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Abstract—The support recovery problem consists of determin-
ing a sparse subset of variables that is relevant in generating a
set of observations. In this paper, we study the support recovery
problem in the phase retrieval model consisting of noisy phaseless
measurements, which arises in a diverse range of settings such
as optical detection, X-ray crystallography, electron microscopy,
and coherent diffractive imaging. Our focus is on information-
theoretic fundamental limits under an approximate recovery
criterion, with Gaussian measurements and a simple discrete
model for the sparse non-zero entries. Our bounds provide sharp
thresholds with near-matching constant factors in several scaling
regimes on the sparsity and signal-to-noise ratio.

I. INTRODUCTION

Recently, there has been a growing interest in recovering an
unknown signal β ∈ Cp from phaseless quadratic observations
of the form Y = |〈β,X〉|2 + Z, where X ∈ Cp is a
measurement matrix, and Z ∈ R represents measurement
noise. Since only the magnitude of 〈β,X〉 is measured, and not
the phase (or the sign, in the real case), this problem is referred
to as phase retrieval. The phase retrieval problem has many
applications including optical detection, X-ray crystallogra-
phy, electron microscopy, and coherent diffractive imaging [1].
Similarly to the basic linear model, various works have shown
that the number of measurements can be reduced significantly
if the signal β ∈ Cp is sparse, i.e., it has at most k non-zero
entries for some k � p [1]–[5].

A distinct goal that has received less attention in phase
retrieval, but considerable attention in other models, is the
support recovery problem [6]–[8], where one wishes to exactly
or approximately determine the support S = supp(β) given
a collection of observations Y ∈ Rn and the corresponding
measurement matrix X ∈ Cn×p. This problem is of direct
interest when the goal is to find which variables influence the
output (rather than their weights), and may also be used as a
first step towards estimating the values of β (e.g., see [9]).

Under general linear and non-linear models, Scarlett and
Cevher [10] provided achievability and converse bounds char-
acterizing the trade-off between error probability and number
of measurements. They applied their general bounds to the
linear, 1-bit, and group testing models to obtain precise
thresholds on the number of measurements required to achieve
vanishing decoding error probability in the high-dimensional
limit. Numerous other related works also exist, with the focus
being mainly on linear models [11]–[15]; see [10] for a more

detailed overview. In particular, approximate recovery criteria
were studied by Reeves and Gastpar [16], [17] in the regime
k = Θ(p), and by Scarlett and Cevher [10] in the regime
k = o(p); we focus on the latter setting.

Although the initial bounds in [10] are very general, apply-
ing these bounds to new models can still be very challenging,
due to the need to establish concentration bounds and mutual
information bounds on a case-by-case basis. In this paper,
we use this approach to establish fundamental limits for
approximate support recovery in the phase retrieval model,
under a log-concavity assumption on the noise distribution.
To achieve this goal, we need to overcome at least two key
challenges: establishing concentration bounds for information
quantities in the phase retrieval model, and upper and lower
bounding key conditional mutual information terms that have
no closed form expressions.

II. PROBLEM SETUP AND MAIN RESULT

A. Model and Assumptions

Let p denote the ambient dimension, k the sparsity level,
and n the number of measurements. We let S be the set of
subsets of {1, 2, . . . , p} having cardinality k. The key random
variables in the support retrieval problem are the support set
S ∈ S, the unknown signal β ∈ Cp, the measurement matrix
X ∈ Cn×p, and the observation vector Y ∈ Rn.

The support set S is assumed to be equiprobable on the(
p
k

)
subsets within S. Given S, the entries of βSc (with

Sc = {1, . . . , p} \S) are deterministically set to zero, and the
remaining entries are generated according to some (discrete)
distribution βS ∼ PβS . In this paper, we focus on the case
that βS is a uniformly random permutation of a fixed complex
vector (b1, . . . , bk). In the full version [18], we consider a more
general setup also permitting continuous distributions on βS .

We consider the setting of (complex) Gaussian measure-
ments, in which the measurement matrix takes i.i.d. values on
CN (0, 1), whose density is denoted by fX . We write fn×pX , to
denote the corresponding i.i.d. distribution for matrices, and
we write fkX as a shorthand for fk×1X . Given S = s, each entry
of the observation vector Y is generated in a conditionally
independent manner according to the following model:

Y = |〈Xs, βs〉|2 + Z, (1)
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where Xs ∼ fkX , βs ∈ Ck, and Z ∼ fZ , with fZ being
an arbitrary log-concave density function. This log-concavity
assumption is made for mathematical convenience, but also
captures a wide range of noise distributions, including Gaus-
sian. We note that the permutation-invariance of Y , XS and
βS with respect to S allows us to condition on a fixed S = s
throughout the analysis (e.g. s = {1, . . . , k}) without loss of
generality; such conditioning should henceforth be assumed
unless explicitly stated otherwise.

The relation (1) induces the following conditional joint
distribution of (Xs, Y ) given S = s and βS = bs:

fXsY |βs(xs, y|bs) = fkX(xs)fY |Xsβs(y|xs, bs) (2)

= fkX(xs)fZ(y − |〈xs, bs〉|2), (3)

and its multiple-observation counterpart

fXsY|βs(xs,y|bs) = fn×kX (xs)f
n
Y |Xsβs(y|xs, bs), (4)

where fnY |Xsβs(y|xs, bs) is the n-fold product of
fY |Xsβs(·|·, bs). The remaining entries of the measurement
matrix are distributed as Xsc ∼ fn×(p−k)X .

Given X and Y, a decoder forms an estimate Ŝ of S. Like
previous works studying the information-theoretic limits of
support recovery (e.g., [10], [11]), we assume that the decoder
knows the system model, including fY |Xsβs and Pβs . We focus
on the approximate recovery criterion, only requiring that at
least k − bα∗kc + 1 entries of S are successfully identified
(approximate recovery) for some α∗ ∈ (0, 1). Following [10],
[16], the error probability is given by

Pe(α
∗) := P

[
{|S \ Ŝ| ≥ bα∗kc} ∪ {|Ŝ \ S| ≥ bα∗kc}

]
. (5)

Note that if both S and Ŝ have cardinality k with probability
one, then the two events in the union are identical, and hence
either of the two can be removed.

Our main goal is to derive necessary and sufficient condi-
tions on n (as a function of k and p) such that Pe(α

∗) tends to
zero as p→∞. Moreover, when considering converse results,
we will not only be interested in conditions under which
Pe(α

∗) 6→ 0, but also conditions under which the stronger
statement Pe(α

∗)→ 1 holds.

B. Statement of Main Result

Here we state and discuss the main result of this paper. An
analogous main result is stated in [18] for the case that the
non-zero entries of βs are Gaussian, but that is omitted here
due to space constraints.

Recall that βs is a uniformly random permutation of a fixed
complex vector (b1, . . . , bk). We let (b′1, . . . , b

′
k) be the sorted

version of (b1, . . . , bk) such that |b′1| ≤ |b′2| ≤ · · · |b′k|, and
define the following mutual information quantities:

I1(α, k) :=
1

2
log

[(
4

exp(2h(Z))

)
v′(α) + 1

]
, (6)

I2(α, k) :=
1

2
log

[(
2πe

exp(2h(Z))

)
v′(α) + 1

]
+

1

2
log

[
1 +

v′(α)
(
‖bs‖2 − v′(α)

)
v′(α)2 + exp(2h(Z))

2πe

]
+

1

2
log

(
πe

2

)
, (7)

where v′(α) =
(∑bαkc

i=1 |b′i|2
)2

is the energy in the lowest
(in magnitude) bαkc entries of (b1, . . . , bk). Here and subse-
quently, all logarithms have base e, and information measures
are in units of nats.

Theorem 1. Consider the preceding phase retrieval setup,
with βs being a uniformly random permutation of a fixed
complex vector (b1, b2, . . . , bk). Let |bmin| = min{|bi| : i ∈
{1, · · · , k}} and |bmax| = max{|bi| : i ∈ {1, · · · , k}}, and
assume that |bmin| = Θ(|bmax|), and that k → ∞ with
‖bs‖2 = Θ(1) as p → ∞. In addition, assume that there
are mβ ∈ {1, . . . , k} distinct elements in (b1, . . . , bk).

We have Pe(α
∗)→ 0 as p→∞ provided that

n ≥ max
α∈[α∗,1]

αk log( pk )

I1(α, k)
(1 + η) (8)

for arbitrarily small η > 0 if either of the following additional
conditions hold: (i) mβ = Θ(1) and k = o(p), or (ii) log k =
o(log p) (and mβ is arbitrary).

Conversely, under the general scaling k = o(p) and arbi-
trary mβ , we have Pe(α

∗)→ 1 as p→∞ whenever

n ≤ max
α∈[α∗,1]

(α− α∗)k log( pk )

I2(α, k)
(1− η), (9)

for arbitrarily small η > 0.

We observe that the upper and lower bounds are nearly in
closed form, other than the optimization over a single scalar
α. Moreover, the two have a very similar form, with the main
difference being the appearance of α vs. (α − α∗) in the
numerator, and I1 vs. I2 in the denominator. The bounds hold
for an arbitrary log-concave noise distribution fZ .

Since the noise variance σ2 is fixed and the measure-
ment matrix has normalized CN (0, 1) entries, the assumption
‖b‖2 = Θ(1) corresponds to the case that the signal-to-
noise ratio (SNR) is constant. We observe that under this
assumption, the upper and lower bounds provide matching
Θ
(
k log p

k

)
behavior. Perhaps more significantly, in the high-

SNR limit (i.e., ‖b‖2 → ∞), we obtain nearly identical
constant factors. To see this, it suffices to crudely lower bound
I1(α, k) by 1

2 log
[(

4
exp(2h(Z))

)(
bαkc|bmin|2

)2
+1
]
, and upper

bound I2(α, k) by 1
2 log

[(
2πe

exp(2h(Z))

)(
bαkc|bmax|2

)2
+ 1
]

+
1
2 log

[
1 + bαkck|bmax|4

bαkc2|bmin|4
]

+ 1
2 log

(
πe
2

)
. For any α bounded

away from zero, since |bmin| = Θ(|bmax|), these both behave
as log(k|bmin|2)(1 + o(1)) as ‖b‖2 → ∞ (or equivalently
k|bmin|2 → ∞), which implies that the maxima in (8) and
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Fig. 1. Asymptotic thresholds on the number of measurements required for
approximate support recovery for the linear model [10] and phase retrieval
model with Gaussian noise, distortion level α∗ = 0.1, and non-zero entries
b1 = · · · = bk =

√
cβ
k

. The asymptotic number of measurements is
normalized by k log( p

k
), and SNRdB := 10 log(2c2β).

(9) are attained by α = 1 in this limit, and the upper and
lower bounds coincide up to a factor of 1

1−α∗ .
We believe that the extra assumptions on mβ and k in the

achievability part are an artifact of our analysis, and note that
similar assumptions were made for the linear model in [10].

C. Comparison to the Linear Model

In Figure 1, we plot the upper and lower bounds of
Theorem 1 for α∗ = 0.1 under various signal-to-noise ratios
(SNRs), along with the counterparts for the linear model in
[10]. We focus on the simple case that Z ∼ N (0, 1) and

b1 = · · · = bk =

√
cβ
k

(10)

for some cβ > 0, corresponding to mβ = 1 in Theorem 1.
See [18, Appendix A] for a derivation of the SNR in the
phase retrieval model, and a simplified statement of our sample
complexity bounds when the non-zero entries of βs are given
by (10).

As predicted by the discussion following Theorem 1, the
upper and lower bounds are close (though still with a constant
gap) when the SNR is sufficiently high. In addition, in this
regime the information-theoretic limits of the phase retrieval
model and the linear model are very similar.

However, at lower SNR, the gap for the phase retrieval
model can widen more than that of the linear model. This
appears to be because the key mutual information quantities
arising in the analysis can only be expressed in closed form
in the linear model, while requiring possibly-loose bounds
in the phase retrieval model. However, all that is needed to
close this gap (at least partially) is to deduce improved mutual
information bounds for the phase retrieval setting (cf., Section
III-D below).

III. OUTLINE OF THE PROOF

In this section, we outline the proof of Theorem 1; the de-
tails can be found in [18]. We first introduce some notation and
recall the initial bounds for general observation models from
[10], and then present the relevant log-concavity properties,
mutual information bounds, and concentration bounds.

A. Information-Theoretic Definitions

We first outline some information theoretic definitions
from [10], recalling that we are conditioning on a fixed S = s
throughout. We consider partitions of the support set s ∈ S
into two disjoint sets sdif 6= ∅ and seq, where seq will typically
correspond to an overlap between s and some other set s̄ (i.e.,
s∩ s̄, the “equal” part), and sdif will correspond to the indices
in one set but not in the other (i.e., s \ s̄, the “differing” part).

For fixed s ∈ S and a corresponding pair (sdif , seq), we
introduce the notation

fY|Xsdif
Xseq

(y|xsdif ,xseq) := fY|Xs
(y|xs), (11)

fY |XsdifXseq (y|xsdif , xseq , bs) := fY |Xsβs(y|xs, βs), (12)

where fY|Xs
is the marginal distribution of (4). While the

left-hand sides of (11) and (12) represent the same quantities
for any pair (sdif , seq), it will still prove convenient to work
with these in place of the right-hand sides. In particular, this
allows us to introduce the marginal distributions

fY|Xseq
(y|xseq) :=

∑
xsdif

fn×`X (xsdif )fY|Xsdif
Xseq

(y|xsdif ,xseq),

(13)

fY |Xseq (y|xseq) :=
∑
xsdif

f `X(xsdif )fY |XsdifXseq (y|xsdif , xseq),

(14)

where ` := |sdif |. Using the preceding definitions, we in-
troduce two information densities (in the terminology of the
information theory literature, e.g., [19]). The first contains
probabilities averaged over βs,

i(xsdif ;y|xseq) := log
fY|Xsdif

Xseq
(y|xsdif ,xseq)

fY|Xseq
(y|xseq)

, (15)

whereas the second conditions on βs = bs:

in(xsdif ;y|xseq , bs) :=

n∑
i=1

i(x(i)sdif ; y
(i)|x(i)seq , bs), (16)

where (x(i), y(i)) is the i-th measurement, and the single-letter
information density is

i(xsdif ; y|xseq , bs) := log
fY |XsdifXseqβs(y|xsdif , xseq , bs)

fY |Xseqβs(y|xseq , bs)
.

(17)

Averaging (17) with respect to the distribution in (12) con-
ditioned on βs = bs yields a conditional mutual information
quantity, which is denoted by

Isdif ,seq(bs) := I(Xsdif ;Y |Xseq , βs = bs). (18)



B. Initial Achievability and Converse Bounds

For the general support recovery problem with probabilistic
models, the following achievability and converse bounds are
given in [10]. Note that the versions of these bounds that
we state here are simplified due to the fact that βs is a
uniformly random permutation, so all (non-zero) values of
Pβs(bs) are identical. (The more general version requires
defining a “typical set” of βs vectors.)

Theorem 2. [10, Theorem 5] Fix any constants δ1 > 0 and
δ2 ∈ (0, 1), and functions {ψ`}k`=bα∗kc(ψ` : Z×R→ R) such
that the following holds:

P
[
in(Xsdif

;Y|Xseq , βs) ≤ n(1− δ2)Isdif ,seq(bs)
∣∣βs = bs

]
≤ ψ|sdif |(n, δ2), (19)

n ≥
log
(
p−k
|sdif |

)
+ log

(
k2

δ21

(
k
|sdif |

)2)
+ log 1

minbs Pβs (bs)

Isdif ,seq(bs)(1− δ2)
, (20)

for all (sdif , seq) with bα∗kc ≤ |sdif | ≤ k and for all
realizations bs of βs. Then we have

Pe(α
∗) ≤

k∑
l=bα∗kc

(
k

`

)
ψ`(n, δ2) + 2δ1. (21)

Theorem 3. [10, Theorem 6] Fix any constants δ1 > 0, δ2 >
0, and functions {ψ′`}k`=bα∗kc(ψ

′
` : Z×R→ R) such that the

following holds:

P
[
in(Xsdif

;Y|Xseq , βs) ≤ n(1+ δ2)Isdif ,seq(bs)
∣∣βs = bs

]
≥ 1− ψ′|sdif |(n, δ2), (22)

n ≤
log
(
p−k+|sdif |
|sdif |

)
− log

(∑bα∗kc
d=0

(
p−k
d

)(|sdif |
d

))
− log δ1

Isdif ,seq(bs)(1 + δ2)
,

(23)
for all (sdif , seq) with |sdif | ∈ [bα∗kc, k], and for all realiza-
tions bs of βs. Then we have

Pe(α
∗) ≥ 1− max

`=bα∗kc,...,k
ψ′`(n, δ2)− δ1. (24)

The steps for applying and simplifying these bounds are as
follows:

1) Establish an explicit characterization of each mutual
information term Isdif ,seq(bs) (e.g., upper and lower
bounds);

2) Use concentration of measure to find expressions for
each function ψ` and ψ′` in Theorems 2 and 3, i.e.,
functions satisfying (19) and (22);

3) Combine and simplify the preceding steps to deduce the
final sample complexity bound.

These steps turn out to be highly non-trivial in the phase
retrieval setting; the details are outlined below.

C. Log-Concavity Properties

Both our mutual information bounds and concentration
bounds will crucially rely on the log-concavity properties
stated in the following lemma.

Lemma 4. Under the phase retrieval setup in Section II, we
have the following:

1) Given S = s and βs = bs, the conditional marginal
density of Y is log-concave;

2) Given S = s, βs = bs, and Xseq = xseq for some
seq ⊂ s, the conditional marginal density of Y is log-
concave.

The proof (given in [18]) is very straightforward, and is
based on the assumption that fZ is log-concave, along with
well-known log-concavity properties.

D. Mutual Information Bounds

While an exact expression for the mutual information
Isdif ,seq(b) does not appear to be possible, the following
theorem states closed-form upper and lower bounds. While
there is a gap between the two in general, the asymptotic
behavior is similar when vdif =

∑
i∈sdif |bi|

2 grows large;
this fact ultimately leads to tight sample complexity bounds
in the high-SNR setting.

Theorem 5. For the phase retrieval setup in Section II, the
following holds for Isdif ,seq(bs) defined in (18):

1

2
log

[(
4

exp(2h(Z))

)
v2dif + 1

]
≤ Isdif ,seq(bs)

≤ 1

2
log

(
πe

2

)
+

1

2
log

[(
2πe

exp(2h(Z))

)
v2dif + 1

]
+

1

2
log

(
1 +

vdifveq

v2dif + exp(2h(Z))
2πe

)
, (25)

where veq =
∑
i∈seq |bi|

2 and vdif =
∑
i∈sdif |bi|

2.

The upper bound is based on the entropy power inequality
and the maximum entropy property of the Gaussian distribu-
tion, and the lower bound is based on (known) results that
give nearly-matching lower bounds for log-concave random
variables. The details are given in [18].

E. Concentration Bounds

Perhaps the most technically challenging part of our analysis
is to establish concentration bounds amounting to explicit
expressions for ψ` and ψ′` in Theorems 2 and 3. These are
stated in the following theorem.

Theorem 6. Under the phase retrieval setup in Section II, the
following bounds hold:

P
[
in(Xsdif ;Y|Xseq , βs = bs)− nIsdif ,seq(bs) ≤ −2nC(bs)µ

]
≤ exp(−nC(bs)r(µ)) + exp(−nC(bs)r(−µ)), (26)

P
[
in(Xsdif ;Y|Xseq , βs = bs)− nIsdif ,seq(bs) ≥ 2nC(bs)µ

]
≤ exp(−nC(bs)r(µ)) + exp(−nC(bs)r(−µ)), (27)



for all µ > 0, where Isdif ,seq(bs) is defined in (18), C(bs) is
a constant depending on bs ∈ Ck, and

r(u) =

{
u− log(1 + u) for − 1 < u <∞
+∞ otherwise.

. (28)

In addition, we have C = Θ(1) whenever ‖bs‖2 = Θ(1).

We briefly discuss the ideas behind establishing this result.
First note that

in(Xsdif
;Y|Xseq , βs = bs) = h̃(Y|Xsdif

,Xseq , βs = bs)

− h̃(Y|Xseq , βs = bs), (29)

where h̃ denotes the conditional negative log-density (e.g.,
h̃(y|x) = − log fY |X(y|x)). Hence, to establish that in con-
centrates, it suffices to show that both h̃ terms concentrate. The
concentration of unconditional information random variables
for log-concave distributions is well-known [20]. Unfortu-
nately, such results cannot be used in our setting, because
we are considering random variables that fail to be jointly
log-concave. While we use similar high-level steps to [20] for
establishing Theorem 6 based on the properties in Lemma 4
alone, this comes with considerable technical challenges. The
interested reader is referred to [18] for the details.

F. Wrapping Up

Theorem 6 provides expressions for ψ` and ψ′` in Theorems
2 and 3, and allow us (with some tedious asymptotic analysis)
to simplify the achievability condition on n to

n ≥ max
(sdif ,seq) : bα∗kc≤|sdif |≤k

log
(
p−k
|sdif |

)
Isdif ,seq(bs)

(1 + η), (30)

and the converse condition to

n ≤ max
(sdif ,seq) : bα∗kc≤|sdif |≤k

log
(
p−k+|sdif |
|sdif |

)
− log

(∑bα∗kc
d=0

(
p−k
d

)(|sdif |
d

))
Isdif ,seq(bs)

(1− η) (31)

for arbitrarily small η > 0. For the achievability part, these
simplifications crucially use the assumptions on k and mβ

stated in Theorem 2 to ensure that the term log 1
minbs Pβs (bs)

≤
k logmβ in (20) is asymptotically negligible.

To complete the achievability part, we use the mutual
information lower bound in (25) of Theorem 5. Since this
lower bound is increasing in vdif and does not depend on veq,
we have the following whenever |sdif | = bαkc:

Isdif ,seq(bs) ≥ I1(α, k), (32)

recalling that I1(α, k) defined in (6) replaces vdif by the
value corresponding to the lowest-magnitude entries of bs.
Hence, (8) of Theorem 1 follows from (30) by observing that
the numerator of (30) behaves as

(
αk log p

k

)
(1 + o(1)) when

|sdif | = αk (for α ∈ [α∗, 1]), and the denominator is lower
bounded by I1(α, k) via (32).

For the converse part, we use the upper bound in (25) of
Theorem 5. While this bound depends on vdif and veq in a

more complicated fashion, the converse bound (31) remains
valid when we replace the maximum over (sdif , seq) by any
fixed choice. Under the choice in which sdif contains the
indices corresponding to the bαkc entries of bs with the
smallest magnitude, (25) yields

Isdif ,seq(bs) ≤ I2(α, k), (33)

where I2(α, k) is defined in (6). The numerator is already
known to simplify to (α − α∗)k log( pk )(1 + o(1)) whenever
|sdif | = bαkc for α ∈ [α∗, 1] [10], and combining these results
yields (9) of Theorem 1.
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