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Abstract

The infection cycle of some economically important soil-home plant pathogens involves 

a combination of primary infection from particulate inoculum residing in the soil and 

secondary infection as disease is spread from infected to susceptible hosts. This study 

examines the role of the two types of inoculum in the primary and secondary infection of 

soil-home plant disease using a combination of experimentation and mathematical 

modelling.

The infectivity of inoculum can be quantified by the pathozone profile which measures 

changes in the probability of infection when inoculum occurs at different distances from 

the host. The study showed that the germinability of inoculum, the growth of the mycelial 

colony and the infectivity of mycelium at the surface of the host combine to dictate the 

shape of the pathozone profile for Rhizoctonia solani on radish. The ultimate shape of the 

pathozone depended on inoculum type and was particularly sensitive to changes in the 

density and distribution of the mycelium in the fungal colony. Mycelium from an infected 

radish plant grew much further and at a higher density than that from particulate inoculum 

(mycelial discs). This resulted in pathozone profiles that differed in shape. For particulate 

inoculum the profile rose and fell with distance whilst for an infected plant the decay was 

sigmoidal.

The characteristic shape of the pathozone for different inoculum types of Rhizoctonia 

solani was summarised using simple, non-linear models in which certain parameters were 

allowed to vary with time. Thus, the pathozone behaviour of single plants could be used to 

predict the progress of disease at the population level both in an unprotected crop and in a 

crop protected with the biological control agent Trichoderma viride. Predictions were 

particularly accurate for an epidemic restricted to primary infection or for an epidemic



dominated by secondary infection in the absence of biological control. The model under­

estimated the extent of secondary infection in the protected crop.

The contribution of inoculum type to the spread of disease was examined in a 

contrasting host-pathogen system involving the infection of wheat roots by the take-all 

fungus, Gaeumannomyces graminis var tritici. Two phases of disease progress were 

identified, an initial phase dominated by prinaary infection during which particulate 

inoculum decayed, and a subsequent phase involving an increase in secondary infection 

driven by the availability of susceptible host tissue. From a low density of initial inoculum 

this resulted in a disease progress curve which rose monotonically to an initial plateau and 

was sigmoidal thereafter. These results were consistent with observations from field data. 

The biological control agent. Pseudomonas corrugata, reduced the probability of infection 

on the seminal roots of a wheat plant from particulate inoculum. However, suppression of 

primary infection alone is not considered adequate for control of take-all over an entire 

season.
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Chapter one 

Introduction

Introduction

This investigation deals with the interpretation of disease progress described using 

simple, non-linear mathematical models. Differences in the shape of a disease progress 

curve are reflected in the parameter values of the models. In order to interpret the value of 

these parameters a clear understanding of the underlying biological components is crucial. 

The study focuses on the properties of inoculum as one major component affecting 

parameter estimates. However, it is recognised that the influence of inoculum cannot be 

examined in isolation and consideration is also given to changes in the host and in the 

environment. In this chapter current ideas regarding the properties of inoculum and the 

mathematical description of disease are introduced. This is followed by a description of 

two contrasting host pathogen systems which are used to relate the behaviour of inoculum 

to the progress of disease. The systems involve the infection of radish by Rhizoctonia solani 

Kühn and the infection of wheat by Gaeumannomyces graminis (Sacc.) Arx and Oliver. 

tritici Walker. Biological control agents can be used to influence the behaviour of 

inoculum and thus reduce disease. The current status of introduced biological control agents 

{Trichoderma spp and Pseudomonas spp.) is also reviewed.

1.2 Background to study

1.2.1 Properties of inoculum

Inoculum has been defined as the viable material that can infect a host (Dimond and 

Horsfall, 1965) and features centrally in studies of botanical epidemiology both for foliar



and soil-bome plant pathogens. However, because of the relative ease with which the 

disease components of a foliar epidemic can be quantified, these have received more 

attention (Gilligan, 1987). Zadoks and Schein (1979) divide inoculum of aerial pathogens 

into dispersal and infection units. A dispersal unit is any device for spread and survival that 

can be recognised visually and counted, and for a foliar fungal pathogen it is represented 

by the spore. When a spore germinates in the presence of a suitable host, it produces a 

mycelial structure termed the infection unit which can also be quantified. For a foliar 

pathogen, the growth of mycelium makes little contribution to the distance over which the 

pathogen can spread to reach a susceptible host.

The same system of classification was applied to soil-bome fungi by Gilligan (1987). 

Soil-bome fungal pathogens exhibit greater diversity of inoculum, producing, in addition 

to spores and sclerotia, rhizomorphs and various soil or organic particles impregnated witha
■V

living mycelium. These propagules are the initiators of mycelial growth and are equivalent i 

to the spores of a foliar pathogen, dispersing the organism over time and space.

In contrast to foliar pathogens, direct contact between host and dispersal unit is not an | 

essential pre-requisite with which to provide the soil-bome pathogen some chance of^ 

infection. Many of these subterranean parasites produce dispersal units capable of 

establishing a mycelial colony such that they need only to fall within a critical distance of 

a potential host to achieve this (Gilligan, 1985). Direct contact with the host is then 

achieved by the growth of mycelium through the soil to the host surface, a process that may 

be augmented by chemotropic response to the production of root exudate. This is 

particularly relevant to the zoosporlc fiingi (Deacon, 1996) but, as indicated by the response 

of mycorrhizal fiingi to root exudate, may also be important for fiingi that make contact via 

mycelial growth (Horan and Chilvers, 1990). The distances from which a pathogen can 

grow to make contact with the host depend on the pathogen and inoculum involved but may



range from only a few millimetres, as is common for Gaeumannomyces graminis (Gilligan 

and Simons, 1987) to many metres for tree pathogens such as Armillaria mellea (Garrett, 

1956). Thus, the mycelial colony plays an enhanced role in the spread of soil-bome disease 

and is a major component of dispersal. Having infected the host, the multiplication of a 

soil-bome pathogen may be similar to that of a foliar pathogen, involving the production 

and release of dispersal units in the form of spores (eg Plasmodiophora, Pythium etc ). 

However, because many soil-bome pathogens spread by the growth of mycelium outward 

from an infection unit to a susceptible host sited nearby, the dispersal unit may be 

represented, not by a discrete propagule, but by a single, viable hypha.

The growth and movement of mycelium through the soil is fuelled by the translocation 

of nutrients from the infection unit, the efficiency of which contributes to the spread of 

disease and to the colonisation of soil organic matter (Garrett, 1956; 1970). Mycelial 

growth has proved difficult to quantify directly, particularly in situ. The diameter of 

individual hyphae of a soil-bome pathogen are rarely larger than 10 pm which hinders 

visualisation and detection. Accordingly, most studies either record the effects of mycelial 

growth by measuring infection or colonisation whereby inoculum is defined according to 

its mycelial source or involves organisms in which mycelium is aggregated to form more 

easily observed cords (Boddy, 1993). Consequently, whilst a single viable hypha or section 

of a hypha is recognised as the smallest measurable unit of inoculum from which new 

mycelium may grow to initiate infection (i.e. an infection unit sensu Zadoks and Schein,

1979), for the purpose of this study I, as others have before, define inoculum according to 

the source from which the mycelial colony originates.

Inoculum is typically characterised by its infectivity which depends on the density, 

nutritional status and genotype of the hyphae that grow from it and interact with the surface 

of a susceptible host under the regimes imposed by a given environment. These components



are embodied in the term inoculum potential defined by Garrett (1956) as the energy of 

growth of a parasite available for infection of a host, at the surface of the host organ to be 

infected and do not include host susceptibility (termed disease potential by Grainger, 1956). 

Whilst the term ‘inoculum potential’ has been criticised as a biological entity which is 

impossible to quantify (Vanderplank, 1975) it is a useful concept which clearly identifies 

the components of inoculum that are responsible for infection.

The nutrient status of a unit of inoculum is affected by the quantity and quality of 

endogenous energy it can accommodate. Larger propagules, presumably having a higher 

reserve of endogenous energy, are typically more infective than smaller ones of the same 

type (Henis and Ben-Yephet, 1970). Also, differences in the quality of substrate from which 

inoculum is produced are manifested as differences in infectivity from inoculum units of 

equal size (McCoy and Krafts, 1984). It remains unclear what proportion of this increase 

in inoculum potential can be attributed to an increase in the density of mycelium contacting 

the host surface or an increase in the metabolic activity of individual hyphae. Exogenous 

nutrients in the form of host exudate also play a role in the infectivity of inoculum. 

Rhizodeposition, the loss of organic material from the roots as they grow through the soil, 

can provide an additional nutrient base on which the pathogen can multiply (Schroth and 

Hildbrand, 1964). If rhizodeposition can account for up to 40% of total photosynthates, this 

begs the question as to how the dependency of the pathogen on the different energy sources 

(endogenous or exogenous) changes over time.

The definition of inoculum potential given by Garrett (1956) implicitly incorporates the 

requirement that, to have any chance of infection, the pathogen must make contact with the 

host. Soil-bome pathogens can be classified according to those which can grow to the host, 

for example, R. solani, and those which depend on growth of the host to achieve contact, 

described by Schutte (1956) as translocating and non-translocating fungi respectively. The



same distinction was made, albeit within à nutritional context, by Lingappa and Lockwood 

(1964) and Ko and Lockwood (1967) with reference to fungal spores and according to their 

requirement for an exogenous source of carbon to stimulate germination. These contrasting 

ecological strategies were effectively exmnined by Baker et al (1967) who related inoculum 

density to disease in an early attempt to provide a rigorous mathematical account of 

inoculum potential. The spatial dependency of soil-bome pathogens on the disease they 

cause was described by a mathematical model, the so called surface density model, where 

change in the number of infections, s, with density of inoculum, /, is given by the formula 

s = k (ir  in which k is a constant. The magnitude of the parameter, m, was used to 

distinguish between pathogens which must occur at the rhizoplane (m = 0.67) to cause 

infection, and those which can grow towards the host and infect when they occur within the 

rhizosphere (m = 1.0).

Whilst this approach provided some necessary stimulation for further work, the basis on 

which the model was derived has been successfully criticised (Gilligan, 1979; Grogan et 

al., 1980; Ferris, 1981; Leonard, 1980). These criticisms question the two dimensional 

nature of the rhizoplane (Grogan et al., 1980), the dimensionality of inoculum and the 

location of the inoculum in relation to the host (Leonard, 1980). Gilligan (1979) proposed 

an altemative probabilistic model which relates the number of infected plants, to 

inoculum density, P, as:

, (1.1)

where N  is the number of hosts and P is the number of propagules occurring in a fixed 

volume of soil. The model is derived from the concept of the pathozone defined by 

Gillligan (1985) as the volume of soil surrounding a subterranean plant organ within which 

the centre of a propagule must occur if it is to have any chance of infecting the organ. The



parameter, <|), measures the probability of a single, randomly distributed propagule 

occurring within the pathozone of a single host and is given by the ratio of pathozone soil, 

V, to total soil volume, V. For a single root of length, L, uniformly susceptible along its 

length, the pathozone volume, v, was calculated by Gilligan (1985) as:

V =  T z L { r ^ * z f  ,  ( 1 .2 )

and by Ferriss (1981) as:

V = TzL((r^+z)^-r^) , (1.3)

where is the radius of the root and z is the distance between the centre of the inoculum 

unit and the surface of the root. The latter differs by the exclusion of host volume from 

estimation of the pathozone. By rearrangement of equation (1.3), z, is given as:

" = . (1.4)

where, from equation (1.1) in which (|) = v/V:

The pathozone may extend beyond the influence of the rhizosphere when the inoculum 

unit of a pathogen is capable of germination, growth to and infection of a potential host in 

the absence of any host related stimulation. Furthermore, the pathozone is not restricted to 

a volume of soil surrounding a foot but to any subterranean organ, such as a seed, 

hypocotyl, epicotyl or mesocotyl. The dimensions of the pathozone are characterised, not 

simply by the its size or volume, but by changes in the probability of infection when



inoculum occurs within different regions of the pathozone. This probability has been 

defined as the infection efficiency of inoculum (Gilligan, 1987) and may be experimentally 

determined by placing single, replicate units of inoculum at different distances from a host 

The efficiency of infection is then calculated as the proportion of inoculum units that 

successfully infect the host from each distance. The relationship between inoculum 

efficiency and distance can be described by a curve, or pathozone profile, which typically 

declines with distance (Gilligan and Simons, 1987). This information can be used to refine 

the probability model (1.1) whereby not all the inoculum which occurs in the pathozone is 

certain to cause infection. The parameter ([) is expanded to give (|) = 0iji where 0 is the 

probability that an inoculum unit occurs within the pathozone (formerly ([)) and iji is the 

conditional probability that it causes infection which depends on its location within the 

pathozone. By allowing the parameters describing the pathozone profile to become time 

dependent, the pathozone provides a potential link between the infection of a single host 

and the progress of an epidemic amongst a population of hosts.

Infectivity of inoculum has also been characterised by its longevity. Because the 

attentions of plant pathologists have been dominated by components of primary infection, 

enhanced decay of particulate inoculum, particularly between the growing seasons of an 

agricultural crop, represents an obvious disease control measure and a relatively simple 

variable with which to assess the performance of a given disease control strategy. Inoculum 

decay, a decline in the density of inoculum over time, has been described by three types of 

model assuming either simple, exponential decay (Yarwood and Sylvester, 1959); a delay 

followed by exponential decay (Dimond and Horsfall, 1965); or sigmoidal decay (Baker, 

1971). The first model depends on the random death of inoculum units, the second on the 

presence of clumps of inoculum units and the last on a normal distribution describing the 

probability of death. Finally, a notable characteristic associated with soil-bome inoculum



and termed soil fungistasis can have an immense effect on the activity and thus the 

infectivity of inoculum (Lockwood, 1988). Soil fungistasis is the suppression of the 

germination and growth of fungi the cause of which has been attributed to the microbial 

production of inhibitory substances and to competition for available carbon compounds.

1.2.2 Disease progress curves

In combination with mathematical modelling, disease progress curves provide a 

powerful tool with which to describe, analyse and compare botanical epidemics (Gilligan, 

1990b). Disease progress curves describe how the number or density of diseased host units 

change over time and reflect the behaviour of inoculum. Thus, in order to interpret, or better 

still, to predict the shape of a disease progress curve, a precise knowledge of inoculum 

dynamics is crucial (Pfender, 1982). The infection chain (Gilligan, 1987) provides a 

convenient framework within which to identify the mechanisms by which inoculum 

changes over time. For soil-bome diseases this includes two distinct processes of infection 

(Fig. 1.1). The chain is initiated by primary infection which involves mycelial growth or 

zoospore movement and infection of the host population from particulate inoculum residing 

in the soil. Additional particulate inoculum for primary infection can occur via the 

saprophytic colonisation of soil organic matter. Following primary infection, mycelium may 

grow from the infected plant to reinfect a susceptible region of the same plant 

(autoinfection sensu Robinson, 1969) or to pass infection to another, as yet, uninfected host, 

thereby continuing the spread of disease (alloinfection sensu Robinson, 1969). The infected 

plant is thus a secondary source of inoculum and a source of secondary infection.

During the early periods of research into botanical epidemiology, the spread of soil- 

bome disease by secondary infection was not considered important and investigations were 

either confined to, or assumed to result from primary infection. More recently, the
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contribution of secondary infection has been recognised in a minority of host-pathogen 

systems (Pfender and Hagedom, 1983; Nelson et al, 1989; Gilligan et al, 1994). This does 

not, of course, mean that its occurrence is infrequent. Examples include the economically 

important and ubiquitous damping-off diseases caused by Rhizoctonia spp. and Pythium 

spp. and the root rot of peas caused by Aphanomyces euteiches (Pfender and Hagedom, 

1983).

The under-estimation of the contribution of secondary infection to the spread of soil- 

bome plant disease can be attributed to the way in which root diseases are assessed (Werker 

et a l, 1991). Following primary infection, secondary infection may occur by (i) spread 

along an existing root, (ii) spread from root to root on the same plant via the crown or via 

root to root contact or (iii) by spread from the root of an infected plant to the root of an 

uninfected plant. If the plant is defined as the unit of assessment, then increase in lesion 

number on the same plant is recognised simply as change in disease severity. This 

underestimate of secondary infection is most acute when primary infection affects a few 

roots on the majority of plants.

1.2.3 The mathematical description of disease

The mathematical description of disease progress was pioneered by J. E. Vanderplank 

(1963). Vanderplank distinguished between two types of disease spread and related them 

to the investment of money yielding either simple or compound interest. Simple interest 

disease results from the occurrence of a single cycle of infection during any one growing 

season and is caused by primary infection from particulate inoculum that has survived 

across tlic inter-ciopping period. Tliis monocyclic disease spread can be described by a 

monomolecular model where change in the number of diseased hosts, N̂ , over time, t, is
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given  by:

dN.
= r^{N-N) , (1.6)

in which is the rate parameter for primary infection. The model describes a smooth, 

upwardly convex curve which rises to an asymptotic level of disease, N. In contrast, 

compound interest disease results from many cycles of infection in which the dominant 

source of inoculum is the infected host. The spread of disease is characterised by secondary 

infection in which disease is passed from an infected to a susceptible host that in turn 

becomes a ftesh source of inoculum. The role of primary infection in this form of epidemic 

is relegated merely to the initiator of disease and makes no significant contribution to the 

further spread of disease. Polycyclic infection is described by the logistic model:

m ,
—  = r//.(V-V.) . (1.7)

in which r, is rate parameter for secondary infection. The model describes a sigmoidal 

curve, symmetric about a point of infection, also rising asymptotically to N. Unfortunately, 

and probably due to the use of wilt diseases as an example of monocyclic disease, a general 

misconception evolved leading to the misnomer that all soil-bome pathogens were 

monocyclic and aU air borne pathogens polycyclic. Furthermore, the polarization between 

the two models resulted in mis-diagnosis of a pathogen’s life history when this was inferred 

from the shape of a corresponding disease progress curve. The situation was further 

compounded by statements such as those of Bald (1969) who wrote that “during any one 

season, or the growth of an annual crop, most soil-bome pathogens will cause ‘simple 

interest’ diseases”. However, it is now recognised that, because of the various influences
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of, for example, host growth, the shape of the disease progress curve is not sufficient 

evidence with which to categorise the life history of a pathogen (Pfender, 1982).

The monomolecular and logistic models often fail to provide a satisfactory description 

of many epidemiological situations. Increased flexibility with which to describe different 

shapes of disease progress curve was achieved by adding ‘shape’ parameters, providing a 

suite of non-linear models for describing disease progress. These extend from the logistic 

model (sensu Vanderplank, 1963) to the Gompertz, Richards and Weibull functions which 

have, in their integrated forms, three, four and four parameters respectively.

In addition to an increase in the number of non-linear models available with which to 

describe a botanical epidemic, these models have also become increasingly sophisticated, 

including mathematical descriptions of the biological components which underpin their 

behaviour. The components of an aerial epidemic can be visualised and quantified more 

easily than those of soil-bome disease and have been more thoroughly examined. When the 

spore of an air-bome pathogen lands on the surface of a susceptible host plant, the host 

passes through a series of recognised pathological states. Initially it becomes infected and 

may express symptoms of disease such as the development of a necrotic lesion. As the 

infection progresses, the pathogen begins to sporulate and the host is classified as 

infectious. The period between infection and sporulation is the latent period. When the 

pathogen ceases to produce and release spores, the host is effectively removed from 

contributing to the spread of disease. In order to account for these different host states, the 

simple analytic model (equation 1.7) of Vanderplank describing polycyclic disease has been 

extended to include terms for the three categories by modifying the rate parameter, of 

model 1.7 to give:

^  • (1-8)
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In equation 1.8, the amount of infection at time t depends on the amount of infectious tissue 

t-p-I prior to the latent period, t-p. Jeger (1982) adopted a similar approach of host 

classification by adapting the SEIR (susceptible, exposed, infectious and removed) system 

of modelling from medical epidemiology which describes the progress of an epidemic using 

a series of linked differential equations.

The latent and infectious periods have not been identified (largely because of difficulties 

associated with quantification) as major components dictating the spread of soil-bome 

disease. Instead, changes in host density (Waggoner, 1986; Berger and Jones, 1985; Jeger, 

1987; Brassett and Gilligan, 1988a; 1990) and decay of inoculum (Jeger, 1987; Gilligan, 

1990a) have featured as sub-models in the description of disease below ground. The 

expansion of individual parameters by the use of sub-models is particularly appealing. It 

has the potential to cater for both the mathematical tractability of the model by allowing 

separate analytical solutions for each equation and for mathematical description of disease 

progress within a population of hosts which has a sound, biological basis.

Brassett and Gilligan (1988a) included the contributions of both primary and secondary 

infection to the spread of soil-bome plant disease by combining the two models (equations

1.6 and 1.7) described by Vanderplank. Change in the number of infected hosts, with 

time, f, is given by:

. (1.9)

where P is the density of particulate inoculum and and r, are rate parameters for primary 

and secondary infection respectively. Equation 1.9 allows for overlapping periods of 

primary and secondary infection and produces disease progress curves which vary in shape 

from monotonie to asymmetrically sigmoidal and rising to an asymptote.
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This model and the models of Vanderplank (1963), and Jeger (1987) are all examples 

of simple analytical models in which the underlying biological mechanisms that dictate 

disease progress have been subsumed within a few parameters. The models are in contrast 

to the complexity of large simulation models which include a detailed mathematical 

description of each of the biological components that contribute to disease progress and aim 

to predict disease progress as it is influenced by a changing environment. Jeger (1986) 

compared the relative merit of each approach in thé context of mathematical modelling of 

botanical epidemiology. The large number of non-linear parameters involved in most 

simulation models make them mathematically intractable and the process of integration, in 

order to provide an analytical solution, impossible. It is therefore very difficult to estimate 

and interpret the values of parameters, however biologically meaningful, from disease 

progress data.

The approach taken in this study is to begin with a simple model such as that of Brassett 

and Gilligan (1988a) describing disease progress in which the parameters have some 

biological relevance, and to expand the model according to identified biological 

components that characterise a particular host-pathogen system. Thus, this study is 

concerned primarily with properties of inoculum included in the terms for primary (r^.P) 

and secondary (r,.V,) infection of equation 1.9 together with host growth and availability 

(N) where deemed applicable.

1.2.4 Host-pathogen systems

The detailed study of even the most rudimentary epidemiological system poses 

considerable experimental problems regarding hypothesis testing and interpretation of 

results. Whilst the principal concern of this study is with the behaviour of inoculum, this 

is highly influenced by changes in the both the host and the environment. Furthermore, the
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addition of another component, such as a biological control'agent is likely to increase the 

dynamical interactions in a non-linear fashion.

This study investigates two contrasting host-pathogen systems as models for soil-bome 

plant epidemiology. These are the infection of radish (Raphanus sativus L.) by Rhiznctnnia 

solani Kühn and the infection of wheat (Triticum aestivum L.) by Gaeumannomyces 

graminis (Sacc.) Arx and Oliver var. tritici Walker (GgO. the take-all fungus. The selection 

of these two systems was based on increasing levels of epidemiological complexity and also 

represents the two ecological strategies identified by Schutte (1956) and Garrett (1970) in 

which contact between pathogen and host is determined largely by growth of the pathogen 

to the host (R. solani) or by growth of the host to the pathogen (Ggt). Rhizoctonia solani 

is typical of an unspecialised parasite (Garrett, 1970), with a wide host range and high 

competitive, saprophytic ability, usually infecting young, immature host tissue. As a 

damping-off pathogen, its spread is predominantly over the soil surface (Dr W. Otten, Pers 

Comm) and, as a result, the hypocotyl of the radish plant is targeted as the infection court. 

The experimental system used in this study is highly controlled with respect to the density 

and distribution of both host plants and inoculum. Also, because the growth of Rhizoctonia 

is rapid and experiments mn for a maximum of 21 days, the influence of time-dependent 

environmental variables, such as soil moisture, is minimised. This means that, unlike many 

epidemics, the experimental set-up, is easy to repeat and, with accountable sources of 

variability, hypotheses are relatively easy to test.

In contrast to the static infection court of the radish plant, the infection of wheat by Ggt 

involves the pathogen’s exposure to a continual input of young, mobile root material. The 

need to grow to the host to make contact is, therefore, of less importance and the 

saprophytic growth capability of Ggt is low. The dynamics of the system are further 

complicated by the potential for a functional response of the host to infection by way of
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additional root production to compensate for roots which have become diseased.

Because the infection court is static and the radish plant only remains susceptible for a 

short period (Dodman and Fentje, 1970), the control of post-emergent damping-off by R. 

snlani is potentially more amenable to biological control. A reduction in inoculum potential 

(sensu Garrett, 1956) at the hypocotyl surface during the period of susceptibility should 

reduce the rate at which the disease spreads. The control of take-all using an introduced 

biological control agent is more challenging because of the mobility of the growing root tip, 

which is the most susceptible region of the root (Deacon and Henry, 1980), and the 

continual production of roots. Hence, a major requirement for the control of take-all in such 

a system involves the mobility and/or longevity of the control agent.

1.2.5 The pathogens 

Rhizoctonia solani

Rhizoctonia solani is a widespread, destructive and versatile plant pathogen which 

causes disease in an extensive range of host species. A combination of high pathogenicity 

and competitive saprophytic ability make this one of the most economically important 

pathogens world wide.

The genus Rhizoctonia was first described by de Candolle in 1815 (Parmeter and 

Whitney, 1970). It is a genus of the Basidiomycotina which is characterised by: branching 

near the distal septum of young, vegetative hyphae; formation of a septum in the branch 

near to the point of origin; constriction of the branch; dolipore septum; no clamp 

connection; no conidium (except monilioid cells); sclerotium not differentiated into rind 

and medulla; and no rhizomorph (Ogoshi, 1987). This characterisation divides the genus 

into three groups dependent upon the genus of their teleomorphic state, Thanatephorus 

Donk, Ceratobasidium Rogers and Waitea Warcup and Talbot.
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Rhizoctonia solani Kühn was first identified by Julius Kühn in 1858 and is the major 

representative of the teleomoiph Thanatepherous cucumeris. Distinct variants of the species 

are recognised but characteristics for classification into groups are vague. In plant 

pathology, the most commonly recognised form of classification to date is by way of 

anastomosis grouping (AG). The ability of hyphae produced by different isolates of R. 

solani to grow together, make contact and fuse has led to the identification of twelve 

anastomosis groups (AG-1,2-1,2-2,3,4,5,6,7 ,8 ,9 ,11  and BI) which have been further 

sub-divided according to cultural appearance and host range. Thus the fifteen intra-specific 

groups (KG) AG-1 lA, AG-1 IB, AG-1 1C, AG2-1, AG2-2 fflB, AG 2-2IV, AG-3, AG-4, 

AG-5, AG-6, AG-7, AG-8, AG-9, AG-11 and AG-BI are recognised. More recently, 

classification of the R. solani complex has received the attentions of DNA-based 

systematics studies. Using isozymes, DNA/DNA hybridization, restriction length 

polymorphisms, polymerase chain reaction and DNA sequencing, the genetic isolation of 

these intraspecific groups has been demonstrated (Vilgalys and Cubeta, 1994). 

Classification by AG is used for the characterisation of isolates in the current investigation.

The life history (infection cycle) of Rhizoctonia begins with the germination of resting 

propagules (sclerotia or infested organic matter), the growth of a mycelial colony, contact 

with the host and infection of the host. This is followed by an identical series of processes 

governing the spread of the pathogen from the infected host to susceptible hosts. The 

mechanism and physiology of infection by R. solani which underlies the epidemiology of 

this host-pathogen system, is not well understood. Penetration of the plant can be achieved 

either through stomatal openings or through the intact plant surface. On making contact 

with the host surface, many isolates of R. solani produce infection structures such as 

appressoria or infection cushions. The production of infection cushions is a specific 

response to the topography of the host surface (Armentrout and Downer, 1987) or to
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exudates produced by the root (Marshall and Rush, 1980a). Generally, more infection 

cushions are produced in the presence of a susceptible host than a resistant one (Kousic et 

aU 1994). The infection cushion serves to fasten a high density of mycelium to the host 

surface and may be accompanied by the production of mucilage (Kenning and Hanchley,

1980). At the base of the infection cushion, lobed appressoria form as short, swollen side 

branches, achieving entry into the host by way of an infection peg produced at their tip. 

Direct penetration of the host is thought to be a predominantly mechanical process but may 

involve the aid of enzyme activity. Rhizoctonia solani produces cutinases in vitro (Baker 

and Bateman, 1978) but the relevance of this to in planta infection is, as yet, unclear. Once 

within the host, the endo-pectic enzymes released by R. solani are particularly efficient at 

degrading the middle lamella causing maceration and a collapse of structure ahead of the 

invading fungus (Cooper, 1983). When this process is severe a watery lesion forms and the 

seedling lodges (damping-off). Finally, cellulolytic enzymes damage the cell wall resulting 

in loss of ionic control and cell death. Using this suite of enzymes, both the structural and 

cytoplasmic content of the young host tissue becomes available to the pathogen.

One further group of compounds, the phenolics, are also produced in abundance by R. 

solani. The exact purpose of these compounds is not clear but they have been linked both 

with survival and pathogenicity (Reddy et al., 1975).

Gaeumannomyces graminis

Gaeumannomyces graminis var tritici (Ggt) causes take-all, an economically important 

disease attacking the roots of wheat and barley crops (although its host range includes many 

other grass species which may act as an important carry-over of the pathogen between 

cereal crops). Crop losses due to take-all can, as the name implies, be devastating, but in 

general they are difficult to estimate and extremely variable. Even with no external
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symptoms, a yield reduction of 9.0 % for winter wheat has been reported (Walker, 1975). 

The blackened root system of wheat plants due to take-all was first recognised in Australia 

in 1852 (Garrett, 1981). It was assigned to the ascomycete fungus Ophiobolus graminis by 

Prillieux and Delacroix in 1890 and was soon associated with stunted growth and white 

heads in wheat crops causing yield loss and shrivelled grain. Subsequently, the taxonomic 

characteristics of the pathogen were more clearly elucidated and it was renamed 

Gaeumannomyces graminis var tritici (Walker, 1972). Two other variants of G. graminis 

also exist, G. graminis var avenae which is an important pathogen of oats, and G. graminis 

var graminis which causes crown sheath rot of rice. G. graminis has a cosmopolitan 

distribution in temperate climates where soils have a pH of 6.0 to 8.5, have a temperature 

range of between 5 and 15°C, are near field capacity for much of the growing season and 

are well aerated.

The infection process of Ggt is described by Skou (1981). Surviving as a saprophyte in 

dead infected plant remains within the soil, Ggt attacks susceptible roots that pass nearby. 

Tropic growth of the hyphae to the root surface increases the probability of contact where 

the fungus can grow on all subterranean parts of the plant. The mycelium of Ggt consists 

of brown, thick-walled runner hyphae and hyaline infection hyphae which branch from the 

former. When the growing apex of an infection hypha touches the cell wall of the root hair 

or epidermal cell it swells up to form an appressorium-like structure with a narrow infection 

peg. A combination of mechanical pressure and degradative enzyme action combine to 

create a hole in the cell wall through which the hypha passes. The host responds by the 

formation of lignitubers which develop around the infecting hyphae but if the speed of their 

production is insufficient, cell death occurs. Penetration of all six layers of the cortex is 

followed by penetration of the endodermis and invasion of the stele. The phloem is rapidly 

colonised and destroyed near the point of invasion causing cessation of root growth
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followed by senescence. The xylem is colonised more slowly and develops the 

characteristic blackening of the root due, in part, to the presence of fungal mycelium, but 

also due to coloured substances of plant origin. It is this stelar blackening which is used as 

the main criteria for successful infection of Ggt.

Despite being the subject of much literature, the epidemiology of take-all is poorly 

understood. In continuous wheat crops the effects of take-all often follow a recognised 

pattern. During the first year little crop loss occurs and only low levels of the pathogen are 

detectable, however, there is thought to be a build up of inoculum levels available for early 

infection of the second year wheat crop. Second year wheat crops show low initial levels 

of disease but infection spreads resulting in substantial crop loss. During the third 

successive wheat crop, the levels of particulate inoculum have risen so that early infection 

is severe with large yield penalties. Subsequent years may detect a reduction in disease 

levels due to the build up of antagonistic organisms, a phenomenon known as take-all 

decline (Rovira and Wildermuth, 1981). Notably, in this country, few data on the early 

infection of wheat by take-all exist (Gutteridge, Yaiham, Pers. comm.) and the disease has 

rarely been studied according to the processes of primary and secondary infection. “

Economically viable control measures have been restricted to crop rotation (Ggt is a 

poor competitive saprophyte and quickly loses viability) and the use of appropriate 

fertilisers or lime to manipulate rhizosphere pH (Ggt grows poorly in acidic conditions 

which can be induced by the addition of ammonia). The intensification of cereal farming 

in Britain during the 1930's led to an increase in the severity of the disease which was most 

prevalent on wet, alkaline soils. The Chamberlain system exploited the poor competitive 

ability of Ggt which involved under sowing each spring cereal crop with a legume that 

starved the pathogen of nitrogen during the fallow winter months and thereby reduced its 

survival. The post war availability of inorganic nitrogen fertilisers and the breeding of
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wheat varieties responding to high input nitrogen led to an epidemiological dilemma. 

Whilst the input of nitrogen reduces the yield penalty suffered by take-all infested crops, 

by promoting the production of additional adventitious roots, it also increases the spread 

of disease resulting in a build up of inoculum with potentially devastating results in 

subsequent seasons.

As early as 1913, Massee, advocated the application of super-phosphate of lime to arrest 

the spread of take-all (Yarham, 1981). Subsequent work has shown a correlation between 

low levels of soil phosphate and a high incidence of take-all disease. Such a control 

measure has unwittingly employed tactics of biological control since the improved 

phosphate status of the soil was increasing the density of microbial populations antagonistic 

to Ggt. The role of these organisms in the biological control of Ggt has been recognised for 

many years. Garrett (1934) observed the suppression of Ggt following the addition of 

organic material and attributed this to the development of antagonistic micro-organisms. 

Attempts to develop biological control in soils have been complicated by variation in soil 

types and climate. Soils have been classified into decline and non-decline soils according 

to their ability to generate the phenomena of take-all decline. Cook and Rovira (1976) 

distinguished between general abiotic suppressive effects of a soil and its specific 

suppression due to antagonistic microbes from which Rovira and Wildermouth (1981) 

suggested that the important characteristic was whether they can be transferred into natural 

or fumigated soil. To date chemical treatments have been largely ineffective or too 

expensive to be economically viable although treatment with triadimefon (Baytan) has been 

practised in severe cases of the disease. Also, no genetic resistance has been identified (W. 

Hollins, Pers. comm).
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1.2.6 Specific biological control agents

Although fungicides are convenient, the excessive use of broad spectrum or persistent 

chemicals may result in soil contamination, fungicide resistance or other harmful effects 

(Maloy, 1993). Biological control of plant pathogens using introduced organisms is an 

attractive alternative which has stimulated considerable research during the last three 

decades but has produced results which have been disappointing. Perhaps the most damning 

criticism has been the inconsistant performance of the control agent, the cause of which has 

been largely attributed to a lack of understanding of its behaviour in a specific environment 

(Cook, 1993). It is now recognised that the success of biological control will depend on a 

greater degree of skill in deploying the correct organism into the correct place at the correct 

time.

Trichoderma viride on R. solani.

The biology and systematics of the genus Trichoderma was recently reviewed by 

Samuels (1996). Trichoderma viride is a Hyphomycete and is characterised on oatmeal agar 

by fast growing hyaline colonies and may be distinguished from other species of 

Trichoderma by its relatively large (3.6-4.S x 3.5-4.5 pm), roughened conidia (Domsch et 

al, 1980). It is one of the most widely distributed of all fungi occurring in a range of forest, 

grassland and cultivated soils.

Many experimenters have demonstrated the control capability of Trichoderma spp. 

towards damping-off caused by R. solani (e.g. Lewis et al, 1996; Coley-Smith et al, 1991; 

Lewis and Papavizas, 1985; 1987; 1991). The potential use of Trichoderma species as 

biological control agents of soil-bome plant pathogens was first recognised by Weindling 

(1934) who isolated an antifungal metabolite (Gliotoxin) from a culture filtrate of T. 

lignorum. Later, Brian and McGowan (1945) described the production of viridin by
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Trichoderma viride. Although both the organisms involved were later re-classified as a 

closely related species, Gliocladiwn repens, other antimicrobial substances (Tiichodermin) 

have been associated with Trichoderma viride (Dennis and Webster, 1971). More recently, 

a review concerning the antifungal antibiotics produced by Trichoderma species was 

published by Ghisalberti and Sivasithamparam (1991).

The antagonistic activity of Trichoderma may not be limited to the production of 

antibiotics. Direct parasitism of R. solani by Trichoderma spp. has been observed using 

scanning electron microscopy (Elad et al., 1983). This may not, of course, be a separate 

mechanism for control but may simply succeed antibiosis. Since most of the work 

investigating the mechanisms by which Trichoderma controls the growth of a pathogen has 

been carried out under laboratory conditions, the contribution of these mechanisms together 

with that of simple competition for nutrients in the soil environment remains unclear.

For a biological control agent to succeed, it must be active in the right place, at the right 

time. Damping-off disease affects the germinating seed and the hypocotyl of the radish 

plant. This means that the control agent must occur close to the host and remain active 

during the initial period of growth when it is most susceptible. For the control of damping- 

off of radish by R. solani, these conditions are relatively easy to satisfy. The control agent 

can be positioned near to the hypocotyl of the host by ^plying it at the time of sowing, and 

by culturing it on a nutrient base (for example, an autoclaved seed), the control agent is 

introduced in an actively growing condition capable of protecting the host during the early, 

most susceptible period of growth.

Pseudomonads on Ggt

The Pseudomonads are a group of non-spore forming, motile. Gram negative, soil-bome 

bacteria that, like Trichoderma, are common inhabitants of a variety of soil environments.
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Also, like Trichoderma spp., the ability of Pseudomonas spp., and more specifically, the 

fluorescent Pseudomonads, to control disease has been known for some time (Burr et al, 

1978). They have been linked with control of pathogens such as Fusarium solani (Lim and 

Kim, 1995), Sclerotinia (Expert and Digat, 1995), Pythium (Zhou and Paulitz, 1994) and 

Gaeumannomyces graminis (Harrison et al, 1993). Pseudomonas spp. produce antibiotics, 

notably phenazine which is an effective fungal growth inhibitor at very low concentrations 

(Thomashow et al, 1990). The bacteria may also inhibit fungal growth of the pathogen by 

competing for available Fe(III) and by the production of hydrogen cyanide (Defago et al, 

1990).

Unlike the control of damping-off by R. solani, the control of take-all requires a highly 

motile control agent, capable of keeping pace with the growth of the entire root system. 

Root colonisation of wheat by a strain of Pseudomonas coated onto the seed was examined 

by Howie et al (1987). Most of the long-distance movement of the bacteria was associated 

with a passive process, the organism being carried along with the root as it grew downward 

into the soil. Motility and adequate water availability were important for local movement 

(distances of a few millimetres) and subsequent rhizosphere colonisation.

The inconsistant performance of introduced Pseudomonas species has been attributed 

to variability in the ability to adequately colonise the root system. The density of bacteria 

declines with depth and over time. Moreover, the distribution of the organism is patchy, 

leaving large areas of the root system uncolonised (Weller, 1988). The search for so called 

‘rhizosphere competent’ organisms capable of rapidly colonising the entire root system and 

remaining active for the duration of crop growth, is one of the current major objectives in 

bio-control of root infecting pathogens.
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1.2.7 Host susceptibility and the rhizosphere

The components which affect disease progress are the infectivity of inoculum, the 

susceptibility of the host and the environment, all of which change with time (even within 

a controlled environment facility). Whilst the over-riding topic of this thesis concerns the 

behaviour of inoculum, its contribution to the progress of disease can only be assessed with 

any degree of confidence either by quantifying changes in the remaining components, 

which is beyond the scope of this study, or against a background of an informed 

understanding of the way in which the host and environment develop. Moreover, these two 

components are effectively coupled since, from the perspective of the pathogen, the 

environmental influence will be dominated by changes within the rhizosphere.

Various constitutive and pathogen induced mechanisms have been proposed for defence 

against invading pathogens and the contribution of each depends on the nature of a specific 

host-pathogen interaction. It is presently impossible to judge the relative importance of 

these defence mechanisms in any host-plant interaction (Ebel, 1986). All ceUs are expected 

to contain phenolic compounds capable of suppressing the growth and activity of the 

pathogen (Nicholson and Hammerschmidt, 1992). The sequence of events in a defence 

response can generally be thought to include host cell death and necrosis, accumulation of 

toxic phenols, modification of cell walls by phenolic substituents or physical barriers such 

as appositions or papillae, and, finally, the synthesis of specific antibiotics such as 

phytoaiexins (Nicholson and Hammerschmidt, 1992). However, changes in either the 

constitutive or pathogen induced defence mechanisms as the host becomes older have not 

received much attention.

Because of the speed with which R. solani infects during the damping-off of radish 

seedlings, constitutive defence is likely to be most important. Host tissue typically becomes 

less susceptible to damping-off by R. solani as it ages. This has been attributed to changes
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in the production of exudates as the host develops from the germinating seed to the 

established seedling (Dodman and Fentje, 1970). For bean seedlings, increase in resistance 

was correlated with an increase in the calcium pectate of the middle lamella, a substance 

particularly recalcitrant to the action of polygalacturonase (Bateman and Lumsden, 1965). 

The lignin component of cell walls also increases as plants become older and lignification 

of Raphanus spp. can be induced following infection by Altemaria (Vance, et al., 1980).

Wheat plants produce three types of roots, seminal, adventitious and lateral roots, which 

differ according to their site of initiation. Seven to eight seminal roots are produced from 

the seed, followed by the production of a large number of adventitious roots from the basal 

nodes of the stem. Lateral roots are produced from both the seminal and adventitious roots 

and arise from the pericycle, a layer of cells beneath the endodermis. Each root is composed 

of two principle layers, an outer cortex and an iimer stele. The two layers are separated by 

the endodermis which is resistant to cell wall degrading enzymes and protects the stele from 

invasion (Hornby and Fitt, 1981). Two factors combine to dictate changes in the 

susceptibility of the root with age (and therefore time) to stelar infection; death of the root 

cortex (Deacon, 1987) and the resistance of the endodermis. Death of the root cortex has 

been implicated with increased susceptibility to infection by Ggt (Kirk and Deacon, 1986; 

Deacon, 1987) whereby senescence of these outer cells provides a nutrient base which may 

enhance the inoculum potential (sensu, Garrett, 1956) of the pathogen. However, changes 

in susceptibility are largely dominated by an increase in the resistance of the endodermis 

and nearby layers of cells as the root becomes older. The endodermis contains high, 

constitutive concentrations of phenols and quinones, inhibitors of fungal growth and 

capable of suppressing the activity of some cell wall degrading enzymes (Van Fleet, 1961), 

which increase as the root ages (Rengel et al, 1994). The formation of these substances and 

thus enhanced resistance can be elicited by exposing the root to ‘weak* pathogens such as
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species of Phialophora radicicola (Speakman and Lewis, 1978). The increase in phenols 

is closely linked to the production of lignitubers, formed in response to an invading 

organism. This provides an active mechanism for defence but changes in the efficiency of 

this mechanism with root age have not been investigated. Finally, lateral roots may provide 

sites of increased susceptibility (Hornby and Fitt, 1981).

In addition to host susceptibility, the rhizosphere also represents a potential barrier to 

the ingress of a plant pathogen both as a result of the localised compression of surrounding 

soil and the growth of soil microbes. Rhizodeposition {sensu. Whipps and Lynch, 1985) 

of a variety of materials is responsible for the growth of a population of organisms which 

surround the plant root and, depending on their competitive saprophytic ability {sensu. 

Garrett, 1970), these may out compete or directly antagonise a plant pathogen. 

Rhizodeposition varies according to the age of the root and at different positions along the 

root surface. As mentioned earlier, death of cortical cells represents a considerable input 

of organic matter into the rhizosphere stimulating the growth of the microbial population. 

In wheat, the zone just behind the root tip is a major site of rhizodeposition (McDougall and 

Rovira, 1970). ^

In conclusion, host susceptibility and interactions within the rhizosphere are likely to 

provide a reduction in the overall susceptibility of both radish and wheat to damping-off 

and take-all respectively as the host tissue ages.

1.3 The present investigation

This study was undertaken to examine and compare the behaviour of two types of 

inoculum which are responsible for two distinct processes of infection that occur during the 

progress of a soil-bome botanical epidemic. Particulate inoculum gives rise to a single cycle 

of primary infection and infected hosts cause secondary infection by continuing cycles of
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disease spread. A principal theme of the investigation is to scale up from the behaviour of 

individuals to that of the population. To achieve this, a combination of experimentation and 

mathematical modelling is used to structure and test relevant hypotheses. Two contrasting 

host-pathogen systems are investigated; the infection of radish by R. solani on which most 

of the detailed studies were performed, and the infection of wheat by Ggt. The main 

objectives are: (i) to identify, examine and quantify the major components responsible for 

the shape of the pathozone, (ii) to compare the behaviour of particulate inoculum and of 

infected hosts with respect to pathozone dynamics, (hi) to interpret an epidemic according 

to the dynamics of the pathozone and (iv) to examine and predict the effects of a biological 

control agent, placed into the rhizosphere of a growing host, on the progress of disease:

The results of the investigation are structured into a general materials and methods 

chapter (chapter 2), four experimental chapters (chapter 3 through to chapter 6) and a 

general discussion (chapter 7). Most of the work (chapters 3 through to 5) was performed 

on the Rhizoctonia-radish system because it represents a relatively simple epidemiological 

system in which experiments only take between 10 and 20 days to complete. The 

investigation then progresses to the examination of a more complex epidemiological system 

involving the infection of wheat by Ggt (chapter 6).

The rationale behind the ordering of the chapters is as follows. Chapter 2 reports on the 

characterisation of isolates according to pathogenicity, the production of suitable types of 

inoculum and assays for the effectiveness of biological control agents. Chapter 3 describes 

how different infection components combine to determine the shape of the pathozone 

profile which describes changes in the probability of infection when inoculum occurs at 

different distances from the host. In chapter 4, the most important property of Rhizoctonia 

inoculum which dictates the shape of the pathozone, growth of the fungal colony, is 

examined in detail. The pathozone profiles associated with single, isolated radish plants are
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compared for particulate inoculum and infected plants in chapter 5. Evolution of the 

pathozone over time is used to predict the progress of disease in monocyclic and polycyclic 

epidemics protected by the antagonist Trichoderma viride. Finally, chapter 6 examines the 

contribution of inoculum type to the spread of take-all on wheat roots.
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Chapter two 

General materials and methods

2.1 Introduction

This chapter deals with the materials and methods which are common to many of the 

experiments undertaken in the study and with preliminary work regarding the selection of 

isolates and the characterisation and production of inoculum. Details of experimental 

growth conditions, soil type, host type and statistical analysis are provided.

Because the study focuses principally on the behaviour of inoculum, a more detailed 

characterisation of isolates and of inoculum type is undertaken. Pathogenicity tests were 

performed on isolates of Ggt and R. solani and isolates of R. solani were characterised 

according to anastomosis grouping.

The need for standardisation of inoculum is twofold. Firstly it allows for experiments 

to be repeated and secondly it allows for more objective and efficient comparison between 

the results of different experiments. This is particularly important where the results from 

one experiment are used to predict the results of another. The entire study involved two 

types of experiment, placement experiments and population experiments. Placement 

experiments typically comprised of replicated location of single units of inoculum 

positioned at known distances from the host, whilst population experiments included large 

quantities of particulate inoculum positioned or distributed at random amongst a population 

of hosts.

2.2 Experimental growth conditions.

All experiments were conducted in plant growth cabinets (Sanyo Gallenkamp, Model
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SGCVCTRO-HFL) in which plants were provided with 16 h of a mixture of fluorescent and 

incandescent light at 300 pE / m̂  / s every 24 h. Experiments involving R. solani were run 

at 23 °C whilst for Ggt the temperature was 17° C both with regimes including a 15 min 

defrost every 3 h.

For Ggt, the relative humidity was maintained close to 60 %. For experiments involving 

R. solani, the relative humidity was maintained as high as possible by using sealed systems 

which included reservoirs of water where necessary.

2.3 Soils

Rhizoctonia solani has a high competitive saprophytic ability and can multiply rapidly 

using organic material within the soil as a source of nutrition. The organic material forms 

a secondary source of particulate inoculum and can add to primary infection. The effects 

of saprophytic multiplication on disease progress were not examined in this study and 

would be expected to interfere with pathozone behaviour. Consequently, experiments 

involving Rhizoctonia were performed in an acid washed, quartz sand (Hepworth Minerals 

and Chemicals, Redhill, Surrey. Grade 16/30). Samples of sand were tested for contaminant 

organisms capable of infecting radish.

Gaeumannomyces graminis var tritici is not a good saprophytic competitor and 

experiments were performed in a soil-sand mixture. A sandy clay loam soil (Soil 2, see 

Appendix I) was obtained from the Cambridge University Field Station from a site known 

to have been free of grass species for a minimum of five years. The soil was sieved through 

a 10 mm screen, air dried for 14 d followed by a further sieving through a 2 mm screen to 

remove stones and large pieces of debris. The soil was then baited (by growing wheat plants 

into samples of the soil and examining roots for disease) to certify that it was free from 

detectable inoculum of Ggt and mixed with sand in the ratio of two parts soil to one part
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sand to aid drainage, aeration and, at the end of the experiment, the removal of soil prior 

to disease assessment. This soil-sand mixture (referred to in sections 2.6.2 and 6.2 as soil) 

was found to have a field capacity of 21% moisture corresponding to a water potential of 

-0.015 MPa and a pH of 7.0.

2.4 The hosts.

For experiments involving Rhizoctonia, the radish variety. Cherry Belle (Kings Crown) 

was used whilst for the investigation of take-all, seed of the winter wheat variety. Riband, 

was kindly supplied by T. W. Hollins (Plant Breeding International, Cambridge). Neither 

seed type had been chemically treated and was stored in the dark at 4 °C. Batches of seed 

were routinely tested for germinability and for the presence of contaminant organisms prior 

to use by germination on moist, sterile filter paper and examination under a disecting 

microscope ( x 20).

2.5 Statistical analysis.

Statistical analyses of the experimental data were carried out using the Genstat statistical 

software package (Anon, 1993) and the Facsimile modelling software package (1995) 

operating on a Vale 90 (Evesham Micros, Cambridge) personal computer (90 MHZ, 16 Mb 

RAM). Three statistical techniques were used to analyse the experimental data. These 

were; the analysis of variance, analysis using a generalised linear model and parallel curve 

analysis.

The analysis of variance is particularly powerful for comparing population means 

(Campbell, 1989) and is used later in this chapter for identification of the most pathogenic 

isolates of R. solani and Ggt and to assess the phytotoxic effects of the biological control 

agents, Trichoderma viride and Gliocladium virens, on the tap root length of radish plants.
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The analysis of variance is, however, restricted by three underlying assumptions (Mead and 

Cumow, 1990); (i) the data must be normally distributed, (ii) the variance must be 

homogeneous between treatments and (iii) that treatment effects are additive.

For epidemiological studies in which a quanta! variable, such as the presence or absence 

of disease is under consideration, the underlying error structure is likely to be binomially 

rather than normally distributed. In some instances, it is possible to overcome the problem 

of data which are not normally distributed by using an appropriate transformation. 

Alternatively, generalised linear models can be used which take explicit account of the 

underlying error structure. Generalised linear models combined with polynomial contrasts 

are particularly useful for analysing trends in data. Hence, a generalised linear model, 

assuming a binomial error structure was also used later in this chapter to compare and 

assess the biological control potential of different inoculum densities of Trichoderma 

viride and Gliocladium virens on the damping-off of radish by R. solani.

Many biological processes are non-linear rather than additive and if an appropriate non­

linear model can be identified with which to describe trends in data and which has 

biologically meaningful parameters, then parallel curve analysis (Ross, 1987) provides a 

particularly elegant technique with which to compare the affects of treatments in relation 

to specific biological properties. Parallel curve analysis was used throughout this 

investigation in which non-linear models were selected on the basis of the underlying 

biology of a system, shape and goodness of fit to data and the affects of treatments on 

parameters compared using the techniques outlined by Gilligan (1990b).

2.6 The pathogens

Isolates of Ggt were obtained from naturally infected wheat seedlings (see Appendix II) 

whilst isolates of R. solani were acquired from Dr C. A. Gilligan (Department of Plant
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Sciences, University of Cambridge) together with information regarding their origin and 

the anastomosis groups to which tiiey belong (see Appendix IQ. Twelve isolates of Ggt and 

seventeen isolates of R. solani were screened for variation in pathogenicity using 

sand/maizemeal inoculum and a simple agar based inoculum respectively.

2.6.1 Pathogenicity screening 

Gaeumannomyces graminis.

Isolation

Using the method of Slope et al. (1978), as described by Cunningham (1981) in Asher 

and Shipton (1981), twenty eight isolates of Ggt were obtained from the roots of wheat 

plants grown on the University Farm near Cambridge. Sections of infected seminal roots 

were removed, washed in tap water and placed in 1% silver nitrate for 20 seconds. These 

sections were then rinsed once in 5% sodium chloride and twice in sterile distilled water 

before being plated onto tap water agar (15 g U agar)(Oxoid, England) with streptomycin 

(100 units ml'Q. Plates were incubated in the dark at 17 °C and examined every four days. 

Sections of colonies showing the characteristic curled hyphae of Ggt were removed to 

plates of potato dextrose agar (PDA)(Oxoid, England) and assessed for contamination 

before being transferred to quarter strength PDA slopes for storage in the dark at 4°C.

Pathogenicity test

Sand/maizemeal inoculum was prepared for each of twenty isolates of Ggt using the 

method of Hollins etal. (1986). Aliquots of 100 g of dry sand, 2.8 g of maizemeal and 13 

cm^ of distilled water were mixed in 250 cm  ̂conical flasks. After autoclaving at 121 kPa 

for 1 h on three consecutive days, agar plugs measuring 4 mm in diameter were removed 

from the growing edge of colonies of Ggt and were placed into the flasks. These were
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incubated in the dark at 19 °C for 28 d after which time samples were removed for 

estimation of the density of colony forming units (CPU) and inspection for possible 

contamination. Twelve isolates were then selected for pathogenicity testing on the basis of 

having similar initial inoculum densities.

Sections of polyethylene tubing (Layflat Tubing, Isle of Wight) measuring 150 mm in 

length and with a internal diameter of 25 mm were stapled at one end and filled 

consecutively with 150 g of sand, 25 g of inoculum and 25 g of sand. A pre-germinated 

wheat seed was placed in the centre of each tube and covered with a final 25 g of sand. The 

experiment was set up with three replicates per treatment. Each tube was then weighed and 

water added to achieve a moisture content of 15% w/w. The tubes were packed into a 

plastic box and their bases covered in metal foil to prevent light reaching the root system. 

Tubes were transferred to a growth chamber at 17 °C with a light regime of 16 h day and 

8 h night. After three weeks, plants were carefully removed from the tubes using a fine 

water jet and the root systems examined for disease.

Assessment of disease was based on the average lesion length per seminal root, where 

disease is defined as stelar discolouration.

Results.

Levels of disease were generally high (Table 2.1) with isolate MLl achieving 41.20 mm 

of stelar discolouration per root. Only isolates NM2, NM5, ML3, ML5 and Av recorded 

significantly lower levels of disease than MLl.
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Table 2.1; Results of the analysis of variance showing mean estimates of pathogenicity for 

different isolates o f Get.

Isolate Lesion length 
per root (nun)

Av 16.7
BFl 36.5
BF3 33.4
BF4 32.5
Cv 32.6

MLl 41.2
ML2 40.0
ML3 30.5
ML5 30.5
NMl 33.4
NM2 20.8
NM5 26.8

LSD (p^0.05) 10.1

Rhizoctonia solani.

Anastomosis grouping

Isolates of R. solani are commonly divided into groups according to the ability of their 

hyphae to fuse or anastomose (Ogoshi, 1987). Isolates R3, R8, J262, J312 and J317 had 

been confirmed by previous researchers as being of AG3, AG4, AG2-1, AG4 and AG3 

respectively; however, the anastomosis grouping of isolates Rl, R2, R5, RIO, R13 and R14 

was only provisional, based on the host from which they were isolated. These isolates were 

therefore tested against reference isolates obtained from the International Mycological 

Institute (IM^ and against isolates R3 and R8 to confirm their grouping.

To test for the presence of anastomosis between isolates, standard microscope slides 

were sterilised and dipped into molten water agar. After allowing the agar to set, they were
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placed in Petri-dishes on moist filter paper. Plugs of PDA measuring 2 mm in diameter 

were removed from the growing edge of two day old cultures of R. solani and placed 20 

mm apart on the slides. The dishes were then sealed and incubated in the dark at 23 °C. 

After 2-3 days, slides were removed and stained with 2% trypan blue in acetic acid. 

Mycelium was assessed for hyphal fusion between colonies using an compound microscope 

at a magnification of x 100.

Pathogenicity test

To assess the isolates for variation in pathogenicity, Petri-plates of PDA measuring 9 

cm in diameter were inoculated with R. solani and grown in the dark at 23°C until the 

colonies just filled the plates. These were covered with a 10 mm layer of vermiculite, 

moistened with 10 cm  ̂of distilled water and sown with 21 pre-germinated radish seeds 

placed just below the surface. The lids were replaced and sealed with parafilm. Two 

experiments were performed, eight isolates being tested in experiment 1 and 12 in 

experiment 2. In each experiment there were three replicates per isolate which were fully 

randomised and placed in a growth chamber at 23 °C with a light regime of 16 h day and 

8 h night. After two days of incubation, lids were removed and plates transferred to sealed 

plastic containers. Plants were scored for disease (damping-off) after seven days.

Isolates failing to cause any damping-off in experiment 2 were omitted from the 

analysis. The LSD in experiment 2 is thus restricted to the comparison of the remaining 

isolates.

Results

The results of the anastomosis grouping and pathogenicity tests are given in Tables 2.2 

and 2.3 respectively.
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Table 2.2: Hyphal fusion amongst test and between test and reference isolates. (+fusion; 

no fusion)

TEST ISOLATES REFERENCE ISOLATES

R1 R2 R3 R5 R8 AG
1

AG
2-1

AG
2-2

AG
3

AG
4

R1 + - + - - - _ _ +
R2 - + - + - - + - - -

R3 + - + - - - - - +
R5 - + - + - - + - - -

R8 - - - - + - - - + -

RIO - - - - + - - - + -

R13 - - - - + - - - + -

R14 - - - - + - - - + -

Hyphal fusion was recorded between isolates R2, R5, and AG2-1 which, along with 

J317 and R3 in experiment 1 were significantly more aggressive against radish seedlings.

Table 2.3: Results of analysis of variance comparing the pathogenicity ofR. solani isolates 

on radish seedlings assessed by mean number of seedlings damped-off.

Isolate Suspected
AG

Result of 
AG test

Expt 1 Expt 2

R1 4 4 6.33 0.00
R2 3 2-1 16.33 15.55
R3 4 4 20.00 7.22
R5 3 2-1 16.67 15.54
R8 3 3 3.67

RIO 3 3 5.00
R13 3 3 4.67
R14 3 3 4.00
J317 2-1 - 18,89
J262 3 - 0.00
J312 4 - 3.89
AGI 1 1 3.88

AG 2-1 2-1 2-1 17.22
AG 2-2 2-2 2-2 0.00

AG3 3 3 0.00
AG4

LSD

4 4

6.92

0.55

3.03
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Discussion

The Ggt isolate MLl which recorded the greatest extent of stelar discolouration in the 

pathogenicity test was selected for the production and testing of inoculum type.

The redesignation of R. solani isolates R2 and R5 to anastomosis group 2-1 was 

supported by the results from the pathogenicity test. Ogoshi (1987) noted the association 

of AG2-1 isolates with the Cruciferae, to which Raphanus sativus belongs. Furthermore, 

ribosomal DNA sequence data shows a significant deviation between AG2-1 and AG3 

(Vilgalys and Cubeta 1994). Isolate R3 was found to die suddenly in culture and this may 

be reflected by the inconsistent behaviour expressed in the pathogenicity tests. 

Alternatively, it was noted that this isolate was effective at causing pre-emergence 

damping-off but caused little disease once the radish seedlings had become established. 

This observation is consistent with the results of Benson and Baker (1974b) who reported 

a rapid decay in the ability of this isolate to cause disease once radish seedlings had become 

established. Consequently, small differences in the relative growth rates of pathogen and 

host may, therefore, be the crucial factor determining pathogenicity (Baker and Martinson, 

1970). On the basis of its consistently aggressive behaviour with respect to the infection of 

radish, isolate R5 was selected for use in subsequent experimentation.

2.6.2 Particulate inoculum

This section deals with the production of inoculum using isolates selected on the basis 

of their performance in pathogenicity tests. Whilst the purpose of this study was not to 

complete a detailed comparison of different types of particulate inoculum, the nature of the 

techniques involved (i.e. placement and population experimentation) require that the 

inoculum used complies as near as is possible with the following criteria: that it can be 

produced rapidly, with ease and consistently in quantities that allow for its use in
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population studies; that the individual units of inoculum are small, easy to handle and do 

not aggregate or fragment on mixing; that these units are all viable and have similar 

properties of saprophytic growth and infection with respect to each other and with those of 

natural inoculum; that their fungal biomass can be estimated and that they do not decay 

rapidly in storage. To assess the suitability of inoculum type for placement experiments, 

profiles for the probability of infection with distance (pathozone profiles) were generated.

The properties of three types of inoculum (one for Ggt and two for R. solani) were 

investigated with respect to the criteria listed above. Chopped potato soil (CPS), a mixture 

of potato and soil impregnated with fractions of mycelium, has been widely used as a 

source of inoculum for investigating the epidemiology of disease caused by R. solani 

(Benson and Baker, 1974a, 1974c; Gilligan and Simons, 1987). It can be produced to any 

unit size, would be expected to mix well, is considered to be representative of natural 

inoculum and to have good keeping qualities. Millet seed has similar properties to CPS 

inoculum, producing discrete inoculum units, but is likely to be an unnaturally rich 

substrate and is restricted to a unit size of between 2-3 mm in diameter. Both millet (for 

Ggt) and CPS (for R. solani) inoculum have been successfully utilised in placement 

experimentation (Gilligan and Simons, 1987). A third type of particulate inoculum, 

mycelial discs (MD), removed from a growing colony of R. solani was also examined. The 

consistent size of mycelial discs provides the potential to minimise variability between 

inoculum units. This will reduce the amount of replication required to detect differences 

between treatments and optimise the performance of placement experiments.

Inoculum was prepared and its potential for use in placement experimentation assessed 

by the production of profiles for the probability of infection with distance and the fitting of 

appropriate models.
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Methods

Ggr/millet seed inoculum.

Millet seed inoculum was produced by addition of 12 g of millet (CPB Ltd, Cambs), 

12 g of sand and 10 cm  ̂of distilled water to a 100 cm  ̂conical flask. This was autoclaved 

twice at 121 kPa for one hour with a three day interval between autoclavings and incubated 

for 28 days at 19 °C with six discs, 4 mm in diameter, cut from the margin of a colony of 

Ggt (Isolate MLl) growing on PDA agar. The inoculum was stored in the dark at 4°C.

Profiles for the probability of infection with distance were produced with the use of soil 

packs (see Appendix HI). These consist of 200 mm lengths of clear layflat tubing, 70 mm 

in internal diameter and partially sealed at one end using staples. The packs were filled with 

300 cm  ̂of moist soil (10% water by weight) (see section 2.3 and Appendix I), stapled at 

the top leaving room for the emergence of a seedling and compressed to achieve enough 

rigidity to stand upright. A pre-germinated wheat seed was introduced into each through a 

small incision, which was then sealed with clear sticky tape. Water was added to achieve 

a moisture content of 20% w/w. After three days growth on an incline of 60° to the 

horizontal, a single inoculum unit (colonised millet seed) was introduced into each pack at 

a known distance from a selected root and 5 mm behind the root tip. The packs were then 

replaced in the growth chamber this time with the inoculated root uppermost to minimise 

disturbance from additional root growth, and covered with black plastic. The experiment 

was set up with 11 distances, these being at 1 mm intervals over the range 0 10 mm, and 

with 10 replicates per distance in a fully randomised block. Roots were assessed for 

infection (stelar discolouration) 15 days after inoculation.

R. solaniAZVS inoculum

CPS was produced by mixing 906 g of loam soil (Soil 2, see Appendix I) with 170 g of
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finely chopped potato in a 11 conical flask and adding distilled water to achieve a moisture 

content of 15% by weight. The flask was autoclaved at 121 kPa for 1 h on three consecutive 

days prior to the addition of a whole colony of R. solani (Isolate R5) grown on a 9cm Petri- 

plate, After three weeks incubation in the dark at 23 °C the inoculum was removed, air 

dried, ground and sieved to obtain units 1.0-2.0 mm in diameter. The inoculum was then 

stored in a sealed plastic container in the dark at 4 °C.

R. solani/MD inoculum

MD inoculum of R. solani was produced by growth of the pathogen over Millipore 

filters (0.45 pm pore size) (Schleicher and Schuell, Dassel, Germany) placed on a plate of 

potato dextrose agar. When the colony had overlapped the edge of the filter, the filter was 

removed from the plate and discs (of the mycelium only), 1.0 mm diameter, were cut out 

from the outer 5 mm by use of a micro-pipette. Discs of 1 mm diameter produced colonies 

of similar mean dimensions to those produced by CPS inoculum when grown on moist 

glass microfibre filters.

Profiles describing changes in the probability of infection with distance for R. solani on 

radish using either CPS or MD inoculum were generated using square Repli dishes 

(Sterilin, Twickenham) with twenty five compartments. 0.8 cm  ̂of distilled water was 

added to 8g aliquots of sieved sand (< 2 mm in diameter) placed into nine isolated 

compartments. A trough of sand was then removed to a depth of 5 mm with a small spatula 

and a radish seed sown. This was accompanied by either a single unit of CPS inoculum, 1-2 

mm in diameter, placed at a known distance away, measured using callipers or by a unit of 

MD inoculum. Tlic seed and inoculum were covered with sand and lids sealed on the Repli 

plates. After incubation for 48 h in a growth chamber, lids were removed and plates 

transferred to sealed, clear plastic containers with a reservoir of water in the base. The
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experiment was set up as a fully randomised block with 18 replicates at distances

0.1.2.3.4.5.6.7.8.11.12 and 15 mm (CPS inoculum) or 0,1,2,4,7,10,15,20 mm (MD 

inoculum). Plants were removed after a further 48 h, washed and assessed for disease on 

the basis of the presence or absence of lesions visible to the naked eye.

Statistical analysis

The suitability of the inoculum for placement experimentation was assessed by fitting 

the data generated for profiles of the probability of infection with distance with three of the 

non-linear models used by Gilligan and Simons (1987) and an additional model, the critical 

exponential model. The models are given as;

1. P  = p.exp(-ar)

n. P  = p.exp(-aP)

m. P = p/(l4exp((()i(r-<l)2)))

IV. P = (01 + 02.r) exp(-03.r)

The first model (model I) is a simple exponential decline where p represents the asymptotic 

probability of infection and a is a measure of the reduction in probability of infection, P, 

as the distance from the host, r, increases. The second model (model H) allows for a less 

rapid decay in the probability of infection with distance when inoculum is placed close to 

the surface of the host. The third model (model HI) is the logistic which produces a 

sigmoidal decline, symmetric about the point of inflection measured by the parameter (t>2. 

The fourth model (model IV) is the critical exponential model which can accommodate an 

initial rise in the probability of infection followed by an exponential decay to zero. The 

parameter 0  ̂represents the probability of infection at the host surface, 02 is a measure of
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the increase in the probability of infection with distance, and 63, a measure of the 

subsequent reduction in the probability of infection with distance.

Results

Of the three types of inoculum investigated, the Gg^/millet inoculum and R. solaniMD 

inoculum were the easier to prepare, producing inoculum of 100% germinability. In 

contrast, CPS was more difficult to generate, requiring careful preparation of potato and 

soil prior to mixing and rapid drying to avoid colonisation by air-bome contaminants. The 

germinability of CPS inoculum was inversely proportional to the size of inoculum units and 

was always less than 100% (Table 2.4).

Table 2.4: Results of characterisation for the millet, CPS and MD inoculum

Ggf/Millet R. solandCPS R. solani/MD

1. Production
Time 4 weeks 4 weeks 1 week
Ease Rapid Slow Very rapid
Quantity Large Large Small

2. Inoculum units
Size (mm) 2-2.5nun Any up to 2 nun Any
Handling Easy Easy Easy
Aggregation None after sieving None after sieving Yes
Fragmentation None Some None
Germinability 100% Inversely 100%

Longevity Variable
proportional to size 
Variable Not applicable

The logistic decay model produced the better description of the profile for the change 

in probability of infection with distance for the infection of wheat roots by Ggt grown on 

millet seed. The probability declined from an asymptote of 0.98 to an observed outer limit 

for the pathozone of 8 mm (Table 2.5; Fig 2.1a). The probability of causing infection on 

radish hypocotyls also decreased with distance between either CPS inoculum or MD
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Fig 2.1: Profiles describing changes in the probability of infection with distance for 

a) millet seed infested with G. graminis, b) chopped potato soil infested with R. solani 

and c) mycelial discs of R.solani. Data are fitted with curves (solid lines) using selected 

models. See text for model selection.
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inoculum and the host plant. The critical exponential model provided the most accurate fit 

to data generated using MD inoculum (Fig. 2.1c) but, because of the high levels of 

variability with the CPS inoculum, the critical exponential model (model IV) failed to 

converge and there was little to choose between the fit of any of the remaining three models 

to data generated by CPS inoculum (Table 2.5, Fig. 2.1b illustrating the fit of model U).

Table 2.5: Summary of non-linear models used to describe the relationship between the 

probability of infection o f the host (y) and distance (r)for millet inoculum of Ggt and for 

CPS and MD inoculum of R. solani.

Inoculum Model Parameters Res Residual
(± s.e) d.f deviance

Millet I. P = p.exp(-ar) P=1.22±0.26
a=0.24±0.13

9 2.43

n. P = p.exp(-ar^) p=i.oo±o.io
a=0.03±0.02

9 1.14

m.P = p/(l+exp(c|)i (r-*^))) P=0.98±0.13 
(|)i=1.15 ± 1.00 
(j)2=5.05 ±1.11

8 0.51

IV. P = (01 + 62) cxp(-03.r) Failed to 
converge

CPS I. P  = p.exp(-ar) P=0.26±0.27
a=0.10± 0.21

9 0.26

n. P = p.exp(-af^) P=0.22±0.19
a=0.01 ± 0.02

9 0.20

HL P = p/(l+exp(a(r-0))) p=0.18±0.53 
(|)i=2.3 ± 5.4 
4)2=11.1 ±3.9

8 0.20

IV. P = (01 + 02) exp(-0).r) Failed to 
converge

8

MD I. P = p.exp(-ar) P=0.64±0.34 
a=0.16 ± 0.15

6 0.56

n. P = p.exp(-ar^) p=0.56±0.28 
a=0.01 ± 0.02

6 0.42

m. P = p/(l+exp(a(r-6))) p=0.70±1.17 
(|>i=0.32 ± 0.64 
4)2=5.28 ± 15.0

5 0.42

IV. P = (01 + 02) exp(-03.r) 01=0.49 ±0.48 
02=0.68 ±0.19 
03=0.41 ±0.74

5 0.30
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Discussion

The Gg//wheat/millet system has been used successfully in the past to produce profiles 

for the probability of infection with distance (Gilligan and Simons, 1987) and for the 

quantification of other epidemiological variables (Gilligan, 1980a). In this study the system 

was also well behaved (Fig 2.1, Table 2.5) and the inoculum easy to produce, having 

similar saprophytic growth characteristics to that of colonised straw fragments (Dr M. J. 

Grose, Pers. conun.). This inoculum was therefore deemed acceptable for use in further 

investigation of the spread of take-all on wheat.

Results for the R. .so/ani/radish/CPS system were less satisfactory. As well as the extra 

care required to produce the inoculum, two main disadvantages were recognised. Firstly, 

the inoculum is liable to fragment on mixing, particularly when wet, resulting in biased 

quantification of colony forming units during the sampling of population experiments: The 

problem can be reduced if the sample material is dried and therefore more stable prior to 

assay but this in turn requires that the pathogen retains germinability following desiccation. 

The second disadvantage is that the inoculum is always less than 100% germinable (Table 

2.4) imparting unnecessary variability when generating profiles for the probability of 

infection with distance (Fig 2.1, Table 2.5) and reducing the maximum probability that the 

inoculum has for causing infection. The effect of reduced germinability on the variability 

of the pathozone profile is given by {p{\-p))ln where p is the mean proportion of 

germinable inoculum and n is the degree of replication. The variability rises from zero at 

0% germinability, peaks at 50% germinability, returning to zero again at 100% 

germinability. The effect of low germinability can be reduced if more than one inoculum 

unit is used. The probability that n propagules selected at random for the inoculation of a 

single host are all non-viable is given by the equation
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prob of non-viability = (1 -p )"

where p is the mean germinability of the population. Consequently, the problems of non- 

germinability can be overcome by challenging a host with two or more units of inoculum.

In contrast to CPS inoculum, MD inoculum is guaranteed to be 100 % viable and 

together with the ease with which small quantités can be produced, it is ideal for use in 

placement experiments (involving the positioning of individual units of inoculum) or for 

population experiements (involving low densities of particulate inoculum).

Two other components, the characteristics of colony growth and the susceptibility of the 

host are also identified as likely contributors to the variability of the profile. Inoculum may 

vary with respect to both the distance and the density that hyphae can grow towards the host 

and the density of hyphae that arrive at the host. These components (inoculum 

germinability, mycelial growth and host susceptibility) are analysed further in chapter 3.

2.7 Biological control agents

2.7.1 Trichoderma and Gliocladium.

The performance of Trichoderma and Gliocladium has been assessed in glasshouse and 

field trials with inconsistent results. Two general strategies for the introduction of the 

biological control agent (BCA) into soil have been adopted (Whipps et al., 1988; Chet, 

1990). The first is to broadcast the BCA on a large scale, a practice which is not often 

considered economical. Large volumes of colonised bran mixtures have also been 

incorporated into soil (Maplestone et al.,\99\). However, the physical properties of bran 

make it inconvenient for use in the population and placement experiments planned for this 

investigation. The second, more efficient method involves the incorporation of the BCA 

into a pellet for sowing along with the crop seed (Lewis and Papavizas, 1985) and is the
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basis for methods of experimental investigation used here. Both methods are most effective 

if the crop is introduced only when the BCA is actively growing and as such, its success 

may depend on the nutrient source on which it is introduced. One potential drawback of this 

method of deployment, detected in pilot studies, is the phytotoxicity of the control agent 

towards the host (radish). Thus the selection of an optimal density of the biocontrol agent 

is crucial.

The following experiment compares the performance of Trichoderma viride and 

Gliocladium virens introduced alongside radish seeds at different densities and growing on 

a different nutrient seed base. The phytotoxic effect of the organisms is assessed in the 

absence of the pathogen.

Bioassays: Quantification of the disease control potential and phytotoxicity o/Trichoderma 

and Gliocladium

Methods

Inocula of Trichoderma viride (isolate Ex-PM) and Gliocladium repens (isolate TMD) 

(see Appendix II for details) were produced on blue poppy seed (Papaver somniferum L.) 

or quinoa seed {Chenopodium quinoa Willd). These seed types were selected in favour of 

bran formulations because of their size, uniformity and stability following heat sterilisation 

and colonisation by the BCA. 100 g of seed was mixed with 50 g of tap water in a 500 ml 

conical flask and autoclaved at 121 kPa for Ih. A 1.0 x 10̂  ml * conidial spore suspension 

of the BCA, obtained from a 14 d old culture grown on potato dextrose agar, was added to 

each flask at a rate of 10 ml per flask. Flasks were then incubated in the dark for 3 d at 23 

°C.

Repli-plates (25 wells per plate, each measuring 15x15x12 mm in depth) were filled
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with sand (0.5-1.0 mm in diameter and at 10% moisture by weight) and a single radish seed 

sown at a depth of 5 mm in the centre of each well. Beside each seed was incorporated 0,

1,2 or 4 single quinoa or poppy seeds colonised with either Trichoderma or Gliocladium. 

At a distance of 2.0 mm from the radish seed on the other side of the BCA was placed a 

single mycelial disc of R. solani (isolate R5) measuring 1.0 mm in diameter. After covering 

the seeds and inoculum with sand, the lids of the plates were replaced, sealed with parafilm 

and incubated at 23°C with a 16 hour day. The experiment involved 10 replicates per 

treatment and was set up as a fully randomised design. After two days, the lids were 

removed and the plates sealed inside clear plastic containers. After a further 5 d, the 

seedlings were removed, washed and assessed visually for disease (damping-off).

To assess the phytotoxicity of Trichoderma and Gliocladium, the above treatments were 

repeated omitting R. solani and with five replicates per treatment. Plants were assessed for 

tap root length as a measure of phytotoxicity after 7 d incubation. Additional units were 

assessed to eliminate the possibility that poppy seed or quinoa seed alone were responsible 

for either disease control or phytotoxicity.

Statistical analysis

Because of the different nature of the two variables (quantal for the probability of 

damping-off and continuous for the measurement of tap root length) two different methods 

of analysis were used. A generalised linear model with the assumption of binomial error 

distribution was used to compare differences in the probability of disease caused by 

different numbers of T. viride and G. virens propagules grown on different seed types. Main 

effects and interactions were assessed by comparing the accumulated analysis of deviance 

values with the chi-squared distribution at p ^ 0.05.

To compare the phytotoxicity caused by different numbers of T. viride and G. virens
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propagules grown on different seed types a simple analysis of variance was performed. 

Results

When inoculum (a mycelial disc) of R. solani was placed at a distance of 1 mm from a 

radish seed, the probability of the seed becoming diseased after seven days was 0.6. The 

addition of either Trichoderma viride or Gliocladium vfrgnj significantly reduced the 

probability of disease caused by R. solani. This was detected as being highly significant by 

the generalised model analysis (Table 2.6).

Table 2.6. Summarised analysis o f deviance o f the effects o f numbers o f BCA units, seed 

(substrate) type and BCA on the probability o f infection (damping-off) by R. solani.

Source d.f Deviance Significance

Number (lin) 1 15.6 p^O.OOl

Number (quad) 1 4.13 p^0.05

Number (cubic) 1 0.64 n/s

I'ype of BCA 1 0.87 n/s

Seed 1 1.72 n/s

Number(lin).BCA 1 0.89 n/s

Number(quad).BCA 1 3.13 n/s

Number(cub).BCA 1 5.63 p^0.05

Number.Seed 1 1.92 n/s

BCA.Seed 1 0.31 n/s

Number.BCA.Seed 1 0.02 n/s

Residual 148 158.89

The placement of a poppy seed (food base) colonised with Trichoderma alongside the 

radish plant reduced the probability of damping-off from 0.6 to 0.1. When the food base 

was a quinoa seed, the probability of disease was reduced from 0.6 to zero (Fig. 2.2a). The
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Fig 2.2: The effect of number of units of Trichoderma viride (circles) or Gliocladium 

virens (squares) growing from quinoa seed (solid lines) or poppyseed (dashed lines) 
on a) the probability of infection by R. solani and b) the mean tap root length of radish 

seedlings growing in the absence of R. solani.
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addition of Gliocladium on either a poppy seed or a quinoa seed did not reduce the 

probability of disease by the same amount. When Gliocladium was added as a colonised 

poppy seed, the probability of disease was reduced from 0.6 to 0.4 and as a colonised 

quinoa seed from 0 6 to 0 5 As the number of BCA units was increased, from one to four, 

the difference between Trichoderma and Gliocladium disappeared, both providing 

significant levels of control. The different trends between Trichoderma and Gliocladium 

with respect to control of damping-off by different numbers of colonised seeds was detected 

in the analysis as a significant cubic interaction (i.e. Number(cub).BCA term).

Both Trichoderma and Gliocladium reduced the length of the radish tap root in the 

absence of R. solani (Fig 2.2b). The reduction was more severe when the number of BCA 

units was increased and for quinoa seed rather than for the poppy seed base (Table 2.7).

Table 2.7: Summary o f analysis of variance showing the effects of number of BCA units, 

seed (substrate) type and type of BCA on the tap root length (mm)of radish seedlings and 

associated standard errors below.

Number of 

BCA units

Trichoderma 

on quinoa

Trichoderma 

on poppy seed

Gliocladium 

on quinoa

Gliocladium 

on poppy seed

0 83.0 80.0 77.0 81.0

1 48.0 82.0 55.0 70.0

2 48.0 65.0 46.0 81.0

4 24.0 62.0 38.0 58.0

Number BCA Seed Number.

BCA

Number.

Seed

BCA.

Seed

Number.

BCA.

Seed

s.e.d 6.06 4.28 4.28 8.57 8.57 6.06 12.12

Rep 20 40 40 10 10 20 5
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Conclusions

Trichoderma was selected for inclusion in future investigations on the basis of increased 

control with a single BCA unit (the placement of which saves time during experimentation) 

and with no detectable increase in phytotoxicity compared with Gliocladium at the same 

density (Fig. 2.2b). Trichoderma behaves as a partially selective antagonist which has the 

potential to harm both the plant and the pathogen, a property which may restrict its use as 

a control agent (Ousley et al, 1993). The general loss of control when the number of units 

of Trichoderma was increased may be the result of this phytotoxicity whereby the presence 

of the BCA may have increased the susceptibility of the host to disease.

2.7.2 Pseudomonas corrugata

An isolate of Pseudomonas corrugata (strain R2140) was kindly supplied by Professor 

K. J. Killham (University of Aberdeen). The organism was originally isolated from the 

rhizosphere of a wheat root growing in take-all suppressive soil in Australia (Ryder and 

Rovira, 1993). Pseudomonas corrugata had been marked with the /uxAB genes of Vibrio 

harveyi for the purpose of detection in situ. This property forms the basis for future work 

and was not exploited in this investigation. Russell (1996) compared the genetically altered 

(luxAB) marked strain of P. corrugata with the original wild type. No differences in growth 

or activity were detected. Since the wild type organism had performed well, providing 

significant levels of disease control in preliminary field trials (Prof K. J. Killham pers. 

comm.) its luxAB marked counterpart was selected as the biological control organism 

against Ggt on this basis.

To produce inoculum of P. corrugata, a 500 ml conical flask containing 200 ml of Luria 

broth (Oxoid) was inoculated with a culture of P. corrugata. The flask was incubated in an 

orbital incubator (125 rpm) at 25 °C for 16 h. This corresponds with the late log phase of
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the culture containing 10‘° cells ml ‘ (Russell, 1996). Aliquots of 1.0 ml of the culture were 

pipetted into sterile Eppendorf tubes and these tubes were centrifuged at 12,000 g for 2 

minutes. The supernatant was removed and the cells resuspended in 1 ml of phosphate 

buffered saline (PBS) (80 g NaCl, 2 g KCL, 11.5 g Na^HPO ,̂ 2.0 g KUPQ in 1 1 RO 

HjO). The centrifugation process was repeated twice more and the final culture diluted into 

a conical flask with PBS to provide 100 ml containing 1.0 x 10̂  cells ml ^ The flask was 

placed on ice prior to inoculation of roots.
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Chapter three 

Inoculum and components of pathozone infection

3.1 Introduction

Changes in the probability of infection with increasing distance between an inoculum 

unit and the host are described by the pathozone profile. The objective of this chapter is to 

interpret and model the behaviour of inoculum in relation to the major components 

responsible for dictating the shape and variability of the pathozone profile and to identify 

an inoculum type suitable for the experimental derivation of pathozone profiles for the 

infection of radish by R. solani. The major components of pathozone infection were 

identified in chapter 2 as the germinability of inoculum^ the growth of the resulting mycelial 

colony outwards to make contact with the host and the susceptibility of the host to disease 

once contact has been made. These components were represented in a model by the 

conditional probabilities P, P3 respectively where the probability of disease from

inoculum placed at distance r nun from the host P(r) is given by:

P(r) = P^.P^(r).P,(r) . (3.1)

For the infection of radish by R. solani, the probability of germination, P ,̂ is independent 

of distance while the probability of reaching the host, Pj, and of the susceptibility of the 

host on contact, P3, both depend on distance.

Each component is quantified separately for two types of inoculum, chopped potato soil 

(CPS) and mycelial discs (MD). Chopped potato soil inoculum is composed of a mixture 

of potato and soil impregnated with fractions of fungal mycelium. The amount and 

nutritional status of fungal mycelium varies between inoculum units reflecting variability
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in germination, fungal growth and infection of naturally occurring inoculum. Mycelial 

discs, removed from a growing colony of P. solani, provide inoculum with actively growing 

mycelium, uniformly high viability and potentially less variability in colony growth and 

infectiveness. An inoculum type with these characteristics was considered necessary to 

minimise variability within profiles and thus maximise the chance of identifying treatment 

effects between profiles.

Using model (3.1) and empirically derived values of P, and , the shape and 

variability of pathozone profiles for the two types of inoculum are predicted at a single 

time, specifically, when the mycelial colony had achieved its maximum size, and are 

compared with experimental data. Finally, the behaviour of the model is examined by 

assessing the sensitivity of shape and variability to different parameter values using a 

stochastic version of model (3.1).

3.2 Methods

3.2.1 Production o f inoculum

Chopped potato soil and mycelial disc inoculum

Chopped potato soil (CPS) and mycelial disc (MD) inoculum were prepared according 

to the methods described in section 2.6.2. The CPS inoculum was obtained from the 1.0 

mm to 2.0 mm diameter fraction, whilst MD inoculum was cut to a size of 1.0 mm 

diameter.

3.2.2 Components o f pathozone infection 

Inoculum germinability (PJ

To assess the germinability of inoculum over time, 100 units of each inoculum type were 

plated onto potato dextrose agar immediately following preparation or after approximately
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90 d (CPS) and 30 d (MD as whole plates) storage in the dark at 4 °C. The plates were 

incubated for 48 h at 23 °C and assessed for germination using a binocular microscope 

(magnification = x 20). Three batches of CPS inoculum, produced using three different 

soils (see Appendix 1 for details), were assessed for germinability. Of these, only one batch 

(soil 2) was selected for estimation of and Py

Investigation of colony growth (Pj)

The growth of individual colonies was investigated on 11.0 cm diameter glass 

microfibre filters (Grade Gf^c, Whatman International Ltd, Maidstone, Kent) contained 

singly in 14.0 cm diameter plastic Petri-dishes. Aliquots of 5 cm  ̂sterile distilled water 

were added to each filter and plates were sealed with para-film. Plates were arranged in a 

fully randomised design and incubated in the dark at 23 °C. After 4 d incubation, colonies 

were stained with cotton blue in acetic acid and examined under a dissecting microscope 

(x 20). Growth of mycelial colonies on glass microfibre filters was selected because the 

furthest extent of mycelial growth produced under these conditions was not found to differ 

significantly from colonies generated directly on the surface of moist sand (Otten, Pers. 

comm.) and because of the relative ease and accuracy associated with the direct observation 

of mycelium.

Two properties associated with colony growth were investigated (Fig 3.1). The furthest 

extent of colony growth was examined for 100 replicates and a more detailed examination 

of changes in the number and distribution of hyphae with distance was performed on a 

randomly selected sub-sample of 35 of the same replicates.

Changes in host susceptibility ( P 3 )

Changes in the susceptibility of the host were estimated by combining information from
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Fig. 3.1: Schematic representation of two properties of colony architecture used to estimate the 
probability of contact between mycelium growing out of a source of inoculum and a host.

a) The furthest extent of mycelial growth in replicate colonies is described by a continuous 
probability distribution. The threshold for infection is determined by the minimum distance 
between inoculum and host (r )̂. The probability of contact (shaded area) is estimated by the 
proportion of inoculum units that can grow further than

b) The number of hyphae in a sampling unit equivalent to the host diameter is described by a 
discrete probability distribution with parameters that vaiy with distance. The threshold for 
infection is detenmned by the minimum number of hyphae required to contact the host (n̂ ). Hie 
probability o f contact (shaded area) for a given distance is estimated by the proportion of 
sampling units with at least hyphae.
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two experiments. The first experiment estimated the time of contact by fungal mycelium 

arriving from inoculum placed at different distances from the host. The second experiment 

estimated changes in the relative susceptibility of the host over time for inoculum at a fixed 

location. Changes in susceptibility to inoculum placed at different distances from the host 

and thus making contact with the host at different times could then be estimated.

In the first experiment, growth curves for the expansion of fungal colonies generated by 

CPS and MD inoculum were produced on glass microfibre filters as before. The experiment 

included 9 replicates per inoculum type per time in a fully randomised design. Colonies 

were stained with 0.2% trypan blue in 95% acetic acid and measurements were made of the 

furthest extent of colony growth 1,2,3,4,5 and 7 d after introduction of the inoculum to the 

filters.

In the second experiment, changes in the susceptibility of the host over time were 

measured according to the methods described in 2.6.2 but with MD inoculum placed at a 

single distance (2 mm) from the surface of 0, 1, 2, 3, 4, 5, 6, 8, 10 or 12 d old radish 

seedlings. Each time was replicated 18 times in a fully randomised block.

3.2.3 Pathozone profiles

Pathozone profiles describing changes in the probability of infection when inoculum is 

placed at different distances from the surface of the host were generated according to the 

methods described in 2.6.2. The experiment was arranged in a fully randomised block 

design with 10 distances, 0 ,1 ,2 ,3 ,4 ,5 ,6, 8,11 and 15 mm, each with 18 replicates.

The probabilistic model (3.1) is derived by empirical estimation of its components, (i.e. 

germinability, mycelial growth and infectivity at the host surface). The model is used to 

predict the shape of the pathozone profile for two types of inoculum. Ultimately, the 

dynamics of the pathozone will be used to predict disease progress amongst a population
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of host plants. Model (3.1) is unnecessarily complex for this purpose (i.e it has many 

parameters). Consequently, four simple, non-linear models were fitted to the profiles in 

order to provide a summary of the principle features. Three of the models (models I, II and 

IV) were described in 2.6.2. The logistic model was replaced by an additional exponential 

model, P = p.exp(l-exp(ar)), which allows for a more rapid decay in the probability of 

infection, P, with distance, r. The models were fitted by maximum likelihood under an 

assumption of a binomial distribution of errors due to the discrete nature of the response 

variate. The model of best fit was selected on the basis of minimal least squares and 

compared with predictions of model (3.1).

3.2.4 Derivation o f model

Probability of germination (PJ The probability that a unit of either CPS or MD inoculum 

germinates was assumed to remain independent of the distance at which it was placed from 

the surface of the host.

Probability o f contact following germination (Pj)

The morphology of fungal colonies is notoriously variable both between species, for 

which it is historically used for the purpose of identification, but also within species. The 

architecture of a fungal colony can depend on the location and availability of nutrients. 

Thus, on an agar plate or in a nutrient rich, homogeneous soil environment, a fungal colony 

might be expected to develop with a regular and high mycelial density. Alternatively, if the 

colony develops in the absence of external nutrients, the distribution of mycelium is patchy 

(Ritz, 1995). Thus two forms of the model for contact of mycelium with the host, denoted 

Pja and PjA respectively, were examined.

The model for Pj^ is based on two assumptions: (i) that colonies from germinating
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inoculum units are radially symmetrical and (ii) that hyphal density is sufficiently high, 

such that, if the colony can grow at least as far as the host, contact is inevitable (Fig. 3.1a). 

This model also applies to directional growth towards a host.

The probability that the fungus contacts a host r  mm away is estimated by the proportion 

of inoculum capable of growing at least r mm. The distance between inoculum and host 

therefore sets a threshold distance for growth, and the probability of contact is given by:

= P[Fungus grows a threshold distance r j  = 1-J'(f(r) jO ) dr , (3.2)
0

where/(r) is the probability density function of a continuous distribution for the furthest 

extent of hyphal growth of individual inoculum units, with parameters 0. Frequency 

histograms were prepared for the furthest growth of hyphae from inoculum units of CPS 

and MD and the goodness-of-fit to normal, gamma and exponential distributions were 

tested by residual deviance and examination of residues using maximum likelyhood 

programme (MLP) (Ross, 1987).

The second form, Pj*. is estimated from the distribution of hyphal density arriving at the 

host surface. The model allows for sparse, radially-asymmetrical colony expansion (Fig. 

3.1b). The probability of W hyphae arriving at a host is given by the density function of a 

discrete distribution: formally the probability that the random variable N  takes a particular 

value, n, for inoculum at a distance r nun from the host, is given by:

P [N=n \ r] = f [ N  \ Q (r)] , (3.3)

in which 0(r) are the parameters of the distribution, which change with distance.

62



If successful infection and disease requires a threshold density of hyphae, then Pj* is 

given by:

N=n,

= P[N-èin, I r] = 1 -  I <I>W1 • (3.4)
N=0

Two distributions, the Poisson and negative binomial, were tested to describe the density 

of hyphae arriving at a host. The Poisson distribution applies to hyphae that are randomly 

and independentiy arranged at a given radius, while the negative binomial distribution 

allows for clumping of hyphae. Goodness-of-fit of hyphal density to the Poisson and 

negative binomial distributions at each distance was tested by chi-squared analysis. Simple 

exponential or hyperbolic functions were used to characterise the change in the mean and 

clumping parameter (for the negative binomial) with distance.

Probability of infection given contact ( P 3 )

The probability of infection over time was described by a monomolecular function, thus:

^ 3(0 = K,(l-exp(-p,(»-ô,))) , (3.5)

where x;, P, and Ô, are parameters that relate the change in Pg(r) with time. Equation (3.5) 

relates the susceptibility of the host to the time at which it encounters fungal mycelium. 

Time (f) in equation (3.5) was converted to distance travelled by the fungus, by analysis of 

growth curves derived from MD and CPS inoculum. The relationships were also 

monomolecular in shape where:

r = K /l-exp(-P /(-ôp)) . (3,6)
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Rearranging (3.6) to obtain r as a function of r and substitution in (3.5) yields;

P M  = K (3.7)

where, k = k̂ , P = p/P^ ô = P/ô,-ô,), y = exp(-pô).

3.3 Results

3.3.1 Estimation o f the probability of germination (P )̂

Levels of germinability were similar for both inoculum types following initial 

preparation but varied with respect to their rate of decay during storage (Table 3.1). All 

units of MD inoculum were viable and, although not relevant because the inoculum is 

freshly prepared prior to use, suffered no observable decay after storage for 30 d. The rate 

of decay of CPS inoculum depends on the soil type from which it was prepared. The CPS

inoculum (Soil 2) was chosen for further investigation prior to which the germinability had
».

decayed to 68%.

Table 3.1: Change of germinability during storage for different types o f inoculum.

Inoculum Initial
germinability

(%)

Final
germinability

(%)

Duration of 
storage (days)

Linear decay 
rate (% day'^)

CPS (Soil 1) 91 85 90 0.047
CPS (Soil 2) 90 71 90 0.211
CPS (Soil 3) 86 30 90 0.620

MD 100 100 30 -

3.3.2 Estimation of the furthest extent of mycelial growth (Pĝ )

Germinable units of CPS inoculum produced mycelial colonies more variable in size
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than those produced by MD inoculum. All grew a minimum of 3 mm, most grew about 10 

mm but many grew further, reaching a maximum of 65 mm. In contrast, all colonies 

produced by MD inoculum grew to 21 mm but the number growing further tailed off 

rapidly to a maximum at 55 mm. Histograms of the furthest extent of hyphal growth from 

CPS inoculum could be adequately described by gamma and normal distributions and from 

MD inoculum, by exponential, gamma and normal distributions. However, visual 

observation of fitted curves suggests that the gamma function provided the best description 

of CPS inoculum, whilst a displaced exponential function provided an appropriate 

description for colonies produced by MD inoculum. The fitted functions for the two

distributions are shown in Figures 3.2a and 3.2b.

Changes in the probability of a germinable unit of CPS and MD inoculum making

contact with the host are given by:

P ^ = I -(0.123^“ ) . (3.8)

and

p  = I  ̂  ̂ ^ (3 9)\exp(-0.131(r-21)) r % 21 '

respectively and shown in Figures 3.2c and 3.2d.

3.3.3 Estimation o f changes in hyphal density with distance (P^).

Histograms generated from counts of the number of hyphae passing through 2.34 mm 

sectors (equivalent to the host diameter) of the circumference at each distance, as indicated 

in Figure 3.1b, are shown in Figure 3.3. Hyphae became relatively more clustered (lower 

values of k) with distance for both types of inoculum and were adequately described by the 

negative binomial distribution at all distances except at 2 and 4 mm away from the centre
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Fig. 3.2. Histograms and fitted distributions to the furthest extents of mycelial growth 

from four day old colonies of a) CPS and b) MD inoculum. CPS inoculum was described 

by a gamma and MD by a displaced exponential (for r > 21 mm) distribution. Figures c) 
and d) show the probabilities of contact with the host r mm away from inoculum of CPS 

and MD respectively (Pja, equations 3.8 and 3.9),
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Fig. 3.3. Probability distributions for the number of hyphae passing through 2.34 mm 
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of MD inoculum when the distribution of hyphae tended towards a Poisson distribution 

(Table 3.2).

Table 3.2: Results o f fitting Poisson and negative binomial (N/B) distribution to data 

describing the number of hyphae present in 2.34 mm sections of the circumference at 

increasing distances from the inoculum unit.

Inoculum Distance
(mm)

Distribution Residual
deviance

d.f Significance

CPS 2 Poisson 61.51 7 pcO.OOl
N/B 2.66 6 n/s

4 Poisson 125.9 6 p<0.001
N/B 9.78 5 n/s

6 Poisson 247.6 6 p<0.001
N/B 3.44 5 n/s

8 Poisson 388.8 6 p<0.001
N/B 8.22 5 n/s

10 Poisson 363.4 5 pcO.OOl
N/B 11.52 4 p<0.05

12 Poisson 350.8 4 p<0.001
N/B 9.74 3 pcO.05

14 Poisson 500.4 4 p<0.001
N/B 5.89 3 n/s

16 Poisson 528.1 4 pcO.OOl
N/B 3.84 3 n/s

MD 2 Poisson 5.56 5 n/s
N/B FTC FTC p<0.05

4 Poisson 4.37 5 n/s
N/B FTC FTC p<0.05

6 Poisson 12.95 6 p<0.05
N/B 6.41 5 n/s

8 Poisson 15.63 5 pcO.Ol
N/B 2.07 4 n/s

10 Poisson 38.1 4 pcO.OOl
N/B 6.82 3 n/s

12 Poisson 63.3 3 pcO.OOl
N/B 17.11 2 pcO.OOl

14 Poisson 55.0 3 pcO.OOl
N/B 1.26 2 n/s

16 Poisson 59.2 2 pcO.OOl
N/B 2.55 1 n/s

*  FTC = Fitting procedure fidkd to converge
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The mean radial density of hyphae declined exponentially (CPS) or hyperbolically (MD) 

with distance from the centre of the inoculum unit (Fig. 3.4a). The degree of clustering, 

estimated by the k parameter of the negative binomial distribution, decreased exponentially 

at similar rates for both types of inoculum but over markedly different ranges (Fig. 3.4b). 

In summary, changes in the mean and clumping parameters with radial distance were given

by:

CPS p(r) = 7.17 exp(-0.15r), (3.10a)

MD p(r) = l/(a+0.059r), (3.10b)

CPS k{r) = 2.68 exp(-0.23r), (3.10c)

MD A(r) = 25.2 exp(-0.23r). (3.10d)

The parameter, a = 8.31 x 10 ̂ , in equation (3.10b) reflects the sharp increase in hyphal 

density close to the centre of MD inoculum. Since the functions for p(r) are used relative 

to a comparatively low threshold density of hyphae required for infection to occur, the 

instability of the hyperbolic function for MD inoculum at low values of r does not cause 

any numerical problems.

The probability of contact by four or more hyphae is given by:

where \i(r) and k{r) are defined by (3.10).
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The expression is greatly simplified when the threshold is a single hypha where:

= (3.12)

which for CPS and MD inoculum yields:

CPS = l-[l+2.67exp(0.07r)-*<"> ,

 ̂ exp(0.23r) 
25.3a+ 1.493r

-m

where k(r) is defined by (3.10c and 3. lOd). The probability of contact by one (n, = 1) or four 

(rif = 4) hyphae is shown in Figure 3.5 for each type of inoculum. For MD inoculum both 

curves were sigmoidal, whereas for CPS, the curves switch from sigmoidal to exponential 

as the threshold n, increases.

3.3.4 Estimation o f the probability o f infection given contact (P^)

When MD inoculum was placed at the surface of an ungerminated seed, the probability 

of infection was estimated to be 0.5 (Fig. 3.6b). If inoculum was placed at the surface of 

older host material, the probability of disease increased. The maximum probability of 

infection was attained when hosts were three days old at the time of inoculation. It was 

noted that this coincided with cessation of physical dismption to the rhizosphere soil caused 

by the germinating seedling. The relationship between P^(t) and time was described by:

^3(0 = l-exp(-0.91(r+0.74)) . 0  13)

Growth curves of both inoculum types could be described by a monomolecular function 

of the form (3.6) where the asymptotic extent of colony growth was estimated at 23.6 mm
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and 25.0 mm for CPS and MD inoculum respectively (Table 3.3).

Table 3.3: Summary of model fitting to curves describing the growth of mycelium with time 

for mycelial disc and chopped potato soil inoculum.

Inoculum ^ Parameter estimate 
+/- s.e

d.f Residual 
mean square

Variance 
accounted 

for (%)

Chopped potato soil K = 23.6 ±1.18 
P = 0.62 ±0.11 
0=  1.00 ±0.075

2 3.12 93.5

Mycelial disc K = 25.0 ±3.11 
P = 0.41 ±0.18 
6 = 0.31 ±0.039

3 1.40 98.1

When the growth curves were compared using equation (3.6) they differed only in respect 

of the Ô parameter (Table 3.4). This difference reflects a significant delay in the 

germination of CPS inoculum.

Table 3.4: Summary of analysis of variance for comparison of curves describing the growth 

of mycelium from chopped potato soil and mycelial disc inoculum.

Inoculum d.f Residual 
mean square

Significance

CPS vs MD 
Common curve 8 31.43
Separate curves 5 10.44 p<0.001
Varying k 7 31.21 n/s
Varying P 7 29.91 n/s
Varying 6 7 14.95 p<0.05

The average extent of hyphal growth from CPS and MD inoculum (Fig. 3.6c and Fig. 3.6d)
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w as g iven  by:

CPS r = 23.6(l-exp(-0.62(M.00))), (3.14a)

MD r  = 25.0(l-exp(-0.41(<-0.31))), (3.14b)

yielding probabilities of infection given contact lP,(r)] of;

PÂr) = - 0 . 2 0 5 f ^ l " ' " l
V 23.6-r/ (3.15a)

for CPS inoculum and

P,(r) =
V 25.0-r/ (3.15b)

for MD inoculum. It follows that the more rapid arrival of hyphae from MD inoculum 

coincides with a period when the host is less susceptible (Fig. 3.6a). It is noted, however, 

that with substantially further delay, the susceptibility once again may be expected to

decline. |

?

3.3.5 Comparison of model predictions and experimental data

When inoculum of either CPS or MD was placed at increasing distances from the host, 

the probability of infection declined (Fig. 3.7). The furthest outer limit of the pathozone 

was observed to be 11 and 15 mm for CPS and MD inoculum respectively. There was no 

noticeable difference between inoculum types in the s h ^  of this decay and aU three of the 

models used previously by Gilligan and Simons (1987) as well as Model IV produced 

significant fits to the data. However, it was noted that model n  produced die best 

description of the profile generated using CPS inoculum whilst model IV gave the lowest 

residual deviance for MD inoculum (Table 3.5).

75



CPS MD
1.0 -

Model I
0.8 -

0.6 -

0.4 -

0.2 -

0.0 -

0 2 4 6 8 10 12 14 16

I

I
0
1

I

I
%

!
0

1

1.0 J Model n
0.8 -

0.6 -

0.4 -

0.2 -

0.0 -

0 2 4 6 8 10 12 14 16

1.0 -

Model m
0.8 -

0.6 -

0.4 -

0.2 -

0.0 -

0 2 4 6 8 10 12 14 16

Model IV

0 2 4 6 8 10 12 14 16

Distance (mm)

1.0 -

0.8 -

p o0.6 -

0.4

0.2 -

0.0 -

0 2 4 6 8 10 12 14 16

1.0 -

0.8 -

0.6 -

0.4 -

0.2 -

0.0 -

0 2 4 6 8 10 12 14 16

1.0 -

0.8 -

0.6 -

0.4

0.2 -

0.0 -

0 2 4 6 8 10 12 14 16

1.0 -

0.8 -

0.6 -

0.4 -

0.2 -

0.0 -

0 2 4 6 8 10 12 14 16

Distance (mm)

Fig. 3.7. Empirical observations (circles) obtained from placement experiments for the 
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CPS was less infective than MD inoculum. The probability of infection by a unit of CPS 

inoculum placed at the surface of the host was estimated, by the fitting of model II, to be 

0.28 whilst that from MD inoculum was estimated to be 0.58 by model IV (Table 3.5).

The data produced when CPS inoculum was placed at increasing distances from the host 

were more variable than that produced using MD inoculum. This was reflected in the higher 

value for residual deviance and lower goodness of fit estimates.

Table 3.5.* Summary of non-linear models used to describe the relationship between the 

probability of infection of the host (P) and distance (r) comparing chopped potato soil and 

mycelial disc inoculum o/R. solani.

Inoculum
type

Model Parameters 
± s.e

Res
d.f

Residual
deviance

Goodness of 
fit

CPS I. P = p.exp(-ar) p=0.35±0.390
a=0.17±0..269

8 0.517 60.7

n. P = p.exp( a / ) P=0.28±0.252
a=0.17±0.031

8 0.452 65.6

III. P = p.exp(l-exp(ar)) P=0.32±0.303
a=0.10±0.104

8 0.464 64.7

rV. P=(0 i+02r) exp (-03 r) 0i=O.72±O.12O
02=O.56±1.71
03=O.68±O.32

7 0.496 62.2

MD I. P = p.exp(-ar) P=0.863±0.57
a=0.141±0.14

8 0.296 76.2

n. P = p.exp(-ar^) P=0.695±0.36
a=0.013±0.01

8 0.226 89.3

m. P = P.expd-exp(ar)) P=0.790±0.44
a=0.085±0.056

8 0.237 87.8

IV. P=(0 i+02r) exp (-03 r) 0i=O.583±O.44
02=O.466±O.59
03=O.7OO±O.14

7 0.191 93.1
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These empirical profiles were compared with the predictions of the two forms of the 

model P{r) = Pj. P2 (r).Pj{r) (Fig. 3.8). The model based on the furthest extent of mycelial 

growth failed to describe the profiles for either CPS or MD inoculum (Fig. 3.8a). The 

model based on hyphal density, however, matched the shape and magnitude of the data for 

both inoculum types when a threshold of four hyphae arriving at the host was required for 

successful contact leading to infection. The resultant model ( P = Pj.P2.P3) is given by:

1 j y  ( AT+W-i'l ( m  ] ^ ( J

W  1 / \ p(r)+Â:(r)/ \ (k(r))
(3.16)

where values for p(r) and k{r) are given in (3.10) and values for the parameters (K,y, K̂  and 

p for P3 are given in (3.15). The model predicts an exponential decline in the shape of the 

profile for CPS inoculum and an initial rise then decay for MD inoculum. This is consistent 

with the shapes produced by the non-linear models II and IV respectively.

3.3.6 Stochastic realisations of model (3.16)

A stochastic version of the model for P(r) = Pj.P2t.P3 was used to simulate experiments 

with different levels of replication (Fig 3.9). The corresponding variances for P and each 

of the three components, based on a binomial distribution of errors, are shown in Fig. 3.10. 

Whereas the trend in the pathozone profile of MD inoculum settles close to the 

deterministic prediction with 20 replicates, that for CPS required substantially more 

replication (Fig. 3.9). Furthermore, variability at distances close to the host are associated 

with changes in host susceptibility whilst variability beyond about 4 mm is caused by 

properties of the inoculum (germinability and colony growth).
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3.3.7 Sensitivity o f the model to changes in parameters values

The sensitivity of the model to changes in the parameters was examined with respect to 

the deterministic and stochastic output. There were 20 replicates in the stochastic 

simulations. Reduction in the germinability of inoculum reduces the maximum probability 

of infection (Fig. 3.1 la). Reduction in the maximal hyphal density and of the dilution of 

hyphal density with distance both affect the magnitude and shape of the profile (Fig. 3.1 lb 

and Fig. 3.11c). In particular, increasing hyphal density moves the distance from which 

maximal infection occurs to the right in the profile. Clustering of inoculum reduces the 

probability of infection (Fig. 3.1 Id) but the rate of clustering with distance has relatively 

little effect (Fig. 3.1 le). When the susceptibility of the host was allowed to decline rather 

than increase with distance, the maximum was eliminated (Fig. 3.12a and Fig. 3.12b)

3.4 Discussion

The objectives of this chuter were to develop and test a biological model (3.1) capable
i

of predicting the shape and variability of the pathozone profile. Profiles generated from 

CPS and MD inoculum were compared and the latter was identified as being more suitable 

for investigation of factors affecting pathozone behaviour. The main reason for this was the 

consistently high degree of germinability (100%) (Table 3.1) which increases the sensitivity 

of the profile to treatment effects.

Much has been written on the description of colony architecture (Jennings and Rayner, 

1984; Gow and Gadd, 1995) and the spatial dynamics of hyphal growth (Regalado et al., 

1996; Ritz and Crawford, 1990) whilst others have examined chemotactic responses usually 

restricted to zoosporic fungi (Deacon, 1996). Little attention has been given to the 

consequences of these changes on the ability of the pathogen to infect a host. Two forms 

of the model (3.1) were tested which differed with respect to hypotheses concerning colony
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Fig. 3.11. Effect of changing a) P, b) mean hyphal density close to the host and c) the rate of 
change of hyphal density with distance; d) the degree of hyphal clustering close to the host and 
e) the rate of change of hyphal clustering with distance on stochastic (circles) and deterministic 
predictions (line) for pathozone profiles of MD inoculum. Stochastic predictions are based on 

20 replications.
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growth and the probability of a germinable inoculum unit making contact with the host. 

The first form, which assumed radially symmetric growth of high mycelial density, (Pja) 

failed to predict either the shape or the magnitude of pathozone profiles produced by either 

type of inoculum (Fig. 3.8a).

The second form of the model involved contact of the host by a critical density of 

hyphae from a fungal colony that was spatially inhomogeneous in its local radial density 

of mycelium (Pj*)- This was estimated from the density of hyphae in host-sized sampling 

units around concentric circles centred on the inoculum unit. The distributions differed for 

CPS which was more variable than MD but each could be approximated by a negative 

binomial distribution with parameters (p and k) that decline with distance. Large values of 

k indicate randomness and small values clustering. So, as the density of hyphae decreases 

with distance from the source of inoculum, the hyphae tend to become more aggregated. 

The probability of contact, Pjtir), with the host depends on the mean hyphal density and 

the degree of clustering, both of which vary with distance (Fig. 3.4). This also yields 

sigmoidal curves for P2bir) that vary with the threshold density of hyphae required for 

infection to be possible (Fig. 3.5). The magnitudes of the curves for P^bir) are such that 

when rif = 4, the shape and magnitude of experimentally derived profiles from both types 

of inoculum could be predicted (Fig. 3.8b). Thus, it is possible to interpret the pathozone 

behaviour of both types of inoculum in relation to the three stochastic components: 

germination, growth of the fungal colony to make contact with the host, and the 

susceptibility of the host following contact.

For the infection of R. sativus by R. solani, germination was assumed to be independent 

of distance (this is consistent with independent experimental evidence, not shown). The 

fall-off in the probability of infection with distance was determined instead, by the 

interactions between fungal growth and the changing susceptibility of the host. The
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susceptibility of the host increased monotonically during the period of exposure to 

inoculum (Fig. 3.6b). This means that mycelium arriving after growth through the soil 

encounters a more susceptible host on contact than does mycelium from inoculum placed 

close to the host surface. Thus the probability of infection increases with distance between 

inoculum and host. Changes in host susceptibility with distance between inoculum and host 

are off-set by reduction in the density and nutritional status of hyphae that reach the host 

from more distant inoculum resulting in a decline in the probability of infection with 

distance. The outcome of this interaction predicts a pathozone profile which may decline 

exponentially or sigmoidally or give rise to a curve which rises close to the host surface and 

then decays asymptotically to zero. For MD inoculum, the shape of the profile reflects 

initially an increase in host susceptibility since the probability of contact remains constant 

at 1.0 for inoculum located near to the host (Fig 3.5). After this, the profile decays 

exponentially along with the probability of contact. The absence of a pronounced maximum 

in the profile for CPS is due to an immediate rapid decline in the probability of contact as 

the distance between inoculum and host is increased. The effects of changes in host 

susceptibility are diminished by a delay in germination of MD inoculum compared with 

CPS inoculum.

Increasing susceptibility of the host with time was counter intuitive, since most evidence 

suggests that the seedlings become more resistant to infection by damping-off fiingi as the 

plant ages. Careful inspection during infection showed that the reduction in successful 

infection for inoculum located close to the host is most likely due to the disruption of 

fungal mycelium by the expansion and germination of the host. Thus, mycelium from CPS 

inoculum makes contact with the host when it is more fully established and more 

susceptible to infection than that from MD inoculum (It is noted that P3 might be more 

accurately defined as the net infectivity of mycelium making contact with the surface of the
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host). The flexibility of model (3.16) derived from the components of infection suggests 

that the summary models I, II and m  used by Gilligan and Simons (1987) and the critical 

exponential model (model IV) are special cases of this more versatile model. The model

(3.16) also explains the difference in the shape of the pathozone profiles produced by the 

two types of inoculum where CPS is best described by an exponential decay and MD by the 

critical exponential model (Table 3.6).

Although model (3.16) can predict the shape of the pathozone profile related to a 

specific type of inoculum and allows for flexibility in shape relating to the interaction of 

underlying biological mechanisms, it is over parameterised for the purpose of curve fitting 

and parameter estimation. It has ten parameters, one for P„ five for fg* (”r and two each for 

p and k with distance) and four for P3 ( a t  = 1, y.r ^  > P)- However, even the most 

complicated profile which has four characteristic properties (an intercept at r = 0, a 

maximum, a point of inflection and a lower asymptote which is unequivocally zero) can be 

described by as few as three parameters. Thus, for the purpose of investigating the effect 

of, for example, the presence of a biological control agent on the behaviour of the 

pathozone, it is expected that selection from a suite of parsimonious, nonlinear models such 

as the sununary models I to IV will be necessary.

Examination of stochastic predictions of the model (3.16) shows the importance of 

having adequate replication which is necessary, not only to define the profile, but in the 

analysis of such factors as biological control. Early work on pathozone profiles was based 

on as few as 10 replicates at each distance (Gilligan, 1980b; Gilligan and Simons, 1987) 

but these findings suggest a minimum of 15 and preferably 25 replicates even with an 

inoculum low in variability such as mycelial discs.

The stochastic simulations also identify a limitation of the model. An increase in the 

infectivity (or potential) of inoculum to cause disease was simulated by increasing the
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maximal hyphal density (Fig. 3.11b). This is equivalent to simulation using a different type 

of inoculum and had the effect of moving the peak of the profile distally and of increasing 

the width of the pathozone. However, in this model, P3 is independent of P2  and estimates 

of the probability of infection when a more potent inoculum is placed at the surface of the 

host were constrained by P3 . This is biologically unreasonable for inoculum producing 

colonies of different size. A more versatile reformulation of the model may be given by: 

Pi = Probability of germination,

P2 = Probability of contact by n hyphae,

P3 = Probability of disease caused by n hyphae.

The disruptive effects of the germinating host are now incorporated into P  ̂ as the 

infectivity of mycelium at the surface of the host. P3 reflects the variability in susceptibility 

of the host population which can be summarised as a threshold for the number of hyphal 

contacts necessary to cause disease. The problems associated with quantification of the 

relevant variables to test this new model are substantial since the minimum requirement 

would involve measurement of the degree of mycelial contact in the presence of a1 

germinating host plant. To this end, a novel immunological technique termed immuno- 

blotting is being developed (see chapter 4). Furthermore infectivity may not be related 

simply to the number of hyphal contacts necessary to cause disease but to the nutritional 

and physiological status of these hyphae.



Chapter four

Fungal growth; A major determinant dictating the shape of the pathozone

4.1 Introduction

In the previous chapter (chapter 3), the mycelial colony was identified as the dominating 

factor determining the shape of the pathozone profile for Rhizoctonia solani.

A considerable amount of literature exists describing the growth of fungal colonies over 

agar media from a wide range of species (Trinci, 1971; 1979). At the periphery of the 

colony, exponential growth and regular branch formation result in a circular, two 

dimensional structure. The rate of colony expansion is a function of the average length o# 

the terminal hyphae which contribute protoplasm to the apical extension of the leading edge 

of the colony and this constitutes the peripheral growth zone (Cooke and Rayner, 1984).; 

Behind the peripheral growth zone is a region in which hyphae branch and anastamose thus; 

establishing the colony structure as a network of mycelium. Consequently, the growth of 

hyphae in these two regions dictates the density and distribution of mycelium in the entire 

fungal colony. Characteristically, the mycelia of a fungal colony growing on a nutrient rich 

agar plate develop at a high density and are regularly distributed both within the peripheral 

growth zone (Prosser, 1995) and also, as fractal analysis has established, within the centre 

of the colony (Ritz and Crawford, 1990). Following an initial phase of exponential increase, 

the colony maintains a constant rate of radial growth.

For a colony in which the density of mycelium is high, contact with a host plant depends 

only on the size of the colony. In chapter 3, the probability of the pathogen locating a 

potential host was found to depend, not simply on the furthest extent of mycelial growth,
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but on changes in the density and distribution of mycelium with distance from the inoculum 

unit. Thus, changes in the probability of contact by one or more hyphae (Pja) with distance, 

r, was given as:

(4.1)

where the mean and clumping parameters, p and k, depend on distance. By combining the 

probability of contact by a threshold density, in this case = 4, of hyphae with the 

probability of germination ( f  J  and the net infectivity of mycelium at the host surface ( P 3 ) ,  

at each distance, it was possible to predict the shape of the pathozone profile. This 

prediction was made for a single time only, specifically, when the mycelial colony had 

achieved its maximum size and the nutrition of the inoculum unit had been exhausted. 

However, prediction and interpretation of pathozone dynamics will ultimately require 

quantification of fungal growth over time.

This chapter investigates the dynamics of fungal growth from single units of inoculum 

over a natural substrate. The effect of time and distance on the mean density, p, and the 

degree of mycelial aggregation of hyphae, k, in relation to the rate of radial expansion is 

characterised using simple mathematical models for replicate colonies growing from 

particulate (mycelial disc) and infected plant inocula over the surface of sand. The two 

types of inoculum differ markedly in nutrient status and are responsible for the primary and 

secondary infection of soil-home plant disease caused by R. solani. By characterising the 

behaviour of p and k, a method for predicting changes in the probability of contacting a 

host, P2*, with distance from the inoculum unit and over time is described.

Rhizoctonia solani spreads most rapidly over the surface of soil (Otten, pers. comm.). 

However, problems arise in quantification of mycelial growth in situ which has been
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limited to only a few techniques. Detection using radio-isotopes has provided useful 

inforrnation regarding the spread of Gaeumannomyces graminis (Robinson and Lucas, 

1962) and of translocation in the mycorrizal colonisation of various root systems (Finlay 

and Read, 1985) but requires that the specimens be frozen to enhance resolution. Some 

root-rotting pathogens produce mycelial cords that can be visualised simply with the aid of 

low power microscopy or image analysis (Bolton et a/., 1991) but the hyphae of R. solani 

are comparatively small. More recently, the development of molecular tools showing high 

specificity towards a target organism offers the opportunity to overcome these limitations. 

For example, Rattray et al., (1995) monitored the colonisation of wheat roots by a strain of 

the bacteria, Enterobacter cloacae transformed with the Lux operon. The development of 

DNA based assays such as the polymerase chain reaction (Keller et al., 1995; Smalla et al, 

1993) offer potentially high sensitivity and specificity but such assays do not distinguish 

between living and dead biomass and are also destructive.

In this chapter a technique involving monoclonal antibody technology, termed 

immunoblotting, is used which, combined with computer-aided visualisation, has the 

potential to quantify the growth of mycelium non-destructively, in situ and over time. 

Immunoblotting was first described by Dewey et a l (1997). As the mycelium of 

Rhizoctonia spreads over the soil surface, extracellular water soluble antigens are rapidly 

immobilised on a polyvinylidene difluoride membrane (PVDF). The bound antigen is 

detected by incubating the membrane in a R. jolwif-specific inununoglobulin M (IgM) 

monoclonal antibody (MAb) supernatant followed by an anti-mouse IgM gold conjugate 

and subsequent silver enhancement. The antigen, a catechol oxidase, detected by the IgM 

MAb used in this study is produced only by the actively growing hyphal tips of the fungus. 

Hence, immunoblotting detects only mycelium in the two regions of active growth. The two 

regions are referred to collectively in this report as ‘the active growth zone*.
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The immunoblotting technique became available late in the course of the study and the 

results presented here are restricted to exploratory work to relate the behaviour of fungal 

pathogens in the rhizosphere to disease progress at the population level. The techniques and 

those described in subsequent chapters represent a framework for this ‘scaling up’ process.

4.2 Materials and methods

4.2.1 Microcosm experiment

Mycelial discs were produced according to the methods described in section 2.6.2. 

Infected plant inoculum was produced in seed trays (320 mm x 200 mm) filled with sand 

(grade 0.5-1.0 mm diameter and 10 % water by weight). Radish plants were sown at equal 

spacing at a rate of forty per tray. Alongside each seed and at a distance and depth of 2 mm 

a mycelial disc of R solani (Isolate R5) was positioned. The trays were covered with cleaÉ 

plastic lids and incubated at 23°C with a day length of 16 h. After seven days, infected 

plants were carefully extracted from the sand and placed into distilled water.

Mycelial colonies were grown in clear plastic trays measuring 60 x 120 x 15 mm (1 x wl; 

X d) and filled with sand (grade 0.5-1.0 nun diameter and 10 % water by weight). Into the 

centre of each tray was placed either a mycelial disc at a depth of 2 mm or an infected 

radish seedling. The infected seedling was transplanted into a hole and supported with a 

fine glass rod measuring 1.2 mm in diameter. Each tray was covered with a nylon mesh (45 

pm aperture; Cadish, Finchley, London) and incubated at 23°C with a 16 h day. The 

experiment was fully randomised with five replicates per inoculum type.

To detect antigen-producing regions of the colony, PVDF transfer membranes 

(Millipore) were activated by immersion in methanol for 2 min, and rinsed three times in 

reverse osmosis (R.O.) HjO. The activated membranes were applied to each tray for 16 h 

immediately or after 24,48 or 72 h incubation. Membranes were removed, placed between
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filter paper to dry and stored at 4°C in the dark prior to development.

4.2.2 Visualisation of the antigen

Membranes were reactivated according to the procedure described above and placed in 

100 ml of tris buffered saline (TBS) containing 0.3% (w/v) casein (TBS/c; 3g tris, 8 g 

NaCl, 0.2g KCl, R.O. HjO, pH 8.3) for 1 h at room temperature. The membranes were then 

incubated in MAb supernatant diluted 1:1 (v/v) with 10% tissue culture medium for 24 h. 

The membranes were given three consecutive rinses in TBS/c and then incubated for a 

further 16 h in TBS/c containing a 1 in 250 dilution of goat anti-mouse IgM + IgG immuno- 

gold conjugate (British Biocell International, BLGAF20). Both primary antibody and 

secondary antibody gold conjugate incubation steps were performed at room temperature, 

with gentle agitation in sealed dishes. Finally, the membranes were given three consecutive; 

rinses in TBS/c, a single rinse in R.O. HjO and then developed in silver enhancer (British- 

Biocell International, SEKB250) for a maximum of 45 min. Enhancement was stopped by 

rinsing the membranes in several changes of R.O. HjO and the membranes were air drieck 

at room temperature between layers of Whatman filter paper (grade N° 1)..

4.2.3 Quantification of mycelium

Data were collected by direct scanning of inununo-blots using a high resolution optical 

scanner (Umax pro 1200 x 1200 dpi) from immunoblots detecting growth over the periods 

0 to 16 h, 16 to 40 h, 40 to 64 h and 64 to 88 h (referred to hereafter as days 1,2,3 and 4 

respectively). Some of the images were discoloured by residual antigenic material. These 

regions are not associated with the active growth zone of the colony and were removed 

using the software package ‘Adobe photoshop’ (California USA). Contiguous sampling 

units measuring 1.1 mm in diameter (0.95 nun^) and covering the entire circumference of
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radii increasing at 1.1 mm intervals from the inoculum unit (Fig. 4.1) were individually 

scanned by computer for the area of the sample covered by mycelium (mycelial cover).

4.2.4 The relationship between hyphal density and mycelial caver.

Changes in mycelial cover, c, with distance and over time were converted to numbers 

of hyphae using a calibration curve relating the number of black pixels per sample unit to 

hyphal density (number of hyphae per sample unit) (Fig 4.2). The calibration curve was 

generated by randomly selecting five sites from an immunoblot, each site containing 1, 3,

5,7 or 9 hyphae and assessing each site for mycelial cover (area covered by black pixels 

after scanning).

By careful alignment of the immunoblots, each sample site was maintained in the same 

position for each time of observation. Therefore, the number of actively growing hyphae" 

in each sample site could be counted for each time of observation. The sample size was 

increased to twice the initial size representing a host 2.2 mm in diameter by adding the. 

numbers of hyphae detected in neighbouring sample units. By accumulating the results oveÉ 

time, changes in the total number of hyphae entering each sample site was quantified over 

time.

4.2.5 Estimation of the probability of contact, fgA-

Frequency histograms of the number of hyphae per sampling unit were fitted with the 

negative binomial function. Changes in the parameters of p and k over distance, r, and time, 

t, were both described by exponential functions where:

p(r) = pi(0 .exp(-p2(0 -r "\f) ) (4.2)

Kr) = (ki(r).exp(-k2(f).r)). (4.3)

94



Sample unit

Inoculum unit

Fig 4.1: Sampling strategy used to detect changes in the density 
and distribution of mycelium at different distances from a unit 
of inoculum. Sample size is 1.1 mm diameter.
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c = l-exp(-0.23.d)0.8 -

d = 1/0.23 ln(l/l-c)
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Fig. 4.2: Calibration curve relating the number of hyphae present within a sampling 
unit 1.1 mm in diameter (d), with the area of the sample covered by mycelium (c).
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Both equations describe an exponential decay to zero where, for equation (4.2), the 

parameter was included to provide an accurate description of the lower levels of mycelial 

density detected furthest from the inoculum unit.

Changes in the parameters Pi(f), pgCO, kiif) and were described by either an 

exponential decay or a monomolecular increase over time. This provided two surfaces, one 

for p(r,r) and one for for each type of inoculum. The model for (4.1) based on n̂  

= 4 is then;

^2b =
N=A

1 -
y  ( (  p(r,r) ] ^ I ̂  . p(r,Q^
n=q\ k(r,t)-l ) V p(r,/)+^r,0 / \ (&(r,f)/ (4.4)

where p(r,r) and k(r,t) are given by the surfaces in 4.2 and 4.3.

4.2.6 The furthest extent of radial growth

Changes in the extent of radial growth were measured as the furthest detectable hypha 

at each time of observation. &

4.3 Results

4.3.1 The immunoblots

Immunoblotting detected a zone of active mycelium (the active growth zone) which 

grew outwards from each inoculum unit over time (Figs. 4.3 and 4.4). The active growth 

zone grew further and faster from infected plant inoculum. After four days growth from 

mycelial discs, the colonies had a diameter of approximately 20 mm whilst, from an 

infected plant tlie colony had grown to over 40 nun in diameter.

The magnified regions of the immunoblots (Fig. 4.4) indicate the regions removed 

during the cleaning process. This assists with quantification of the wave of mycelium that
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Fig 4.3: Scanned immunoblot images &om a single colony of/?, jo/oni growing 
from mycelial disc inoculum before and after cleaning.
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is detected by immunoblotting to which continuous models, based on reaction-diffusion 

equations and not considered further here, may be fitted.

4.3.2 The. relationship between mycelial cover and hyphal density

The mycelial cover, c, detected in each 1.1 mm sampling unit was converted to numbers 

of hyphae (hyphal density), d, using a calibration curve (Fig. 4.2). The relationship was 

described by the monomolecular function:

c = l-exp(-0.23.d) , • (4.5)

which, rearranging in terms for d gives:

= o k • (4.6)

4.3.3 Changes in p and k over distance and time.

Frequency distributions describing hyphal density, d, at each distance were fitted with 

the negative binomial function to provide estimates for the mean, p, and the clumping 

parameter, k over distance for mycelial disc and infected plant inoculum at each time. 

Surfaces for p(r,f) and k{r,t) were given by:

p(r) ^  p,(0 .exp(-p2(r).r>‘3̂'̂ ) (4.7)

and

W )  = (A:i(f).exp(-^(f).r)), (4.8)

where, for colonies growing from MD inoculum,

p,(0 = 22.3(l-exp(-5.60(r-0.83))) , (4.9a)

Pj(0 =1.61 exp(-76.71) , (4.9b)
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Pa(0 = 0.95 exp(-0.18 0 ,  (4.9c)

ki(t) = 3.56 (l-exp(-1.62 0 ) , (4.10a)

kiit) = 1.15 exp(-0.29 0 , (4.10b)

and from infected plant inoculum

Pi(t) = 24.1 (l-exp(-12.8(t-0.66))), (4.11a)

P2(t) = 1.94 (l-exp(-0.0241)), (4.11b)

P](t) = 2.3 exp(-0.25 t ) , (4.11c)

k fi)  = 33.9 exp(-12.41), (4.12a)

jkz(t) = 0.30 exp(-0.00271). (4.12b)

The surfaces for p(r,0 and k(r,t) for both types of inoculum are shown in Figure 4.5. 

They exhibit some general properties. The mean mycelial density, p, decayed rapidly with 

distance to a low level. However, this low density of mycelium was maintained for some 

considerable distance and time. Sinndlarly, there was a concomitant reduction in the 

clumping parameter, k (ie. increase in clumping), with distance.

Both the mean density of mycelium, p, and the degree of clumping k increased with time 

for colonies growing from mycelial disc inoculum but changed little for colonies growing 

from an infected plant.

The rise and fall of p and k with distance for infected plant inoculum detected after 3 

and 4 days growth is due to variability in the growth of replicate colonies.
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a) M ycelia l d isc inoculum

Distance (mm) Distance (mm)

b) Infected plant inoculum

30 3 f 4

Distance (mm) Distance (mm)

Fig. 4.5: Surfaces describing changes in the mean density (p) and clumping (k) 

of mycelium over distance and time from a) mycelial disc and b) infected plant 
inoculum. Data (solid points) was derived by fitting the negative binomial 
distribution to numbers of hyphae present in 2.2 mm samples at each distance 
from the inoculum unit
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4.3.4 Predictions for the probability of contact,

The surfaces describing the behaviour of p and k were used in model (4.4) to predict 

changes in the probability of contact, Pj*» by four or more hyphae over distance and time 

for a host measuring 2.2 mm in diameter (Fig. 4.6). The probability of contact decayed 

exponentially with distance at all times for mycelial disc inoculum (Fig. 4.6a). The 

probability of contact by mycelium growing from a infected plant decayed sigmoidally with 

distance at all times (Fig 4.6b). The decay in the probability of contact with distance results 

from the combined influence of p and k. The maximal probability of contact for a host 

occurring near the centre of the colony reflects the combination of high and less aggregated 

(high k) mycelial density. Since both p and k decay with distance, the probability of contact 

is reduced. However, even the low densities of mycelium, which occur at some distance 

from the centre of the colony, make a significant contribution the probability of contact.

4.3.5 The furthest extent of radial growth

Radial growth of the fungal colony was linear over time for both mycelial disc and?* 

infected plant inoculum (Fig. 4.7). Colonies from infected plant inoculum grew at about 

twice the rate of those from mycelial discs.

4.4 Discussion

Immunoblotting, combined with image analysis, permits the non-destructive, in situ, 

visualisation and quantification of colony growth. Using a simple calibration, it was 

possible to covert pixel images to mycelial densities and assess the characteristic behaviour 

of hyphal density by fitting the negative binomial distribution in which p and k vary with 

distance and time. This enables quantification of mycelial behaviour in nutrient scarce 

environments and computation of the probability of contact by certain threshold densities
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a) M ycelial d isc inoculum

b) Infected plant inoculum

Distance (mm)

Fig. 4.6: Predicted changes in the probability of contact with distance and 

over time by four or more hyphae growing from a) mycelial disc or b) infected 

plant inoculum
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Fig. 4.7: Change in the furthest extent of detectable mycelium from mycelial 
disc (open circles) and infected plant (closed circles) inoculum.
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of hyphae. The techniques were used to compare fungal growth from mycelial disc 

inoculum (used in chapter 3) with infected plant inoculum and to infer differences relating 

to the probability of contact, Pgt-

Growth of soil-home fungi in situ from a single unit of inoculum has received little 

attention, though notable exceptions occur (eg. Boddy, 1993; Bolton and Boddy, 1993). The 

results of this experiment suggest that the fundamental, underlying mechanisms which 

dictate colony growth and architecture when external nutrients are abundant and 

homogeneously distributed (Cooke and Rayner, 1984), apply equally well to situations in 

which nutrients from a point source of inoculum become growth limiting. Thus, 

irrespective of the type of inoculum, a wave of actively growing mycelium, equivalent to 

the peripheral growth zone combined with a zone of branching immediately behind, as 

described by Cooke and Rayner (1984), was detected moving outwards from the centre of 

the colony over time (Figs. 4.3 and 4.4).

The early growth of fungal colonies on nutrient-rich, homogeneous agar media produces 

mycelial stractures which typically exhibit a constant radial growth rate and maintain a high 

density of regularly distributed mycelium (Cooke and Rayner, 1984; Trinci et al., 1979; 

Trinci, 1984; Ritz and Crawford, 1990). These broad characteristics were compared with 

growth from single units of mycelial disc or infected plant inoculum over the surface of 

sand. The density of mycelium did not remain constant, but declined rapidly with distance 

(Fig. 4.5). The reduction in mycelial density with distance was associated with a 

concomitant increase in aggregation (reduction in k). However, as the mycelial density 

increased in any given location over time, so the mycelium became less clumped.

Whilst the density and distribution of hyphae were subject to considerable variation over 

distance and time, the rate of radial expansion was constant during the first four days of 

growth (Fig. 4.7). It appears that when R. solani grows from a unit of inoculum into a
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nutritionally poor environment it conserves a linear growth rate at the expense of a decline 

in mycelial density. This growth pattern is consistent with the observation that, as nutrients 

become limiting, some fungi are capable of selectively withdrawing cytoplasm from 

selected hyphae to maintain the growth of others (Dickinson and Bottomly, 1980; Cooke 

and Rayner, 1984; Faustian and Schnurer, 1987a and 1987b). It also accounts for the 

particularly long tails to the curves describing changes in mycelial density with distance 

after several days growth. The growth strategies of several soil-home fungi have been 

examined. Rayner and Coates (1987) refer to a dimorphic growth capability in R. solani 

whereby the pathogen switches from slow-dense to fast-diffuse growth depending on the 

availability of nutrient resource. Thus the organism shifts between an exploitative mode 

{sensu Ritz and Crawford, 1990) in the presence of a suitable substrate when the intemode 

length is low and branch length high, to an explorative mode with a longer intemode length 

and acute branch angle as nutrients are exhausted. This nutritionally driven ability to change 

modes (or ‘gears’, sensu Rayner and Coates, 1987) also allows the pathogen to increase 

inoculum potential in the presence of a suitable host prior to infection.

The significance of this dimorphic growth strategy was translated into the probability 

of locating a potential host using model (4.4) in which changes in the mean density of 

mycelium and the aggregation of mycehum over distance and time were used to predict the 

changes in the probability of contact (Pj*) by four or more hyphae. The profile for is 

dominated by the transition of high probabilities of contact near to the centre of the colony 

resulting from high densities of mycelium and a less clumped distribution to low 

probabilities that occur at larger distances. Whilst mycehum located further from the centre 

of the colony has a low probabihty of locating a single host, for a population of host plants, 

the probability of a host occurring increases with distance. Consequently, mycelium that 

occurs further from the centre of the colony can make an important contribution to the
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progress o f  disease.

Although there was no quaUtative difference in the shapes of surfaces describing the 

dynamics of p and k, the higher mycehal densities close to the centre of the colonies from 

infected plant inoculum transformed the curve for the probability of contact from 

exponential to sigmoidal with distance. Furthermore, the higher hyphal densities and more 

rapid growth of colonies from an infected plant would be expected to enhance the 

probability of contact with the population of host plants that occur further from the centre 

of the colony.

This study quantifies the dynamics of fungal growth in situ into a nutritionally poor 

environment and provides a significant contribution to the scaling-up process, linking 

components of infection to pathozone dynamics of individual plants. Although, these 

results suggest that an infected plant would be considerably more infective than a mycelial 

disc, it is not possible to insert the results for Pja into the probability model (model 3.1) in 

order to predict the evolution of their associated pathozone profiles. This is because the 

probability that the mycelium is infective once it reaches the surface of the host, P3, is not 

independent of the density of mycelium but most likely increases as the density of 

mycelium contacting the host increases. Consequently, P3 should be defined for each 

inoculum type separately or the model adjusted (see section 3.4). Furthermore, the model 

does not allow for the period between contact and the development of disease (damping off) 

which may also depend on the rate at which mycehum makes contact with the host and thus 

on inoculum type.
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Chapter five

Biological control of pathozone dynamics and disease progress.

5.1 Introduction

The spread of damping-off disease by R. solani is via the growth of mycelium. 

Mycelium spreading from an infected radish plant grows faster, further and more densely 

than that from particulate inoculum (Chapter four). Fungal growth outwards from a source 

of inoculum is a major determinant of the shape of the pathozone (Chapter three). 

Consequently, the dynamics of the pathozone will behave differently for the two types of 

inoculum.

It has long been recognised that successful control of disease may be effected by 

changing the behaviour of fungal plant pathogens in the rhizosphere or pathozone. Yet little 

information is available to describe this behaviour or the quantitative eff̂ ects of these 

responses on the dynamics of epidemic development.

In this chapter, the relationship between pathozone behaviour and the dynamics of 

damping-off disease caused by R. solani on populations of radish seedlings is examined. 

This represents a model system in which the contribution of primary and secondary 

infection to the spread of disease can be easily controlled by manipulation of host density. 

Section 5.2 identifies, compares and describes, using simple non linear summary models, 

the generic shapes of pathozone profiles associated with mycelial disc and infected plant 

inoculum as they evolve over time. This is necessary because the probability model (3.16), 

which includes individual components of pathozone infection, is over-parameterised for the 

purpose of curve fitting.
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Thus, the probability of infection, P{r,t), depends on distance (r) and time (f):

Pir,t) = f { r \ m )  .

where 0(A are the time varying parmneters. The model Pijr,t) is obtained from placement 

experiments (Henis and Ben-Yephet, 1970; Gilligan, 1980b), introduced in chapter 2 in 

which replicates comprise single plants challenged with propagules of inoculum placed at 

known distances from hypocotyls of radish. For accurate model selection and to identify 

the distances at which to place inoculum, large numbers of replicates and additional 

distances were included. This information was used to optimise the performance of further 

placement experiments.

In sections 5.3 and 5.4, P(j,t) is used to predict disease progress curves in the presence 

or absence of the biological control agent, Trichoderma viride in a population of radish 

seedlings exposed to randomly distributed inoculum of R. solani. This enables scaling up 

from individual to population behaviour. Two types of epidemic are examined; one in 

which disease progress is caused by primary infection alone (5.3) and a more complicated 

situation in which disease is caused by a combination of primary and secondary infection

(5.4).

5.2 Fathozone dynamics o f mycelial disc and infected plant inoculum

5.2.1 Introduction

In chapter three, a simple probability model (3.16), incorporating terms for inoculum 

germinability, colony growth and infectivity of mycelium at the host surface, was presented 

to explain the shape of pathozone profiles generated by different types of particulate 

inoculum. The number of parameters in model (3.16) is expected to increase further still 

when the model is expanded to account for the evolution of the pathozone over time. As
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an alternative, a suite of non-linear models varying in shape, with fewer parameters but 

retaining some degree of biological integrity is presented here.

Investigation of mycelial disc inoculum (chapter three) suggested that the critical 

exponential function may provide an adequate description of its pathozone profile. But 

whether or not the shape of this profile is maintained as the pathozone evolves over time 

is not yet known, nor is the characteristic shape of the pathozone associated with infected 

plant inoculum. The objectives of this investigation are therefore, to identify, compare and 

describe the shapes of the pathozone profiles generated by the two types of inoculum as 

they evolve over time using simple non-linear models which summarise the essential 

features of the profiles.

5.2.2 Methods 

Inoculum

Mycelial disc inoculum (MD) and infected plant (IP) inoculum were produced according 

to the methods described in sections 2.6.2 and 4.2.1 respectively.

Placement experiment

A placement experiment was performed to generate pathozone profiles over time for 

each type of inoculum. Soil packs were used in place of repli-plates (section 2.6.2) because 

of the larger pathozone width anticipated for infected plant inoculum. Soil packs were 

prepared by adding 60 g of moist sand (0.5-1.0 mm in diameter and 10% water by weight) 

to 100 imn lengths of clear plastic tubing (Layflat, Isle of Wight) stapled at one end. After 

sealing the open end with three staples, the packs were compressed by hand to increase 

rigidity. Single units of inoculum were placed at either 0,1,2,5,10,15 or 20 mm (mycehal 

disc inoculum) or 0, 10, 20, 30,40, 50 or 60 mm (infected plant inoculum) from the host
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with 25 replicates per distance. Placement of both host seed and inoculum was achieved via 

small incisions made in the plastic using a scalpel. For treatments involving infected plant 

inoculum, the diseased cotyledon was allowed to protrude from the soil pack.

The packs were arranged into a fully randomised design within a growth chamber and 

incubated at 23 °C with a 16 h day for 9 d. The number of plants diseased (damped-off) was 

assessed after emergence from day 5 onwards.

Modelling changes in pathozone profile over time

The pathozone profiles for the probability of infection over time from mycelial disc and 

infected plant inoculum were empirically described by the general model:

P{r,t) = f i r  \ 6(0 ) , (5.1)

where 8(0 are the time varying parameters. Data generated by each type of inoculum were 

assessed visually and described by an appropriate non-linear summary model selected on 

the basis of the shape of the pathozone profiles. The following models were considered:

Model I. P = p.exp(-ar)

Model n. P = p.exp(-ar^)

Model m. P = p.exp(l-exp(ar))

Model IV. P = (0 i+02r) exp(-0^ r )

Model V. P = p/(l+exp(-(l)i (r-4)2))).

The properties of models were described in 2.6.2 and 3.2.2 and their characteristic shapes, 

for the appropriate parameter space, are plotted in Figure 5.1.

The selected models were fitted separately to each of the pathozone profiles. Fitting was
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Fig. 5.1: Examples of the shapes of curves produced by the suite of models used 
to describe the pathozone profile, P(r)
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done using GENSTAT (Anon, 1993) under an assumption of binomial errors because of 

the quantal nature of the response variate. This gave separate estimates of P(r) for ten 

profiles corresponding to five sampling times (days 5...9) for each type of inoculum. The 

models (one for each type of inoculum) were then tested for common parameters over the 

five times of observation using the methods of Gilligan (1990b). This involved the 

computation of F values using the formula:

fidl

where RDi and RD2  are the residual deviances of the two models being compared and RDj^^ 

is the residual deviance of the full model in which all parameters are released to vary with 

time. The first model has fewer parameters varying with time than the second and the 

relevant degrees of freedom of each model are given by d.fj, J ./2 and d.fj^.

Trends of parameter estimates varying significantly over time were described by simple, 

non-linear sub-models. This produced a non-linear response surface that describes the 

change in the pathozone profiles over time.

Computation of the extent of pathozone influence.

In this experiment, the extent of pathozone influence, R, was defined as the furthest 

distance beyond which the probability of infection is less than 5%: is solved iteratively

for a given time (t) by setting P{R,t) = 0.05 in equation (5.1), given by:

P{R,t) = /  (r I 8(f) ) -  0.05 . (5.2)
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5.2.3 Results 

Mycelial disc inoculum

The shape of the pathozone profile generated by mycelial disc inoculum and first 

elucidated in Chapter 3 was reproduced in this experiment (Fig. 5.2a). The probability of 

disease increased as the distance between inoculum and host increased, reaching a 

maximum when inoculum was placed at a distance of 2.0 mm from the surface of the host 

and declining asymptotically to zero thereafter. The outer limit of the pathozone of 20 mm 

was achieved after seven days incubation. The shape of the profiles did not appear to alter 

significantly over time, although accurate observation of disease prior to day 4 was not 

possible because of the non-destructive nature of assessment.

Changes in the probability of disease, P, with distance between inoculum and host, r, 

were adequately described at all times of assessment by the critical exponential model:

/>=(0,+02 r) exp(-6,.r) . (5 3)

0, is an estimate of the probability of disease when inoculum is placed at the surface of the 

host, 02 is a measure of the amplitude of the rise and fall in infectivity, whilst the intrinsic 

rate at which infectivity decays as the distance between inoculum and host increases is 

given by 03. For ease of fitting, the model was reparameterised in the form:

P=(0,+02.r)^'^ , (5.4)

where K  = exp(-0g). Releasing the K  parameter to vary with time produced the most 

significant reduction in residual deviance and no further significant improvement to the fit 

was obtained by the release of more parameters. (Table 5.1 ).
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a) Mycelial disc inoculum b) Infected plant inoculum
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Fig. 5.2: Profiles describing changes in the probabUity of disease with distance between 

the host and a) mycelial disc inoculum or b) infected plant inoculum at different times 

after introduction of the inoculum. Data were fitted individually with the critical exponential 
function P(r) = (Gj+Gj r) exp(-Gj r) for mycelial disc inoculum or the logistic function 
P(r) = l/(l+exp((|)j(rHj)2))) for infected plant inoculum

116



Table 5.1; Results of fitting the critical exponential model {model 5.4) to disease data 

generated by mycelial disc inoculum. A single curve was fitted first and then the effects of 

releasing different parameters on the residual deviance were assessed by performing an 

approximate F test.

Model Res d.f Res deviance

1. No parameters vary with time 32 4.89

2. 01 varies with time 28 FTC*

3. 02 varies with time 28 2.39

4. IC varies with time 28 2.28

5. 01 and 0g vary with time 24 2.12

6. 01 and K vary with time 24 1.70

7. 02 and R vary with time 24 2.19

8. all parameters vary with time (full 

model)

20 1.62

* optimisation failed to converge

The trend of increase of K  with time was monotonie (Fig. 5.3a). Whilst Oj did not have a 

significant influence on the goodness of fit of model (5.4) when released to vary over time, 

it is biologically reasonable to assume that it increases with time (Fig. 5.3a) in response to 

changes in the density of fungal mycelium arriving at the surface of the host. Both 

parameters were therefore described by a monomolecular function of the form:

^ (1 -  exp(-r (t-c))) . (5.5)

Accounting for the increase in the value of these parameters with time, model (5.4) was 

expanded to give:

p=(ei(o+02 r) m "

8 |(()= \(1  -exp(-rg(t-Cg))) 
X(i)=bj^l-exp(-r^ (»-c^))) .

(5.6)
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a) Mycelial disc inoculum b) Infected plant inoculum
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Fig. 5.3: Change in parameter values over time for pathozone profiles described by the 
critical exponential function, P{r) = (Ĝ +Ĝ r) expC-Gj r) for mycelial disc inoculum (a) and
the logistic function, P(f) = l/(l+exp(((),(r-4)2))), for infected plant inoculum (b). Fitted 
curves to relate parameter changes to time are all of the form y = b ( \ -  exp (-r {t-c)))
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Fitting model (5.6) to data generated using mycelial disc inoculum produced the following 

parameter estimates:

0i(t) = 0.75 (l-exp(-1.09 (f-4.39))), (5.7a)

02 = 0.34, (57b)

K(t) = 0.81 (l-exp(-1.40 (f-3.72))). (5.7c)

The fitted model provided both a good qualitative (shape) and quantitative description (Fig. 

5.4a). The quantitative fit was compared with that of the full model in which all parameters 

were allowed to vary in an unstructured manner with time (ie. Full model in Table 5.1). No 

significant increase in residual deviance was detected (Table 5.2).

Table 5.2 Comparison of the goodness of fit o f the critical exponential model with time 

dependent parameters 0̂  and K {model 5.6) with the critical exponential model in which 

all parameters were allowed to vary in an unstructured manner with time {model 5.4, full 

model Table 5.1)

Model Res
d.f

Residual
deviance

Model 4.2 28 1.76

Full model 20 1.62 F=0.22g^jf

Infected plant inoculum

The pathozone profiles generated by infected plant inoculum differed in shape from 

those generated by mycelial disc inoculum (Fig. 5.2b) The initial rise in infectivity as the 

distance between inoculum and host increased was absent at all times of observation and 

the shape of the profiles changed over time from an exponential decline at day 4 to a 

sigmoidal decline thereafter. A logistic decay of the form:

PP{r) =
(l+exp((|)j(r-(|)2))) ’ (5.8)
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a) Mycelial disc inoculum
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b) Infected plant inoculum
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Fig. 5.4: Response surfaces for a) mycelial disc inoculum of the form, 

^(^>0 — (@1(0 +62(0 )̂ and b) infected plant inoculum of the 

form P(r,t) = l/(l+exp((j>j(r-()>2 (0)))- Points represent data.
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was used to describe the profiles. By fixing the upper asymptote, p to 1.0 it was possible 

to reproduce profiles which declined either exponentially (at (j); ^ 0 and P < 0.5) or in a 

sigmoidal manner (at (1)2 > 0 and P > 0.5). The parameter (|)̂  is an estimate of the rate of 

decay of infectivity with distance and (jig is a locational parameter identifying the point of 

inflection of the curve.

Only (j>2 was found to vary significantly with time (Table 5.3), increasing monotonically 

to a maximum of 52 mm (Fig. 5.3b).

Table 5.3; Results o f fitting the logistic model (5.8) to disease data generated by infected 

plant inoculum. A single curve was fitted first and then the effects of releasing different 

parameters on the residual deviance were assessed by performing an approximate F test.

Model Res d.f Res deviance

No parameters vary with time 33 9.35

ct>i varies with time 29 7.74

varies with time 29 1.42

Both parameters vary with time (full model) 25 1.37

Changes in this parameter over time were described by a monomolecular equation of the 

form (5.5) and included in model (5.8) to give:

P(r)=- 1

(5.9)

Fitting model (5.9) to data generated using infected plant inoculum produced the following 

parameter estimates:

cj)i = 0.105, (5.10a)

(|)2(0 = 52.9 (l-exp(-0.73(M.58))). (5.10b)
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The model fitted well to data (Fig. 5.4b) and produced no significant increase in residual 

deviation compared with the full model of Table 5.3 (Table 5.4).

Table 5.4 Comparison o f the goodness o f fit  o f the response surface model (5.9) with that 

of the logistic model (5.8) in which all parameters were allowed to vary in an unstructured 

manner with time {Full model, Table 5.3)

Model Res
d.f

Residual
deviance

Model 4.4 31 1.53

Full model 25 1.37 F=0.49g25 d.f

The extent of the pathozone (R) was calculated for P{r,t) = 0.05, giving, after least 

squares fitting (Fig. 5.5) for mycelial disc inoculum:

R = 23.5(1-exp(-0.99(f-4.41))) , (5.11)

and for infected plant inoculum

R = 78.1(1-exp(-0.70(r-3.96))) (5.12)

The pathozone from mycelial disc inoculum began to grow after 4.41 days to a maximum 

of 23.5 mm. The growth of the pathozone from an infected plant was initiated earlier, after 

3.96 days and grew to a maximum of 78.1 nun (Fig. 5.5).

5.2.4 Discussion

The success of R. solani in causing disease depends on the delivery of an appropriate 

suite of pectinolytic and cellulolytic enzymes to the site of infection (Weinhold and 

Sinclair, 1996). This, in turn, is closely correlated with changes in the density of mycelium 

at the host surface (Weinhold and Motta, 1973). As the inoculum unit germinates and
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Fig. 5.5: Change in the extent (R) of pathozone influence over time for for mycelial disc 
(open circles) and infected plant (closed circles) inoculum beyond which less than 5 % 

of propagules succeed in causing disease.
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grows to the host, the density of mycelium at the surface of the host increases, but the rate 

of increase declines when inoculum is placed further from the host, both because of an 

increase in the area of soil that the colony must explore if it is to have any chance of 

locating potential sources of food, and because the nutrients available for growth of the 

colony become exhausted as it performs this spatial exploration (See Chapter 4). The rate 

at which the fungus can multiply on the surface of the host may be further reduced by the 

germinating host which dismpts fungal mycelium as it approaches through the rhizosphere 

(Chapter 3). Differences in the shapes of the pathozone profiles produced by mycelial disc 

and infected plant inoculum can be interpreted with respect to these processes.

Mycelial discs contain a relatively small amount of nutrient and produce small colonies 

of low mycelial density, thus the probability of locating a host declines rapidly with 

distance and time. In combination with this, the instant germinability of mycelial disc 

inoculum means that, if the inoculum is located near to the host, the mycelium it produces 

is disrupted by the germinating radish seedling and has little chance of recolonisation after 

the host has established. As a result, mycelial disc inoculum placed near to the surface of 

the radish seed is less infective than that placed a little further away. The infectivity of an 

inoculum unit achieves an optimum when it is placed at a distance of about 2.0 mm from 

the host. The density of mycelium reaching the hypocotyl from inoculum placed at this 

distance is still relatively high but the disruptive influences of the host have subsided by the 

time the mycelium enters the rhizosphere. As the distance between inoculum and host is 

increased further, the probability of contact declines to zero. The shape of the pathozone 

when inoculum occurs at different distances close to the host was confirmed in a separate 

experiment (results not shown) involving 50 replicates and distances 0, 1,2,3 and 5 mm.

In contrast to MD inoculum, an infected plant provides a substantial source of nutrition 

and quickly produces large colonies of high mycelial density capable of rapid colonisation,
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penetration and delivery of a large dose of host degrading enzymes. Although germination 

is almost iirunediate and therefore the mycelium from inoculum close to the host 

presumably suffers from some interference caused by contact with the germinating seed, 

recolonisation is likely to be equally rapid and no noticeable effects on infectivity (decrease 

in the probability of infection) were detected. By the time the radish seedlings had emerged, 

all the replicates in which infected plant inoculum was placed at the host surface, had 

contracted disease. Thus it is possible that the shape of the pathozone profile prior to this 

time might show a similarity in shape to that associated with mycelial disc inoculum. It is 

also likely that such rapid colonisation results in, not only pre-emergent damping-off, but 

complete failure of the seed to germinate (Baker, 1970).

The pathozone profiles generated using infected plant inoculum were, as a result, 

different in shape from those produced by mycelial disc inoculum and were described using 

a different non-linear model. Because of this, no direct comparison of parameters was 

possible. Comparing the growth in the widths of the pathozones, R, over time, infected 

plant inoculum produced a pathozone that was initiated more rapidly and extended to over 

three times the width of that produced by mycelial disc inoculum (Fig. 5.4).

The contrasting infectivity displayed by the two types of inoculum is somewhat arbitrary 

(clearly, particulate inoculum can be more or less infective than an infected plant depending 

on the size and nutrient status of the inoculum units) but I consider the contrast to represent 

a realistic situation which may occur in many horticultural and agricultural ecosystems. The 

different behaviour of each type of inoculum offers the opportunity to investigate the effects 

of factors which display a non-linear or threshold response to inoculum infectivity, in 

paiticulai, tire potential of a biological agent to control disease.

The aim of this section was to identify simple non-linear summary models with which 

to describe and compare the evolution of pathozone profiles over time from two types of
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inoculum using the minimum number of parameters necessary. This was achieved, although. 

different models were selected to describe profiles generated by each type of inoculum. The 

two models can be used to predict the progress of disease amongst a population of radish 

seedlings. Model (5.6), based on the critical exponential model and associated with 

mycelial disc inoculum, can be used to estimate disease progress by primary infection alone 

(Gilligan, 1985), whilst both this model and model (5.9), which describes the evolution of 

profiles from infected plant inoculum using a logistic function, are required for the 

estimation of disease progress caused by a mixture of primary and secondary irifection. 

These estimates are made and tested in sections 5.3 and 5.4 respectively. The next step is 

to model the effects of a biological control agent (in this instance Trichoderma viride) on 

the evolution of the pathozone (Baker, 1990).

5.3 Biological control of pathozone behaviour and disease progress caused by primary 

infection,

5.3.1 Introduction

Epidemics of plant disease are often divided into those resulting from or dominated by 

primary infection and those in which primary infection is followed by many cycles of 

secondary infection (Vanderplank, 1963). Because there is little opportunity for the 

escalation of errors caused by the non-linear, multiplicative processes associated with many 

cycles of secondary infection, accurate forecasting of disease resulting from primary 

infection alone has a better chance of success. Moreover, and because of this non-linearity, 

the accurate forecasting of disease (and disease control) in which secondary infection makes 

a significant contribution depends on the accuracy and variability of estimates associated 

with primary infection. This section expands the work of section 5.2 by examining the 

pathozone behaviour associated with particulate inoculum when a biological control agent

126



is placed directly into the rhizosphere of a germinating radish seedling. Baker (1990) noted 

that modelling of biological control systems in phytopathology had received limited 

attention (but see Rouse and Baker, 1978) and recognised the potential of the pathozone 

as a mechanism by which these systems could be studied. Here, the progress of epidemics 

in the presence or absence of the biological control agent, and resulting exclusively from 

primary infection, is forecast using a probability model featuring pathozone dynamics, and 

the outcome of model predictions are tested in a simple experimental microcosm.

5.3.2 Materials and Methods 

Inoculum

Mycelial disc inoculum of R. solani and poppy seed inoculum of T. viride were prepared 

as described in sections 2.6.2 and 2.7.1 respectively

Placement experiment

A placement experiment was used to compare the effects of T. viride on the probability 

of infection by R. solani. Single propagules (colonised poppy seed) of T. viride were 

introduced alongside germinating seeds of radish in soil packs (see section 5.2.2) containing 

single propagules (mycelial discs) of R. solani placed at 0, 2, 5, 10, 15 or 20 mm from the 

seed. The seed was positioned at a depth of 5.0 mm and the inoculum at a depth of 2.0 mm. 

There were 15 replicates per treatment organised into a fully randomised design which 

included a full set of replicated controls containing uncolonised, sterile poppy seed. Plants 

were assessed visually for disease (lodging due to damping-off) after 5, 6, 7, 8 and 9 d 

iiicubaliun.
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Population experiment.

Predictions made using a model for monocyclic disease (model 5.25, specified later) 

were assessed by growing populations of 40 radish plants (spaced at 40 mm apart to reduce 

the risk of secondary infection) in seed trays measuring 320 mm by 2(X) mm and containing 

3.0 kg of sand (Grade 0.5-1.0 mm diameter) moistened with tap water (10% tap water by 

weight). Propagules of the pathogen (mycelial disc inoculum) were positioned at randomly 

selected coordinates at a rate of 100 units per tray. In half of the replicates (three replicates) 

each radish seedling was protected by a single propagule of T. viride (as colonised poppy 

seed), carefully positioned beside the seed at the time of sowing in such a way as to reduce 

the chance of displacement during germination of the host.

Individual trays were covered with clear plastic lids and incubated at 23 °C (16 h light 

and 8 h dark) in a fully randomised design. The number of diseased (damped-off) plants 

was recorded at daily intervals for 10 d following inoculation and the possibility of 

secondary infection (i.e. by spread from plant to plant) minimised further by the removal 

of plants soon after they were diagnosed as diseased.

Modelling changes in the pathozone profile over time

The pathozone profile for the probability of infection over time from mycelial disc 

inoculum was empirically described by the model:

f(r)=(8,+ e /)  expC-e,/-) , (5.3)

identified in 5.2.3 as providing a simple and accurate, non-linear description of the profile, 

having an intercept at r = 0, a maximum, a point of inflection and a lower asymptote of 

zero.
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The model was reparameterised in the form:

^('■)=(0i+02'') ’ (5.4)

where K = exp(-03), for ease of fitting (Ross, 1987). This form greatly improved 

convergence. Fitting was done using GENSTAT (Anon, 1993) under an assumption of 

binomial errors because of the quantal nature of the response variate.

As in the previous section, model (5.4) was fitted separately to each of the pathozone 

profiles. This gave separate estimates of 0„ 0% and K for ten profiles corresponding to five 

sampling times (days 5...9) with and without T. viride. The model was then tested for 

common parameters over the five times of observation using the methods of Ross (1987) 

and Gilligan (1990b). One parameter, 02, did not change over time. Trends in the remaining 

parameters (0j and K) were examined and the model fitted in the form:

f= (8i(f)+02.r) K{ty

9i(0=*e,(l -Gxp(-rg((-c@))) (5-6)
K(t)=b^ (l-exp(-r^  (t-c^  ))) .

This produced a non-linear response surface that describes the change in the pathozone 

profiles over time, in the presence or absence of T. viride. The effect of T. viride was also 

assessed by testing for conunon parameters in (5.4) between pairs of profiles with and 

without Trichoderma at each time separately.

Computation of the extent of pathozone influence.

In this experiment, the extent of pathozone influence was defined as the distance beyond 

which the probability of infection is less than 5%: R is solved iteratively for a given time 

(f) by setting P{R,t) = 0.05 in equation (5.6), given by:
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?=(e,(t)+02 «) m *  -  0.05 = 0 . (5.13)

Prediction of disease progress from pathozone behaviour

The expected progress of disease in a population of radish plants in which secondary 

infection was prevented was computed from pathozone profiles. The method follows that 

of Gilligan (1985) except that allowance was made for a non-monotonic pathozone profile 

with time-dependent parameters.

The probability of a single radish seedling, growing in a microcosm, and becoming 

diseased by a single, randomly distributed unit of mycelial disc inoculum, (j), is given by:

4» = 8*  . (5.14)

where 8 is the probability that a propagule lies within the pathozone and i|r is the 

conditional probability that it is capable of causing disease given that it occurs within the 

pathozone. For the izài^ti-Rhizoctonia system with inoculum confined to a plane, 0 is 

independent of time but i|f increases with time as mycelium growing from inoculum further 

out in the pathozone, reaches the host.

For a single time, if the area of the microcosm is A and the area of the pathozone is a 

then 0 = a/A where a is given by:

a = it[(« + hf-h'^] . (5.15)

R is the radius of the pathozone and h is the radius of the host. i|t is obtained as:

;^  ’ (5.16)
0
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where:

is the density function for the occurrence of a propagule at a particular distance between r 

and r+Ar from the surface of the host and P(r) = (6 , + E^r). exp (-63 r) is the probability 

of infection from a distance r. For a fixed time:

4> I (r+h) (0 j+02r) exp(-0gr) dr , (5.18)

which, after solution and further manipulation gives,

4) = R [1- (1+CR) exp(-0gR)] , (5.19)

B = ^  [(0,03^02) (l+03A)+02] . (5:20)^
03 A

' - I
c  = [(0 ,03+02) + 02(1+ Qjh + 83A)] . (521)1

03 AB

For changing time:

# )  -  [1-(1+C(#(f)) exp(-03(f)/î(t))] , (5.22)

Bit) = [(0,(003(0+02) (l+03(OA)+02] . fC 231
0W

at) = [(0,(003(0+82) + 0i(l+  0j(Oft + 03<W] - f5 241
0 ^ ( 0
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If 0i|f is the probability that a single plant becomes diseased by a single propagule of 

mycelial disc inoculum then the number of seedlings that are expected to contract disease, 

Nj, when N  seedlings are grown and p propagules are dispersed at random within the

microcosm is:

N^t) = N  [1-(1-(|)(0)P] . (5.25)

The parameters for the population dynamics given in equation (5.25) are all derived from 

pathozone behaviour studied around single plants. Equation (5.25) was used to predict the 

progress of infection and disease, together with 95% confidence intervals (based on 

binomial expectations), in the presence or absence of T. viride. These predictions were 

compared with the observed data from the population experiment. Equation (5.25) is 

therefore a prediction of population behaviour scaled up from the behaviour of individuals.

5.3.3 Results 

Placement experiment

The shape of the pathozone profiles associated with mycelial disc inoculum and 

described in section 5.2 are repeated here for comparison with the T. viride treatment. The 

probability of disease with distance increased to a maximum and then decreased 

asymptotically to zero both in the absence and presence of T. viride (Fig. 5.6a and 5.6c). 

The presence of T. viride decreased the probability of disease at all distances and all times. 

Incorporation of a food base (poppy seed), without T. viride greatly increased disease (Fig. 

5.6b). I conclude that the poppy seed alone was not inhibitory to R. solani and that the 

advantage of an additional food base close to the host was not sufficient to offset the 

potential for T. viride to reduce disease. The results for the poppy seed control are not 

considered further.
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Day51.0 a) R. solani b) R. solani 
+ Foodbase0.8

0.6

0.4

0.2

0.0

Day61.0

0.8

0.6

0.4

0.2

0.0

c) R. solani 
+ T. viride 
+ Foodbase

o

I

l . U  -

5 10 15 20

Distance (mm)
0 5 10 15 20

Distance (nun)
0 5 10 15 20

Distance (mm)

Fig. 5.6: Profiles describing changes in the probability of disease with distance between 

the host and a) Rhizoctonia solani, b) R. solani and an additional food base (poppy seed) 
placed alongside the host, c) R. solani with Trichoderma viride colonised poppy seed 

placed alongside the host at different times after introduction of the inoculum. Data were 

fitted individually with the critical exponential function P(r)=(0,+02'') exp(-8gr).
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The critical exponential model provided a good description of the disease profiles at 

each time for R. solani in the presence or absence of T. viride (Fig. 5.6a and 5.6c). Both 

01 and K  = exp(-8  ̂) increased asymptotically with time and were adequately described by 

a monomolecular function (Fig. 5.7). The other parameter, 8% decreased approximately 

linearly with time. However formal testing for common parameters across time and within 

treatments suggested that 8% could be assumed to be common, whilst 8 , and K  varied with 

time.

Fitting model (5.6) to data generated in the absence of T. viride produced the following 

parameter estimates:

8 i(t) = 8.61 (l-exp(-1.05 (f-5.02))), (5.26a)

02 = 8.22, (5.26b)

K(t) = 0.81 (l-exp(-2.22 (f-3.99))), (5.26c)

and in the presence of T. viride,

8,(t) = 0.26 (l-exp(-0.41 (f-5.09))), (5.27a)

02 = 0.16, (5.27b)

K(t) = 0.74 (l-exp(-0.75 (f-3.99))). (5.27c)

The response surfaces for P(r,t) are shown in Figure 5.8, in which the inhibitory affect of 

T. viride on the probability of disease is shown over distance and time.

It was not possible to fit model (5.1) to the combined data for the presence and absence 

of T. viride, in which 8 were allowed to vary with treatment and time. However, disease 

profiles with arid without T. viride were compared separately at each time, using model
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Fig 5.7: Change in parameter values over time for pathozone profiles described 
by the reparameterised critical exponential function, P(r) = (8, + 82r)A^\ in the 
presence (closed circles) and absence (open circles) of TrichocUrma viride. Fitted 
curves for 8, and K were of the form y = b (l-exp(-r (t -c))).
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Fig. 5.8: Response surfaces of the form P(r,O=(Oi(O+02 (̂0*̂  a) in the absence
of T. viride, with 0,(t) = 0.61(l-exp(-1.05(f-5.02)>), Kit) -  O.Bl(l-exp(-2.22(/-3.99))>, 
02= 0.22 and b) in the presence of T. viride, 8;(t) = 0.26(l-exp (-0.41(t-5.09))),
K(t) = 0.74 (l-exp(-0.75(/-3.99))), 02= 0.16.
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(5.4). The model failed to converge when testing for common parameters at days five and 

six. Beyond day six, as the amount of disease increased, fitting of common models was 

possible. Successive release of parameters revealed that the control of disease by T. viride 

was associated with a reduction in the intercept parameter, 6 .̂

The extent of the pathozone was calculated for P(r,t) = 0.05, using model (5.13), giving 

in the absence of T. viride:

R = 22.6(1-exp(-0.65(r-4.64))) , (5.28)

and in the presence of T. viride

R = 13.8(1-exp(-0.38(r-4.63))) . (5.29)

It may be seen that T. viride reduces the absolute extent of the pathozone from 22.6 nun for 

R. solani and radish when T. viride is absent, to 13.8 mm when the biological control agent 

is present. (Fig. 5.9).

Population experiments

Predictions of disease progress in the presence and absence of T. viride were made by 

incorporating the parameter estimates obtained by analysis of the pathozone profiles into 

model (5.25) and then comparing these with experimentally derived disease progress curves 

(Fig. 5.10a). Trichoderma reduced the progress of disease from a maximum of 42% in the 

absence of biocontrol to 13%. The average disease progress curve for the biocontrol 

treatment was sigmoidal with an asymmetrical point of inflection approximately seven days 

after sowing. The average disease progress curve in the unprotected crop rose smoothly 

without inflection towards an asymptote. Similar trends were detected for the increase in 

variance (Fig. 5.10b). The models for disease progress based on the behaviour of the
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Fig. 5.9: Change in ihe extent (R) of pathozone influence, beyond which 

more than 5% of propagules succeed in causing disease, for Rhizoctonia 

solani and radish over time, in the presence (closed circles) and absence 

(open circles) of Trichoderma viride placed at the host surface. The fitted 
curves are given by equations 5.28 and 5.29.
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Fig. 5.10: a) Comparison of observed (circles) and predicted (lines) disease 

progress curves for Rhizoctonia solani in populations of radish plants in the 

presence (closed circles) and absence (open circles) of Trichoderma viride 

placed in contact with host plants. Data represent the means of three replicates. 
The dotted lines represent 95% confidence intervals about the predicted curve 

based on binomial sampling, b) Comparison of empirical (circles) and predicted 
binomial variance (lines).
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pathozone surrounding individual host plants closely predicted the average and the 

variability of the disease progress curves in both the unprotected and in the protected crops.

5.3,4 Discussion

The biological control agent, T. viride, reduces the extent of pathozone influence and 

the infection efficiency of R. solani infecting radish. The change in pathozone behaviour 

can be used to predict changes in disease progress amongst a population of plants.

The similarity of the pathozone behaviour associated with mycelial disc inoculum in the 

absence of T. viride with the results reported in the previous section was reassuring. Fitting 

the same model (model 5.4), the same parameters, 0, and K, were identified as being 

responsible for changes in the evolution of pathozone profiles over time and fitting model 

(5.6) to the entire data set produced a three dimensional surface of similar shape and with 

similar parameter estimates to those obtained in the previous experiment.

The critical exponential model provides a simple, non-linear description of the sh a^  of 

the pathozone profile. The model has three parameters and certain features of the model are 

summarised in Figure 5.1 Id. The pathozone profile characterises the infection efficiency 

of inoculum which is defined as the probability of infection with distance of inoculum from 

the host (Gilligan, 1985; Gilligan and Simons, 1987). The pathozone profile is also used 

to define the extent of pathozone influence theoretically, beyond which the probability of 

infection is less then 5%. Two parameters, and K  = exp(-6g) increase monotonically with 

time, towards limiting values (Fig. 5.7). 0, defines the probability of infection for inoculum 

located at the surface of the host (Figs. 5.11a and d). The effect of T. viride on the 

pathozone behaviour of mycelial disc inoculum was associated with a reduction in the value 

of 01. This means that its effect is independent of the distance between inoculum and host 

and results in the failure of an additional proportion of the inoculum of R. solani to cause
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the parameters were 8, = 0.6, 8j = 0.2 and k = 0.8.
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disease. The reason may be due to either a quantitative reduction in the proportion of 

mycelium arriving at the surface of each of the host plants or because only a proportion of 

the propagules of T. viride are capable of controlling disease. Formally, 1/63 defines the 

distance between the maximum and the point of inflection. Tn practice, 63 has a marked 

effect on the furthest extent of the pathozone (Fig. 5.1 Ic). Hence the change in K  over time 

reflects the expansion of the pathozone as mycelium reaches and infects the host from more 

distant inoculum.

Prediction of the course of disease progress from pathozone behaviour (Fig. 5.10) 

matched both the shape and the magnitudes of independent disease progress curves with 

and without T. viride. Consequently it may be concluded that the effects of the biological 

control agent on pathozone dynamics were sufficient to cause the substantial reduction in 

disease progress observed in the population experiments.

A practical implication for optimisation of biological control comes from analysis of the 

sensitivity of disease progress curves to parameters that characterise the shape of the 

pathozone. The asymptotic level of infection and disease is particularly sensitive to K  (Fig. 

5.12a). Even a small decrease in K, due for example, to the presence of a biological control 

agent, can result in a comparatively large reduction in the asymptotic level of disease. In 

this experiment, the effect of T. viride was associated with a reduction in 0,. However, 

whilst the addition of T. viride did not significantly affect Ky a small but consistent 

reduction was noted (Fig. 5.7). Differences in K  reflect changes in spatial distribution of 

propagules within the pathozone combined with the efficiency of infection. The probability 

of inoculum occurring in the pathozone,/( r )  increases with r  (Fig. 5.12b), while infection 

efficiency (P(r)) increases slightly with distance and then declines exponentially (Fig. 5.11). 

The product o f /( r ) .  P(r), is a measure of the contribution of inoculum that falls in 

concentric zones to infection. Consequently, the pathozone profile can be subjectively
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divided into three regions, an inner region (I) dominated by low values ofy(r), an outer 

region (HI) dominated by low values of P(r) and an intermediate region (II), between 3-12 

mm from which most successful infections occur. From this it can be concluded that 

successful biological control must be able to inhibit potential infections that arise from 

inoculum in the intermediate region, where there is optimisation of inoculum location and 

infection efficiency.

In the population experiments, one hundred units of inoculum were placed at random 

allowing for considerable interaction as mycelial colonies develop. Various authors have 

argued for the presence of facultative synergism between interacting units of inoculum 

(Henis and Ben-Yephet, 1970; Benson and Baker, 1974a). Certainly, the ability of different 

fungal colonies to anastomose, and thus reduce intraspecific competition, would provide 

a basis for such a process (Cooke and Whipps, 1993). However, the successful prediction 

of disease progress from pathozone behaviour of single plants exposed to single units of 

inoculum suggests that synergism is not an important component of primary infection in 

this system (I note, however, that the presence of two opposing processes cannot be ruled 

out).

In this experiment, the variability of disease between replicate microcosms, both in the 

presence and absence of T. viride, was predicted by the assuniption of a binomial error 

distribution (Fig. 5.10b). Although interactions between mycelial colonies must have 

occurred, secondary infection and its associated non-linearity was controlled by reducing 

host density. As a result, the simplicity of this system is reflected in an equally simple 

derivation of variability. Predictions of disease progress and associated variability in the 

presence of secondary infection promises to provide a more resilient challenge.
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5.4 Biological control o f pathozone behaviour and disease progress including secondary

infection

5.4.1 Introduction

In the last section biological control of disease progress amongst a population of host 

plants was predicted simply by the examination and characterisation of the pathogen’s 

behaviour as it infects a single host plant. This scaling up of pathozone behaviour to disease 

progress was limited to primary infection which involves a single infection cycle whereby 

particulate units of inoculum germinate, grow, and make contact with the host almost 

simultaneously. In this section, the scaling up of pathozone behaviour and prediction of 

disease progress is extended to an epidemic which includes the combined processes of 

primary and secondary infection. The procedure is complicated by the presence of 

overlapping cycles of secondary infection which introduce additional time (age)-dependent 

factors on the changes in host susceptibility and inoculum infectivity and which lead to the 

spatial dependency of one infection upon another.

In this host-pathogen system the two types of inoculum which lead to primary and 

secondary infection are represented by mycelial discs of the pathogen R. solani and infected 

radish plants respectively. Characterisation of the pathozone behaviour associated with each 

type of inoculum has shown that infected plants are considerably more infective than 

mycelial discs (Fig. 5.2) resulting in a pathozone profile which extends to a greater distance 

and is intrinsically different in shape. Thus the disruptive effects of the germinating host, 

which lower the probability of infection when mycelial discs are placed close to the host 

surface and give rise to a profile in which the probability of infection rises and then falls 

with distance (Fig. 5.2a), are overcome by the dense, rapidly growing mycelium produced 

by infected plants. This results in a pathozone profile which decays sigmoidally with 

distance between inoculum and host (Fig. 5.2b). The relative potency of infected plants to
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spread infection provides the potential for a soil-home epidemic in which secondary 

infection makes a significant contribution.

Two types of epidemiological model were derived, one which describes the pathozone 

behaviour of single, isolated plants and a second which describes the population behaviour 

of an entire epidemic. The essential features of the pathozone behaviour associated with 

mycelial disc and infected plant inoculum were encapsulated within rate parameters of the 

pathozone models and used to transfer the infomation to a population model where it could 

be scaled up for the prediction of disease progress. The spatial dependency of secondary 

infection was introduced by imposing the structure of a probabilistic cellular automaton 

on the behaviour of the model. The cellular automaton allows placement of plants and 

inoculum in a given spatial structure whereby disease progress can be simulated by 

calculating changes in the probability of disease transmission between inoculum and 

susceptible hosts over time.

5.4.2 Model derivations

Pathozone behaviour of mycelial disc and infected plant inoculum

In the previous section (5.3), the description of pathozone behaviour focused primarily 

on changes in the probability of disease with distance between inoculum and host using a 

simple non-linear model. The evolution of the pathozone was achieved by allowing selected 

parameters of the non-linear model to vary with time. In this section, an alternative model 

is derived which is based on changes in the probability of disease with time from inoculum 

placed at a single distance from the host surface. Thus for mycelial disc inoculum, the 

probability of a plant becoming diseased, Yp, at time t is given by:

^  ’ (5-30)
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and the probability o f  becom ing diseased from  an infected  plant, 7 ,, is

dy
i f  =

(5 .31 )

These models do not, as yet, account for the decay in infectivity as inoculum becomes 

exhausted, changes in host susceptibility as the host ages or the delays prior to infection for 

the pathogen to germinate, multiply and penetrate the host and, if the inoculum is not in 

direct contact with the host, the time taken to grow the distance, x, between inoculum and 

host. Accordingly, the rates of infection, and r„ are expanded where:

Spatial decay due to Time decay due to

Rate = location of inoculum x changes in host 

from host susceptibility

Delay prior 

X to the onset 

of infection

giving:

(5.32)

(5.33)

where the step function, H(t), is 0 if < 0 and 1 if > 0 and is used to describe the delay 

in the onset of infection. The parameters p^ and allow for a delay in infectivity from 

inoculum occurring at different distances from the host in addition to p^ and ^ which 

represent the delay due to the infection process after contact with the host has been made.

For particulate inoculum, the spatial decay was described by a critical exponential
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function o f  the form:

<t>,W = C,(l+as*)exp(-P2*) . (5.34)

and for secondary infection by the Gaussian function:

<|),W = C/xp(-ijX^) , (5.35)

where the constants Cp and Q are parameterised as ^ and f § respectively. The time 

decay is assumed to be exponential giving:

fpW = exp(-P)(f-P()) , (5.36)

and:

i|r,(t) = exp(-f;((-f^) . (5.37)

This provides the following descriptions of the evolution of pathozone profiles from 

primary and secondary inocula from which parameter estimates for and can be 

obtained:

Primary (mycelial disc):

Yj,(x,t) = l-exp(-p,(l+Pyt)exp(-pjx)(l-exp(-p3(t-pj)))H(r-p5-p.^)) . (5.3g)

Secondary (infected plant):

Ypc,t) = l-exp(-f^exp(-j2%̂ ) . (Q\pi-s^s^)-&xp{-s^(t-s^)))H(t-s^-s^)) . (5.39)

Disease progress involving primary and secondary infection

The rates r (̂x;t) and rfx,t) are the probabilities of disease transmission used in a spatial
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contact process (cellular automaton) describing the population dynamics of R. solani on 

radish. Figure 5.13 illustrates the infection cycle and identifies the occurrence of delays 

with respect to parameters of the models (5.38 and 5.39). Parameters and can be 

estimated directly from placement experiments and applied to the cellular automaton. 

However ŝ  and ŝ , estimated in the same way are unreliable for use in predicting disease 

progress. This is because the placement experiments involving infected plants are 

performed out of context with the population experiment. In these experiments, the delays 

associated with p^ and p^ are circumvented by the introduction of radish plants as seeds and, 

as a result, the pathogen makes contact with a host which is younger and potentially more 

susceptible. In addition, when an infected plant was placed near to the host surface, all were 

infected by day 4. In order to produce a more reliable estimate of the delays ŝ  and s  ̂(given 

hereafter as T (= .S4 + s^)) a separate experiment was performed (see below).

For the simulation of disease progress using the cellular automaton, fifty hosts were 

distributed on a 5 by 10 lattice spaced 20 mm apart. Ten units of particulate inoculum were 

distributed at random positions within a rectangle containing the lattice. Each host was in 

one of the three discrete states, susceptible, latent or infectious. Simulations of disease 

progress were started at f = and were updated with a time step At of 0.1 days. The model 

involved the following transitions:

1. Susceptible to latent host via primary infection.

Transition occurs between time t  and t  +  A t  with the probability r p ( x , t ) A t ,  if a primary 

inoculum unit is located at a distance, x in a square with length x̂ , centred at the susceptible 

host (Xj is the distance between hosts).
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Primary infection Secondary infection

P4 = growth of mycelium from mycelial disc to primary host 
p̂  = multiplication and infection at the surface of the primary host

ŝ  = growth of mycelium from infected primary host to secondary host

ŝ  = multiplication on and infection of secondary host

Fig. 5.13: Diagramatic illustration of the infection processes involving 

primary and secondary infection and the location of delays represented 
by the parameters of models 5.38 and 5.39.
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2. Susceptible to latent host via secondary infection.

Transition occurs between time t and t +At with the probability cxpi-s^ipe-Se)) r,(xa,t)At, 

if an infectious host is located at a distance of 20 mm. This includes four hosts in the centre 

of the lattice, three at the edge and two in the comers. The correction factor expC-SgCpg-̂ s)) 

allows for the delay prior to the formation of secondary inoculum.

3. Latent to infective host

The fixed latent period is T.

The number of infected hosts at time, t, was given as the sum of latent and infective 

hosts.

5.4.3 Experiments 

Placement experiments

Placement experiments were used to characterise the pathozone behaviour of mycelial 

disc and infected plant inoculum in the presence and absence of the biological control agent 

T. viride. The results of part of this experiment were reported in section 5.2. This section 

also examines the effect of T. viride on the pathozone behaviour of infected plants in which 

single units of this inoculum were placed at 0,10,20,30,40,50 or 60 mm away from the 

host.

The techniques of parallel curve analysis, used in section 5.2 to identify the effects of 

r. viride on the pathozone associated with mycelial disc inoculum, were used here to 

examine infected plants. Although equation 5.39 represents an alternative description of the 

pathozone for an infected plant it includes five parameters which complicates comparison 

of profiles by parallel curve analysis. Hence, pathozone profiles produced in the absence
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and presence of T. viride were compared at each time of observation using the simpler 

logistic function 5.8:

P(r)= ^
(l+exp((|)j(r-(t)2)))

Population experiment

Predictions made using the cellular automaton were assessed by growing populations 

of 50 radish plants spaced at 20 mm apart in seed trays measuring 200 mm by 100 mm and 

containing 1.0 kg of sand (Grade 0.5-1.0 mm diameter) moistened with tap water (10% tap 

water by weight). The increased density of host plants (20 mm Compared to 40 nun for the 

examination of primary infection, section 5.3.2) allowed for significant levels of secondary 

infection. Propagules of the pathogen (mycelial disc inoculum) were positioned at random 

at a rate of 10 units per tray. In half of the replicates (five replicates) each radish seedling 

was protected by a single propagule of T. viride (as colonised poppy seed), carefully 

positioned beside the seed at the time of sowing in such a way as to reduce the chance of 

displacement during germination of the host.

Individual trays were covered with clear plastic lids and incubated at 23 °C (16 h light 

and 8 h dark) in a fully randomised design. The number of diseased (damped-off) plants 

was recorded at daily intervals for 20 days following inoculation.

Estimation o fT

Under conditions identical to those of the population experiments, 25 radish seeds were 

sown in a 5 by 5 lattice and the centre plant (either with or without a poppyseed colonised 

by Trichoderma) challenged with a unit of mycelial disc inoculum placed at a distance of 

3 mm to optimise the probability of its becoming diseased. For those replicates in which
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the centre plant damped-off and provided an infected plant as a source of inoculum, the 

mean time taken to reinfect a surrounding plant was recorded as T.

5.4.4 Results 

Pathozone behaviour

The relationship between the probability of infection and distance between mycelial disc 

inoculum and the host radish plant was described in section 5.3. The probability increased 

initially with distance and then declined asymptotically to zero at each time of observation. 

This relationship was described by the same shape of curve when the biological control 

agent, T. viride , was placed into the rhizosphere of the host (Fig. 5.6) but the probability 

of infection was reduced at each distance and at each time. When infected plants were used 

as the source of inoculum, a different shaped curve was produced and was described by a 

logistic function (Fig. 5.14). The addition of T. viride caused a significant reduction in the 

(|)2 parameter of the logistic model (5.8) after seven days growth and the significance of this 

reduction increased over time (Table 5.6).

Table 5.6 Summary of parallel curve analysis comparing pathozone profiles of infected 

plants generated in the presence and absence o f the biological control agent Trichoderma 

viride.

Model d.f Residual deviance

5 6 7 8 9

a) No parameters vary 10 0.66 0.21 0.34 0.80 0.52

b) 4)2 varies 9 0.61 0.21 0.23 0.25 0.09

c) 4>i varies 9 0.60 0.21 0.34 0.78 0.51

d) Both 4>i and 4>2 vary 8 0.55 0.21 0.23 0.22 0.09

a) compared with d) 2,8 0.80"'* O.OO"'* 2.09"'* 10.5" 1 9 .r"

b) compared with d) 1,8 0.54"'* 0.00"'*
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a) Mycelial discs 

- Trichoderma

b) Infected plants

30 4 0 ^0.0^
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Fig. 5.14: Evolution of the pathozone for a) mycelial discs and b) infected plants in the 

absence (- Trichoderma) and presence (+ Trichoderma) of the biological control agent 
Trichoderma viride.
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Models 5.38 and 5.39, used as alternatives to the simpler (fewer parameters) critical 

exponential (5.6) and logistic (5.9) models provided an accurate description of pathozone 

behaviour for both types of inoculum in the presence and absence of T. viride (Fig. 5.14). 

The parameter values estimated from the fitting process are given in Table 5.7 together with 

the estimate of T.

Table 5.7: Parameter estimates (± s.e) o f models (5.38) and (5.39) describing the effects 

of Trichoderma viride on the pathozone behaviour of mycelial disc and infected plant 

inoculum

Paraiiiclcr - Trichoderma + Trichoderma

Pi 1.09 ± 0.200 0.28 ± 0.078

P2 0.28 ±0.027 0.49 ±0.050

P3 0.55 ± 0.200 0.37 ±0.200

P4 - •

P5 0.49 ±0.150 1.55 ±0.380

P6 4.90 ±0.082 4.77 ±0.190

Si 14.9 ±4.09 15.6 ±2.52

S2 0.00098 ±0.0002 0.0016 ± 0.0003

S3 0.36 ±0.190 0.75± 0.210

S4 0.052 ±0.006 0.034 ±0.008

S5 - -

S6 3.73 ±0.150 4.20 ±0.155

T 1.82 ±0.84 1.80 ±1.14

Population dynamics

In the absence of T. viride, the progress of disease in experimental microcosms was 

approximately linear with respect to time until day 15 at which point it began to slow (Fig.
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5.15a). Trichoderma reduced the mean levels of disease. Disease progress in the presence 

of Trichoderma was also linear but proceeded with a slower mean rate which showed no 

sign of retarding until day 18. Examination of individual replicates (not shown) identified 

the progress of disease within a single microcosm as largely responsible for this. The 

variability between replicate microcosms also increased with time which was initially more 

rapid in the absence of T. viride. However, by twenty days, although the mean level of 

disease was only half of that in the unprotected crop, the variance between replicates of the 

protected crop was greater.

The cellular automaton provided an accurate prediction of the mean level of disease 

progress in the absence of T. viride and during the early phase of disease progress in the 

presence of T. viride. After thirteen days the model over-estimated the reduction of disease 

caused by adding the biological control agent (Fig. 5.15a). Similarly, the model provided 

a good description of the variability between replicate microcosms in the absence of T. 

viride, but failed after thirteen days in the presence of the control agent (Fig. 5.15b). (It 

should be noted that whilst the simulations consistently provided accurate descriptions of 

mean disease progress amongst five replicates, predictions of variability were less 

repeatable).

5.4.5 Discussion

The pathozone dynamics of the two types of inoculum were affected differently by the 

presence of the biological control agent, T. viride. When mycelial discs were used as a 

source of inoculum, Trichoderma reduced the probability of disease by the same 

proportion, which did not depend on the distance at which the inoculum was placed from 

the surface of the host. In contrast, T. viride did not control disease when infected plants 

were placed close to the host and was increasingly more effective when this inoculum was
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Fig. 5,15: a) Comparison of predicted (lines) and observed (symbols) disease 
progress in the absence (open circles) and presence (filled circles) of the 

biological control agent, Trichoderma viride. b) Comparison of empirical 
(symbols) and predicted (from model simulation) variance between five replicate 

microcosms.
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positioned further away. This is interpreted in terms of the presence of a threshold density 

of mycelium which is necessary to cause disease. When infected plants are placed near to 

the host, the threshold is quickly and easily reached and the probability of disease is 

independent of the distance between inoculum and host. The effects of T. viride are 

therefore undetected. As the distance increases, the effects of inoculum exhaustion and a 

reduction in the density of mycelium as the colony extends into an increasing area of soil, 

reduces the density of mycelium that make contact with the host surface. The density falls 

below the threshold and the probability of disease is reduced. The effects of T. viride begin 

to have a significant impact in this region of the profile and become more pronounced over 

time as the inoculum becomes weakened by exhaustion. These processes were subsumed 

into the equations (5.38) and (5.39) which provided an accurate description of the 

pathozone dynamics associated with the two types of inoculum.

By transferring the information encapsulated in equations (5.38) and (5.39) into the rat§ 

parameters and r, for use in the cellular automaton, it was possible to predict disease 

progress that would occur within a microcosm containing a population of 50 radish plantsf 

The prediction of mean disease in the absence of T. viride were very accurate, reproducing* 

both the shape and the magnitude of the disease progress curve. Three factors contribute 

to the success of the model; the form in which the pathozone behaviour associated with 

mycelial disc and infected plant inoculum is accurately characterised; the incorporation of 

a delay prior to the onset of secondary infection; and the dependency of secondary infection 

on the spatial distribution of disease.

The pathozone behaviour of the two types of inoculum combine changes in infectivity 

and host susceptibility with time and distance from the host into the parameters r  ̂and r,. 

This effectively sets a clock which modifies the rate at which disease is transmitted by 

secondary infection and allows for cessation of disease progress before all hosts have
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become infected. Combined with the highly non-linear increase of disease by secondary 

infection, this can account for large variability in the asymptotic levels of disease between 

identical replicates from the small, stochastically generated differences that develop after 

primary infection. This phenomenon has recently been termed dynamically generated 

variability (Kleczkowski, Bailey and Gilligan, 1996).

Clearly, for the spread of a soil-home pathogen such as R. solani causing damping-off 

disease amongst a seedling crop, the assumptions implicit in models of the form:

dN.

regarding complete mixing between infective, N̂ , and susceptible, (1-iV,), plants is invalid. 

The growth of the mycelial colony from an infected plant restricts mixing (contact) toi 

neighbouring plants only. This reduction in contact between infected and susceptible plantai 

is imposed by the structure of the cellular automaton.

Predictions of disease progress and the dynamics of variability between replicates in thé 

presence of T. viride were accurate during the early stages of the epidemic in which diseas# 

progress was dominated by primary infection. However, the model predicted cessation of 

disease progress after 12 days during which time disease continued to spread within the 

experimental microcosms and variability between replicates increased. This may be 

interpreted as the disappearance of the disease eontrol afforded by the presence of T. viride 

and may be linked with a transformation from an early phase of mycelial growth together 

with a concomitant production of antibiotics to a phase of spore production. Indeed, as a 

result, secondary infection may be fuelled not simply by the breakdown in disease control 

afforded by Trichoderma but by access of R. solani to the poppy seed as an additional food 

source.
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In summary, this chapter features techniques by which the pathozone behaviour of 

single, isolated radish plants can be used to predict the progress of an epidemic. Predictions 

were particularly accurate for primary infection where even small differences in pathozone 

behaviour, caused for example, by the presence of a biological control agent, can have a 

large effect on the progress of disease. Prediction of disease progress in a epidemic 

dominated by secondary infection was also possible by incorporating information regarding 

pathozone behaviour into a cellular automaton based model. Whilst predictions of disease 

progress were accurate in the absence of the biological control agent T. viridCy the model 

failed during the latter stages of an epidemic controlled by T. viride. This highlights the 

need for more research into the influence of longer-term, time-dependent interactions 

between the control agent, the pathogen and the host.
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Chapter six

The dynamics of primary and secondary infection in take-all epidemics

6.1 Introduction

The infection of radish by Rhizoctonia solani represents a relatively simple 

epidemiological system. It involves a single cohort of regularly spaced hosts that each 

provide a static infection court (the hypocotyl). Rhizoctonia solani has a high competitive 

saprophytic ability (Garrett, 1970) and when spreading rapidly over the soil surface creates 

an epidemiological system which simplifies its direct observation and quantification and 

accounts for the success of the immuno-blotting technique for in situ detection. 

Furthermore, because the hypocotyl is the primary target for infection (damping-off), once 

Trichoderma is placed nearby, limited colonisation of the host is adequate to suppress 

disease.

In chapters three to five, three components (inoculum germinability, mycelial growth 

and infectivity at the host surface) were quantified and successfully used to predict the 

shape of the pathozone profile. The evolution of the pathozone on individual plants was 

summarised by a simple non-linear model which was subsequently used to predict disease 

progress amongst a population of radish plants. Placement of a biological control agent, 

Trichoderma viride, near to the hypocotyl of a potential host plant suppressed the evolution 

of the pathozone and consequently reduced the spread of disease. In summaiy, the epidemic 

was characterised by overlapping phases of primary and secondary infection in which 

spatial spread was facilitated by mycelial growth of the patliogen.

Whilst the infection of wheat by Gaeumannomyces graminis (Ggt) still includes primary 

infection from particulate inoculum and secondary infection as disease spreads from

161



infected to susceptible roots, it involves a more complex epidemiological system. In 

addition to the decay in infectivity of particulate inoculum, the pathogen is provided with 

a continuous supply of susceptible roots, initially in the form of seminal roots growing from 

the seed, and thereafter by an indeterminate number of adventitious roots that grow from 

the crown. Moreover, the rate at which new, susceptible roots are produced may depend on 

the number of roots diseased (Skou, 1975). This means that the spread of disease involving 

both primary and secondary infection amongst a population of roots belonging to a number 

of different plants is unlikely to be easily predicted from the pathozone dynamics of single, 

isolated roots.

Much effort has been directed at investigation of the practical aspects of take-all 

epidemiology (Yarham, 1981). However, the intrinsic shape of the disease progress curve 

and the underlying biological factors that determine disease dynamics are poorly 

understood. Studies consisting of a sequential sampling regime have involved field plots 

(Brassett and Gilligan, 1988b; Werker et al, 1991). The data are highly variable because 

of the temporal and spatial patchiness of disease. Changes in environmental variables, 

notably temperature and moisture, influence growth of the pathogen (Cook, 1981) and thus 

the shape of the disease progress curve. In view of this variability, the frequency of 

sampling and the quantity of data collected are often inadequate for testing detailed, 

epidemiological hypotheses, largely because of the labour and time required to collect the 

data. Also, data collection is often restricted to the most dynamic period of disease progress 

which accounts only for a portion of the disease progress curve. Growth and infection of 

wheat in microcosms offers the opportunity to control this variability and thus provide a 

more efficient and sensitive analysis of disease progress.

Consequently, for this host-pathogen system, the order of investigation was reversed. 

Instead of predicting disease from pathozone dynamics, I first identified the intrinsic shape
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of the disease progress curve and then interpreted disease dynamics according to underlying 

biological components. The model proposed by Brassett and Gilligan (1988a) is used as the 

basis of the investigation of disease progress. Change in the number of infected roots, N, 

over time, r, is given by;

where P is the density of particulate inoculum and and r, are rate parameters for primary 

and secondary infection respectively. The model predicts a disease progress curve which 

varies in shape from monotonie for an epidemic dominated by primary infection to 

sigmoidal when secondary infection makes the most significant contribution to disease.

The chapter is divided into two sections. In section 6.2 the model (6.1) is fitted to 

disease progress data and interpreted according to changes in particulate inoculum, P, and 

root growth, N, over time. Two disease progress curves are produced under controlled 

conditions in microcosms, one from a high density of particulate inoculum to represent an 

epidemic dominated by primary infection, and one from a low inoculum density, allowing 

for significant secondary infection. The progress of disease is examined alongside the 

constraints imposed by inoculum decay and host growth and terms for the behaviour of 

these components are included in model (6.1) to show how they dictate the shape of the 

disease progress curve. Disease progress on the seminal and adventitious roots is examined 

in isolation and compared with predicted levels of primary infection in order to confirm that 

substantial levels of secondary infection occur. The characteristic behaviour of disease on 

the seminal and adventitious root systems is then used to compare the dynamics of disease 

progress in a controlled environment with corresponding data collected from a field 

experiment.
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In section 6.3, the effects of a biological control agent, P. corrugata, on the pathozone 

dynamics of seminal wheat roots are examined. The techniques described in section 5.3 are 

used to predict disease progress caused by primary infection amongst a population of 

seminal roots from pathozone behaviour of single roots in the presence and absence of the 

biological control agent. Finally, the principal characteristics of control afforded by P. 

corrugata are extrapolated to predict disease progress in relation to primary and secondary 

infection of the total root system.

6.2 Disease progress o f take-all

6.2.1 Materials and methods 

Inoculum

The inoculum used in all experiments consisted of Ggt (isolate MLl) grown on foxtail 

millet grains (Setaria italica) which provided small, uniform infection units. Methods for 

the production of this inoculum are described in section 2.6.2

Host species

The winter wheat variety Riband was used throughout the experiments. Seeds were 

selected for uniformity of size, surface sterilised for 5 minutes in 5% sodium hypochlorite 

(0.5% w/v available chlorine) and rinsed twice in sterile distilled water. These were 

incubated for 48 h at 19 Oc.. and selected for uniformity of germination.

Controlled environment

Compared to oilier soil-boriie fungi, Ggt has an exceptionally high water potential 

requirement and cannot grow at less than -4.5 MPa (Cook, 1981). Soil was therefore 

maintained near to field capacity (-0.015 MPa) during experiments using a soil moisture

164



probe (Type 2900F. Soilmoisture Equipment Corp, Santa Barbara, USA). Experiments 

were run at 15°C with a light regime of 16 h light and 8 h dark.

Production of disease progress curves

Two batches of inoculum were prepared with 15 and 240 propagules per litre of soil 

respectively. Pots measuring 160 mm in depth and with an internal diameter of 150 mm 

were filled with 880 cm  ̂of soil, then 880 cm  ̂of inoculum followed by a further 550 cm  ̂

of soil. Five pre-germinated wheat seeds were planted in the centre of each pot and covered 

with 350 cm  ̂of soil and finally 175 cm  ̂of sand to prevent excessive evaporation. The pots 

were allowed to stand in water until saturated after which they were transferred to a growth 

cabinet.

The experiment involved 40 pots (20 for each inoculum density). The pots were fully 

randomised between two growth chambers and sampled over a twelve week period by 

washing away soil and carefully separating the roots. Roots were then examined under a 

binocular microscope and the numbers of diseased and healthy roots per plant on both the 

seminal and adventitious root systems were recorded where disease was defined as stelar 

discolouration.

Two additional pots were included to estimate the number and average length of roots 

passing through the inoculum layer. This information was then utilised in the simple 

probability model for the estimation of primary infection on seminal roots.

Models describing disease progress

Three models were fitted to disease progress data. The generic model (model 6.1) was 

that derived by Brassett and Gilligan (1988a) and described again here for the purpose of 

clarity.
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Change in the number of infected roots, over time, t, is given by:

ÔNÙ)
= (rP-^r^N,mN-N,(t)) , (6.1)

where P is the density of particulate inoculum and and r, are rate parameters for primary 

and secondary infection respectively. The second model included the dynamics of 

particulate inoculum (P), measured in a separate experiment, and the dynamics of host 

growth (N). Change in the number of infected roots, over time, r, is given by:

dN.(t)
— ^  = ( rP(0^r^N .m m )-N .(t))  , (6.2)

at

where P and N  are functions of time. In a pilot experiment, lateral root formation was 

observed as a potential route for the transmission of disease. Consequently, a further model 

in which secondary infection also included a term for change in the total number of lateral 

roots (it was not possible to distinguish easily between infected and uninfected lateral roots) 

over time (/ (r)), was examined. The model is given as:

m<t)
= {r P{t)^r^N .{t)im m )-N ,(t)) . (6.3)

dr

The models were fitted to disease progress data using the numerical curve fitting 

software package FACSIMILE (AEA technology U.K.) The goodness of fit was assessed 

by comparing residual deviance, trends of residual error, errors associated with individual 

observations and parameter estimates for primary and secondary infection.

166



Decay of particulate inoculum

The decay of particulate inoculum, P, was examined in a separate experiment. Ten soil 

packs (Appendix ET) were prepared using 200 mm lengths of clear, layflat tubing, 70 mm 

in diameter. The tubing was partially sealed at one end using staples and filled with 300 

ml of moist soil (10 ml water per 100 g dry soil/sand). Packs were sealed at the top 

allowing enough room for the emergence of a coleoptile and then compressed to achieve 

enough rigidity to stand upright. Pre-germinated seeds were introduced into the pack by 

making a small incision, inserting the seed and then resealing with clear, adhesive tape. Soil 

moisture was adjusted to achieve near field capacity and the packs placed in the growth 

chamber. Ten propagules were introduced into each pack at random and one propagule 

removed from each on each sampling occasion. These propagules were tested for their 

ability to cause disease by placement against fresh wheat roots grown under the conditions 

described above.

The experiment was set up as a fully randomised block, with ten samphng times. Decay 

of Ggt may occur immediately or following a delay (Hornby, 1981). Thus, two simple non­

linear models were fitted using MLP (Ross, 1987). These were :

P=pp.exp(-ap.O , , (6.4)

P=P^.exp(-ap.t^) . (6.5)

Model (6.4) is an exponential decay whilst model (6.5) allows for an initial period 

during which inoculum decay is less rapid. Tlie fitting procedure was cunslrained to 

estimate below 1.0.
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Primary infection of the seminal roots.

The asymptotic level of primary infection was estimated using the probability model 

described by (Gilligan, 1985). This model assumes a fixed number of host units which is 

represented by the rapid growth of seminal roots through an inoculum layer. The volume 

of pathozone soil, v, surrounding a single root growing through an inoculum layer can be 

estimated from the equation:

V = 7tZ,((r/w+r.)^-r^ , (6.6)

where r,. is the radius of the root,  ̂ is the radius of a propagule, w is the distance across 

which the pathogen can grow to cause infection and L is the length of root passing through 

the inoculum layer. Thus the probability of a single, randomly dispersed inoculum unit 

falling into the pathozone soil which surrounds a single root is given by v/V where V is the 

total volume of soil within the inoculum layer.

For N  roots passing through the inoculum layer in which P propagules have been 

randomly dispersed, the number of roots containing at least one propagule within the 

surrounding pathozone is given by:

N.=N-\N.t)cç{-^P)] where ^=v!V . (^.7)

The infection of a host does not depend solely on the presence of an inoculum unit 

within the pathozone but on its distance from the root surface, Typically, the probability of 

infection declines as the distance between inoculum and host increases (Gilligan & Simons, 

1987). The probability of infection, (|), is then 6y where 0 is the probability that an 

inoculum unit occurs within the pathozone (formerly <t>): y has two components, Yi and Y2, 

which represent, respectively, the probabiUties of occurring a certain distance from the root 

surface and of infection at that distance (Gilligan, 1985).
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Changes in the probabiüty of infection or infection efficiency, yg, were determined in a 

placement experiment which involved the positioning of single inoculum units at known 

distances from the host surface and scoring for the proportion of successful infections from 

replicate units. Soil packs were prepared as described for estimates of inoculum decay. 

After 7 days growth a single, isolated root, at least 50 mm in length was selected. An 

inoculum unit was introduced into each pack at a known distance from the selected root and 

5 mm behind the root tip. Roots were inspected for disease (stelar discolouration) 21 days 

after inoculation. The experiment was fully randomised with 11 distances (0, 1, 2, 3, 4, 5, 

6, 7, 8, 9 and 10 mm) between root and inoculum with 15 rephcates for each distance.

The model used to describe the decay in the probability of infection, with distance, 

r, between inoculum and root was:

Y2=p^.exp(-a^.r^) . ' (6.8)

The model had been tested previously and consistently provided accurate descriptions of 

the pathozone profiles of Ggt on wheat (Gilhgan and Simons, 1987). It describes a 

sigmoidal decline were represents the asymptotic probability of infection and q is a 

measure of the reduction in the probability of infection as the distance between inoculum 

and host, r, increases.

By accounting for the probability that a unit of inoculum is located a certain distance 

from a root and the probability that it infects from that distance, c|) can be estimated from:

4 ) = ^ ^  [exp(-a .r/) -ex p (-a (r+w) )̂] , (6.9)

(Gilligan, 1985; 1990a).
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Field data

Field data describing disease progress was obtained from Rothamsted Experimental 

Station. Disease progress curves from a large field plot experiment (CS 212) at Rothamsted 

Experimental Station were examined. The experiment involved plots of first, second, 

fourth, fifth (or fifth and sixth in 1989) and continuous wheat crops assessed over a period 

of two years. Plants were assessed for total and diseased seminal and adventitious roots 

from mid April to harvest.

6.2.2 Results
)

Decay of particulate inoculum

The decay of inoculum was examined to assess the duration over which primary 

infection was possible and to obtain an estimate for the decay rate, dp of particulate 

inoculum. The curve for the decay of inoculum was best described by the function 

P=Pp.exp(-ap.r) the fitting of which generated the lowest residual deviance (Table 6.1, Fig. 

6 . 1).

Table 6.1. Summary of non-linear models used to describe the relationship between the 

number of propagules capable of causing disease (P) and time (t).

Model Parameters 

(± s.e)

Residual deviance

P=Pp.exp(-apf) a 0.037 ±0.0181 

P 1.00 (constrained)

53.82 on 8 d.f

F=Pp.exp(-a,f^) a 0.00514 ± 0.00613 

3 0.90 ±0.140

83.96 on 8 d.f
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Fig. 6.1: Change in the infectivity of particulate (infested millet) inoculum of G. graminis 

over time (circles) fitted with the function P  = P .̂exp (-o^.t)
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When extrapolated, the plot shows that less than 5% of inoculum was capable of causing 

disease after 57.6 days

Host growth

Two variables of host growth were monitored during the production of disease progress 

data. These were changes in the number of main root axes and of lateral roots over time. 

Main roots were produced at a constant rate throughout the duration of the experiment (Fig. 

6.2a). The rate of production of main roots was greater at the higher inoculum density than 

the lower. A fitted regression line produced rates of 0.81 and 0.92 roots per day 

respectively (Table 6.2).

Table 6.2: Summary of linear regression describing growth of main root axes over time at 

low {P=15 units l'̂  ) and high {P=240 units l'̂  ) densities of particulate inoculum.

Model and 

inoculum density

Parameter 

estimates ± s.e

Residual mean square and 

Goodness of fit

N=m.t + c

1. P = 240 units 1'̂

2. P  = 15 units r*

m = 0.81 ± 0.05 

c — -6.52 ± 2.89 

m = 0.92 ±0.04 

c = -1.92 ±2.47

48.15 on 13d.f (95.1%) 

35.39 onl3d.f(97.1%)

The production of lateral roots was sigmoidal over time for both low and high inoculum 

density (Fig. 6.2b) and was described by a simple logistic function (Table 6.3)
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Fig. 6.2: Change in a) the number of main roots and b) the number of lateral roots 

over time at a low (open circles) and high (closed circles) initial density of particulate 
inoculum.
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Table 6.3: Summary of non-linear curve fitting describing growth of lateral roots over time

Model and inoculum 

density

Parameter 

estimates ± s.e

Residual mean square 

and Goodness of fit

I = P,/[l+exp(-d%(f-ô,)))

1. P  = 240 units 1̂

2. P  = 15 units

Pi= 1520 ±202 

Oi = 0.072 ±0.019 

4= 75.67 ± 5.66 

P i= \59 \± lA .6  

^, = 0.140 ±0.03 

4  = 55.6 ±1.7

25681 on 10 d.f 

(90.2%)

17178 on 10d.f 

(96.5%)

Disease progress curves and model fitting

Disease progress from a high initial inoculum density was monomolecular in shape 

resulting in 90% of roots becoming diseased after 140 days whilst that from a low initial 

inoculum density was not (Fig. 6.3a). From a low inoculum density change in the 

percentage of diseased roots over time was initially monomolecular, reaching a plateau 

after 50 days when 20% of roots had become diseased. This was followed by a sigmoidal 

increase in infection which culminated in an asymptote of 90% root disease after 140 days. 

During the experiment, plants were assessed for crown infection by Ggt. This did not 

appear until after 120 days suggesting that the predominant route for secondary infection 

was directly from root to root and not via the crown.

Each of models (6.1), (6.2) and (6.3) were fitted to the data in turn. Model (6.1) over­

estimated disease during the later stages (after 60 days) of disease progress at the high 

inoculum density and produced parameter estimates that suggested an epidemic completely 

dominated by primary infection (Table 6.4). Moreover, model (6.1) could not reproduce 

the shape of curve necessary to describe disease progress at low inoculum density (Fig.
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Fig. 6.3: a) Disease progress of take-all on wheat from low (open circles) and high 

(closed circles) initial densities of particulate inoculum. Vertical lines represent 
standard error of relicate observations. Data are fitted with model 6.1 where 
dV,(t)/dt = (r .̂P + r^N. (r)) (V-V. (0). b) Plot of residuals.
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6.3a). The rate of disease progress increased (as opposed decreasing) during the initial 

phase of the epidemic, thereby under-estimating levels of primary infection. This resulted 

in high levels of residual variation in the same region of the curve (Fig 6.3b).

Table 6.4: Summary of curve fitting to data describing the progress of take-all on roots of 

wheat seedlings.

Model Inoculum Parameter 95% confidence limits Residual
density estimates deviance

Model Low Tp = 4.7x 10"* 2.27 X 10"" to 9.75 X 10"" 12d.f
6.1 r, = 2.9 X 10-2 1.77x10-’ to 4.91x10-’

High r, = 1.5x10"' 1.46 X 10-̂  to 1.78 X 10’ 0 14 d.f
r,=  1.5x10"* Parameter not determined

Model Low r,=  1.98x10-^ 1.42 X 10-̂  to 2.76 X lO'̂ '̂3212 d.f
6.2 r, = 8.19x 10"* 6.86 X 10-̂  to 9.77 x lO"̂

High Tp = 2.63 X 10"̂ 2.26 X 10'̂  to 3.00 X 10 ̂ 3 4713 ji f
r, = 2.00 X 10^ 1.55 X 10'̂  to 2.64 X 10 ̂

Model Low r„ = 5.00 X 10’ 3.50 X 10'̂  to 7.14 X 10-̂ 12 d.f
6.3 r, = 1.50 X 10’ 8.40 X 10-̂  to 2.81 X 10-̂

r ,=  1.43x10-’ 1.15 X 10'̂  to 1.77 X 10-̂
High r, = 1.05 X 10 ’ 7.76 X 10"* to 1.43 X 10'̂ 13.3 13 df

In contrast, model (6.2), which includes terms for inoculum decay and growth of main 

root axis, reproduced the shapes of disease progress curves for both initial densities of 

inoculum (Fig. 6.4a). Residual deviance, trends in residuals and fit to individual 

observations (Fig 6.4b) were all improved and parameter estimates suggested a contribution 

of both primary and secondary infection to the progress of disease (Table 6.4). Inclusion 

of a term for the transmission of disease by lateral roots (model 6.3) significantly reduced 

the fit of the model to disease progress curves generated from both low and high inoculum 

densities (Fig. 6.5a) resulting in large residual deviance (Fig. 6.5b).
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Fig. 6.4: a) Disease progress of take-all on wheat from low (open circles) and high 
(closed circles) initial densities of particulate inoculum. Vertical lines represent 
standard error of replicate observations. Data are fitted with model 6.2 where 
dNj (t)/dt = (r^.F(0 + r^N, (r)) b) Plot of residuals
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Fig. 6.5; a) Disease progress of take-all on wheat from low (open circles) and high 

(closed circles) initial densities of particulate inoculum. Vertical lines represent 
standard error of replicate observations. The data are fitted with model 6.3 where 

m  (0/dr = (rp.P(t) + r^Vi(0 m  b) Plot of residuals
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Disease progress on seminal and adventitious roots

The progress of disease from the low density of particulate inoculum was examined on 

seminal and adventitious roots separately. On the seminal root system the shape of disease 

progress was similar to that on the entire root system. Disease increased monotonically, 

without a point of inflection, to an initial plateau when about 35% of roots were diseased 

(Fig. 6.6a). This was followed by an increase in the rate of infection which slowed as 100% 

of seminal roots became diseased. Disease progress on the adventitious roots was 

sigmoidal, increasing at 30 days from no disease to around 80% of roots diseased after 140 

days (Fig. 6.6b).

Primary infection o f seminal roots.

In order to predict the asymptotic level of disease caused by primary infection on the 

seminal roots of wheat plants, information regarding changes in the probability of infection 

when inoculum occurs at different distances from the root (pathozone dimensions) was 

required. The pathozone dimensions of a growing wheat root were examined in a placement 

experiment. Changes in the probability of disease with distance were described by the 

exponential function:

Y2=PY-exp(-a^.r2) . (6.8)

The results of curve fitting are summarised in Table 6.5.

Table 6.5: Summary of curve fitting using model 6.8 to relate changes in the probability of 

disease with distance between inoculum and root.

Model Parameter estimates ± s.e Residual deviance

Yj = P,.exp(-a^y ) P^= 1.00 ±0.063 
= 0.032 ± 0.005

0.014 on 9 d.f
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Fig. 6.6: Disease progress of take-all on a) seminal roots and b) adventitious roots of 

wheat from a low initial densi^ of particulate inoculum. Decay of particulate inoculum 
(dashed lines) and estimates of primary infection from a simple probability model (SPM) 
are also shown
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Using equation (6.9) to estimate (|) for the probability model (6.7), the asymptotic level 

of disease caused by primary infection was predicted. Estimates of variables are listed in 

Table 6.6.

Table 6.6: Values o f variables used to estimate numbers of diseased seminal roots.

Variable Estimate

Root number (AO 

Mean root length (L) 

Root radius (r^ 

Inoculum unit radius (r,) 

Pathozone width (w) 

Total soil volume (V)

25

8.0 cm 

0.05 cm 

0.1 cm 

0.8 cm 

883.6 cm^

At low inoculum density, an average of 13 inoculum units were randomly distributed within 

the inoculum layer (volume = 883.6 cm^) from which the model predicts that primary 

infection would be responsible for 37.2 % of seminal roots becoming diseased. The location 

of this estimate with respect to disease progress on seminal roots is shown in Fig 6.6a. It 

corresponds to the level of the initial plateau.

Field data

Examples of typical disease progress curves from field data of experiment CS 212 

(Continuous wheat) are shown in Figure 6.7 for total roots, seminal roots and adventitious 

roots. Time has been transformed to day degree above 5°C in order to minimise the effects 

of changing temperature. Curves for the percentage of infected total, seminal and 

adventitious roots increased over time. Another consistent feature was the high levels of 

disease on seminal roots (5-15%) at the beginning of disease assessment compared with the 

absence of diseased adventitious roots (0%).
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Fig. 6.7: Disease progress pf take-all on a) total, b) seminal and c) adventitious 
roots of a continuous wheat crop grown in a field trial at lACR, Rothamsted. 
Symbols represent field data with solid lines (exponential for total and adventitious 

roots and logistic for seminal roots) used to summarise trends in data. Dashed lines 
represent the expected course for disease progress during the early stages of an 
epidemic for which no data was available.
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6.2.3 Discussion

The objectives of this section were to determine the intrinsic shape of the disease 

progress curve describing an epidemic of take-all on wheat roots and to produce a 

biologically plausible mathematical model based on a coherent understanding of the 

dynamics of inoculum and host growth. The results suggest that there is an initial phase of 

primary infection as roots grow through the soil and make contact with particulate 

inoculum. This is followed by a phase of secondary infection from root to root stimulated 

by the production of susceptible roots and the spread of disease from infected roots. Two 

factors, decay of particulate inoculum and the growth of susceptible roots, were identified 

as having a major influence on the shape of the disease progress curve, particularly at low 

densities of initial particulate inoculum.

Decay of particulate inoculum slowed the rate of primary infection even in the presence 

of available susceptible roots and was responsible for the initial plateau at the low density 

of initial inoculum. The simple exponential rate of decay of particulate inoculum is in 

accordance with the findings of Yarwood and Sylvester (1959). Scott (1969) also found an 

exponential decay in the survival of G. graminis in colonised fragments of nodal wheat 

straw under laboratory conditions. Alternative dynamics for inoculum decay have been 

proposed by Diamond and Horsfall (1965) who suggested an initial lag phase when 

propagules are composed of more than a single inoculum unit (or in this case viable 

fragments of mycelium). The data provided no evidence of this.

Further evidence for the presence of consecutive phases of primary and secondary 

infection was provided by assessing disease progress on the seminal and adventitious roots 

separately. On the seminal roots, tlic shape of tlic disease progress curve was similar to tliat 

on the entire root system. Estimates of disease on seminal roots using the simple probabihty 

model predicted an asymptotic level of disease from the low density of initial inoculum
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which corresponded to the height of the initial plateau (Fig. 6.6a). Disease progress on the 

adventitious roots did not begin until almost all particulate inoculum had lost its ability to 

infect. This may be due, in part, to their later emergence. From this, I conclude that, at the 

lower density of initial inoculum, there was an initial period of primary infection largely 

restricted to the seminal root system followed hy the secondary infection of both seminal 

and adventitious roots.

The rate at which disease spread following primary infection was controlled by the 

availability of susceptible roots. As the number of main roots entering the soil increases, 

the probability that an infected root is located within the pathozone of a susceptible root 

increases.

One of the major criticisms of microcosm experiments is their poor relationship to the 

more complex ecological systems that they aim to simulate. The consistency of results 

describing inoculum decay and disease progress obtained from the experiments performed 

here under the controlled conditions of a growth cabinet at the lower initial inoculum 

density compared favourably with field data. The decay of particulate inoculum under field 

conditions has been described by several researchers (Shipton, 1981). Longevity is affected 

by biotic and abiotic conditions but typically decays sigmoidally or exponentially over time. 

Hornby (1981) presented data describing the decay in infectivity of particulate inoculum 

varying in size. Inocula were buried in October in outdoor pits and assayed for infectivity 

over a 16 month period. Decay was exponential with only the coarsest fragments ( > 4.0 

mm) remaining infective after May of the following year. Disease progress data were also 

consistent with field data. All disease progress curves showed high (between 5 and 15%) 

infection of scininal roots at tlic beginning of tlie sampling period in mid-April followed 

by an exponential increase. During the same period, levels of disease on adventitious roots 

was initially zero rising exponentially thereafter. These observations are consistent with the
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second phase of an epidemic involving secondary infection, primary infection having 

already taken place.

The generic model (Model 6.1) describing disease progress from two sources of 

inoculum (particulate inoculum and infected roots), and therefore including terms for 

primary and secondary infection, failed to describe the dynamics of disease at the low initial 

density of particulate inoculum. When the dynamics of inoculum decay and host growth 

were included (model 6.2) the model described both the initial plateau and the sigmoidal 

increase to a second plateau thereafter.

Whilst the model fits the data well, the disparity between parameter estimates for r, at 

the two inoculum densities (Table 6.4) suggests the model is still deficient in some respect. 

The inclusion of a term allowing lateral roots to stimulate the transmission of disease did 

not improve the fit of the model. However, because of the difficulty in scoring roots, no 

distinction was made here between infected and uninfected lateral roots. Also, temporal 

separation of the two phases of disease spread has not been explained. Three potential 

causes are considered: i) a latent period during which a root is infected and shows 

symptoms of disease but is not yet infectious; ii) change in root susceptibility and; iii) 

change in with increase in host density, N. The latent period of aerial pathogens is a 

commonly studied component of the infection cycle (Zadoks and Schein, 1979) but has 

received little attention in the epidemiology of soil-home plant pathogens (Gilhgan, 1987). 

Changes in host susceptibility are usually linked with damping-off pathogens such as 

Rhizoctonia and Pythium spp. Whilst wheat roots are assumed to become more resistant to 

infection as they age, relatively httle is known about differences in the susceptibility of the 

seminal roots compared with the adventitious roots. Finally, the rate of secondary infection 

may depend on the density of host roots in a non-linear fashion. For example, percolation 

theory suggests a threshold density of roots at which the pathogen would be able to spread
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unconstrained by the proximity of nearby hosts (Bunde and Havlin, 1991).

The description of disease progress with two plateaux is not restricted to the infection 

of wheat by Ggt (Amorim et al, 1993, for Ustilago scitaminea on sugarcane; Rupe and 

Gbur, 1995, ioiFusariwn solani on soybean) and various mathematical models have been 

derived to describe such dynamics (Hau et ai, 1993; Gilligan and Kleczkowski, 1997). 

However, to my knowledge, this is the first example which involves primary and secondary 

infection by a soil-bome plant pathogen based on the empirical description of underlying 

biological components.

6.3 Biological control of take-all using Pseudomonas corrugata.

6.3.1 Introduction

In recent years, Pseudomonas spp. have undergone extensive investigation for their 

ability to control take-all (Weller, 1988; Thomashow et al., 1990). They are one of many 

species of so-called rhizobacteria that are commonly isolated from around the roots of 

wheat plants and are associated with the phenomenon of take-all dechne (Cook and Weller, 

1987). A variety of mechanisms hy which they are able to suppress the growth of organisms 

such as Ggt has been proposed. These include competition for nutrients, competition for 

iron (in), the production of antibiotics and the production of hydrogen cyanide. In 

particular, BuU et a/. (1991) demonstrated that the antibiotic, phenazine, plays an important 

part in the suppression of Ggt which has been directly isolated from the wheat rhizosphere 

(Thomashow et ai, 1990). The effect of these mechanisms on the spread of take-all has 

been observed as the suppression of primary infection and a reduction in the growth of 

lesions (Bull et. al., 1991). However, the effects of these processes have not been 

investigated in relation to pathozone behaviour of Ggt or to the sequential primary and 

secondary infection of disease dynamics identified in the previous section.
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In this experiment, the antagonistic bacterium Pseudomonas corrugata (R2140) is 

applied to the growing root of a wheat plant challenged with particulate inoculum of Ggt. 

The dynamics of the pathozone were examined and used to predict the effect of P. 

corrugata on the progress of disease caused by primary infection using the techniques 

developed in Chapter 5. The characteristics of disease control described by pathozone 

behaviour are then assessed in relation to primary and secondary infection of take-all using 

model (6.2).

6.3.2 Materials and methods 

Inoculum

Inocula of Ggt (Isolate ML5) and P. corrugata were prepared as described in section 

2 .6.2 .

Placement experiment

Soil packs were prepared according to the methods described in section 2.6.2. The soil 

sand mixture was replaced with moist sand (Grade 1-2 mm diameter and 10% tap water). 

Sand was preferred to the soil-sand mixture used previously because of the improved 

visualisation of disease in situ combined with the need to assess disease non-destructively 

over time. Packs were sealed at the top allowing enough room for the emergence of a 

coleoptile and then compressed to achieve enough rigidity to stand upright. Pre-genmnated 

seeds were introduced into the pack by making a small incision, inserting the seed and then 

resealing with clear, adhesive tape. The packs were placed in the growth chamber (15®C and 

a 16 h day) at an angle of 60° to the horizontal. After 7 days growth a single, isolated root, 

at least 70 mm in length and with the distal 30 mm visible was selected within each soil 

pack. Half the packs (selected roots) were treated with P. corrugata, applied to the exposed
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end of the root at a rate of 100 pi (of the 1.0 x 10̂  cells ml'^) per cm of root (to give an 

initial density of 1.0 x 10̂  cells per cm root). Single inoculum units (infested millet seed) 

of Ggt were introduced into each pack at a known distance (0, 2, 5,8, 11, 15, 20 and 25 

mm) from the selected root and 5 mm behind the root tip. The packs were fully randomised 

and replaced into the growth cabinet. Roots were inspected for disease (stelar 

discolouration) 8, 11, 14, 17 and 21 days after inoculation.

Modelling changes in the pathozone profile over time

The pathozone profiles for the probability of infection over time from millet seed 

inoculum were empirically described by the model:

P(r)=p.exp(-a.r^) . (6.9)

The model serves as a simple, non-linear description of the profile, having an intercept at 

r = 0, a maximum, a point of inflection and a lower asymptote of zero. Fitting was done 

using GENSTAT (Anon, 1993) under an assumption of binomial errors because of the 

quantal nature of the response variate.

The pathozone model (6.9) was fitted separately to each of the pathozone profiles. This 

gave separate estimates of p, and a for ten profiles corresponding to five sampling times 

(days 5...9) with and without P. corrugata. The model was then tested for common 

parameters over the five times of observation using the methods of Ross (1987) and 

Gilligan (1990b). Both parameters varied significantly with time, P rising monotonically 

to an asymptote and a declining exponentially to zero.

The model was extended to give:

F(r,0=P(0.exp(-a(0.r^) , (6.10)
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where the specific forms of P(0 and a(t) are given below. This produced a non-linear 

response surface that describes the change in the pathozone profiles over time, in the 

presence and absence of P.corrugata. To examine the effects of P. corrugata an the 

dynamics of the pathozone, model (6,10) was fitted to all data and tested for common 

parameters over the two treatments (with and without P. corrugata) using the methods of 

Ross (1987) and Gilligan (1990b).

Predictions o f disease progress

The effects of P. corrugata on the progress of disease of wheat seminal roots was 

predicted using model (6.7) in which the parameter of p and a  of (|> are time dependent and 

given by (6.10). Thus:

Nft)={N-{N.txp{-^(f)P)) where ^{t)=v{t)IV . (6.11)

The consequences of the control afforded by P. corrugata were investigated in relation the 

epidemiology of take-all using model (6.2)(varying inoculum and host growth).

6.3.3 Results

Changes in the pathozone over time

Placement of the G. graminis inoculum at different distances from a wheat seminal root 

had a marked effect on the probability of infection. The probability of infection declined 

with distance at all times but increased over time (Fig. 6.8a). The observed asymptotic 

probability of infection when inoculum was positioned at the surface of the root increased 

from 0.3 after 8 days to 1.0 and tiie outer limit of tlie patliozonc increased from 5 imii to 25 

mm after 21 days. (This was much larger than the pathozone dimensions detected in soil 

in the previous experiment)
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Fig. 6.8: Profiles describing changes in the probability of disease with distance between a) 
a wheat root and millet seed infested with G. graminis or b) a wheat root colonised with 

P. corrugata and millet seed infested with G. graminis. Data are fitted with the function 
P = exp ( - a ./  )
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The same general trends in pathozone behaviour were observed when P. corrugata was 

applied to the root surface (Fig. 6.8b). The presence of P, corrugata reduced the final width 

of the pathozone to 20 mm.

Model (6.9) provided an accurate description'of the profiles describing changes in the 

probability of infection of wheat seminal roots by Ggt both in the presence and absence of 

P. corrugata (Fig. 6.8). The parameter p reflects the probability of infection when inoculum 

of Ggt is placed at the surface of the host whilst a is a measure of the rate at which the 

probability of infection decays with distance, p increased monotonically over time (Fig. 

6.9a) whilst a  declined exponentially (Fig. 6.9b). Change in p over time, f, was described 

by the function:

P(0 = Pi(l-exp(-Pj(f-Pj))) , (6.12)

and for a by:

(t(t) = a,.exp(-aj.f) . (6.13)

Fitting model (6.10), where p(t) is given by (6.12) and a(t) by (6.13), yields in the absence 

of p. corrugata:

p(0 = 0.98(1-exp(-0.64(r-7.45))), a{t) = 3.81.exp( (6.14a)

and in the presence of P corrugata:

P(0 = 0.96(1-exp(-0.44(r-7.39))), a(r) = 2.78.expi (6.14b)

The eorrcspuiiding surfaces for P(r,r) are given in Figure 6.10.

The effects of P. corrugata on the evolution of the pathozone were formally compared 

using model (6.10). Significant differences were detected between the parameters and
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absence and b) the presence of P. corrugata.

193



«2 of a(t) (Table 6.7) which accounted for most of the variability between treatments.

Table 6.7: Summary of parallel curve analysis comparing pathozone evolution from Ggt 

in the presence and absence of the biological control agent P. corrugata

Model d.f Residual

deviance

Common model 75 4.68

Pi varies 74 4.23

p2 varies 74 4.44

P3 varies 74 4.63

<Xi varies 74 3.75

0C2 varies 74 3.71

Full model 70 3.57

Predictions of disease progress

Using model (6.11), the progress of disease was predicted for protected and unprotected 

wheat roots (Fig. 6.11) in a similar microcosm system involving growth of wheat roots 

through an inoculum layer in the presence and absence of P. corrugata. Both disease 

progress curves increased monotonically with time. P. corrugata reduced the asymptotic 

prediction of disease from 90% to 77% infection.

6.3.4 Discussion

In this investigation, the pathozone profile of Ggt on wheat was described by the model 

F = p. exp(-a.r^). The probability of infection (also known as infection efficiency), P, of 

inoculum placed at the surface of the root is given by P whilst a describes changes in the 

infection efficiency of Ggt as the distance, r, between inoculum and root increases. The 

probabihty of infection dechnes with distance. This may be the result of a reduction in the
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Fig. 6.11: Predictions of disease progress of G. graminis on seminal wheat roots 
in the presence (dashed line) and absence (solid line) of P. corrugata using 

P{r,t ) = P(f).exp(-(x(f)./). Parameters estimates for p(r) and a(0  were derived 
from placement experiments.
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inoculum potential caused by a reduction in the density of mycelium making contact with 

the host, or by an increase in host resistance over the time taken for mycelium to grow 

outwards from an inoculum unit and make contact with the root. The parameter P increased 

monotonically over time as inoculum placed at the surface of the host germinated, 

colonised and infected the root (Fig. 6.9). When P. corrugata was applied to the surface of 

the root, parallel curve analysis did not detect any significant difference in p. Thus, the 

infection efficiency of inoculum placed at the surface of the root was not affected. Over the 

period of the experiment, a  was significantly higher when P. corrugata was present. This 

means that P. corrugata suppressed disease from inoculum placed further from the root 

surface. The ability of P. corrugata to control Ggt depends on the relative densities of the 

two organisms (Bull et. a/., 1991) which may have favoured the biological control agent 

only when inoculum was placed awa!y from the root surface. It is precisely this type of non­

linear relationship that can account for the variable success of a biological control agent.

The differences in pathozone behaviour between protected and unprotected roots were 

used to predict disease progress on the seminal roots of a population of wheat plants. Both 

disease progress curves increased monotonically with time (Fig. 6.11). Pseudomonas 

corrugata reduced the asymptotic prediction of disease from 90% to 77% infection. 

Although this represents only a modest amount of disease control, I have demonstrated that 

small differences in the central region of the pathozone profile can have a large effect on 

disease progress (Chapter 5 section 5.3.4 and Fig. 5.12). Pseudomonas corrugata displays 

the potential to affect this region of the profile and suppresses the overall infectivity of 

particulate inoculum.

In section 6.2 of this chapter the epidemiology of take-all was elucidated. The spread of 

disease involves an initial phase of primary infection on seminal roots followed by 

secondary infection of both seminal and adventitious roots. A model was derived to
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describe the disease progress of Ggt on a population of wheat roots (Model 6.2) in which 

TpP and are terms for primary and secondary infection respectively. P represents the 

density and the infectivity of particulate inoculum. Thus pathozone behaviour is 

subsumed within the parameter Figure 6.12a demonstrates the effects of controlling 

primary infection of take-all by reducing the value of r̂ . When the epidemic is dominated 

by primary infection, disease is controlled. As the epidemic switches to secondary infection 

(after 60 days), disease control is lost, hi Figure 6.12b the effects of controlling secondary 

but not primary infection are predicted by reducing the value of r,. Although initial 

infection of the seminal root system is not reduced, overall control of disease is durable, 

lasting for the entire epidemic. From this I conclude that control of secondary infection is 

crucial for the long-term control of take-all on wheat.

One of the major factors determining the success of rhizobacteria in suppressing root 

disease is their ability to colonise the entire root system. Most research has, not 

surprisingly, involved the early colonisation of seminal roots which can be highly variable 

(Weller, 1988). Moreover, whilst colonisation of the seminal roots from treated seed is 

relatively efficient, colonisation of the adventitious roots is poor (Weller, 1984). Variability 

in the extent of colonisation has been suggested as a potential cause of the inconsistant 

performance of biological control of root diseases. If control is restricted to primary 

infection, then variability may also be associated with differences in the contribution of 

secondary infection during which, disease control is most likely to fail.

Although the adventitious root system may not become colonised by P. corrugata, the 

extent of secondary infection can be suppressed by reducing the infectivity of infected 

seminal roots. This was not examined. Hence, for a better elucidation of the effects of P. 

corrugata on the spread of Ggt a more complete assessment of disease transmission from 

the different roots (i.e. from seminal to seminal, seminal to adventitious, adventitious to

197



100 - a) Control of primary infection

80 -

2 60 -

I
r„ = 0.002

20 - r„ = 0.0002

0 20 40 60 80 100 120 140

100 ■ b) Control of secondary infection

80 -

60 -

r = 0.0008

20 -

r = 0.00008

0 20 40 60 80 100 120 140

Time (days)

Fig 6.12: The effects of controlling a) p rim ^  and b)secondary infection. Simulations 

were produced using dW. /  dt = (Â (0-W, ) (model 6.2) with default
parameters = 0.002 and r, = 0.0008.
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seminal etc) in the presence and absence of the control agent is necessary.
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Chapter seven 

Discussion

Following the pioneering work of Vanderplank (1963), disease progress curves, in 

combination with mathematical modelling, provide a powerful tool for the analysis and 

mathematical description of disease. The models have become more sophisticated with 

respect to their biological foundation (Jeger, 1987; Brassett and Gilligan, 1988a; Swinton 

and Anderson, 1995; Gilligan and Kleczkowski, 1997) but, in contrast to large simulation 

models, are still constructed with relatively few parameters. This improves the chances of 

providing analytical solutions, making the models particularly useful for studying 

conditions that will bring a system to equilibrium and for examining the stability of a 

system. The improvements of statistical software, for example SAS (Anon, 1982), Genstat 

(Anon, 1993) and MLP (Ross, 1987), have removed the mathematical constraints imposed 

by the need for straight-line transformation of data allowing for the direct comparison of 

non-linear disease progress curves (Gilligan, 1990b). Even the parameters of 

mathematically intractable models, for which no analytical solutions are available, can be 

estimated using numerical fitting procedures, for example Facsimile (Anon, 1995). Rarely, 

however, have the shapes of disease progress curves been related directly to the dynamics 

of underlying components. Indeed, a detailed knowledge of these components is not only 

required for the interpretation of parameter estimates but also for the selection of an 

appropriate model with which to describe the system. This will, in turn, lead ultimately to 

tlic Optimisation of disease contiol.

This investigation focused on the behaviour of inoculum and its role in the spread of 

soil-borne plant disease. Two types of inoculum were identified: particulate inoculum
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which causes primary infection; and the infected host which is responsible for secondary 

infection. The rationale of the study was to examine the behaviour of inoculum in relation 

to disease progress in two contrasting host-pathogen systems, the infection of radish by 

Rhizoctonia solani and the infection of wheat by Gaewnannomyccs graminis var. tritici. 

The infection of radish by R. solani represents a relatively simple system involving a single 

cohort of host plants. Growth of R. solani is predominantly over the soil surface towards 

a fixed infection court, the hypocotyl, which is limited in size. Consequently, biological 

control was relatively easy to effect by placing Trichoderma viride close to the hypocotyl. 

The system was selected for its simplicity to provide the best possible chance with which 

to establish a clear relationship between the behaviour of inoculum and the progress of 

disease under controlled conditions. The infection of wheat roots by Ggt represents a more 

complex epidemiological system. Its dynamics are comphcated by the growth (movement) 

of roots through the soil which means that successful biological control by an introduced 

antagonist, such as Pseudomonas corrugata, is more difficult to achieve. The infection 

court is not restricted to a single site and, following infection, the plant may respond by the 

production of additional lateral and main roots. Because of the relative complexity of the 

two systems, the progress of disease involving R. solani on radish was predicted from the 

behaviour of inoculum whilst for the infection of wheat by Ggt, inoculum dynamics were 

used to interpret the shape of disease progress curves.

Types of inoculum vary according to their infectivity which can be characterised by the 

pathozone profile. The pathozone profile measures changes in the probability of disease, 

or infection efficiency, when inoculum is placed at different distances from the host. Three 

major components that dictate the shape of the pathozone for R. solani on radish were 

identified in chapter three. These were: the germinability of inoculum, the density and 

distribution of mycehum within the fungal colony, and the infectivity of the mycelium that
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makes contact with the host. The last of these components, the infectivity of mycelium that 

makes contact with the host, encompasses both the inoculum potential of the pathogen 

(sensu Garrett, 1970) and the susceptibility of the host. In chapter 3, the means and 

variances (where appropriate) of the three components were estimated for two types of 

particulate inoculum and successfully used to predict the shapes of the respective 

pathozones. Damping-off disease is commonly characterised by a rapid decline in the 

susceptibihty of the host as it ages. However, the dechne in the probability of disease with
j

distance (and. therefore host age) was not found to be the result of an decline in host 

susceptibility, but was caused by a reduction in the density of mycelium in the fungal 

colony as it reaches the host.

The components of pathozone infection can be used to interpret the relative contribution 

of host and inoculum factors to disease. In this study, the behaviour of inoculum was 

restricted to a single isolate of R. solani, selected for its consistent performance in 

pathogenicity tests. The isolate, R5, was particularly capable of causing disease even after 

the seedling had emerged. However, Rhizoctonia solani is a species which expresses 

considérable genetic variation (Cubeta and Vilgalys, 1997) resulting in variable growth and 

pathogenicity. Thus, one might expect the relative contribution of host and inoculum factors 

to vary between isolate-host combinations and therefore affect the shape of the profile. For 

example, when the inoculum potential of isolate R3 (AG-4) was examined by Benson and 

Baker (1974b), radish seedlings became almost completely resistant to damping-off after 

only three days. Since the experiment involved assessing disease according to the levels of 

host emergence, this isolate may only be capable of causing disease during the early stages 

of host gcrniiiialioii. A patliozoiic profile for such an isolate would be expected to be 

dominated by changes in host susceptibility.

The growth dynamics of mycelium of R. solani from particulate inoculum and an
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infected plant were compared using the inununoblotting technique (chapter 4). Growth 

from an infected radish seedling was rapid achieving a high mycelial density near to the 

host surface and extending to a radial distance of more than three times that of particulate 

(mycelial disc) inoculum, Consequently, the inoculum was highly infective when it 

occurred close to an uninfected radish seedling with a corresponding increase in the width 

of the pathozone. Immunological (Dewey et al, 1997) and molecular (Keller et a l, 1995) 

techniques for the detailed and specific detection of soil-home plant pathogens have 

recently been developed which offer new potential for monitoring fungal dynamics. The 

results here show a clear application of one such technique in analysing colony dynamics.

The components of pathozone infection from particulate and infected plant inoculum 

were summarised by the critical exponential and logistic functions respectively. By 

allowing selected parameters of these equations to vary with time, the pathozone dynamics 

of individual plants were used to predict disease progress amongst a population of host 

plants for epidemics dominated by either primary or secondary infection. In this simple 

system, it was possible to predict disease progress accurately for monocyclic disease both 

in unprotected crops and in crops protected by T. viride. A particular feature of the 

behaviour of the model describing monocyclic disease was the sensitivity of the asymptotic 

level of disease to small changes in the outer extent of the profile. By combining a function 

for changes in the probability of occurrence with distance (based on the distribution of 

particulate inoculum) with changes in the probability of infection with distance (the 

pathozone profile), it was possible to identify the portion of particulate inoculum that 

contributes most to primary infection. Information of this type can then be used to optimise 

disease control by identifying critical properties of pathozone behaviour that affect disease 

progress.

The reason that predictions of monocyclic disease were successful was because the

203



epidemiological system (infectivity of inoculum, susceptibility of the host, placement of 

inoculum and host) was precisely defined and the growth conditions (light, moisture, 

temperature) were carefully controlled for the duration of the experiment. Polycyclic 

disease was also accurately predicted in the absence of biological control but failed in the 

presence of T. viride at the point when the epidemic switched from primary to secondary 

infection. It is noted, however, that small differences in primary infection caused, for 

example, by the presence of a biological control agent, may, when combined with a rapid, 

non-linear increase in secondary infection, together with an interruption of transients (as 

the host becomes resistant or inoculum becomes less infective) result in large variability 

in final levels of disease (Kleczkowski et al., 1996). Alternatively, because of the length 

of such experiments, they are prone to time-dependent factors that are not detected when 

modelling the behaviour of single plants but which significantly alter the course of disease
h

progress later on in an epidemic. Thus, the minimum requirements that I would recommend 

for accurate predictions of disease over an extended period, even in this simple system, 

involve measurement of changes in host susceptibility, the infectivity Of inoculum, the 

biological control agent, the biotic and abiotic environment and the spatial dynamics&f 

each of each component. Unfortunately, mathematical prediction involving such a large 

number of components will involve many parameters, making fitting of the model to 

disease data difficult. Hence, the next logical step would be to identify appropriate forms 

of parsimonious non-linear models which are able to summarise these key processes. This 

strategy was used in chapter 3 to summarise the behaviour of the infection components that 

determine the shape of the pathozone.

Much research is cuneiilly focused on the detailed behaviour of organisms which exist 

in the rhizosphere. Typically the work involves examination of single roots or plants at a 

single time of observation. Little is known about how this behaviour affects a population
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of plants. By successfully predicting disease progress and biological control from the 

pathozone behaviour of single plants, which is, in turn, linked to specific components of 

infection, the work on R. solani and radish provides a highly repeatable model host-parasite 

system with which to address this and other related problems.

For the progress of take-aU disease on winter wheat, the study has identified two distinct 

phases of infection. There is an initial phase of primary infection by Ggt as roots grow 

through the soil and encounter inoculum but the rate of primary infection slows 

progressively as particulate inoculum decays. This is followed by an acceleration in the rate 

of secondary infection stimulated by the increase in availability of infected tissue as a 

source of inoculum and in the availability of susceptible tissue for infection. Moreover, at 

a lower density of initial particulate inoculum, primary infection was almost entirely 

restricted to the seminal root system, whilst secondary infection affected both the seminal 

and the adventitious roots. This behaviour was consistent with field observations and 

provides an important biologically driven, mathematical framework with which to examine 

and optimise disease control. The study also showed that it was possible to suppress 

primary infection by adding the bacterial antagonist Pseudomonas corrugata to the surface 

of a root. Colonisation of seminal wheat roots by Pseudomonas spp. from treated seed is 

relatively successful (Weller, 1984). However, the model for primary and secondary 

infection predicts that sustained control can be achieved only by suppressing secondary 

infection. This does not mean that colonisation of the adventitious roots by P. corrugata 

is cmcial. The probabihty of passing infection from one root to another will depend on the 

combined infectivity of the donor seminal root and the susceptibility of the recipient root. 

Whilst colonisation of both root types may provide enhanced contiol, colonisation of the 

donor may be sufficient to prevent root to root transmission of disease.

The relative benefits of controlling disease on either the seminal or adventitious roots
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also depends on their contributions to the water and mineral requirements and thus the yield 

of the plant. The seminal roots supply the majority of water and nutrients for the plant to 

become established. Ultimately, they grow deeper than adventitious roots and may be 

important during periods of drought when they are able to access water deeper in the soil 

profile (Innes and Quarrie, 1987). As the wheat plant develops, its water and mineral 

requirements are increasingly met by the adventitious roots. It follows then, that the 

contribution of the. two root systems to the yield of the plant and the benefits gained by 

protecting them depends on soil water availability throughout the growing season.

Two areas of research that require urgent attention and are a logical progression from 

the work described in this study were identified. The first relates to the R. solani-rsL^sh 

system. The selection of an appropriate model is cmcial if the behaviour of its parameters 

are to be interpreted with any degree of confidence. Models for botanical epidemics 

generally assume homogeneous (or complete) mixing. That is to say, the probability of 

disease transmission from an inoculum unit to a susceptible host is the same for all hosts. 

This may be a reasonable approximation for primary infection when particulate inoculum 

is randomly dispersed. It is not, however, tenable for secondary infection where the 

probability of infection depends on the distance between host and inoculum. For this 

reason, a cellular automaton was used to model polycyclic disease (Chapter 5). Further 

work is necessary to identify appropriate functional forms of differential equations with 

which to model botanical epidemics involving secondary infection and heterogeneous 

mixing. The Rhizoctonia-iadish system is well suited for the empirical verification of such 

models.

Because of its complexity, tlie Ggt-v/hcul system was not as well defined as the 

Rhizoctonia-radish system. Primary infection was predicted from pathozone profiles, but 

secondary infection was driven by the growth of roots. There is an urgent need to link
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disease transmission with host growth. The Ggf-wheat system involves three different types 

of root (seminal, adventitious and lateral) yet little is known about the transmission of 

disease from one root to another or for the transmission of a biological control agent 

between different roots. Further work on a probability matrix for transmission coefficients 

relating to the different types of root is needed. Once infected, the wheat plant has the 

capacity to compensate by the production of additional roots. The host functional response 

(i.e. the relationship between root growth and disease severity) has been introduced 

theoretically (Gilligan, 1994) and studied experimentally for stem canker on potatoes 

(Gilligan et al, 1997), and has the potential to offer insight onto the levels of control 

necessary to allow the host to tolerate disease. This response has not been included in the 

functional form of models describing disease progress of botanical epidemics in the present 

work.

In conclusion, the prospects for advancing our understanding of root infecting plant 

pathogens and their biological control are good. In combination with improved techniques 

for the mathematical description of disease dynamics, experimental methods for providing 

relevant data have been enhanced by molecular techniques for detection and quantification. 

For example, monoclonal antibody (Dewey et al, 1997; Thornton et al, 1993; Thornton et 

al, 1994; Thornton, 1996) and DNA-based (Keller, 1995) protocols have been developed 

for detection of Rhizoctonia, Trichoderma and Ggt in soil. Lux transformed bacterial 

control agents are available with which to assess colonisation of the root system by the 

bacterial antagonist P. corrugata (Rattray et a l, 1995), and in situ scanning techniques 

have recently been developed to assess the spatial development of wheat roots over time 

(Grose et al, 1997). This work has shown that, in a well defined and carefully controlled 

epidemiological system (the infection of radish by R. solani), it is possible to scale up from 

components of disease that affect single plants to the progress of disease amongst a
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population of plants. The accurate extrapolation of behaviour at the detailed level to that 

at the population level is a crucial factor which will contribute to a clearer understanding 

of the imphcations of rhizosphere studies. Furthermore, the combination of experimentation 

and mathematical modelling has provided a lucid explanation for the disease dynamics in 

a more complex epidemiological system (the infection of wheat by Ggt on wheat). These 

results will ultimately lead to the improvement of disease forecasting and consequently to 

more effective measures for disease control.
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A ppendix I

Soils

Soil Location Type* Class Content pH

Soil 1 Cambridge

University

Farm

Evesham

3

Sandy

loam

Clay =17.0%  

Organic matter = 2.0 %

7.0

Soil 2 Cambridge

University

Farm

Hanslope Sandy

clay

loam

Clay = 23.8% 

Organic matter = 2.1%

7.5

Soil 3 Wobum

Experimental

Farm

Bearsted Loamy

sand

Clay = 6.85% 

Organic matter =1.1%

6.7

Classification from the Soil Survey of England and Wales, 1983 (Rothamsted Experimental Station).
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A ppendix H

Isolates

1. Gaeumannomyces graminis

Isolate Location Host Source

Av Unknown Unknown CAG

BFl CUF (Brookfields) 10* wheat -

BF3 CUF (Brookfields) 10* wheat

BF4 CUF (Brookfields) 10* wheat -

Cv Unknown Unknown CAG

MLl CUF (Meadowlands) 2*“* wheat -

ML2 CUF (Meadowlands) 2“** wheat -

ML3 CUF (Meadowlands) 2“** wheat -

ML5 CUF (Meadowlands) 2"** wheat -

NMl CUF (Nomans) 4* wheat -

NM2 CUF (Nomans) 4* wheat -

NM5 CUF (Nomans) 4* wheat -

CUF = Cambridge University Farm;
CAG = Dr C. A. Gilligan, University of Cambridge
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2. Rhizoctonia solani

Isolate Anastomosis

group

Host Source

RI 4 Solanum tuberosum CAG
R2 2-1 Solanum tuberosum CAG
R3 4 NA RB
R5 2-1 Solanum tuberosum CAG
R8 , 3 Solanum tuberosum CAG

RIO 3 Solanum tuberosum CAG
R13 3 Solanum tuberosum CAG
R14 3 Solanum tuberosum CAG
J262 3 NA CAG
J312 4 NA CAG
J317 2-1 NA CAG
AGI 1 Beta vulgaris M I (303154)

AG2-1 2-1 Linum usitatissimum M I (303155)

AG 2-2 2-2 Arachis hypogaea M I (303156)
AG3 3 Solanum tuberosum M I (303158)
AG4 4 Phaseolus spp. M I (303162)

NA = information unavailable 

CAG = Dr C. A. Gilligan, University of Cambridge, Cambidge, UK. 

RB = Dr R. Baker. Colorado State University, USA.

IMI = International Mycological Institute, Egham, Surry, UK.

3. Trichoderma and Gliocladium

Isolate Species Source

Bx_PM

TMD

Trichoderma viride 

Gliocladium repens

Dr P. Mills. Horticultural Research International, 

Wellesboume, Warwickshire, UK.

Dr F M. Dewey. University of Oxford, Oxford, 

UK.
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A ppendix m

Staple

Roots

Stand

Soil Pack

Tnociiliim

Staple View from underside

Diagram showing the soil pack system used for the derivation of pathozone profiles for 
Gaeumannomyces graminis var. tritici on wheat. The pathozone describes changes in 
the probability of infection with distance between inoculum and host.
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