0 101 II II II I I I I 
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-623

-559GCCTTTGTTCCA 
UI I I I I I I O 
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Fig. 4.5: Comparison between human uPA S2 and murine and porcine uPA promoters.

Identical residues between human, mouse and pig uPA promoter are indicated by a bar, while a 

rhomboid indicates the same residues between human and porcine uPA promoters. 1 to 6 defines the 

six regions of high homology. Below, the genomic organisation of region 1 to 6 in human, mouse and 

pig uPA 5' flanking region is drawn.
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In the mouse, however, these sequences span a wider region (-1007 to -603) in 

contrast to the porcine and uPA prom oter that encompass 285 and 250 base pairs 

respectively. Regions of non-homology separate the different m odules w ith a 

degree of similarity higher betw een hum an and pig S2 than betw een mouse and 

the two other species.

The putative m urine S2 is characterised by long insertion with respect to pig 

and hum an S2 element. How ever the highest homology resides in the most 

5'part of the elem ent w ith m odule 1, 2 and 3 showing an about 80% homology 

between the three species. Modules 4 and 5, although highly homologous between 

mouse and man, are less conserved in the porcine prom oter, showing the 

presence of inserted and deleted residues. Module 6 is present downstream  

m odule 5 both in mouse and porcine uPA prom oters.

The conserved sequences may represent functionally active regions w ithin 

the S2 silencer. Therefore, I deleted such sequences from the hum an uPA 

regulatory region (deletions A1 to A5, see Fig. 4.5) and analysed the effect in the 

context of both the p2212CAT and S2-SV40 CAT constructs by transfection in CVl 

cells. As shown in Figure 4.6, deletion of any single homology dom ain did not 

significantly affect transcription in the natural context of p2212CAT, w ith the 

possible exception of A5 which m oderately decreased the silencing activity.

However, w hen the same deletions were analysed in the S2-SV40CAT 

construct, where the absolute activity of CAT is one order of m agnitude higher 

than w ith the uPA promoter, significant effects were observed.

Indeed, deletion of anyone of the homology regions led to a decrease in 

silencing activity of at least 50% (pAl to pA5 versus pCAT sil). The combined 

deletion A1+A2 showed a reduction in silencing activity of about 70%, while 

A3+A4 was able to totally abolish the S2 negative effect.
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SV40 pi

0.33 ±0.13 (13)3.70•p CAT sil

■PpAi 13.6 ±.3.5 (5) 2.33 0.89 ± 0.07 (6) 1,40

.^ _T pA 2 13.3 ±3.1 (6) 2.38 1.00 ±0.24 (8) 1.23

pA3 13.1 ± 3.6 (5) 2.4 0.71 ± 0.09 (8) 1.73

.,y_rpA 4 11.8 ± 2 .9  (8) 2.68 0.70 ± 0.15 (8) 1.75

pA5 17.2 ± 6.4 (8) 1.84 0.72 ±0.11 (8) 1.70

1.05 ±0.35 (6) 1.17

1.18 ±0.20 (7) 1.05pA3A4

f)-5'half 13.9 ± 4.1 (6) 2.28 1.15 ±0.29 (8) 1.04

tT— T " p.3'haif 16.7 ± 3.8 (6) 1.89 1.48 ±0.32 (9) 0.83

Fig. 4.6: Characterisation of silencer S2

The functional analysis of region 1 to 5 of silencer S2 is made in CVl cells. The activity is indicated 

both as picograms of CAT/unit of 6-galactosidase and fold repression. p2212 CAT is for the deleted 

constructs in the context of huPA2212CAT. pS2-SV40 is for the constructs analysed in the context of 

SV40 enhancer/ promoter driven transcription. In parenthesis the number of independent experiments 

is indicated. (-) is for not tested.

In order to test w hether sequences other than those conserved betw een m an 

and mouse were also involved in silencing, 1 deleted the entire 5’ or 3' half of S2. 

As shown in Figure 4.6, in both cases the activity of the silencer was totally lost 

(p5'-half and p3'-half).
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These data indicate that the conserved as well as non conserved regions have 

a functional significance, but also show that m ultiple regions contribute to the 

activity and that some of them are redundant.

DNasel  footprint ing analysis o fS2

In order to investigate w hether the silencing activity was m odulated by the 

interaction of nuclear proteins to the S2 sequence, DNase 1 footprinting analysis 

was carried out with increasing am ount of nuclear extract from uPA producing 

(PC-3) and not producing (HeLa) cells. Both strands of S2 region were subjected to 

the analysis, that revealed a pattern of protected regions covering alm ost the 

entire 250 bp long S2 fragment either w ith HeLa or PC3 nuclear extract already at 

low concentration of nuclear extract (Fig. 4.7). The protected areas encompass both 

the 5 regions homologous betw een the prom oter of hum an, m ouse and pig uPA 

gene (open red boxes) and some of the sequences in between (Fig. 4.8).

The differences between the PC3 and HeLa extracts reside in the regions 

-627/-600 and -711/-704, where protection is observed only in the presence of HeLa 

nuclear extract, more and more evident at higher concentration of nuclear extract, 

and in some DNase 1 hyper- or hypo-sensitive sites, w ith the -772 hypersensitive 

site, in the lower strand, specific for HeLa nuclear extract. Region 3 does not show 

DNase 1 protection. However, in the absence of nuclear extract, this sequence is 

cleaved by DNase 1 only at position -666 and -657 in the upper strand, and shows a 

few cuts in the lower strand at position -665, -664, -660, -659 and -656 (Fig. 

4.7).Therefore 1 cannot exclude that factor(s) bind this region (see also Discussion).
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Fig. 4.8: Schematic representation of DNase I footprinting of 52 region

A close look of the sequence of region S2 shows the presence of several direct 

and inverted repeats (Fig. 4.9). In particular the sequence between -783/-775 is 

repeated at -762/-754 with the difference in two residues (green type); the one 

spanning region -746/-735 (red type) is present at position -570/ -560, w ith the only 

insertion of an A residue in the former, and -596/-604 in the lower strand; the 

sequence TGATA, that matches w ith the consensus for the GATA-1 binding 

factor, is present in the lower strand at position -688/-692 and -712/-716 and in the 

upper strand between -618/-614 (pink type); brown types show a direct repeat of 

the sequence CAATCCT at position -732/-726 and -699/-693; the CCCCCT motif is 

present at -625/-620 and -598/ -593 ( orange type); the GAAAG sequence (light blue 

type) is in the upper strand between -585/ -581 and in the lower strand at -626/ -629. 

Furthermore, this sequence can be seen as a part of a longer motif that include 

also the red-typed sequences (-746 GGACTTTGTTCC -735; -672 GGAGTFTAAAGG 

-661; -632 TGCCITTCCCCC -621; -581 CTTTCGGC -588 in the lower strand, and 

-570 GGCTTTGTTCC -560).
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The CAAT motif is repeated four times along the entire S2 region and 

precisely at position -774, -732, -699 and -580, while the sequence ATGCCTA (-754/- 

747) is present other two times at position -688/-6S2 and -576/-571 with a 

m ism atch (pink line). The TTTAAA motif, present in box 3, is repeated in the 

lower strand at the border of the same area (-648/-653). Finally, the sequence 

CCATC is present twice (-610/-606 and -561/-557), while sequence protected in 

footprint I is also present in the lower strand at position -605/-614 and -759/-769 

(blue line).

The presence of the same sequences at different locations along the whole S2 

fragm ent would explain why the fragm ent is entirely protected. Furthermore, 

because of this redundancy of sequence motifs, I did not study in detailed all the 

footprints but I focused my attention on those protections that are specifically 

present in HeLa nuclear extract and on those containing know n sequence motifs 

that could be im portant in elucidating the way S2 silences transcription.
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-740

4-
GTTAACACTTCMTAGpAAGCACCAACjAGTTTATGCCClTASGjACTTTGTTCC CACAATt ICTGTAACATCATATbACGACACCTAA 
CAATTGTGAAGTTAT( iq X T f if i l f i f i ia  GTCAAATACG' ;GAT( :CTGAAACAA GGGTGTTAGGACATTGTAgOfAGTGCTGTGGATT
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_ | _ _

CCCAA TCCTTATCAAGCCCTLGCCfcl
: g g 4 a
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J—T -j
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GACGGCTTTCGTTATT :GGGC CGAAACAAGGTAGGT SACCAACACAACCACItA
CACCATCAAACAAA'CCCCITiJcTGCCGAAAGCAAT^'^CCCBdcTTTGTT^STCCAC'iGGTT^TGTTd^TG.

H

Fig. 4.9: Direct and inverted repeats in S2 silencer region

The regions protected by HeLa and PC-3 nuclear extracts are in orange and blue boxes, respectively. 

The red boxes indicate the conserved regions between mouse and human uPA. The direct and inverted 

sequences present in huPA S2 are identified by the same colour (as font or line).
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EMSA analysis  o f  the complexes present in HeLa and PCS nuclear extracts

Footprint D /L

Footprint D /L , encompassing region -726/-705, is composed by a part that is 

protected both in HeLa and PC-3 extracts and a part specific for HeLa cells. In order 

to analyse the nature of the complexes protecting these sequences, I perform ed a 

mobility shift assay (EMSA) w ith an oligonucleotide encompassing the region 

-737/-705 (oligonucleotide #1; Fig. 4.10, panel A). Two retarded bands are detected 

in the presence of both HeLa and PC-3 nuclear extracts, but they show a different 

mobility (1,1*, 2, 3). The binding of both complexes is specific as they are competed 

by an excess of 50-fold unlabelled oligonucleotide #1, although the affinity seems 

to be higher for the complexes detected by HeLa extract than by PC-3 (50x vs 500x). 

A careful analysis of the sequences present in the region of footprint D /L  showed 

a similarity w ith the combined binding site for the Drosophila H O X  gene 

Antennapedia (Antp)  and factors belonging to the PBX family of transcriptional 

cofactors (PBC-HOX, Fig. 4.10 panel B; M ann and Chan, 1996). The same sequence 

is present also in yeast in prom oters (i.e. HSG-operator) that are silenced by the 

M atalp /M ata2p complex (M atalp is 65% identical to the hom eodom ain EXD). 

W hen the oligonucleotides OIB and H+P (Fig. 4.10, panel B), which are similar to 

the PBC+HOX site (Berthelsen et a l ,  1988b), are used as com petitor, either of them  

is not able to compete the complexes formed by oligonucleotide #1 in HeLa and 

PC-3 nuclear extracts.

These results tend to exclude the possibility that such factors bind the S2 

silencer. However, the competition analysis should be perform ed in the presence 

of other oligonucleotides resembling more the elem ent present in the HSG- 

operator, where the two half sites of the element are separated by 12 base pairs.
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#

, "-t

B

HSG o p e r a t o r 5 ' TCATGTAAAAATTTAC ATCA 3 '

PBC-HOX s i t e 5 ' CCATNNATCA 3 '

o l i g o  #1 5 ' CCCACAATCCTGTAAC ATCATATCACGACAC 3 '

o l i g o  # 0 IB 5 ' CTCCCTGCCTTCCIT CTGTCA CTCTCAGGTG 3 '

o l i g o  #H+P 5 ' CTCCAATTAGT GCATCAATCAATTCG 3 '

c o n s e n s u s 5 ' C/TC/AATNHATCA 3 ' 
HOX PBX

Fig. 4.10: EMSA analysis of footprint D+L

A: HeLa and PC-3 nuclear extracts are incubated in the presence of labelled oligonucleotide #1 as 

probe (4-)- Competition analysis has been carried out with 5, 50 and 500 fold excess of unlabelled 

oligonucleotides #1 and #OIB and with 5 and 50-fold excess for #H+P. B: sequences of 

oligonucleotides used in this study. The haploid-specific gene operator (HSG operator) is the 

binding site for the Matalp-Mata2p complex; PBC-HOX site is the consensus for PBX-HOX complex 

where the two N are variable nucleotides and are proposed to contribute to HOX specificity; #1 is 

the oligonucleotide used as probe (-736/ -705 in huPA promoter); # OIB and #H+P contain, 

respectively, the uPA promoter binding site for Prepl-Pbx complex and the binding site for Pbx-Hox 

complex as described in Berthelsen e t  a l  (1988a,b ).

The sequence present in oligonucleotide #1 revealed also a 10/13 homology 

w ith the consensus sequence of the yeast mating type silencer to which the 

autonom ous replicating sequence binding factor 1 (ABF-1) binds (Fig. 4.11b). This 

factor has been shown to bind also the silencer of the e-globin gene (Peters et a l ,  

1993). The same sequence matches also with other protected regions in the huPA 

promoter (-613/-601 and -538/-550, Fig. 4.11c). However a competition analysis of
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the complexes formed by oligonucleotide #1 and either HeLa or PC-3 nuclear 

extracts showed that not even 500-fold excess of unlabelled #ABF-1 consensus 

oligonucleotide is able to compete the retarded bands detected by oligonucleotide 

#1 in EMSA (Fig. 4.11a).

HeLa PC-3I—:— ——I r

huPA 5- AGCAOCATCAAAC 3' -6 1 3 /-6 0 1

5 ' GTDGTGATATGAT 3 ' -7 0 8 /-7 2 1

5" ATCACCAACACAA 3' -5 3 8 /-5 5 0

e-glctoin 5 ‘ ATCATnrOGAAG 3'

ABF-1 co n se n su s 5 ' RKTYBMffllBtG 3 '

O lig o  A BF-1 5 ' GICATTTGQITAOG 3'

GTTAACACTT CAATAGGAAÎT CACCAACAGT TTATGCCCTA GGACTTTGTT 
ABF-1________

CCCACAATCC TGTAACATCATATCACGACA CCTAACCCAA TCCTTATCAAG
(5ATA-i

CCCTGTCAA AAACGGACÏT TAAACCAAGC TGCAAATTTTCAGTAATCTGGC 
' , \ l  ABF-1

CITGCCn? TCCCCCTCTG AT.

A B F l ,

: a c c a t  caaacJa a a c c  c c c t t a c t g c c g
N GATA-1

AAAGCAATAAGCCCGGCT TTGTTCCATC CACTGGTTGT GTTGGTGATATC
ABF-1

Fig. 4.11: Competition analysis of footprint D+L w ith ABF-1 binding site

A: EMSA analysis of oligonucleotide #1 in the presence of HeLa and PC-3 nuclear extracts. 

Competition with 5, 50, 500-fold excess of unlabelled oligonucleotide #1 and #ABF-1 consensus. B: 

Comparison between sequences present in huPA promoter, oligonucleotide #1, e-globin silencer and 

ABF-1 consensus. C: Putative binding sites for CATA-1 (red-type) and ABF-1 (black-type) 

transcription factors in huPA S2 promoter region (-787/-538). The footprint M and N are shown in 

square brackets (yellow-type and green-type respectively). The lines above text are for sequence 

present in the upper strand, below is for lower strand. The repeated sequence in the huPA S2 region 

are underline in blue.

The m ost 5’ABF-l site in uPA prom oter differs from the ABF-1 consensus in 

the last three residues at the 3’ of the sequence. It w ould be interesting to test 

w hether the recom binant ABF-1 protein w ould bind the uPA sequence and if the
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m issing competition is due to a different affinity of the protein for non canonical 

binding sites.

Footprint F+M

An oligonucleotide encom passing the region -656/-614 has been used to 

study the complexes binding this area. Two major complexes are detected in FleLa 

nuclear extract (Fig. 4.12a). Only complex 1 seems to be specific as it is competed 

already by a 30-fold excess of unlabelled oligonucleotide. The specificity of the 

complexes has been also tested by competition w ith a series of oligonucleotides, 

showed in fig.4.12b, covering the region of footprint N+G (oligo #3), Fl+I (oligo 

#4), N (oligo #N) and I (#TIE).

1 2 3 4 5 6 7 8 9 10 11

firee

B

GTTAACACTT CAATAGGAAG CACCAACAGT TTATGCCCTA GGACTTTGTT 

CCCACAATCC TGTAACATCA TATCACGACA CCTAACCCAA TCCTTATCAA
#1

GCCCTGTCAA AAACGGACTT TAAACCAAGC TGCAAATTTT CAGTAATCTG
 ----------

GCCTTGCCTT  TCCCCCTCTG ATAGCACGAT CAAACAAACC CCCTTACTGC .
CN #3

CGAAAGCAAT AAGCCCGGCT TTGTTCCATC CACTGGTTGT GTTGGTGATA

TCTGGGGACT GCCACT #HMC #TIE

free

Fig. 4.12: EMSA analysis of footprint F+M

A: Oligo#2, encompassing the region of footprint F+M, is used as probe. Competition by an excess of 

specific unlabelled oligonucleotide is present in lane 2 and 3 (30- and 60-fold). Other competitors are 

oligo #4 (lane 4), oligo #3 (lane 5), oligo #AP-1 (lane 6), oligo #N (lane 9), oligo #5 (lane 10), oligo 

#TIE (lane 11). Lane 8: 50x oligo #2. Lanes 1 and 7: no competitor. B: Oligonucleotides used in EMSA 

analysis. 82 region: -786/-538.

Of all oligonucleotides tested only #N seems to compete complex 1. The 

lower intensity of the complexes in the presence of #TIE-oligo as competitor (Fig.
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4.12a, lane 11) is due to a lower ^^P-oligo #2 loading rather than to a competitive 

effect. The competition by oligo #N might be due to the presence of the CCCCCT 

motif, although in the context of S2 the region covered by #N is not protected by 

HeLa nuclear extract. The same is not true w ith oligo #3 that is not able to 

compete any of the complexes although another motif (GAAAG) is present in 

both oligonucleotides.

Footprint N+G

An oligonucleotide spanning the region of footprint N+G (oligo #3; -613/- 

570) detects in HeLa nuclear extract 5 major and 3 minor complexes (Fig. 4.13, lane 

1), 3 of which (4, 7 and 8) seems to be non specific as they are not competed by an 

excess (30- and 60-fold) unlabelled oligonucleotide (Fig. 4.13, lanes 2 and 3).

1 2 3 4 5 6 7 8 9 10 11

B

GTTAACACTT CAATAGGAAG CACCAACAGT TTATGCCCTA GGACTTTGTT

CCCACAATCC TGTAACATCA TATCACGACA CCTAACCCAA TCCTTATCAA 
#1

GCCCTGTCAA AAACGGACTT TAAACCAAGC TGCAAATTTT CAGTAATCTG----------- g]---------
GCCTTGCCTT TCCCCCTCTG ATAGCACCAT CAAACAAACC CCCTTACTGC

 —
CGAAAGCAAT AAGCCCGGCT TTGTTCCATC CACTGGTTGT GTTGGTGATA

TCTGGGGACT GCCACT #HMG «TIE

Fig. 4.13: EMSA analysis of footprinting N+G in HeLa nuclear extract

A: An oligonucleotide encompassing the region -613/ -570 (ohgo #3) has been used as probe to detect 

complexes in the presence of HeLa nuclear extract. The specificity has been assessed by competition 

analysis with 30 and 60-fold excess specific oligonucleotide (lanes 2 and 3), 50x oligonucleotide #4 

(lane 4), 50x oligonucleotide #2 (lane 5), 50x oligonucleotide #AP-1 (lane 6 and 11)), 50x 

oligonucleotide oligo #TIE (lane 7), 50x oligonucleotide #H (lane 8), 50x oligonucleotide #N (lane 9), 

50x oligonucleotide #5 (lane 10). Lane 1: no competitor. B: Oligonucleotides used in EMSA analysis. 

S2 region: -786/-538._________________________________________________________________________
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Oligo #2 (lane 5), as well as oligo #4 (lane 4), is not able to compete any of the 

complexes. Also an AP-1 consensus oligonucleotide (lanes 6 and 10) shows no 

ability to compete. Oligonucleotide #N, covering part of oligo #3, seems to 

compete two of the non specific complexes (4 and 8; lane 9).

Finally, in the presence of oligonucleotide #FI the intensity of complex 8 

increases, suggesting an increased stability for this complex.

Footprint N

In order to better investigate the footprint specifically observed w ith HeLa 

nuclear extract, the oligo #N, spanning region -621/-593, was used. 5 major 

complexes are detected in HeLa nuclear extract (Fig. 4.14).

1 2 3 4  5 6 7 8 9

free

oligo #N: 5' CTCTGATAGCACCATCAAACAAACCCCCTT 3'

Fig. 4.14: EMSA analysis of region N

The oligonucleotide #N is used as probe to detect complexes in the presence of HeLa nuclear extract. 

The following competitors are used as 50-fold excess oligo #N: #4 (lane 2), #2 (lane 3), #3 (lane 4), 

#TIE (lane 5), #H (lane 6), #N (lane 7), #5 (lane 8), #AP-1 (lane 9). Lane 1: no competitors.

Complex 3 is not specific since none of the oligonucleotide tested compete for 

this binding. Complex 1 and 2 are specific and are competed also by oligo #3 (lane 

4). Complex 4 is competed by oligo #4, #3, #TIE and #AP-1. In the presence of the
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oligo encompassing the region of footprint H {-576/-557) complex 4 disappears, 

substituted by a faster migrating complex (lane 6).

Footprint C+H

Two potential HMG-box containing protein binding sites are found w ithin 

the hum an S2 region: at -782/-771 and at -570/-560 (Fig. 4.15). In mouse and pig 

uPA prom oters, the latter sequence is found downstream  m odule 5, while it 

precedes it in m an (Fig. 4.5, region 6).

-782 -771
GGCTTTGTTCC

-1820 -1428

ENH SI

787 /-660 -537

S3 MP

GGCTTTGTTCC atccac TGGTTGTGTTGGTGAT 
-570 -560 -553  ^  -538

5' CTTTG^A^A 3' HMG-BOX consensus 

-570 GG CTTTG T T CC -560 huPA (proximal) 

-7 8 2  GG/CTTTG T T  CC -771 huPA (distal)

TIE

Fig. 4.15: The HMG-box consensus sequence in the human urokinase promoter 
The two consensus are shown in blue. In red the TIE element

Proteins belonging to this family of transcription factors are listed in Table 

4.2. For some of them (Lef-1) an architectural role, beside the ability of 

transactivate transcription, has been outlined (Giese et at., 1995). For others, like 

SOX-4, a clear role as activators of transcription has been dem onstrated (van de 

W etering et a l ,  1993). To this family belongs the sex-determining factor SRY 

(Sinclair et a i ,  1990), whose potential target genes are starting to be identified 

(Cohen et a l ,  1994). Though these factors can bind the same sequence, some 

specificity has been shown in an in vitro analysis by EMSA (see Table 4.2).
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T h e  H ig h  h/j o b i l i t y  G ro u p  bo x  ( H M G - b o x )  t r a n s c r ip t i o n  fa c t o r s

Protein

LEF-1/TCP la

TCF-1

SRY

SOX-4
(Sry-box)

SOX-5

HMG D om ains Sequence recognition and / or 
DNAsel footprinting

5 CCTTTGAAGCT3' 

5'CCTTTGAAGCr3'

5’CCTTTGTTGCT3’ 
5' CCTTTGTTCr 3' 

5’CTTTGAA3'

5' CTTTGTT 3'

5ATTGTT3' 
5’ CTTTGTT 3’

Table 4.2: The HMG-box family of transcription factors

Biochemical or genetic  
function

• Lymphoid transcription
(preB;proB;Tcell)

• Lym phoid transcription
(T cell lineage)

• Sex determ ination  (testis)

• Lym phoid transcrip tion  (TceU; pre-B)
• m RNA in gonads adu lt mice,

lym phonodes, lung, heart

• Post-meiotic cells in testis
(round sperm atids)

HeLa PC-3 CV-1

1 2 3 4 5 6

free

HMG-oligo: 5' TAAGCCCGGCTl TGTI CC ATCCAC 3'

Fig. 4.16: EMSA analysis of footprint H

The ohgonucleotide spanning the region of footprint H (HMG-oligo) has been used to analyse the 

presence of an HMG-box containing protein in HeLa, PC-3 and CV1 nuclear extract. Lanes 2, 4 and 6: 

the binding is made up in the presence of 30-fold excess unlabelled oligonucleotide. Lanes 1, 3 and 5: 

no competitor.______________________________________________________________________________
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These elements, in the uPA prom oter, are both protected either by HeLa or 

PC-3 nuclear extract. The specificity of such binding has been tested by EMSA 

analysis where an oligonucleotide covering the region present in footprint H 

detects only 1 complex with either HeLa, PC-3 or CV-1 nuclear extracts (Fig. 4.16).

In order to better characterise this complex I wanted to test w hether the same 

oligo was able to bind purified SOX-4, SRY and TCF-1 proteins. At this purpose the 

purified SOX-4 HMC-box and TCF-1 HMC-box were used in band-shift analysis 

(Van de W etering and Clevers, 1992). Only SOX-4 HMC-box was able to recognise 

uPA oligonucleotide (Fig. 4.17).

HI S pel EooRV S tu I  Bam HI

I I L
1II Spe I Eco RV Stu I Bam HI

J I I

aagcccggctttgttcc ate

free

Fig. 4.17: Binding of HMG-box containing proteins to the huPA promoter

The HMG-oligo has been cloned in the tandemly repeated polylinker of pBend2 ( see Materials and 

methods). The Eco RV fragment has been used as probe to detect binding of the purified human SOX-4 

and TCF-1 HMG-boxes. Increasing amount of proteins have been tested. The open arrow indicate the 

retarded complex. The closed arrow indicate the free probe.

As these proteins have the ability to induce a sharp bend in the DNA double 

helix, the same oligonucleotide was tested in a circular perm utation analysis in 

the presence of SOX-4, SRY and TCF-1 HMC-boxes. As shown in Fig. 4.18 (panel
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B), again TCF-1 does not recognises the uPA sequence, while both SRY and SOX-4 

HMG-box do.

Bgl II Spe I Eco RV Stu I Bam HIII Spel EooRV Stu 1 Bam HI

îa^gcccggctttgtta- ate

— C h  
— □ —

- D

B hSOX-4 hSRY hTCF-1
a b e d a b o d e  a b o d e

0.8

0.75

0.65

0.6

0.55
0.50 0.25 0.75

n  hSOX-4 HMG box 

O  hSRY HMG box

Flexure displacem ent

free

Fig. 4.18: Circular permutation analysis of the -576/-5S7 region of the huPA promoter

The HMG-oligo is cloned in the tandemly repeated polylinker of pBend2 plasmid. By using different 

restriction enzymes, circular permuted fragments of 146 bp have been generated (panel A). Panel B: 

Electrophoretic mobility of the circular permuted fragments in the presence of purified hSOX-4, 

hSRY and hTCF-1 HMG-boxes. The arrow indicates the free probe. Panel C: Analysis of the bending 

parameters. The mobility of the protein-DNA complexes (R bound) was normalised to the mobility 

of the corresponding free DNA (R free). The distance of the centre of the oligonucleotide HMG from 

the 5' end of the probe was divided by the total length of the probe (flexure displacement). The 

plotted points are interpolated with a quadratic function (see Materials and Methods).

Furtherm ore these proteins induce, upon binding, a bend in the DNA as 

shown by the different mobility of the complex depending on the different 

location of the oligonucleotide with respect to the ends of the DNA fragm ent (Fig. 

4.18, panel A). No differences in the mobility of the free DNA probes are observed.
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indicating that the sequence is not intrinsically curved. The binding of hSOX-4 

HMG-box, however, caused a deviation of the axis of DNA of about 43°, while 

hSRY HMG-box bends DNA of about 74°C. This results is in agreement w ith the 

published values for SRY (Ferrari et at., 1992, Giese et al., 1992).

A circular perm utation analysis has been also perform ed with the entire S2 

region. A gel electrophoresis analysis of circular perm uted fragm ent at 20 °C and 4 

°C revealed that S2 is not intrinsically curved (Fig. 4.19).

Bg C X E P S St B

I I I I I___I___I___L 52

Bg C X E P S St B

I I I I J I I L

MW Bg C X E P S St B

492 b p -

369 bp—

246 bp—

123 bp—

(S2)

Fig. 4.19: Circular permutation assay of S2

The whole S2 sequence is cloned in the polylinker of pBend2 plasmid. The different fragments are 

generated by the restriction enzymes indicated in the figure. Bg=Bgl II, C=Cla I, X=Xho I, E=Eco RV, 

P=Pvu II, S=Sma I, St=Stu I, B=Bam HI. The draw is not in scale. The length of the fragment is the 

370 bp (249 bp S2 + 121 bp polylinker). The run is performed at 20 °C and 4°C with the same result.

However, binding of SRY-box to these fragments revealed a different 

mobility typical of bent DNA, with an angle of deviation of about 46° (Fig. 4.20).
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Bgl II S p e l  Eco RV Stu I Bam HI Bgl II Spe I Eco RV Stu I Bam HIDgl 11 sp e  1 tc o  KV stu  1 oai
I I I I I 5 2

spe 1 tc o  KV stu  1 Dan
i  L _ J  I

B S E St Ba

free

Fig . 4.20: Circular permutation analysis of S2-hSRY complex

The whole 82 region has been cloned in the tandemly repeated polylinker of pBend 2 plasmid. The 

autoradiograms shows the complexes formed by fragments generated by different restriction enzymes 

and hSRY purified HMG-box (open arrow). B=Bgl II; S=Spe I; E= Eco RV; St= Stu I; Ba= Bam HI.

All these results suggest that a protein belonging to the SRY-SOX family 

m ight recognise and bind the sequence present in the urokinase prom oter, and 

induce a bending not only locally but of all fragment, although there is no direct 

evidence that the factor present in HeLa and PC-3 nuclear extract is indeed 

belonging to the HMG-box family of transcription factors.

Footprint I

At -553/-538 there is a conserved TIE element (TGFfil Inhibitory Element), 

tandemly repeated in the opposite orientation, which in the m ouse is found at 

-666. The TIE element has been show n to be involved in silencing of several genes 

(Kerr et a l ,  1990; Pietenpol et a l ,  1991; see Appendix 1). Furthermore two other 

TIE-like sequence are present in the lower strand at position -769/-760 and -613/- 

604 (Table 4.3). Of these elements only one appears to be protected (-547/-538) in 

DNase I footprinting by either HeLa or PC-3 extract (footprint I), although this 

protection is not so clear in the lower strand for PC-3 extract. The most 5' part does
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not show any protection, while the -613/-604 is protected only with extracts from 

HeLa cells (footprint N).

TIE consensus 5' GNNTTGGtGa 3'
huPA 5' TGGTTGTGTTGGTGA 3' - 553/-53S

5' TGATGGTGC 3' - 605/-613
5' TGTTGGTGC 3' - 7597-767

Table 4.3: Sequences of TIE-like element present in huPA promoter

In order to analyse the role of the TIE element, an EMSA analysis, in the 

presence of HeLa nuclear extract, has been performed with two oligonucleotides, 

#TIE and #4, spanning regions -555/-531 and -566/-537 respectively. Both 

oligonucleotides contain the TIE element. As show n in Fig. 4.21 (panel A and B) 

three complexes (la, 2a, 3a and lb , 2b, 3b respectively) are formed with either 

oligonucleotides, although they behave differently to competition analysis. Band 

la  is not completely competed by the unlabelled TIE oligonucleotide (lane 5, panel 

A), showing partial lack of specificity, while 50 fold excess of unlabelled oligo #4 

completely competes complex lb  (lane 2, panel B). Complexes 2a and 3a, formed by 

#TIE, on the other hand, are self-competed and, hence, specific, while only the 

faster migrating complex detected by #4 (complex 3b) is competed out by the 

homologous unlabelled oligonucleotide. The specificity of such retarded bands is 

further assessed by the lack of competition by oligonucleotides covering the most 

3'-half of S2 (panel C). Complex 3a is competed by #3, #N and #4 (lanes 4, 7 and 2 

respectively), while complex 3b shows only a partial competition by #3 (lane 4). In 

the presence of #N and #TIE (lane 5 and 7, panel B) the mobility of the complex 3b 

changes, becoming faster, with a greater effect in the presence of #TIE than #N as
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well as competition by #H of complex 3a (lane 6, panel A). Complexes 3a and b are 

not competed by #2 (lanes 3, panel A and B).

1 2 3 4 5 6 7  8 9 1 2 3 5 6 7 8

la  ' 
2a '

3a

free-

lb

2b

3b

free

B

GTTAACACTT CAATAGGAAG CACCAACAGT TTATGCCCTA GGACTTTGTT

CCCACAATCC TGTAACATCA TATCACGACA CCTAACCCAA TCCTTATCAA 
#1

GCCCTGTCAA AAACGGACTT TAAACCAAGC TGCAAATTTT CAGTAATCTG
n

GCCTTGCCTT TCCCCCTCTG ATAGCACCAT CAAACAAACC CCCTTACTGC

CGAAAGCAAT AAGCCCGGCT TTGTTCCATC CACTGGTTGT GTTGGTGATA

#4; 5 ' CTTTGTTCCATCCACTGGTTGTGTTGGTGAT 3'
n N: 5' CTCTGATAGCACCATCAAACAAACCCCCT 3'
« H: 5' GGCTTTGTTCCATCCACTGGTTG 3'
«TIE; 5' ACTGGTTGTGTTGGTGATATCTGGG 3'
«2: 5- CTGCAAATTTTCAGTAATCTGGCCTTGCCTTTCCCCCTCTGAT 3'
«3; 5 ' AGCACCATCAAACAAACCCCCTTACTGCCGAAAGCAATAAGCCCGG 3'
«AP-1: 5' GCCTATAGCATCTCTGACTCAGTCTGTCCCC3'

TCTGGGGACT GCCACT »HMG «TIE

Fig. 4.21: Competition analysis of TIE and #4 oligonucleotides
- #TIE (panel A) and 32p _ #4 (panel B) are incubated in the presence of HeLa nuclear extract.

A: Lane 1: no competitor; lane 2: #50-fold excess #4; lane 3: 50-fold excess #2; lane 4: 50-fold excess #3; 
lane 5: #T1E; lane 6: #H; lane 7: #N; lane 8: #AP-1; lane 9: #5. B: Lane 1: no competitor. Lane 2: 50-fold 
excess specific competitor. Oligo #2, #3, #N, #H, #T1E, #AP1 are used as competitors in lanes 3-8, 
respectively. C: Map of the oligonucleotides, used as competitors, in 82 region. D: The sequences of 
the oligonucleotides used are shown.

The specificity of complexes detected by #HE is further assessed by point 

m utation analysis, of those residues that, according to the consensus (see table 4.3, 

capital letters, and table 4.4) may be im portant for TIE function (Fig. 4.22, panel A).
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#TIE 5' ACTGGTTGTGTTGGTGATATCTGGG 3' -5 5 5 /-5 3 1

irut 1 S' 3'

nut 2 5' 3'

n u t 3 5' 3'

nut 4 5' 3'

#TIE rev 5' TCCACTGGTTGTCT ATCT 3' A543/537

#TIE d ir 5' CCAC GTCTTGGTGATATCT 3' A552/548

#5 5' TGATATCTGGGGACTGOCACT 3' -5  4 1 /-5  21

Table 4.4: Oligonucleotides used in the study of footprint I

B
1 2 3 4 5 6 7 8 9  10

free

- I ' " ̂

free

Fig. 4.22: EMSA analysis of region I (TIE region)

The oligonucleotide termed TIE, encompassing the region of footprint 1, has been used as probe to 

detect complexes in the presence of HeLa nuclear extract. Panel A: the specificity of binding has been 

tested by competition analysis using 50 fold excess of the following oligonucleotides: wt TIE (lane 2), 

mutant 1 (lane 3), mutant 2 (lane 4), mutant 3 (lane 5), mutant 4 (lane 6), TIE dir (lane 7), TIE inv 

(lane 8), AP-1 (lane 9) and oligo #5 (lane 10). Lane 1: no competitor. Panel B: The affinity of the 

complexes for the wt oligonucleotide has been evaluated by competition with 5, 50 and 500-fold 

excess of unlabelled oligonucleotide as indicated in the figure.
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Mutant 1, 2, 3 were unable to compete for binding of bands 1 and 2 but not for 

band 3, while mutant 4 was able to compete all bands (lanes 3-6, panel A). The 

affinity was tested by competition of 5, 50 and 500 fold excess oligonucleotide (Fig. 

4.22, panel B). Furthermore oligonucleotides containing only half of the entire TIE 

sequence (#TIE dir and #TIE rev) are not able to compete any of the bands, as well 

as an oligonucleotide (#5) spanning region -541/-521. An AP-1 consensus 

oligonucleotide competes complex 3a.

These data are confirmed by direct binding of the mutant oligonucleotides to 

the HeLa nuclear extract, showing the increased affinity of the three complexes for 

mutant 4 (Fig. 4.23).

TIE wt TIEml TIEm2 TIEm3 TIEm4

 1 I---------
HeLa NE

3*- m

free

Fig . 4.23: EMSA analysis of TIE mutant oligonucleotides at different extract concentration

The TIE wt and the four mutants have been used as probes in EMSA in the presence of increasing 

amount of HeLa nuclear extract. (4-): no extract.
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When the same oligonucleotide (#TIE) is used with nuclear extract from PC- 

3 (Fig. 4.24), besides complex 1 and 2, an additional band, with intermediate 

mobility is present (complex 4). As for HeLa, band 1 is not completely competed by 

the unlabelled oligonucleotide, unlike the lower and the intermediate bands. 

Band 4 behaves as bands 1 and 2 in point mutation analysis as it is not competed 

by mutant 1, 2 and 3 and is completely competed by mutant 4. Furthermore PC-3 

nuclear extract does not show the fastest band detected in HeLa (complex 3).

PC-3 HeLa
1 r

TIE m l m2 m 3 m4

free

Fig. 4.24: EMSA analysis of TIE-binding protein in PC-3 nuclear extract

The TIE oligonucleotide is used as probe in the presence of an equal amount of PC-3 and HeLa nuclear 

extract. The specificity of the retarded complex with PC-3 NE has been tested by competition with 

50-fold excess of unlabelled homologous oligonucleotide and TIE mutants. The retarded complexes 

present in both extracts are indicated by the black full arrows. The PC-3 specific and HeLa specific 

complexes are indicated by the white open arrow (4) and the black thin arrow (3) respectively._____
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Recently it has been reported that Spl is a member of a multigene family 

whose members have similar if not identical DNA binding activities (Hagen et a l ,  

1992; Kingsley and Winoto, 1992). Furthermore, in v ivo  transfection experiments 

show that Spl-mediated transcriptional activation of Spl responsive promoters 

are repressed by Sp3 (Hagen et a l ,  1994). Sp2 and Sp3 have been shown to bind to 

both GC- and GT-box sequences (Kingsley and Winoto, 1992; Hamann et al., 1994).

The TIE element resembles the binding site for GT-box binding proteins. 

Therefore, an oligonucleotide specific for Sp3 binding (Hagen et a l ,  1994) has been 

used in EMSA analysis to test whether it was able to compete for TIE binding and 

viceversa. As shown in Fig. 4.25 (panel A) the GT-oligo is not able to compete the 

binding to TIE oligonucleotide in neither HeLa or PC-3 extracts, and binding of 

GT-box oligonucleotide by HeLa nuclear extract is not competed by #TIE (Fig. 4.25, 

panel B).

Hfiha PC=3_
1 2 3 4 5 6

B
H p l . a  

7 8 9

& #  #  #

* * 2  msm
'■ 1

GT-box: 5' AGCrTCCCTrCGGCTCTCGCTTCACG 3'

32*-#TIE 32 K  #GT-box

Fig. 4.25: GT-box competition analysis

Panel A: #TIE oligo is used as probe. Lanes 1 and 4: no competitor. Lanes 2 and 5: 50-fold excess 

unlabelled #TIE; lanes 3 and 6: 50-fold excess #GT-box unlabelled oligo. Panel B: The binding is made 

using #GT-box ohgo as probe. Lane 7: no competitor; lane 8 and 9: 50-fold excess of #GT-box and #TIE, 

respectively. Panel C: #GT-box ohgonucleotide sequence (uteroglobin promoter; Hagen e t  a l . ,  1994).
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Since the HMG-like consensus sequence is recognised by both HeLa and PC-3 

nuclear extract and because of the structural role ascribed to these factors, I wanted 

to investigate the role of HMG in TIE binding in both extracts. For this purpose an 

oligonucleotide encompassing both sequences (-571/-538) is used in EMSA (#TIE- 

HMG). Again, in the presence of HeLa nuclear extract two complexes are detected, 

while in PC-3 an additional, intermediate band is present (Fig. 4.26, lanes 1).

HeLa PC-3
1 2 3 4 5 6 7 8  1 2  3 4 5 6 7 8

#TIE #TIE-HMG #TIE #TIE-HMG 

Fig. 4.26: Comparison between #TIE and #TIE-HMG

The #TIE (lanes 1-4) and the composite #TIE-HMG (lanes 5-8) oligonucleotides are used as probes in 

the presence of HeLa or PC-3 nuclear extracts. Lanes 1 and 4 do not contain competitor DNA. lanes 2 

and 6: 50-fold excess unlabelled #TIE. Lanes 3 and 5: 50-fold excess unlabelled #TIE-HMG; lanes 4: 50- 

fold excess oligo #GT-box; lanes 8: 50-fold excess #HMG-oligo. The black arrows indicate the 

complexes formed by #TIE, the clear arrows those formed by #TIE-HMG.

The mobility of these complexes is however slightly faster compared to the 

TIE oligonucleotide, although the length of the oligonucleotide is longer than that 

of TIE. The specificity of the complexes is tested by competition with an excess of
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unlabelled oligonucleotide as indicated in Fig. 4.26. It must be noted that HMG 

oligonucleotide (lanes 8) does not compete at all any of the complexes indicating 

that either proteins recognising the HMG consensus do not contribute to the 

binding, or that their affinity for the short, HMG-specific, oligonucleotide is much 

lower. The faster migration of the complexes might, in fact, suggest the formation 

of a structurally different DNA conformation, such as bent DNA, that migrates 

faster in a polyacrylamide gel.

Functional analysis  o f  the TIE element

When the entire TIE element (A5; Fig. 4.6) was deleted either from the 

context of the full length 2212uPACAT construct or pCATsil, the silencing activity 

of S2 was reduced by 40-50% (Fig. 4.6). On the other hand, mutations 1, 2, 3 and 4 

in TIE sequence, when analysed by EMSA, showed different binding properties in 

the presence of HeLa nuclear extract (Fig. 4.22 and Fig. 4.23). Therefore I decided to 

investigate the function of the TIE element by inserting the four mutations in the 

context of both the full size uPA CAT construct (Fig. 4.27, panel A) and of the 

construct containing only the enhancer and the -787/+1 region (Fig. 4.27, panel B), 

and transfecting them in CV-1 cells.

Unexpectedly, none of the mutants had lost its silencing activity (Fig. 4.27); 

actually, they had gained a better repression activity in the full size constructs. 

Only mutant 3, in the E787CAT context, shows a slight increase in CAT 

transcription (Fig. 4.27, panel B).

I have then tested the TIE-like sequence of uPA in the SV40 CAT system in 

CVl cells: as shown in Fig. 4.28, this element (pTIE CAT) acted as a silencer in both 

orientations and in a copy number-dependent manner (p2xTIE and p4xTIE). The 

presence of the adjacent HMG-box proteins binding site marginally increased the 

silencing activity (pTIE/HMG CAT).
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Fig. 4.27: Transient transfection analysis of TIE mutants in CV-1 cells

Point site mutations have been inserted in the TIE element in the context of the full length promoter 

2212uPACAT construct (panel A) and of the E787CAT construct (panel B). The different plasmids 

have been transfected in CV-1 cells. The data are the mean + /-  SD of at least two independent 

experiments.

CAT level (ng/ unit GOAL) 
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_1__________________ L

SV 40 Promoter
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SV 40 Enhancer
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]-T
TIE/HMG SV 40 Promoter

S E IE IE ]—[

SV 40 Enhancer
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p TIE /H M G  C A f  ,
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™  ™  ™  SV 40 Promoter
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SV 40 Enhancer
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TIE SV 40 Promoter SV 40 Enhancer
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p 4xTIE

p TIE CAT

p 2x TIE

i  039 ± 0,026

0,72 ± 0,05
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Fig. 4.28: Effect of TIE and HMG-box consensus regions on SV40 CAT driven transcription in CV 1 cell 

line

The oligonucleotide TIE, encompassing the region -558/-537, has been cloned in front of SV40 

promoter in pCAT control plasmid, in single (p TIE CAT) or multiple copies with different 

orientation respect to the direction of transcription (p 2xTIE and p 4xTIE). The p TIE/HMG CAT 

construct contains the oligonucleotide spanning the region-568/-529. The data are the mean of three 

independent experiments ± standard deviation.
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A single-strand DNA-binding activity (footprint H+I)

In some preparations of labelled oligo #4 DNA the fast migrating complex 3b 

(Fig. 4.21, panel B) was not detected. Although the double strand probe was always 

gel purified after labelling, a contamination by single strand oligonucleotide 

cannot be excluded. I then tested whether the presence of the fast migrating 

complex was due to an activity recognising the single strand rather than double 

strand DNA. For this purpose I used, as source of proteins, a H eparin Sepharose 

column enriched fraction, eluting at 200 mM KCl (fraction W; see Materials and 

Methods), in which only one activity, comigrating with complex 3b, was detected 

by double strand oligo #4 (Fig. 4.29, compare lanes 1 and 3).

1 2 3 4 5 6

1 —

2 —

IHII
Fig. 4.29: EMSA analysis of HeLa fraction W

Oligo #4 double strand form is used as probe. Lanes 1 and 2: binding in the presence of HeLa nuclear

extract. Lanes 3-6: binding in the presence of fraction W (see methods). Complexes are competed by

30-fold excess oligo #4 double strand (lane 2 and 4), #4 upper strand (lane 5), and #4 lower strand

(lane 6). Lanes 1 and 3: no competitor is added.
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Surprisingly, the binding of proteins present in fraction W was not competed 

by an excess of unlabelled double strand oligo #4 (Fig. 4.29, lane 4). On the contrary 

either the upper or lower strand of oligo #4, used separately as competitors, were 

able to compete the binding of the complex to the double strand, labelled 

oligonucleotide (Fig. 4.29, lanes 5 and 6).

In order to address the specificity of such binding I extended the analysis 

using as probes, in EMSA experiments, either the labelled upper or lower strand 

of oligo #4. As shown in Fig. 4.30 the labelled upper strand (panel A) detects 4 

major complexes (lane 1), all of which are competed by a 30-fold excess of 

unlabelled homologous oligonucleotide, as well as by the lower, complem entary 

strand (lanes 2 and 3). The competition by the upper strand of #TIE oligo changed 

the mobility of complex 3, showing the same behaviour of the double strand 

form w hen used as competitor of the double strand labelled oligo #4 probe (see 

Fig. 4.21 panel B, lane 7). The lower strand of #TIE competes all complexes (Fig. 

4.30, lane 5). Both the double strand forms of oligo #4 and #TIE do not change the 

binding capability of the proteins to the single strand DNA (lane 6 and 7).

The specificity is tested by point m utation analysis where a m utation in the 

TIE sequence partially competes the binding to the oligo wt (lane 8; #4 mut: 5' 

CTTTGTTCCATCCACTGGTTaTaTTGGTGAT 3'). The m utation  in the 

corresponding residues of the lower strand does not change the capability of 

competing (lane 9). Neither the upper or double strand form of oligo #H competes 

any of the complexes (lanes 10 and 12); only the lower strand of oligo #H totally 

competes complexes 1, 3 and 4 and partially complex 2 (lane 11). Finally, the 

double strand #4 does not bind any protein in this fraction (lane 13).

When the lower strand is used as probe (panel B) two complexes are detected 

(lane 14). Both are specific as they are competed by an excess of the same 

unlabelled oligonucleotide (lane 16) as well as by the upper strand of oligo #4
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(lane 15). Surprisingly the lower strand of #TIE oligo does not compete any of the 

complexes (lane 18), while the upper one induces a slight shift of complex 1 (lane 

17). Again oligo #4 and #TIE oligonucleotide, in their double strand form, were 

not able to compete the binding to the lower strand of oligo #4 (lanes 19 and 20). 

The m utation in the TIE elem ent (#4 mut) completely im paired the ability of 

specific competition, while the m utation in the corresponding position of the 

upper strand did not (lanes 22 and 21, respectively). Oligo #H upper strand and 

double strand form compete only complex 2 (lanes 23 and 25), while #H lower 

strand does not compete any of the complexes (lane 24).

upper strand
■DS

lower strand

1 2 3 4 5 6 7 8 9 10 11 12 13

DS
14 1516 1718 19 20 2122232425 26

1 —

2 —

3—

f —

Fig. 4.30: EMSA analysis with single-strand DNA probes

The upper and lower strand of oligo #4 are labelled and used as probes in the presence of Fraction W 

(see Methods; lanes 1 and 14). Competition analysis is performed with 50-fold excess of the 

following unlabeUed oligonucleotides: oligo #4 upper strand (lanes 2 and 15), #4 lower strand (lanes 3 

and 16), #TIE upper strand (lanes 4 and 17), #TIE lower strand (lanes 5 and 18), #4 double strand 

(lanes 6 and 19), #TIE double strand (lanes 7 and 20), #4 upper strand mutant (lanes 8 and 21), #4 

lower strand mutant (lanes 9 and 22), #H upper strand (lanes 10 and 23), #H lower strand (lanes 11 

and 24), #H double strand (lanes 12 and 25). Lanes 13 and 26: the probe used is #4 double strand (DS). f 

is for free DNA.
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To better characterise this activity I decide to perform a southwestern 

experiment using as probes the upper and lower strand of oligo #4 (Fig. 4.31). In 

the presence of the upper strand, two proteins of about 45 and 30 KDa are detected 

(Fig. 4.31, panel A), specifically competed by a 30-fold excess of unlabelled 

oligonucleotide (Fig. 4.31, panel B). The labelled lower strand detected only the 30 

KDa factor. The double strand form did not detect any protein.

upper 

A B

lower 

A B

DS 

A B
200  —  

97.4 — 

68  —  

43 —

29 —

200  —

974 —  

68  —  

43 —

29 —

200  —  

974 —  

68  —  

43 —

29 —

>1

Fig. 4.31: Southwestern analysis of proteins binding oligo #4

After separation on a 10% SDS-PAGE the proteins of fraction W are blotted on a nitrocellulose filter 

and renatured (see methods). The binding is performed with the upper, lower or double strand (DS) 

form of oligo #4 (panels A) in the presence of 30-fold excess of the same unlabelled oligonucleotide 

(panels B).

The competition by either strand could be explained either by the formation 

of double strand so that the labelled strand is sequestered in the double strand 

form, or by the real binding of the factor to the opposite strand. It seems that both 

the upper and lower strand bind the 30 KDa protein, while only the upper strand 

recognise the 45 KDa factor. The com petition delim its the binding to the area 

comprised between footprint H and I. The reason why binding is not detected in
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footprinting experiments could be due to the instability of single strand region 

w hen DNA is in its linear form.
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5. D iscussion
This thesis has focused on the mechanisms that regulate the expression of 

the urokinase type plasminogen activator (uPA) and in particular about the 

negative m echanisms involved. The evidences accum ulated in the past years 

about the existence of a negative control of uPA expression (Grimaldi et a l ,  1986, 

Hofstetter et al., 1987) led me to try to dissect and characterise the elements 

involved in this process. A previous analysis of the huPA prom oter activity in 

two cell lines expressing uPA (HT1080 and A-1251; Verde et al., 1988) already 

indicated the existence of elements involved both in the activation and in the 

negative m odulation of uPA expression. I decided to extend this analysis to cell 

lines that do not express uPA in order to identify cell-specific cis-acting regulatory 

elements. For this purpose three cell lines, two not producing (CVl and HeLa) and 

one producing high constitutive levels of uPA (PC-3) have been used to analyse 

constructs in which the transcription of the reporter gene CAT is under the 

control either of the uPA minim al prom oter (MP), in the presence or in the 

absence of the enhancer (EMPCAT and MPCAT respectively) or the full length 

prom oter (2212uPACAT). The result show n in Table 4.1 confirms that the 

sequences between the enhancer and the MP contain cell-specific m odulatory 

elem ent.

The 5’-nested deletions analysis and the transient transfections w ith 

constructs carrying internal deletions of the uPA 2212 long regulatory region 

identified at least three regions playing different roles in the silencing of uPA gene 

in different cell lines (Fig. 4.1 and Fig. 4.2), nam ed SI, S2 and S3. The presence of 

region SI, located between -1870 and -1428, was already described by Verde et al. 

(1988) that m apped the negative regulatory element between -1824 and -1572 bp 

from the start site of transcription. This region comprises the two NF-kB elem ents
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(-1580 and -1865) that m ediate the induction of uPA by phorbol esters and TNF in 

FlepG2 cells and HT 1080 (Hansen et a l ,  1992) and by TP A in HeLa cells (-1865; 

N ovak et al., 1991). Furthermore, it has been described that a repressor acting 

through the NF-kB site at -1865 bp could counteract the induction (Novak et a i ,  

1991). In the 5' nested deletions analysis, as well as in the internal deletions 

analysis, this element behaved differently, being active in CVl and HeLa cells but 

not in PC-3 (Fig. 4.2). However the activity of this negative regulatory element is 

not restricted to cell lines that do not produce uPA, as it is shown by the analysis 

of deletion in HT1080 and A1251 (Verde et al., 1988). From this we can conclude 

that SI does not act in a cell-type specific m anner (Fig. 5.1).

S3 region, that has never been described before, also lacks specificity being 

active in all cell lines tested.

The presence of region S2 was hypothesised in the work by Cannio et al. 

(1991), that m apped the region between -660/-537. Furthermore the author 

claimed that the activity of the silencer was dependent on the presence of the 

enhancer and he m apped this activity between -537/-301. However, as already 

m entioned, the constructs used in  this analysis contained several cloning 

mistakes, that challenged the results. The subject of this thesis allowed me to 

characterise the region responsible of a negative m odulation of uPA gene 

transcription, m apping it to a wider region of 250 bp, between -787/-537. The cell 

type specificity is confirmed as S2 is active in cell lines that do not express uPA 

(see Fig. 5.1).

The cell-type specificity of this element has also been confirmed by transient 

transfection analysis in HepC2 cell line, where uPA is expressed at a low basal 

level, but in which its expression can be induced upon treatm ent w ith phorbol 

esters. In this case S2, that in HeLa and CV-1 cells works as a specific negative
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regulatory element, here may act as a positive element (Fig. 6.7, appendix 1, and 

Fig. 5.1).

-2212 -1870 -1428 -787 -537

p huPA2212 CAT

S2

N .D .

N .D .

ENH SI

+++ (2.5x) 

+++ (3.Ox)

+++ (4.0x) 

+++ (4.0x) 

+++ (3.7x)

SI, S2 and S3 indicate the different negative regulatory regions identified in the huPA promoter. 

The activity of the silencers is indicated by black (+). In parenthesis is indicated the fold of 

repression evaluated as CAT activity of the full length construct 2212 CAT over the value of the 

deleted constructs. In red (+) is the level of uPA produced in each cell line (indicated in blue). N.D. 
is for not tested.

S3 MP CAT

cell line uPA

N .D . HT 1080 -H -

N .D . A 1251 ++

++++ (lOx) PC-3 -H -+

+++ (4.5x) C V l -

+++ (5.8x) HeLa -

+++ (4.6x) H epG 2

activities

As already m entioned, the activity of constructs w ith the enhancer cloned 

dow nstream  the CAT gene would exclude that the increased CAT expression was 

due to a position effect of the enhancer closer and closer to the transcriptional start 

site.

The other effect described in the paper of Cannio et al. was the enhancer 

dependence of the silencer activity. Since the effect of region S2 on transcription 

was more evident w hen studied as internal deletion (Fig. 4.2) than in the 5’ nested 

deletions analysis (Fig. 4.1), I wanted to test whether S2 was working only in the 

presence of the enhancer, i.e. 82 is able to repress the enhancer activity. However 

the experiment shown in Fig. 4.3 seems to exclude this possibility as 82 is able to
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suppress the transcription in the presence or absence of the enhancer by the same 

level, as well as SI and S3. The difference can be explained considering that the 

enhancer is not totally silent in CVl cells, in transient transfection assay, (the 

-2212 construct activity is 2.5 fold higher than -1870 construct. Fig. 4.1), such that in 

the context of the full length construct (Fig. 4.2) the absolute level of CAT is 

higher, giving the possibility to detect little differences in CAT expression that are 

not detected, at least in a significative m anner, in the absence of the enhancer. We 

can then conclude that S2 acts directly on minimal promoter, probably 

influencing the assembly of a competent pre-initiation complex. This hypothesis 

is sustained by studies carried out in my laboratory by Ibanez and Grippa on the 

chrom atin structure of uPA 5' regulatory region (Ibanez, 1997). According to them 

the DNasel and Micrococcal nuclease I (MNasel) analysis indicated that the 

chrom atin structure of uPA prom oter depends on the transcriptional state of the 

gene. In cells not producing uPA (as HeLa) almost all the 5’ flanking region results 

inaccessible to nuclease digestion indicating the presence of DNA tightly packed in 

a higher order nucleosomal structure. In PC-3, on the other hand, the regulatory 

region is more accessible to DNasel and MNasel, indicating a general loosening of 

the chrom atin structure. In particular hypersensitive sites have been m apped 

w ithin the enhancer (HS4), the silencer S2 region (H6) and the MP (HS7). In HeLa 

HS6 and HS7 are not present, suggesting that the MP is in a compacted chrom atin 

structure inaccessible to the basal transcription machinery (Fig. 5.2).
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Fig. 5.2: Schematic representation of DNase I hypersensitive sites of the huPA promoter in HeLa 

and PC-3 cell lines.

Since S2 showed a cell-type specific activity I wanted to further characterise it 

by testing whether the negative regulatory element could act as silencer. The 

analysis of the effect of S2 on the SV40 heterologous prom oter activity led me to 

conclude that S2 was effectively a silencer as it works in an orientation and 

position-independent m anner (Fig. 4.4).

Due to the high conservation of uPA regulatory elements among different 

species (see hum an, mouse and pig prom oters; Rorth et a l ,  1990, Cassady et a l ,  

1991) I searched for the presence of S2 in the mouse and porcine 5'-flanking 

region, to confirm an im portant role for 82 in the regulation of the expression of 

uPA in different species. The finding of highly homologous sequences between 

mouse, pig and hum an uPA prom oters indicated that 82 can be considered as 

constituted by 6 modules, highly conserved between the three species, and 

separated by sequences that diverge (Fig. 4.5). The genomic organisation of these 

modules is more similar betw een pig and m an w ith the difference of m odule 6 

that in m an precedes m odule 5 while in pig, as well as in m ouse uPA prom oter, is 

located dow nstream  it. Furthermore, in mouse, the m odules span a w ider region 

than in m an and pig (-400 bp vs 250 bp of huPA 82 and 285 bp of pig uPA 

promoter; Fig. 5.3).
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Fig. 5.3: Genomic organisation of silencer S2 in human and murine uPA

The DNasel protection data gave an im portant clue in the understanding 

how S2 could work. The finding that almost the entire 250 bp long region is 

protected by HeLa nuclear extract (Fig. 4.7 and 4.8) m ight explain why the deletion 

of any single m odule does not im pair completely the silencing function of S2 (Fig. 

4.6). This suggests a redundancy of elements present in this silencer, that may 

have evolved by a series of duplications of sm aller modules. This hypothesis is 

sustained by the presence of direct and inverted repeats along the whole S2 (Fig. 

4.8) and here sum m arised in Fig. 5.4. Some of these repeated sequences appeared 

to be always protected in any or almost any location they are present: CCATC in 

footprint N and G; TGTTGGTGAT in footprint I and N; AAGCCG footprint B and 

E and at the border of footprint G; CTTTGTTCC sequence is in footprint G and H; 

CAATCCT at positions -730 and -700 at the border of footprint D and E, and are at 

least present once w ithin the regions hom ologous to the m urine and porcine uPA 

prom oter (Fig. 5.4).

Of these, only region 3 appears not to be protected at all and furtherm ore the 

naked DNA is cut by DNase I at a few position in the lower strand and in the 

upper strand (Fig. 4.7).
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-640 4  -630

Fig. 5.4: Schematic representation of repeats in the 52 region of huPA promoter

Each repeat is represented by a sphere of the same colour. The light blue boxes indicate the protected 

regions; the red boxes indicate the regions homologous between human and murine uPA promoter. For 

the detailed sequence see Fig. 4.9.

The presence of stretches of A and T residues suggests that the helical 

conformation of this part of the silencer is different from that of the rest of DNA 

of S2, although the electrophoretic mobility experiments of S2 circular perm uted 

fragments excluded that this modification results in intrinsic curved DNA (Fig. 

4.19). It has been dem onstrated that this kind of sequence array is not efficiently 

cut by DNasel (Drew and Travers, 1985; Drew, 1991), but it shows the peculiarity to 

be bendable by external forces like interaction w ith the histone octam er or w ith 

proteins that induce a curvature in the DNA. The high conservation of this 

m odule betw een mouse, pig and hum an, then, w ould argue for an im portant role 

of the local DNA conformation for S2 activity, suggesting that the entire 

conformation of S2, rather than one particular sequence, is im portant for S2 

silencing activity, a conformation that can be induced by the binding of factors that 

stabilise this structure.

The com parison of the complexes detected by different oligonucleotides, 

some of which overlapping w ith each other or containing the same sequence (Fig. 

5.5), and the analysis of the competition also argue for the hypothesis of
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redundant elements in S2. Table 5.1 sum m arises the results of EMSA and 

competition analysis from experiments showed in Fig. 4.12, 4.13, 4.14 and 4.21.

GTTAACACTT CA ATAGGAAG CACCAACAGT TTATGCCCTA GG ACTTTGTT 

CCCACAATCC TGTAACATCA TATCACGACA CCTAACCCAA TCCITATCAA
F!

GCCCTGTCAA AAACGGACTT TAAACCAAGC TGCAAATTTT CAGTAATCTG

GCCTTGCCTT TCCCCCrCTG ATAGCACCAT CAAACAAACC CCCITACTGC
nU  -------------------- W

CGAAAGCAAT AAGCCCGGCT TTGTTCCATC CACTGGTTGT GTTGGTGATA
        . —

#HMG — ■ ■ ■■■

TCTGGGGACT GCCACT
UH ffTIE

Fig. 5.5: Schematic representation of the oligonucleotides used in the EMSA analysis of the 

nucleoproteic complexes detected by DNase I footprinting.

prob< # 2 #3 #N #TIE # 4
comp: Cl c2 c l  c2 c3 c4 c5 c6 c7  c8 c l  c2 c3 c4 c5 c l  c2 c3 c l  c2 c3
# 2 4- + — — — — — — — — - — — i — — — — — -
# 3 — — + + + “ + + + - 4- - - - + t
#N — — - - - + - + 4- - 4- 4- " • + - - r̂
#TIE - - - + - 4 - 4 - 4 - - - i
# 4 — — — — — — — — — — - — — 4- - - - 4- 4- - +
#H - . . . . . " + + - - - ;  ■ - - 4

Table 5.1: Cross-competition analysis.

The arrows indicate a down shift in the mobility of the complex. (+) indicates competition; (-) no 

competition; (+/-) partial competition; (++) increased intensity, c = complex; comp = competitor.

Each oligonucleotide (oligo #3, #4, #TIE and #N) detects in HeLa nuclear 

extract many complexes, some of which are specific, as shown by homologous 

competition. Some of these oligonucleotides are able to compete the binding of 

one or more complexes to each other. The analysis of the sequences (table 5.2) 

showed that oligo #3, #4, #TIE, #N and #H share the sequence CCATC that in
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oligo #TIE and #4 is found in the lower strand w ith a m ismatch (CCAAC instead 

of CCAXC). Oligo #4 contains a second one in the upper strand.

#N 5' CTCTGATAGCA CCATC AAACAAACCCCCT 3'

#TIE 5' ACrCGTTCT GÏTGG TGATATCTGGGG 3'

#4 5' CnTGTT CCATCCACrGGTTGT GITGG TGAT 3'

#H 5' GGCTTTGTT CCATC CACTGGTTGT 3'

#3 5' AGCA CCATCAAACAAACCCCCTTACTGCCGAAAGCAATAAGCCCGG 3'

Table 5.2: Sequence comparison of the oligonucleotides used in this study

The CCATC sequence is shown in bold in either orientation. This sequence is also present at position 

-764/-760.

W hen oligo #TIE is used as competitor, it is able to compete complex 4 

detected by #N and complex 3 detected by #4 (3b). In the latter case the com petition 

gave rise to a faster mobility of complex 3. This could be explained by the titration 

of one of the two putative factors bound to their cognate sequence in oligo #4, or 

by the binding of some other factors that is m utually exclusive with that bound by 

the CCATC sequence. Competition by #4 of complex 3 generated by #1IE (3a), that 

contains only one CCATC motif, w ould argue for the first hypothesis as this has 

just one binding site for the CCATC sequence. The increased mobility of complex 

3 detected by #TIE (3a) and complex 4 detected by #N in the presence of oligo #H 

as competitor can be explained only hypothesising that other factors are bound to 

the oligonucleotides (Fig. 5.6). In particular, oligo #N contains the sequence 

TTTGTT, in the lower strand, nearby the CCATC motif. It can be hypothesised that 

the binding to this element (that is the consensus for the HMG-box containing 

protein) is m utually exclusive w ith respect to the binding to the CCATC sequence, 

while for #TTE the sequence that is partially overlapped can be the binding site for
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another factor. For #4 again this can be due to the titration of one complex a n d /o r  

binding of other factors.

-644AC ^CAA^aCCCrTACTGCCGAAAGCAATAAGCCO

#3
ATC-534

#N #TIE
#H

Fig. 5.6: Model of the putative DNA binding protein interacting with the region covered by 

oligonucleotides #3, #N, #4, #TIE and # H .

The blue sphere would recognise the CCATC sequence; the grey one would bind the sequence TTTGTT 

and the pink one would bind the region in common between ohgo #TTE and #H.

Most of the protected areas w ith FleLa nuclear extract are the same with PC-3 

nuclear extract, w ith the exception of footprints L, M and N (Fig. 4.7). The band- 

shift analysis w ith oligonucleotides covering most of S2 region, seems to indicate 

that the nature of the complexes may indeed differ. Oligo #1 (-726/-705) detects 2 

complexes in HeLa and PC-3 but they show different mobility (Fig. 4.10, complex 1 

vs 1*). Complex 2 is not present in PC-3 while complex 3 is lacking in HeLa 

nuclear extract

Furtherm ore, w hen the TIE element, protected by PC-3 and HeLa nuclear 

extracts in DNase I footprinting, is studied by EMSA analysis, different complexes 

are detected in the two cases: complex 1 and 2 are common for both nuclear 

extract, complex 3 is specific for HeLa, while complex 4 is present only in PC-3 (Fig. 

4.24). It cannot be excluded that complex 4 is formed through protein-protein 

interaction that do not alter the binding of other factors as detected by DNase I 

footprint. Complex 3, on the other hand, that behaves as complex 3 detected by #4



Discussion 126

(Fig. 4.21, panel B), could be formed by the factors binding the CCAAC sequence 

present in the lower strand of #TIE.

The binding to the cognate site for the proteins of the FIMG box family in the 

presence either of FleLa or PC-3 nuclear extracts, as detected by DNase I 

footprinting (Fig. 4.7) and EMSA analysis (Fig. 4.16), and the evidence that factors 

belonging to this family can indeed bind the element present in uPA prom oter 

(Fig. 4.18 and 4.20) do not exclude that the binding of these factors, in vivo,  occurs 

only in PC-3.

The faster mobility of the oligo encom passing the HMG+TIE elements 

compared to the #TIE alone (they show the same pattern of complexes) m ight be 

explained by the binding of a factor to the FIMG element that, upon binding, bends 

DNA, giving a structure that runs faster in a polyacrylamide gel (Fig. 4.26). The 

architectural role evidenced for the HMG box proteins, allowing the assembly of a 

com petent complex able to transactivate transcription, supports this hypothesis. 

The missing binding by TCF-1 FIMG-box, in the experiments of Fig. 4.17 and 4.18, 

might be explained by the different affinity of this protein for the sequence present 

in huPA  prom oter (TCF-1 binds preferentially 5' CCTTT G A AGCT 3' sequence 

than 5' GGTTTGTTCC 3') although I cannot exclude that a problem  of degradation 

of the protein occurred.

A single-strand DNA binding protein in the huPA promoter

The EMSA analysis of the complexes formed by HeLa nuclear extract, in the 

presence of single strand DNA probes, has led to the interesting finding that a 

protein w ith a higher affinity for single strand DNA rather than double strand 

form of S2 region could be present in this cell line. Recently, several papers 

described the existence of sequence-specific single strand DNA binding activities 

in different prom oters involved in either positive or negative transcriptional 

regulation. Single strand DNA have been described in c-myc, fi-globin, PDGF A,
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EGF receptor and decorin prom oters (Santra et ah, 1994, Kato et ah, 1991, Siebenlist 

et ah, 1984, Chen L. et ah, 1993) and among eukaryotic single-strand DNA binding 

proteins are FBP, STR, MF3, p70, ERDP-1 (Kato et ah, 1991, Lin et ah, 1993, Duncan 

et a I., 1994, Altiok and Groner, 1994).

Table 5.3 summarises the results of the EMSA analysis, in the presence of 

HeLa nuclear extract, using either the upper or lower strand of #4 as probes (Fig. 

4.30).

Both the upper and the lower strand detect more than one complex; 

however the southw estern analysis (Fig. 4.31) has revealed that the upper strand 

binds two polypeptides of 40 and 30 KDa, w ith a greater affinity for the former, 

while the lower strand binds only the 30 KDa protein. The presence of m ultiple 

complexes can be due to the form ation of m ultim ers a n d /o r  of higher order 

nucleoproteic complex.

Com petition of either strand w ith their complementary strands (as full 

length or as part of the entire oligonucleotide sequence) abolishes the binding of 

all complexes probably due to the formation of double strand form of DNA rather 

than to a sequence specific competition (Fig. 4.30, lanes 3 and 15). Competition of 

either strand w ith an excess of unlabelled hom ologous oligonucleotide, on the 

other hand, has showed that neither the 5’ part or the 3' part of the 

oligonucleotides are able to compete any complex, suggesting that the binding 

requires m ost of the sequence present in oligo #4 (compare competition by #TIE 

and #H; Fig. 5.7).
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probe # 4  upper # 4  lower
compet. c l c2 c3 c l c2
# 4  upper + 4- 4- 4- 4-
# 4  lower + 4- 4- 4- 4-
#TIE upper - V - 4 4-
#TIE lower 4- 4- 4- - -

# 4  upp mut ± ± 4- 4- 4-
# 4  low mut 4- 4- 4- - -

#H upper - - - - 4-
#H lower 4- ± 4- - -

# 4  DS - - - - -

#TIE DS - - - - -

#H DS - - - - -

Table 5.3: Cross-competition analysis of single strand probes

The arrows indicate a down-shift in the mobility of the complex. (+) indicates competition; (-) no 

competition; (+/-) partial competition; (++) increased intensity, c = complex; compet. = competitor.

5' CTTTGTTCCATCCACrGGTTGTGTTGGTGAT 3' #4 upper

5' ACTGGTTGTGTTGGTGATATCTGGG 3' #TIE upper

5' CTTTGTTCCATCCACTGGTTaTaTTGGTGAT 3'

5' GGCTTTGTTCCATCCACTGGTTG 3'

5' ATCACCAACACAACCAGTGGATGGAACAAAG 3'

5' CCCAGATATCACCAACACTTCCAGT 3'

5' ATCACCAAtAtAACCAGTGGATGGAACAAAG 3' 

5"CAACCAGTGGATGGAAGAAAGCC 3'

#4 upp mut 

#H upper

#4 lower 

#TIE lower 

#4 low mut 

#H lower

Fig. 5.7: Sequences of the oligonucleotides used in the EMSA analysis of single strand DNA binding 

proteins
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In particular the 3' part of the oligonucleotide is im portant for the binding as 

a m utation of this region (#4 mut), either in the upper or lower strand, partially 

im paired the competition by oligo #4. Furthermore, the upper strand of 

oligonucleotide #N is able to compete the binding of complex 2 detected by the 

upper strand of oligonucleotide #4 (data not shown). Oligo #N contains the 

sequence CCATC, suggesting the involvem ent of this element in the recognition 

of DNA by the 40 KDa single strand DNA binding protein. Since this sequence is 

present also in the -764/ -760 region it is not excluded that more than one region in  

the S2 silencer can prom ote the form ation of single strand region as show n in the 

model of fig. 5.8.

The binding of the 40 and 30 KDa factors can prom ote or simply stabilise 

single strand regions that would prevent the binding of transacting factors to 

double strand DNA Fig. 5.8). The binding of these factors to single strand DNA can 

result in a local torsional stress that can alter the topology of this region of the 

prom oter prom oting the form ation of higher order nucleoprotein complexes 

resulting in a compact chrom atin structure. The faint protection in the 

corresponding TIE element in DNase I footprint (Fig. 4.7) could be due to the 

form ation of single strand regions that w ould become more evident w hen a 

supercoiled template is used instead of a linear fragm ent of DNA.

This model is supported by the recent finding of a family of DNA and RNA 

binding proteins, the Y box factors, with the protein YB-1 as a member. It has been 

show n that YB-1 repress interferon-y-induced transcription of class II hum an 

major histocompatibility (MHC) genes (Ting et al., 1994) by binding its cognate 

sequence in the DRA prom oter as single strand templates.

It has been hypothesised that YB-1 can repress transcription by inducing or 

stabilising single strand regions in the DRA prom oter preventing loading a n d /o r  

function of other DRA-specific transactivating factors.
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HMG-bo

HMG.

HMG-

Fig. 5.8: Proposed model for the binding of single strand DNA binding protein in S2.

The blue and green spheres (plain colour) indicate the high affinity binding sites for the 30 and 40 

KDa proteins, binding oligo #4, detected in southwestern experiment. The hatched blue and green 

spheres indicate the low affinity binding sites. The binding of these proteins would prevent the 

binding of other factors, like the HMG-box containing proteins, important for the activation of 

transcription in cell lines producing uPA (see text).

The biochemical characterisation of this protein showed that its MW is 

between 33-34 KDa. Furthermore it has been detected in HeLa nuclear extract, by a 

anti-YB-1 antisera, a band of approximately 45 KDa consistent w ith the reported 

m olecular mass for another protein belonging to this family, named dbpB, of 42 

KDa (Spitkovsky et a l ,  1992). The sequence bound by these factors resembles the 

CCATC sequence of uPA prom oter being CAATC. Furthermore, three putative 

binding sites for YB-1 are present in uPA S2 at position -776/-771, -731/-726, and 

-698/-693 (Fig. 5.9).

-787 TB-1
GTTAACACTT CAATAGGAAG CACCAACAGT TTATGCCCTA GGACTTTGTT

ABF-1YB-1 YB-1
CCCACAATCC TGTAACATCATATCACGACA CCTAACCCAA TCCTTATCAAG

GATA-1
CCCTGTCAA AAACGGACTT TAAACCAAGC TGCAAATTTTCAGTAATCTGGC 

GAT-tVl ABF-1

YB-1

CTTGCCTT TCCCCCTCTG ATAGCACCAT CAAACAAACC CCCTTACTGCCG
□ATA-1N

AAAGCAATAAGCCCGGCT TTGTTCCATC CACTGGTTGT GTTGGTGATATC
ABF-1 -535

Fig. 5.9: YB-1 and CCATC binding sites in S2
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This might suggest that one or more proteins belonging to this family could 

indeed bind the S2 silencer of huPA prom oter.

The TIE element is involved in S2 silencing ac t iv i ty

Several line of evidence indicate that the TIE behaves as a functional silencer 

module. W hen deleted from the context of the full length prom oter the 

transcriptional activity increases by about 1.5-2 fold (Fig. 4.6). When one copy of 

TIE is cloned in front of the SV40 prom oter it is able to repress SV40 driven 

transcription by about 1.5 fold (Fig. 4.28, pTIECAT). The increasing copy num ber 

represses the transcription up to 3 fold (p2xTIE and p4xTIE) and is independent of 

the orientation of the single elements. The analysis of four different m utants in 

TIE sequence (mut 1, m ut 2, m ut 3 and m ut 4) by EMSA (Fig. 4.22b and 4.23), 

showed that only complex 1 and 2 were affected in m ut 1, 2 and 3, while m utant 4 

showed an increased affinity for the three complexes. The in v ivo  analysis of 

these m utants, in the context of the full length prom oter and E787CAT constructs 

(Fig. 4.27), gave an unexpected result as none of the m utations affect the silencing 

activity of S2 apart from m utant 3 in  E787CAT context. Indeed the repressive 

capability seems to be increased. If this can explain the behaviour of m utant 4, that 

shows higher affinity for factors present in HeLa nuclear extract, concerning the 

other m utants the result can be explained by considering complex 3: none of the 

m utants in fact has lost the ability to compete for the form ation of complex 3 

formed by the binding to the CCATC sequence, although two of these m utations 

(m ut 1 and m ut 2) falls in the CCAAC sequence present in the lower strand of 

#TIE (Table 5.6). M utant 1 gives rise to the sequence recognised by YB-1 protein, 

while m utant 2 restores the T residue at position 4 bu t changes position 2. The 

absence of competition by the 3 complexes with #TIE rev and #TIE dir could be 

due to the lack of CCAAC sequence in TIE rev, and to the absence of flanking
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sequences im portant for the binding of nuclear factors to the CCAAC sequence in 

the case of TIE dir (see table 4.4).

1 2  3 4 5 6 residues position

5' CCAACA 3' #TIE lower strand

S' CCAATA 3' #TIE m uti lower strand

S' CGATCA 3' #TIE mut2 lower strand

Table 5.6: Mutants in TIE element

Furtherm ore, in the context of the whole S2, the other CCATC motifs are 

present, so it cannot be excluded that in order to see an effect all the sequences 

should be m utated. Then it w ould have been im portant to test these m utations in 

the context of the TIE elem ent controlling SV40 driven transcription.

A hierarchy of protein-DNA interaction in uPA promoter S2 region

A  more detailed analysis of the S2 region (Fig. 4.11) revealed the presence of 

putative binding-sites for factors belonging to the GATA family of transcription 

factor and for the yeast ABF-1 factor. The interesting feature of these sites is their 

organisation, as they resemble that found in the e-globin silencer (Peters et a l,  

1993), where the binding of the YYl factors prevents the binding of the erythroid 

specific GATA-1 factor (Fig. 5.10).

In the case of the S2 region, the putative binding sites for ABF-1 and GATA-1 

overlap or are in the vicinity of the CCATC sequence (see Fig.11c and fig. 5.10). An 

oligonucleotide with the consensus for ABF-1 is however not able to compete the 

complexes formed by oligonucleotide #1 that encompasses the m ost 5’ ABF-1 site 

(Fig. 4.11a), but it cannot be excluded that other oligonucleotides with a sequence
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derived by the consensus but carrying different residues, can have different 

affinities for these factor.

5' AGATGGATATCATTTTGGAAG 3' s e n se

3 ' TCTACCTATAGTAAAACCTTC 5' a n tis e n se

GTTAACACTT CAATAGGAAG CACCAACAGT TTATGCCCTA GGACTTTGTT 
ABF-1

CCCACAATCC TGTAACATCATATCACGACA CCTAACCCAA TCCTTATCAAG 
GATA-1

CCCTGTCAA AAACGGACTT TAAACCAAGC TGCAAATTTTCAGTAATCTGGC 
G A T A p ABF-1 -|

CTTGCCTT TCCCCCTCTG At AGCACCAT cIa  ACAAACC CCCTTACTGCCG 
- t  N 3- 9ATA-I

AAAGCAATAAGCCC GGCT TTGTTCCATC CACTGGTTGT GTTGGTGATATC
ABF-1 -535

Fig. 5.10: The e-globin silencer and huPA S2.

Panel A: The organisation of the e- globin silencer. The black bars indicate the DNasel footprint of 

the sense and antisense strand (From Peters et al. -1993 - JBC: 268, 3430-3437). Panel B: The huPA S2 

silencer. The putative binding sites for CATA- 1 and ABF-1 are indicated. In green the CCATC or 

CCAAC motif, and in orange the binding sites for a putative HMC-box containing proteins.

However, the presence of such overlapping putative binding sites for 

transcription factor m ight be im portant for the com petition betw een the 

form ation of an activating or inhibiting complex.

Furtherm ore the CAATC sequence is the binding site for NF-Y, C/EBP and 

CTF/N Fl transcription factors. Recently it has been show n that NF-Y binding is 

im portant for transactivation of the invariant chain prom oter, by prom oting the 

assembly of a stereo specific nucleoprotein complex involving 250 bp of DNA 

sequence. The presence of the histone fold-like motifs in this factor led to the 

speculation that a static nucleosome like particle is formed carrying in proximity 

enhancer and proximal prom oter sequences (Linhoff et a l ,  1997).

If we hypothesise a role for topological constraints in the form ation of a 

correct DNA conformation in the S2 region, it w ould be interesting to study the 

effect of the silencer in the context of the genomic DNA, by stable transfection. 

Right now I can only speculate that S2 might work by freezing particular DNA
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conformations that include the stabilisation of single stranded regions by the 

binding of specific single-strand DNA binding proteins, preventing the binding of 

transcriptional activators (Fig. 5.11, FleLa). The inaccessibility of DNasel, as 

revealed by experiments of chromatin mapping in FleLa and PC-3 cells, might be 

due either to regions that are rarely cut by DNasel (poly dA-dT tracts) or by the 

formation of a higher order structure in which nucleosomes and other non- 

nucleosomal DNA binding proteins bind and pack the DNA in a close 

conformation (Fig. 5.11, HeLa).

HeLa

^^9

PC-3

Fig. 7.11: Model for the assembly of negative or positive nucleoprotein complex at S2 

In HeLa cells the binding of single strand DNA binding protein prevent the loading of 

transactivators to S2 and allows the packing the DNA in a compact nucleosomal structure. 

Furthermore, in synergism with other regions (i.e.S3) and through the binding of repressor or 

corepressor molecules, the assembly of a competent pre initiation complex is blocked, thus preventing 

the transcription of the gene. In PC-3 cells, the binding of architectural proteins (i.e. HMG-box 

containing protein) would result in disruption of chromatin driving the assembly of a competent pre­

initiation complex and the interaction of transactivators with the basal machinery through looping 

of intervening sequences.



Discussion 135

On the other hand in PC-3 cells the hypersensitivity detected in 

correspondence of the region of silencer S2 might be interpreted as due to a 

different nucleoprotein complex in which, for example, HMG family proteins and 

nucleosomes bind, allowing, through DNA looping, the interaction of sequences 

located upstream the S2 and the basal promoter elements (Fig. 5.11).
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6. Appendix 1: Negative regulation of uPA by 
TGF-fil

Introduction

Transforming growth factor Cl (TGF-Cl) is a hormonally active polypeptide 

belonging to a large super family of secreted factors that comprises the three TGF-C 

isoforms (TGF-Cl, -C2 and -C3, each encoded by a separate gene), the activins, the 

bone morphogenetic proteins and many other secreted factors that are all thought 

to play major roles in differentiation and tissue morphogenesis (Derynck et al., 

1988, Massague', 1990). The high degree of evolutionary conservation of the 

closely related TGF-Cs from Drosophila and Caenorhabditis elegans to humans 

and their widespread expression in embryonic as well as adult tissues suggests an 

important role for these factors.

A variety of biological activities that affect cell proliferation and 

differentiation in many cell types have been ascribed to these factors. They 

stimulate the proliferation of various mesenchymal cell types, but act as a growth 

inhibitor of many other cell types, including epithelial cells. Furthermore, when  

present at high concentration, they induce the synthesis of extracellular-matrix 

proteins (Penttinen et al., 1988), modulate the expression of matrix proteases and 

protease inhibitors (Lund et al., 1987, Gerwin et al., 1990, Lund et al., 1991), 

increase integrin expression and thus enhance cell adhesion (Ignotz et a l ,  1989). 

TGF-Cs also affect mesenchymal differentiation and at low concentration are very 

potent chemotactic agent for several cell types, especially monocytes and 

fibroblasts (reviewed in Roberts and Sporn, 1990; Postlethwaite et a l ,  1987). 

Several are the observations that in v ivo  TGF-Cs action is largely growth 

inhibitory (Silberstein and Daniel, 1987) as shown for the early phase of liver
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regeneration following partial hepatectomy (Russell et al., 1988), lymphoid and 

myeloid cell proliferation (Goey et a l ,  1989, Fontana et al., 1989).

The signalling mechanisms leading to changes in proliferation by TGF-C are 

likely to be different in cells that are growth stimulated versus those that are 

growth arrested by TGF-C. Recently the SMAD family of signal transducer proteins 

has been identified as key components in either activation or inhibition of TGF-Cs 

signal transduction pathways (reviewed in Heldin et a l ,  1997). Following 

phosphorylation and activation by receptor-kinases, SMAD complexes translocate 

into the nucleus where, either directly or in complex with other proteins, affect 

transcription of specific genes in response to TGF-C.

Furthermore, ligand stimulation of the receptors increases the expression of 

the inhibitory SMADs, that may have a negative-feedback role in signal 

transduction.

Most studies of TGF-C induced growth inhibition have focused on its effect 

on the cell-cycle machinery. Several lines of evidences show that TGF-Cl can 

inhibit DNA synthesis occurring 12 hr following stimulation of quiescent cells 

when added at any point prior to the G l/S  boundary (Howe et al., 1991, Laiho et 

al ,  1990). One target candidate of TGF-Cl, even in late Gl, could be the c-myc gene 

the expression of which has been shown to be necessary for kératinocytes 

proliferation (Pietenpol et al., 1990b). c-myc gene is induced rapidly upon 

induction with EGF in many cell types and its expression remains elevated 

throughout Gl and during early S phase (Coffey et al., 1988). TGF-Cl rapidly 

reduces c-myc mRNA and protein and cycloheximide treatment has shown that 

protein synthesis is required for this effect. The block in c-myc expression occurs at 

the level of transcription initiation (Pietenpol et al., 1990b). Furthermore it has 

been demonstrated that DNA-tumour virus transformed cells become resistant to 

the growth-inhibitory effect of TGF-Cl (Pietenpol et al., 1990a) and in particular c-
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myc mRNA expression is no longer suppressed. These DNA-tumour virus 

oncoproteins bind the product of the retinoblastoma gene (pRB) blocking its 

growth-suppressive activity, and this leads to an aberrant growth control (Munger 

et a l ,  1989). It appears then that TGF-Cl-induced growth inhibition is a 

consequence of pRB-mediated suppression (direct or indirect) of c-myc 

transcription.

TGF-Cl would act maintaining pRB in its underphosphorylated form, 

necessary for the blocking of cell cycle in GO/Gl phase (Laiho et al., 1990). It has 

been proposed that the effect on pRB phosphorylation is indirect, involving a 

direct inhibition of the synthesis of cyclins and associated cyclin-dependent 

kinases and induction of inhibitors of cyclin-CDK complexes (Geng and Weinberg, 

1993, Ewen et al., 1993, Derynck, 1994).

As already mentioned, the block in c-myc expression by TGF-Cl occurs at the 

level of transcription initiation. A cis-acting regulatory element responsible for 

the TGF-Cl suppression has been identified (position -100/+71 relative to the PI 

transcription start site), suggesting that the synthesis or modification of a protein 

that binds to this cis-acting element could be the target of the mechanism through 

which TGF-Cl inhibits cell proliferation. Furthermore, Matrisian and 

collaborators described a cis-acting element in the promoter of the rat 

transin/stromelysin gene that mediates the TGF-Cl suppression of its expression 

(Kerr et al., 1990). This element, termed Transforming growth factor Inhibitory 

Element (TIE), mediates the repression of EGF-induced expression of the gene 

(Kerr et al., 1988). The inhibition occurs at transcriptional level through binding of 

a c-fos containing complex to this element.

The same element is present twice in the human c-myc gene (but one is 

outside the 5' region shown to be necessary for TGF-Cl suppression of c-myc 

transcription while the other is also required for regulation by pRB; Pietenpol et
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al., 1991) as well as in the promoters of other genes known to be suppressed by 

TGF-fil as human collagenase (Angel et al., 1987, Edwards et al., 1987), mouse 

elastase (Stevenson ef al., 1986), MRP/proliferin (Connor et al., 1989) and human 

urokinase (see Table 6.1).

P r o m o t e r S p e c i e s S e q u e n c e

TRANSIN rat -709 GAGTTGGTGA

ELASTASE mouse -572 GAGTTGGTGA

COLLAGENASE human -246 GAATTGGAGA

MRP/PROLIFERIN mouse -1004 GCCTTGGTGT

c-myc human -87 GGCTTGGCGG

Consensus GNNTTGGtGa

Table 6.1: Comparison of promoter region from TGF-fil inhibited genes

Nucleotides position is relative to the major start site of transcription (P2 in the case of c-myc). N= 

any nucleotide; capital letters = invariant nucleotides; small letters = preferred nucleotide (From 

Kerr e t  a l . - 1990 - Cell 267-278)

The TIE element present in the human urokinase promoter lies in the 

region of silencer S2 (-553/-537) as a partially overlapped and inverted repeat of 

the TIE consensus (Fig. 6.1).

TGF-fil induces PAI-1 transcription and modulates the transcription of uPA 

in a manner that varies with the cell type. The availability of cell lines 

synthesising different levels of uPA provide a good experimental system to test 

the effect of TGF-fil on uPA gene expression. In particular, in order to address 

whether TIE plays a role in the regulation of uPA gene expression two cell lines, 

one expressing high constitutive level of uPA (PC-3) and one expressing a low



_________________Appendix 1: Negative regulation o fuP A  by TGF-fil 140_______

basal level of uPA but inducible by phorbol-ester treatment (HepG2), have been 

chosen.

-1820 -1428 787 -660 -537 -862 2 1 2

a t c c a c T G G T T G T G T T G G T G A T
- 55 3  ► - 5 3 8

i---------
T I E

-709 GAGTTGGTGA -700 transin

■553 TGGT1ETCTTGGTGA -538 huPA

5 'GNNTTGGtGa 3' TIE consensus

Fig 6.1: The TIE element in the human urokinase promoter

Upper: mapping of TIE in the human urokinase promoter. The arrows indicate the partial 

overlapped and inverted organisation of the element. Lower: comparison of the urokinase sequence 

with that from transin promoter and consensus. In black outlined is the left and inverted TIE element; 

in red is the right and direct repeat. The red outlined character represent the overlapped region 

between the left and the right part of the element.

Materials and M ethods

DNA manipulations

The BamHI- Bgl II fragment from human uPA cDNA (Riccio et a l ,  1985) and 

the BamHI fragment from human uPA receptor (uPAR) cDNA (Roldan et a l ,  

1990) were cloned in the BamHI-Bgl II sites and in the BamHI site of pSP73 

plasmid (Promega) to give respectively pT7-uPA and pSP6-uPAR constructs (Table 

6.2). DNA was purified by caesium chloride gradient and linearized with the 

appropriate restriction enzyme. After digestion DNA was phenol extracted once 

and ethanol precipitated and resuspended in an appropriate volume of distilled 

water.
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Sma110

Table 6.2: pT7-uPA and pSP6-uPAR maps

Sma 1562

Bam HI636

BooRV

BamHI 45

SP6 prom

huPAR

huPA
SP6-UPAR 17 pro
3055 bp

huPA

Hndlll

All the constructs used for transient transfections are described in Materials 

and Methods (previous section).

Cell culture, RNA extraction and Northern blot analysis

HepG2 and PC-3 cells were grown in Dulbecco's modified Eagle medium  

(DMEM) containing 10% foetal calf serum (ECS) to a confluent state. Cells were 

serum starved overnight in DMEM containing 0.5% ECS prior to addition of TCF- 

61 (Boehringer Mannheim; 5 ng/m l) and PMA (100 ng/m l). RNA was extracted at 

different times as described in the figures, according to the method described by 

Chomczynski and Sacchi, 1987. RNA (PC-3:10 ^g per lane, HepC2: 20 pg per lane) 

was sized fractionated on a 1.2% agarose gel containing 6.6% formaldehyde. The 

RNA was then transferred to nylon membrane (Costar) by electrotransfer in the 

following buffer (Ix TAE: 10 mM Tris-HCl, 5 mM sodium acetate, 0.5 mM EDTA, 

pH 7.8) for 4 hours at 40 volts and cross-linked to filter with a Stratagene cross­
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linker. Radiolabelled probes were obtained by in vitro  transcription of Smal 

linearized pT7-uPA and of pSP6-uPAR using T7 and SP6 polymerases respectively 

(Promega). The Pst 1 fragment of mouse glyceraldehyde-3-phosphate deydrogenase 

(GAPDH) cDNA and the Bgl II/ Sad fragment from human PAI-1 cDNA (Ginsburg 

et a l ,  1986) were labelled by random priming (Rediprime, Amersham) and used 

for normalisation of sample RNA loading. Filters were then pre-hybridised in 

mixture containing 50% formamide, 6x SSPE, 5x Denhardt's, 0.5% SDS, 100 

m g/m l DNA carrier (MB DNA, Boehringer Mannheim) at 42 °C for 2 hours. 

Hybridisation with riboprobe was performed in the presence of 10% dextran- 

sulphate at 42 °C for 12-16 hours. The probe in excess was removed by washing the 

filters in 3x SSPE/0.1% SDS for 20’ at 65 °C followed by 2 washing in 0.3x 

SSPE/0.1% SDS at 65 °C for 30’ each.

The filters were then exposed with intensifying screens at -80 °C for period 

from 30’ (18S) up to 4 days (uPA and p53 probes). mRNA level was quantified by 

densitometric analysis (Molecular Dynamics,SF, ImageQuant Software).

Transient transfection analysis

HepG2 cells were transfected by the calcium-phosphate method. 

Approximately 10  ̂HepG2 cells/reporter construct were seeded in a 10 cm dish the 

day before transfection in DMEM containing 10% ECS. 4 hours before transfection 

medium was changed. 15 pg target construct DNA and 1.5 pg of EFlalpha-lacZ 

plasmid DNA were used per each plate. After 16 hours, the precipitate was 

removed and the cells were trypsinized and split in three 6 cm plates in DMEM 

containing 10% FCS and allowed to attach for 6-8 hours. For TGF-fil and TP A 

treatment, medium was changed to DMEM containing 0.5% FCS overnight. The 

day after TP A at 100 ng/m l and TGF-fil at 5 ng/m l (or otherwise indicated in the 

legend of the figures) diluted in DMEM were added to the cells (control cells 

received respectively DMSO and PBS). After 8 hours cells were harvested and
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processed for protein extraction (Sambrook et al., 1989). CAT amount was detected 

by a non radioactive CAT-ELISA kit (Boehringer Mannheim) and the amount was 

normalised to fi-galactosidase activity.

Results

Effect ofTGFfil on uPA expression in PC3 cells

It has been reported that the prostate derived adenocarcinoma PC3 cells 

secrete predominantly TGF-fi2 isoform but relatively little TGF-fil protein, 

although TGF-fil mRNA level is higher than that of TGF-fi2 (Bang et al., 1992, 

Ikeda et al., 1987). On the other hand TGF-fil has a certain antiproliferative effect 

on this cell line (Reyes-Moreno et at., 1995). In order to clarify whether the uPA 

promoter was sensitive to the inhibitory action of TGF-fil and hence whether the 

constitutive high level of uPA was due to a lack of TGF-fil isoform activation the 

cells have been treated with 5 ng/m l of TGF-fil and RNA extracted at different 

time points has been analysed by Northern analysis. Up to 24 hours treatment did 

not change the level of uPA mRNA (Fig. 6.2). Flowever hybridisation of the same 

blot with a probe specific for PAI-1 revealed an increase in the level of mRNA 

with a peak at 4 hours after addition of TGF-fil as described for other cell lines 

(Lund et at., 1987, Gerwin et a l ,  1990).

TGF-fil inhibits TP A induction ofuPA mRNA in HepG2 cells

TGF-fil is able to counteract the effect of several mitogens. In order to 

understand whether the TIE element plays a role in the uPA promoter I tested 

whether TGF-fil might be involved in the suppression of TP A induced expression 

of uPA gene in FIepG2 cells. In this cell line uPA gene expression is under the 

control of the inducible enhancer located 2 Kb upstream of the start site. These 

cells do not express constitutively high levels of uPA but its expression is induced
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by treatment with PMA (phorbol-myristate acetate) reaching a maximum 

expression level at 8 hours after induction as shown by a northern blot analysis of 

total RNA prepared at varying times after addition of PMA (Fig. 6.3; Nerlov et a l ,  

1992). When cells were simultaneously treated with TGF-Cl and PMA a reduction 

in the level of uPA mRNA by about 4 fold was observed (Fig. 6.3), suggesting that 

TGF-fil was able to counteract PMA effect on uPA gene expression.

0 2 4 8 12 24 hours

GAPDH

PAI-1

B
0.6

;  0.5. 
m

PAI-< 0.4

uPA

Fig. 6.2: Northern blot analysis of uPA and PAI-1 expression in PC-3 cells 

Total RNA was isolated by PC-3 cells treated with 5ng/m l of TGF-61 for the times indicated. Panel 

A: autoradiograms of Northern blots. For PAI-1 both mRNAs (3.2 Kb and 2.3 Kb) were detected by 

the same probe. Panel B: quantification of uPA and PAI-1 mRNAs by densitometric scanning. The 

values are expressed as relative to GAPDH (gIyceraldehyde-3-phosphate dehydrogenase). For 

PAI-1 values of both mRNAs are summarised.
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Fig. 6.3: Time course analysis of TGF-61 effect on uPA expression in HepG2 cells 

Confluent HepG2 cells were treated either with TPA (100 ng/ml) or TPA (100 ng/ml) and TGF-Cl (5 

ng/ml) for the times indicated. RNA was extracted and analysed by Northern blot. Panel A: 

autoradiograms of hybridisation with human uPA and glyceraldehyde-3-phosphate deydrogenase 

(GAPDH) probes. Panel B: scanning densitometric analysis of the film. The values are referred as 

uPA/GAPDH. Panel C: the values are expressed as TPA/TPA+TGF61 (fold repression).

The same result was obtained when cells were pretreated with TGF-fil, 2 and 

3 hours before PMA addition (fig. 6.4).
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Fig. 6.4: Effect of TGF-61 pretreatment on TPA induction of uPA mRNA

HepG2 cells were pretreated with 5 ng/m l of TGF61 prior to addition of TPA (100 ng/ml). RNA was 

extracted after 8 hours of TPA induction. Panel A: autoradiograms of uPA and GAPDH 

hybridisation. Panel B: scanning densitometric analysis of the film. The values are expressed as 

TPA/TPA+TGF61 (fold repression).
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As shown in fig. 6.5, the effect was already obtained at picomolar 

concentration of TGF-fil (0.1 ng /m l) and did not increase w ith  increasing am ount 

of inhibitor added (up to 10 ng/m l).
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Figure 6.5: Titration of TGF61 concentration on TPA-induced uPA expression

HepG2 cells were treated with different amount of TGF-61 as indicated in the figure together with 

100 ng/m l of TPA. RNA was extracted after 8 hours of treatment. Panel A: autoradiograms of uPA 

and GAPDH hybridisation. Panel B: scanning densitometric analysis of the film. Values are 

expressed as TPA/TPA+TGF-Gl (fold repression).

TGF-fil alone did  not seem to have any effect on the basal level of uPA 

mRNA, although I cannot exclude that it was not possible to detect any reduction 

due to the too low level of uPA mRNA in unstim ulated cells (data not shown). 

Furtherm ore, TGF-fil and PMA, when added sim ultaneously, decreased PMA- 

stim ulated uPAR mRNA level in HepG2 cells (fig. 6.6), confirming that TGF-fi 

plays an im portant role in the fine regulation of the uPA-uPAR m ediated 

extracellular proteolysis.
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Fig. 6.6: Time course analysis of TGF-61 effect on uPAR expression in HepG2 cells

HepG2 cells were treated with TPA and TGF-61 as described in Fig, 6.3. Autoradiograms of

hybridisation with human uPAR and glyceraldeyde-3-phosphate dehydrogenase (GAPDH) probes

and scanning densitometric analysis of the film are shown.

Transient transfection analysis of inhibition of TPA induced uPA promoter 

driven transcription

In order to find out the element(s) that m ediate the effect of TGF-fil on TPA 

induction of uPA, and in particular w hether the TIE element is involved, a series 

of constructs, carrying deletions of the uPA 5' flanking region fused to CAT 

reporter gene, have been tested in transient transfection of unstim ulated and 

TPA-stimulated, in the presence or absence of TGF-fil, HepG2 cells. As shown in 

fig. 6.7 the full length construct (2212uPACAT) responded to TPA with a ~ 4-fold 

increase in CAT level. The sim ultaneous presence of TGF-fil decreased this value 

by about two fold. Deletion of regions SI (-1820/-1428) and S3 (-537/-86) under 

unstim ulated conditions increased the basal level of transcription of about 3.5 and 

4.5-fold respectively over that of the full length construct, in agreem ent w ith the 

presence in these regions of cis-acting negative elements. These constructs were 

still able to respond to TPA induction although w ith a lower efficiency than wild- 

type (2212uPACAT) construct (2.9 and 2 fold respectively), but no inhibition by 

TGF-f^l of TPA-stimulated CAT activity is observed. On the other hand construct 

AS2, carrying the deletions of the TIE containing region, decreased the basal level
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of transcription by about 3-fold, indicating the existence of a positively acting 

element. This construct was highly inducible by TPA (8.8-fold) and was still 

repressible by TGF-fil (~2 fold).
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Fig. 6.7: Transient transfection analysis of uPA promoter activity in HepG2 cells 

Plasmid constructs carrying different portions of uPA promoter region were tested in transient 

transfection in HepG2 cells. The cells were treated either with 100 ng/ ml of TPA (blue solid bars) or 

with 100 ng/ ml of TPA and 5 ng/m l of TGF-61 (green solid bars). Red bars: untreated cells. Values are 

normalised to 6-galactosidase activity and they are the means ± standard deviation of at least 2 

independent experiments.

W hen CAT transcription was driven by uPA enhancer and m inim al 

prom oter the basal level was 2.8 fold higher than the full length construct and it 

responded to TPA induction by increasing the level of CAT of -6  fold, w ith no 

effect by TGF-fil treatment. Transfection with ESI CAT, ES2CAT and ES3CAT 

constructs (carrying either region SI, S2 or S3 cloned in front of the m inim al 

prom oter in EMP based plasmid) confirmed the result obtained w ith the deleted 

constructs, w ith SI and S3 repressing transcription by about 4.5 and 3.5 fold respect 

to EMP construct, and S2 inducing by about 2 fold. All the constructs were TPA 

inducible (~ 3 fold) but surprisingly none of them responded to TGF-fil treatment.



_________________Appendix 1: Negative regulation o fuP A  by TGF-fil 149_______

D iscussion

The widespread action of the TGF-fi family of polypeptides, affecting cell 

proliferation and differentiation through either stim ulatory or inhibitory grow th 

signals, suggest an im portant role for these factors. This makes the unravelling of 

the m echanism  of their action a major goal in all areas of the research involving 

cell-cycle control studies, differentiation, cell-cell interaction, cell m igration and 

hence tissue rem odelling and inflamm ation.

The identification of the TIE as cis-acting element involved either in cell- 

cycle control, by mediating the effect of TGF-fil on c-myc expression (Pietenpol et 

al., 1990 a,b) and in the control of cell migration, by interfering w ith the synthesis 

of extracellular proteases (Kerr et al., 1990), led me to ask w hether the presence of 

the TIE in the uPA prom oter, and in particular in the S2 region, m ight play a role 

in the regulation of the expression of uPA gene.

Previous report (Grimaldi et al., 1986) indicated that uPA expression is 

m odulated by factors that influence cell grow th in norm al m urine cells and in 

particular that uPA mRNA expression increases rapidly following stim ulation of 

quiescent, GO, cells by mitogenic agents. This effect is an early cellular response to 

grow th stim ulation (1-3 hours) and is due in part to increased transcriptional 

activity of the gene.

The observation by the group of Moses (Pietenpol et al., 1990 a,b) that the 

action of TGF-fil on c-myc expression is mediated by the product of the 

retinoblastom a gene (pRB), led me to search for cell lines other than HeLa, where 

the presence of the papillom a virus oncoproteins has a blocking effect on RB 

growth-suppressive activity.

I then chose two cell lines, one expressing high constitutive level of uPA 

(PC-3) and one expressing a low but inducible basal level of uPA (HepG2).
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The northern blot analysis, however, did not revealed any effect of TGF-fil 

on uPA mRNA expression in PC-3, although a certain antiproliferative effect was 

described (Reyes-Moreno et a l ,  1995). The missing effect was specific for uPA since 

TGF-fil was able to increase the level of PAI-1, as described previously (Fig. 6.2; 

Lund et a i ,  1987; Gerwin et a l ,  1990).

Previous report indicated that TGF-fil had no effect on proliferation of 

HepG2 cells (Chapekar et a l ,  1989); however, it is able to counteract the TPA 

induction of uPA mRNA, as shown by the N orthern blot analysis of Fig. 6.3. 

Transfection experiments in HepG2 cells w ith the full length prom oter indicated 

that the -2212 bp 5' flanking region contains all the information necessary to 

m ediate TGF-fil action on TPA inducibility (Fig. 6.7, 2212uPACAT), bu t sequences 

other than TIE, and located in areas different from S2, seem to be involved in this 

regulation (Fig. 6.7, see ASl and AS3 versus AS2). The opposite experiment, where 

SI, S2 and S3 were cloned in front of the m inim al prom oter and in the presence 

of the enhancer, seemed to indicate that m ultiple elements cooperate to TGF-fil 

down-regulation of uPA induction by TPA (Fig. 6.7, ESI, ES2, ES3) as none of 

them, w hen present alone, responded to TGF-fil treatm ent.

This would suggest that sequences lying in regions other than S2 (e.g. SI and 

S3) m ediate the TGF-fil effect on TPA induction of uPA gene, and in particular 

that a cross-talk between these elements occurs. It would be interesting to perform 

a detailed analysis by nested deletions of these regions in order to find out the 

sequences responsible for the TGF-fil inhibitory effect of uPA expression.

It would be also interesting to study the antiproliferative effect of TGF-fil in 

other cell lines, in order to ask w hether the same m echanisms that regulate c~myc 

expression can be involved in uPA dow nregulation in the cell-cycle.
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7. Appendix 2: Negative regulation of uPA by p53 

Introduction

The product of the tum our suppressor gene p53 has been implicated in 

normal cell proliferation and neoplastic transform ation (reviewed in Ko and 

Prives, 1996). Both m utation or absence of expression of p53 lead to a transformed 

phenotypes in a num ber of cell systems and pathologies. Rearrangements and 

deletions of the p53 gene have been described in the hum an leukaem ia cell line 

HL-60 (Wolf et al., 1985) and in the osteogenic sarcoma cell line SAOS-2 (Masuda 

et a l ,  1987) as well as in Friend virus induced m urine leukaem ia (Chow et al., 

1989, Mowat et a l ,  1985), and in hum an tum ors like colon (Baker et a l ,  1989) and 

lung (Takahashi et al., 1989) carcinomas. Introduction of the norm al p53 gene 

into p53-deficient tum our cells suppresses transform ation and tum origenesis 

(Levine et al., 1991) and inhibits proliferation of many types of cells causing them 

to arrest at G l/S  (Johnson et al., 1993, Livingstone et a l ,  1992).

p53 plays m ultiple roles in cells: while dispensable for viability, induced 

expression of w t p53, for example by DNA-damaging agents, leads to cell cycle 

arrest and apoptosis, protecting the genome from accumulating excess mutation.

p53 contains a strong transcriptional activation dom ain and is capable of 

inducing the expression of genes bearing a p53 binding site consisting of two 

copies of the 10 bp sequence 5’PuPuPuC(A/T)(T/A)GPyPyPy3' separated by up to 

13 bp (Funk et al., 1992, Kem et a i ,  1991), but also strongly inhibits transcription 

from many genes lacking p53 binding sites (c-fos, c-jun, IL-6, bcl-2) through a direct 

interaction w ith specific (Agoff et al., 1993) or general transcription factors (TBP, 

TAFs, TFIIH; Mack et a l ,  1993, Lu and Levine, 1995). Several genes containing p53 

binding sites have been already identified. Among these the muscle creatin kinase
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(W eintraub et a l ,  1991), GADD45 (Kastan et a l ,  1992), MDM2 (Wu et al., 1993), 

p21/W AF-l (El-Deiry et a l ,  1993), cyclin G (Okamoto and Beach, 1994) and Bax 

(Miyashita and Reed, 1995).

Cellular transform ation often results in a dram atic increase in the 

production of plasm inogen activators and in particular of uPA. Previous reports 

indicated that the expression of uPA is m odulated by factors that influence cell 

grow th in norm al m urine cells, and in particular that uPA mRNA expression 

increases rapidly following stimulation of quiescent, GO, cells by the com petent 

mitogenic agents (Grimaldi et a l ,  1986). uPA mRNA increase is an early cellular 

response to grow th stim ulation w ith a peak after 1-3 hours and is due, at least in 

part, to increased transcriptional activity of the gene, as show n by run-on analysis 

and does not require new protein synthesis as dem onstrated by treatm ent with 

cycloheximide. The elevation of uPA mRNA is transient and is restricted to the 

GO/Gl phase.

I w anted therefore to investigate w hether the transient elevation of uPA is 

regulated by the tum our suppressor gene p53, leading to a linkage between 

inactivation of p53, increased cell proliferation and synthesis of uPA.

Materials and M ethods

Cell culture

T98G and GM47 cells are grow n in Earle's m inim al essential m edium  

containing 10% foetal calf serum (FCS; GIBCO) at 37 °C. The cell lines were kindly 

provided by Dr. M. Fiscella (NET, Bethesda).

Cell cycle studies

Cells are arrested in GO/Gl phase of the cell cycle by allowing them to grow to 

confluence followed by incubation for 3 days in m edium  containing 0.5% FCS.
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The cells are stimulated to reenter the cell cycle by trypsinizing and replating at a 

1:4 split ratio in m edium  containing 10% FCS w ith and w ithout the addition of 

dexam ethasone (final concentration 1 pM).

RNA isolation and Northern hlot analysis

Total RNA was extracted from cells by guanidine isothiocyanate m ethod 

(Chomczynski and Sacchi, 1987). RNA (10 pg per lane) was denatured w ith 6.3% 

form aldehyde/50% form am ide and then size fractionated on a 1.2% agarose gel 

containing 6.6% form aldehyde. The RNA was then transferred to nylon 

membrane (Costar) by electrotransfer in the following buffer (Ix TAE: 10 mM Tris- 

HCl, 5 mM sodium  acetate, 0.5 mM EDTA, pH  7.8) for 4 hours at 40 volts and 

cross-linked to filter w ith a Stratagene cross-linker. Radiolabelled probes were 

obtained by in vitro  transcription of Smal linearized pT7 RNA uPA, containing 

the BamHI-Bgl II fragm ent of hum an uPA cDNA, and of H ind III linearized pT7 

RNA 18S (Ambion) using T7 polymerase (Promega). The p53 cDNA probe was 

excised by pCMVp53 wt (pC53-SN3) containing the BamHI fragment of h u m an  

p53 (described in Kem et al., 1992) and labelled by random  prim ing (Rediprime, 

Amersham). Filters were then pre-hybridized in mixture containing 50% 

formamide, 6x SSPE, 5x Denhardt's, 0.5% SDS, 100 pg / ml DNA carrier (MB DNA, 

Boehringer M annheim) at 42 °C for 2 hours. Hybridization w ith riboprobe was 

performed in the presence of 10% dextran-sulphate at 42 °C for 12-16 hours. The 

probe in excess was rem oved by washing the filters in 3x SSPE/0.1% SDS for 20' at 

65 °C followed by 2 washing in 0.3x SSPE/0.1% SDS at 65 °C for 30’ each.

The filters were then exposed w ith intensifying screens at -80 °C for period 

from 30' (18S) up to 4 days (uPA and p53 probes). mRNA level was quantified by 

densitometric analysis (Molecular Dynamics,SF, Im ageQuant Software).
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Results

The hum an T98G cell line derived from a glioblastom a m ultiform  tum our 

has been a good tool for studies involving the control of gene expression during 

the cell cycle. In particular these cells can become arrested in GO/Gl phase under 

stationary phase conditions (serum starvation) and can be induced to re-enter the 

cell cycle by trypsinization and dilution. A clone derived by the parental T98G, 

containing the wild-type p53 gene under the control of the MMTV 

dexamethasone-inducible prom oter (GM47) is used to investigate w hether uPA is 

regulated in the cell-cycle and in particular if the product of p53 gene plays a role 

in the regulation of uPA expression. For this purpose both the parental T98G and 

the GM47 derived clone have been grow n in the presence or absence of the 

horm one dexam ethasone and the expression of uPA mRNA has been evaluated 

by N orthern blot analysis. As show n in Fig. 7.1 uPA is induced upon re-entry in 

the cell cycle with a peak after 6 hours, from replating in serum -containing 

m edium , of exponential grow th (panel A), both in the parental and the stable 

transfected cell lines. In the presence of dexamethasone, which induces the p53 

expression at 6 hours after addition (panel B), the expression of uPA mRNA in 

the parental T98G cell line is m axim um  at 6 hours after serum  and 

dexamethasone addition, followed by a fast decrease already at 8 hours upon 

horm one addition. In the GM47 derived clone how ever the m axim um  level of 

uPA is reached after 4 hours of growth, correspondingly to overexpression of wt 

p53, followed by a reduction in the uPA mRNA level similar to that of the 

parental cell line T98G. This result w ould suggest that uPA mRNA is regulated 

during the cell-cycle in these cells, w ith p53 overexpression influencing the 

kinetic of uPA expression restricting it to an earlier stage of the cell cycle, after 

which the negative effect of dexam ethasone treatm ent plays a major influence on 

uPA gene expression.
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Fig. 7.1: Northern blot analysis of uPA mRNA expression

Total RNA was isolated from parental T98G and GM47 cells at the times indicated. Panel A: 

untreated cells; Panel B: cells treated with 1 dexamethasone for the times indicated. Zero time 

are cells trypsinized after three days of serum starvation. The arrows indicated the 2.4 Kb transcript 

of human uPA, the 2 Kb transcript of 18 S (panel A and B) and the 2 Kb transcript (wt) or 2.8 Kb 

endogenous (end) p53 mRNA in GM47 cells (panel B). Panel C: graphic representation of the 

densitometric analysis of the northern blot-experiment.
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D iscussion

uPA is synthesised by a variety of tissues, including cells of the central 

nervous system (Masos and Miskin, 1996), where uPA is thought to play a pivotal 

role in the tissue-rem odelling process among which neurite outgrow th (Krystosek 

and Seeds, 1981).

The m ost common and m alignant brain  tum our, glioblastom a m ultiform e, 

is characterised by necrosis, vascular proliferation, and invasion in the 

surrounding norm al brain tissues (Russel and Rubinstein, 1989). Increased uPA 

activity has been already observed in vitro  in an astrocytoma cell line and 

associated w ith the invasive properties of glioblastoma in vivo. By comparing 

hum an astrocytoma, glioblastomas and norm al brain tissues it has been 

evidenced that the higher uPA activity detected in m alignant tum our cells 

correlates w ith increased uPA mRNA level (6 and 20 fold higher than in norm al 

brain). Both uPA protein and mRNA are localised w ithin astrocytomas and 

endothelial cells and are localised near vascular proliferation zones and at the 

leading edges of tum ours in glioblastomas. The increased uPA expression suggest 

that uPA may contribute to the invasion of m alignant astrocytomas into adjacent 

norm al brain tissues and to tum our angiogenesis (Yamamoto et a l ,  1994).

Previous data (Grimaldi et a l ,  1986) have show n that increased uPA mRNA 

level in response to m itogens is an early event due in large part to increased 

transcriptional activity of the gene, restricted to the GO/Gl phase of the cell-cycle. 

The analysis of uPA expression in a glioblastoma cell line (T98G), bearing a 

m utated p53 protein, indicated that uPA is induced upon reentry of the cell in  the 

cell-cycle, with a peak after 6-8 hours. A clone overexpressing a wild-type p53 

protein under the control of the MMTV inducible prom oter (GM47), showed that 

uPA expression is reduced and restricted to 1-4 hours after induction (Fig. 7.1,
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appendix 2). The increased uPA mRNA follows the induction of p53 expression 

(already evident at 2 hours upon reentry in the cell-cycle; Fig. 7.1), suggesting a 

role of p53 in the regulation of uPA.

p53 expression is induced by treatm ent w ith dexamethasone (Mercer et a l ,  

1990). Although the negative effect of glucocorticoids on uPA gene expression has 

been extensively described (Medcalf et a l ,  1988, Flenderson and Kefford, 1993), it is 

possible to exclude that the effect seen in the clone GM47 is due to dexam ethasone 

as the parental cell line (also treated w ith dex) behaves as the control, in which 

only the solvent for dexamethasone has been added.

Recently regulation of uPA by p53 has been described and the element 

responsible for this effect has been m apped in the region of the enhancer. No 

binding sites for p53 are however present in this region, although their presence is 

not required for the p53 repressing activity (Kunz et a l ,  1995). Two binding sites 

for p53 have been how ever identified in the region of the huPA prom oter 

upstream  of the enhancer (position -5045/-5036 and -5021/-5012), recently cloned 

in our laboratory (Ibanez-Tallon, 1997).

It w ould be very interesting to understand the link betw een p53 expression 

and uPA regulation. The T98G cell line has proved useful for studies on the 

regulation of the cell cycle and in particular on the correlation betw een m utations 

in p53 tum our suppressor gene, loss of control of cessation of proliferation, 

induction of uPA expression and high invasive potential of this kind of tum our. 

However the induction of wild type p53 protein expression by dexamethasone, 

could be a limit to unravel the exact mechanisms of action of p53 on uPA 

downregulation, as we cannot exclude an overlapping effect due to the hormone.

Another useful system to study the p53 effect on uPA gene transcription 

could be a BALE/c-Val5 cell line (El-Deiry et a l ,  1993), a BALB/c 1 derived cell line 

stably expressing a p53 mutant, Val 135, carrying a tem perature-sensitive
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m utation at Val 135, which behaves as a m utant at 37°C and as the wild type at 

32°C (Ginsberg et al., 1991). The Balb/c 1 cell line does not contain endogenous p53 

(Harvey and Levine, 1991). Once an effect by p53 on uPA gene expression is 

identified, a transient transfection analysis, using the uPA promoter-CAT 

constructs, w ould be useful in order to identify the element m ediating this effect 

a n d /o r if the repression occurs through the inhibition of the assembly of a 

competent pre-initiation complex at the start site of transcription.
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8 . Conclusions and perspectives
Due to its high destructive potential, uPA expression requires tight 

regulation. The fact that in the organism  uPA is synthesised by very few cell types 

and only under particular stimuli gives a major im portance to the negative 

regulation of uPA w ith respect to activation. The discovery of cell lines that 

transcribe uPA in a constitutive or inducible m anner and others in w hich the 

transcription of the gene is silenced, indicates that the control of the expression 

requires that one or more elements cooperate in the m odulation or total 

inhibition of the gene, for example driving the form ation of a compact chrom atin 

structure. The studies presented in this thesis have showed that a complex array 

of regulatory sequences, in addition to the enhancer and m inim al prom oter, 

appear to regulate uPA transcription, some of which are cell-type specific (Table 

5.1).

SI and S3 could act as m odulators of uPA gene expression, in response to 

different stimuli, in those cell line that express uPA. In the cell lines not 

expressing uPA S2 plays the major role in the silencing of transcription and 

probably in cooperation w ith SI and S3 directs the formation a compacted 

chrom atin structure that leads to the complete silencing of the gene.

A detailed characterisation of region SI and S3, by the m ean of deletion and 

m utation analysis, should clarify the role of these regions in the regulation of 

uPA gene and in the cooperation w ith S2.

Generation of clones of cell lines stable transfected w ith full length 

promoter-CAT plasm id DNA would be a good tool to study the involvem ent of 

chrom atin organisation on the activity of S2 together w ith chrom atin studies of 

this region of the endogenous uPA gene prom oter.
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In the future the purification of the factors bound to S2 and cloning of their 

cDNA w ould allow a clarification of the model according to different 

transcriptional status of uPA gene.
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